JP2009186247A - Analyzing method, analyzing device, and analyzer - Google Patents

Analyzing method, analyzing device, and analyzer Download PDF

Info

Publication number
JP2009186247A
JP2009186247A JP2008024623A JP2008024623A JP2009186247A JP 2009186247 A JP2009186247 A JP 2009186247A JP 2008024623 A JP2008024623 A JP 2008024623A JP 2008024623 A JP2008024623 A JP 2008024623A JP 2009186247 A JP2009186247 A JP 2009186247A
Authority
JP
Japan
Prior art keywords
diluent
chamber
mixing chamber
liquid sample
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008024623A
Other languages
Japanese (ja)
Other versions
JP5322447B2 (en
Inventor
Kenji Watabe
賢治 渡部
Hiroshi Saeki
博司 佐伯
Masaaki Kito
正明 木藤
Hirobumi Sugimoto
博文 杉本
Takeru Takahashi
長 高橋
Kozo Tagashira
幸造 田頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008024623A priority Critical patent/JP5322447B2/en
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to PCT/JP2008/003222 priority patent/WO2009060617A1/en
Priority to EP08848318.5A priority patent/EP2219034B1/en
Priority to CN201310443482.3A priority patent/CN103499702B/en
Priority to CN201310443484.2A priority patent/CN103487596B/en
Priority to US12/741,929 priority patent/US9182384B2/en
Priority to CN2008801077592A priority patent/CN101802622B/en
Publication of JP2009186247A publication Critical patent/JP2009186247A/en
Application granted granted Critical
Publication of JP5322447B2 publication Critical patent/JP5322447B2/en
Priority to US14/877,663 priority patent/US10101317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analyzing method which enables the calculation of an accurate diluting magnification without being affected by the error of the length of a light path, and an analyzing device loaded with a flow channel constitution capable of realizing this method. <P>SOLUTION: The analyzing method is composed of the first step (the primary photometry in the process 2) for transmitting detection light through a diluted solution in a state that only the diluted solution is held in a mixing chamber (29) to measure the absorbance only of the diluted solution, the second step (the secondary photometry of the process 4) for transmitting the detection light through the diluted liquid sample in a state that only the diluted liquid sample is held in the mixing chamber (29) to measure the absorbance of the diluted liquid sample and the third step (process 9) for correcting the result read by giving access to the reaction matter of the diluted liquid sample in a measuring cell (40a) by the diluting magnification calculated on the basis of the absorbances calculated in the first and second steps to calculate the analyzing result of a component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は一般に、種々の生物学的及び化学的組成物の分析に適用されるような多項目生体液分析装置(マルチバイオセンサ)の分野に関する。より具体的には、本発明は、印加される遠心力及び装置中の通路の表面特性や液体の表面張力によって生じる毛細管力を利用して液体の計量・移送・混合・攪拌等の動作を行い、分析を実施する分析方法と分析用デバイスおよび分析装置に関するものである。   The present invention relates generally to the field of multi-item biological fluid analyzers (multi-biosensors) as applied to the analysis of various biological and chemical compositions. More specifically, the present invention performs operations such as liquid metering, transfer, mixing, and agitation using the applied centrifugal force and the capillary force generated by the surface characteristics of the passage in the apparatus and the surface tension of the liquid. The present invention relates to an analysis method for performing analysis, an analysis device, and an analysis apparatus.

従来、試料液を内部に収集した分析用デバイスを用い、この分析用デバイスを軸中心周りに回転させながら、分析装置の光学スキャン技術を用いて、試料液の特性を分析する分析装置が実用化されている。   Conventionally, an analytical device that analyzes the characteristics of a sample liquid using the optical scanning technology of the analytical apparatus is put into practical use, using an analytical device that collects the sample liquid inside and rotating the analytical device around the axis center Has been.

近年、試料液の少量化、装置の小型化、短時間測定、多項目同時測定など、市場からの要求も多く、血液等の試料液をいろいろな分析試薬と反応させ、その混合物を検出し、短時間で各種病気の進行度合いを検査できるより高精度の分析装置が望まれている。   In recent years, there have been many demands from the market, such as sample volume reduction, device miniaturization, short time measurement, multi-item simultaneous measurement, etc., reacting sample liquids such as blood with various analytical reagents, detecting the mixture, There is a demand for a more accurate analyzer that can examine the progress of various diseases in a short time.

通常、このような分析用デバイスでは試料液をそのまま試薬と反応させることは少なく、分析の目的に応じて緩衝液等による試料液の希釈や試料液中の微粒子の除去といった前処理が必要となる場合が多い。そして、例えば試料液の希釈を行った場合、実際の測定値算出過程においてその希釈倍率を正確に導出する必要がある。   Usually, such an analytical device rarely reacts the sample solution with the reagent as it is, and requires a pretreatment such as dilution of the sample solution with a buffer solution or removal of fine particles in the sample solution depending on the purpose of the analysis. There are many cases. For example, when the sample solution is diluted, it is necessary to accurately derive the dilution factor in the actual measurement value calculation process.

このような前処理および希釈倍率の導出を分析用デバイス上で光学的に行っている例として特許文献1の分析用デバイスがある。
図28は特許文献1の分析用デバイスを示す。
As an example in which such pretreatment and derivation of the dilution rate are optically performed on an analytical device, there is an analytical device disclosed in Patent Document 1.
FIG. 28 shows an analysis device disclosed in Patent Document 1.

ローター本体202は実質的に固体状のディスク形状になっており、その底部層204がこの図23に示されている。密封された試薬容器206が底部層204のチャンバー208内に位置していて、これは出口チャンネル210から半径方向内側へ向かっており、試薬は出口チャンネル210を通って混合チャンバー212の中へ移される。   The rotor body 202 has a substantially solid disk shape, and its bottom layer 204 is shown in FIG. A sealed reagent container 206 is located in the chamber 208 of the bottom layer 204, which is radially inward from the outlet channel 210, and the reagent is transferred through the outlet channel 210 into the mixing chamber 212. .

試薬容器206は、生物学的サンプルと混合される希釈剤を収納している。例えば、もしサンプルが血液である場合には、通常の食塩水溶液(0.5%食塩水)や、リン酸緩衝液、リンゲル乳酸液、およびその類似物のような標準希釈剤を用いてもよい。密封された試薬容器206は、ローター本体202を分析装置の中に取り付けるのに応答して開放される。開放された後は、試薬容器206内の試薬は出口チャンネル210を通って混合チャンバー212へ流れる。   Reagent container 206 contains a diluent to be mixed with the biological sample. For example, if the sample is blood, standard diluents such as normal saline solution (0.5% saline), phosphate buffer, Ringer's lactic acid solution, and the like may be used. . The sealed reagent container 206 is opened in response to mounting the rotor body 202 into the analyzer. After being opened, the reagent in reagent container 206 flows through outlet channel 210 to mixing chamber 212.

混合チャンバー212は、試験しようとしている生物学的サンプルの希釈度を規定するための測光的に検出可能なマーカー混合物を有している。
混合した後は、希釈剤は混合チャンバー212を出て、サイフォン214を通って計量チャンバー216の中へ入る。計量チャンバー216はオーバーフローチャンバー218に連結されている。計量チャンバー216の体積は試薬容器206の体積よりも小さい。希釈剤の余剰の体積は、計量チャンバー216の中に所定体積の希釈剤を残して、オーバーフローチャンバー218の中へ流入する。オーバーフローチャンバー218における希釈剤の余剰体積は、通路220を通って収集チャンバー222の中へ入る。
The mixing chamber 212 has a photometrically detectable marker mixture for defining the dilution of the biological sample to be tested.
After mixing, the diluent exits the mixing chamber 212 and enters the metering chamber 216 through the siphon 214. The metering chamber 216 is connected to the overflow chamber 218. The volume of the measuring chamber 216 is smaller than the volume of the reagent container 206. The excess volume of diluent flows into the overflow chamber 218 leaving a predetermined volume of diluent in the metering chamber 216. Excess volume of diluent in overflow chamber 218 enters collection chamber 222 through passage 220.

次に希釈剤は、生物学的サンプルの光学的分析における参考値として用いるために、半径方向外側へ流れ、システムキュベット224の中へ流れる。計量チャンバー216内の所定体積の希釈剤はサイフォン226を通って分離チャンバー228内へ入り、分析しようとする生物学的サンプルと混合し、サンプルを希釈する。サンプルは頂部層(図示せず)における注入口を介してローター本体202に加えられる。   The diluent then flows radially outward and into the system cuvette 224 for use as a reference value in the optical analysis of biological samples. A predetermined volume of diluent in the metering chamber 216 enters the separation chamber 228 through the siphon 226, mixes with the biological sample to be analyzed, and dilutes the sample. The sample is added to the rotor body 202 via an inlet in the top layer (not shown).

サンプル計量チャンバー230は連結路234によってサンプルオーバーフローチャンバー232に連結されている。サンプル計量チャンバー230とオーバーフローチャンバー232との深さは、毛細管状の寸法になるように選択されている。計量されたサンプルは、次に、分離チャンバー228の中へ入る。分離チャンバー228は、全血液のような生物学的サンプルから細胞状の材料を除去するために用いられる。分離チャンバー228はその半径方向外側の円周部において形成された細胞トラップ236と、半径方向内側の円周に沿って形成された受け穴領域238とからなっている。遠心分離の結果として、細胞状の成分が細胞トラップ236の中へ入った後に、それが逆流するのを防ぐために、受け穴領域238と細胞トラップ236との間に毛細管領域(図示せず)が形成されている。受け穴領域238は希釈された細胞成分のない血漿を受け留めることのできる体積を有している。希釈された血漿はサイフォン242を介して分離チャンバー228から第2分離チャンバー244へ入り、そこで細胞状の成分の分離がさらに行われる。   The sample weighing chamber 230 is connected to the sample overflow chamber 232 by a connection path 234. The depth of the sample metering chamber 230 and the overflow chamber 232 is selected to be a capillary dimension. The weighed sample then enters separation chamber 228. Separation chamber 228 is used to remove cellular material from a biological sample such as whole blood. The separation chamber 228 includes a cell trap 236 formed on a radially outer circumferential portion and a receiving hole region 238 formed along the radially inner circumference. As a result of centrifugation, there is a capillary region (not shown) between the receiving hole region 238 and the cell trap 236 to prevent it from flowing back after cellular components have entered the cell trap 236. Is formed. The receiving hole region 238 has a volume capable of receiving the diluted cell-free plasma. The diluted plasma enters the second separation chamber 244 from the separation chamber 228 via the siphon 242, where further separation of cellular components is performed.

次に、希釈されたサンプルは通路246を介して出て収集チャンバー248の中へ入り、そこで光学的分析を行うためにキュベット250へ送られる。キュベット250はサンプルの光学的分析のために必要な試薬を収納している。上記手法にて得られた希釈剤のみの光学的測定値と希釈後のサンプルの光学的測定値から、サンプルの希釈倍率が導出可能である。
特表平7−503794号公報(図1)
The diluted sample then exits through passage 246 and into collection chamber 248 where it is sent to cuvette 250 for optical analysis. The cuvette 250 contains reagents necessary for optical analysis of the sample. The dilution factor of the sample can be derived from the optical measurement value of only the diluent obtained by the above method and the optical measurement value of the diluted sample.
JP 7-503794 gazette (FIG. 1)

光学的分析、具体的には上述した従来例や本発明における分析装置に採用される可視光または紫外光による吸光度測定においては下記に示すランバート・ベールの法則からも自明なように光路長が測定結果に直接的に影響している。   In the optical analysis, specifically, in the absorbance measurement using visible light or ultraviolet light employed in the above-described conventional example or the analyzer of the present invention, the optical path length is measured as is obvious from Lambert-Beer's law shown below. It directly affects the results.

A = α・L・C
α:吸光係数,L:物質の厚さ(光路長),C:サンプル濃度
である。
A = α ・ L ・ C
α: extinction coefficient, L: material thickness (optical path length), C: sample concentration.

すなわち、光路長の誤差(製造バラつき)は測定値の誤差としてそのまま現れる。特に、検体量の微量化のためデバイス自身が小型化・集積化している中、光路長も当然微小化しているが、光路長が小さくなればなるほどその誤差の影響が大きくなる。しかしながらこの光路長の誤差が完全にゼロになるようにシステムキュベット224とキュベット250を作製することは実質的に不可能である。そのため、それぞれの光路長の誤差の影響を確実に受けてしまい正確な希釈倍率を算出できないという課題を有している。   That is, the optical path length error (manufacturing variation) appears as it is as an error in the measured value. In particular, while the device itself is miniaturized and integrated to reduce the amount of specimen, the optical path length is naturally miniaturized. However, the smaller the optical path length, the greater the effect of the error. However, it is practically impossible to make the system cuvette 224 and the cuvette 250 so that the optical path length error is completely zero. Therefore, there is a problem that an accurate dilution factor cannot be calculated because the influence of each optical path length error is reliably received.

本発明は、前記従来の課題を解決するもので、光路長の誤差の影響を受けることなく正確な希釈倍率を算出できる分析方法と、この分析方法を実現できる流路構成を搭載した分析用デバイスを提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and an analysis method capable of calculating an accurate dilution factor without being affected by an optical path length error, and an analysis device equipped with a flow path configuration capable of realizing this analysis method The purpose is to provide.

本発明の請求項1記載の分析方法は、希釈液と液体試料とを分析用デバイスの混合室に受け入れて混合し、前記混合室で攪拌混合された希釈液体試料を前記分析用デバイスの測定セルに移送し、前記測定セルにおける前記希釈液体試料の反応物にアクセスして成分分析するに際し、前記混合室に希釈液のみを保持した状態で前記混合室に検出光を透過させて前記希釈液のみの吸光度を測定する第1ステップと、前記混合室に希釈液体試料を保持した状態で前記混合室に検出光を透過させて前記希釈液体試料の吸光度を測定する第2ステップと、前記測定セルにおける前記希釈液体試料の反応物にアクセスして読み取った結果を、前記第1,第2ステップで求めた吸光度に基づいて求まる希釈倍率によって補正して成分分析の結果を計算する第3ステップとからなる。   In the analysis method according to claim 1 of the present invention, the diluent and the liquid sample are received and mixed in the mixing chamber of the analytical device, and the diluted liquid sample stirred and mixed in the mixing chamber is measured in the measuring device of the analytical device. When the component is analyzed by accessing the reaction product of the diluted liquid sample in the measurement cell, only the diluted liquid is transmitted through the mixing chamber while only the diluted liquid is held in the mixed chamber. A first step of measuring the absorbance of the diluted liquid sample, a second step of measuring the absorbance of the diluted liquid sample by allowing detection light to pass through the mixing chamber while holding the diluted liquid sample in the mixing chamber, The result obtained by accessing and reading the reactant of the diluted liquid sample is corrected by the dilution factor determined based on the absorbance obtained in the first and second steps, and the result of component analysis is calculated. Consisting of a step.

本発明の請求項2記載の分析方法は、請求項1において、前記第1ステップは、希釈液を前記混合室に向かって移送中に前記混合室に受け入れた前記希釈液のみの吸光度を測定することを特徴とする。   The analysis method according to a second aspect of the present invention is the analysis method according to the first aspect, wherein the first step measures the absorbance of only the dilution liquid received in the mixing chamber during transfer of the dilution liquid toward the mixing chamber. It is characterized by that.

本発明の請求項3記載の分析方法は、請求項1において、前記第1ステップは、分析用デバイスの回転中に希釈液を計量する計量作業を有し、前記計量作業の終了後に分析用デバイスを減速させて、前記希釈液を前記混合室に移送することを特徴とする。   The analysis method according to a third aspect of the present invention is the analysis method according to the first aspect, wherein the first step includes a measurement operation for measuring a diluent while the analysis device is rotating, and the analysis device is provided after the measurement operation is completed. And the diluent is transferred to the mixing chamber.

本発明の請求項4記載の分析用デバイスは、希釈液を貯留する希釈液室と、液体試料を一定量保持できるように構成された液体試料室と、前記液体試料室と連結され前記液体試料を一時的に保持する液体試料保持室と、前記希釈液室と連結され希釈液を必要量定量するための希釈液定量室と、前記希釈液定量室と連結され前記希釈液定量室に移送された希釈液の余剰分を溢流させる溢流流路と、前記液体試料保持室とは第1連結流路を介して連結され前記希釈液定量室とは第2連結流路を介して連結された混合室と、前記混合室とは毛細管流路を介して連結され希釈液と液体試料とを前記混合室で攪拌混合した希釈液体試料を受け入れる測定セルとを設けたことを特徴とする。   According to a fourth aspect of the present invention, there is provided an analytical device comprising a diluent chamber for storing a diluent, a liquid sample chamber configured to hold a predetermined amount of a liquid sample, and the liquid sample chamber connected to the liquid sample chamber. A liquid sample holding chamber for temporarily holding the liquid, a diluent quantifying chamber connected to the diluent chamber for quantifying a required amount of the diluent, and connected to the diluent quantifying chamber and transferred to the diluent quantifying chamber. The overflow channel for overflowing the excess of the diluted solution and the liquid sample holding chamber are connected via a first connection channel, and the dilution liquid quantification chamber is connected via a second connection channel. The mixing chamber and the mixing chamber are connected via a capillary channel and provided with a measurement cell for receiving a diluted liquid sample obtained by stirring and mixing the diluent and the liquid sample in the mixing chamber.

本発明の請求項5記載の分析用デバイスは、請求項4において、前記溢流流路が前記混合室と連結していることを特徴とする。
本発明の請求項6記載の分析用デバイスは、請求項4において、試料液保持室に所定量を超える前記液体試料を溢流させて計量できるように溢流流路を設けたことを特徴とする。
The analysis device according to claim 5 of the present invention is characterized in that, in claim 4, the overflow channel is connected to the mixing chamber.
The analysis device according to claim 6 of the present invention is characterized in that, in claim 4, an overflow channel is provided so that the liquid sample exceeding a predetermined amount can be overflowed and measured in the sample solution holding chamber. To do.

本発明の請求項7記載の分析用デバイスは、請求項4において、前記希釈液室と前記混合室を前記希釈液定量室を介さずに分配流路で連結して、希釈液を前記希釈液定量室と前記混合室に分配できるよう構成したことを特徴とする。   The analytical device according to claim 7 of the present invention is the analytical device according to claim 4, wherein the diluent chamber and the mixing chamber are connected by a distribution channel without going through the diluent quantitation chamber, and the diluent is diluted with the diluent. It is configured so that it can be distributed to the quantification chamber and the mixing chamber.

本発明の請求項8記載の分析用デバイスは、請求項4において、前記第1連結流路および前記第2連結流路がサイフォン構造を有していることを特徴とする。
本発明の請求項9記載の分析用デバイスは、請求項4において、前記混合室とサイフォン構造を有する第3連結流路を介して連通する溢流室を備えていることを特徴とする。
The analysis device according to claim 8 of the present invention is characterized in that, in claim 4, the first connection channel and the second connection channel have a siphon structure.
The analyzing device according to claim 9 of the present invention is characterized in that, in claim 4, the analyzing device is provided with an overflow chamber communicating with the mixing chamber through a third connection channel having a siphon structure.

本発明の請求項10記載の分析用デバイスは、請求項9において、前記混合室には、前記第3連結流路のサイフォンの最内周位置よりも更に内周側に過剰量の希釈液を溢流させる第4の溢流流路を有していることを特徴とする。   The analysis device according to claim 10 of the present invention is the analysis device according to claim 9, wherein an excessive amount of dilution liquid is added to the mixing chamber further to the inner peripheral side than the innermost peripheral position of the siphon of the third connection channel. It has the 4th overflow channel made to overflow, It is characterized by the above-mentioned.

本発明の請求項11記載の分析装置は、請求項4に記載の分析用デバイスがセットされ、希釈液と液体試料とを分析用デバイスの混合室に受け入れて混合し、前記混合室で攪拌混合された希釈液体試料を前記分析用デバイスの測定セルに移送し、前記測定セルにおける前記希釈液体試料の反応物にアクセスして成分分析する分析装置であって、前記分析用デバイスを軸心周りに回転させる回転駆動手段と、前記混合室に希釈液のみを保持した状態と前記混合室に希釈液と液体試料とを受け入れて攪拌混合した希釈液体試料を保持した状態ならびに前記混合室から前記測定セルへ移送させるよう前記回転駆動手段を制御する制御手段と、前記混合室に検出光を透過させて前記希釈液のみの吸光度と前記希釈液体試料の吸光度ならびに前記分析用デバイスの測定セルに移送された前記試料液に基づく反応物にアクセスする分析手段と、前記分析手段が前記測定セルにおける前記希釈液体試料の反応物にアクセスして読み取った結果を、前記分析手段が希釈液のみを保持した前記混合室にアクセスして読み取った吸光度と前記分析手段が希釈液体試料を保持した前記混合室にアクセスして読み取った吸光度に基づいて求まる希釈倍率によって補正して成分分析の結果を計算する演算部とを設けたことを特徴とする。   According to an eleventh aspect of the present invention, the analytical device according to the fourth aspect is set, and the diluent and the liquid sample are received and mixed in the mixing chamber of the analytical device, and stirred and mixed in the mixing chamber. An analysis apparatus for transferring the diluted liquid sample to the measurement cell of the analytical device and accessing the reactant of the diluted liquid sample in the measurement cell to analyze the component, the analytical device being arranged around the axis Rotation driving means for rotating, a state in which only the diluent is held in the mixing chamber, a state in which the diluted liquid sample in which the diluent and the liquid sample are received and stirred and mixed is held in the mixing chamber, and the measurement cell from the mixing chamber Control means for controlling the rotational drive means to be transferred to the mixing chamber, and the detection light is transmitted through the mixing chamber so that the absorbance of only the dilution liquid, the absorbance of the dilution liquid sample, and the analysis Analyzing means for accessing the reactant based on the sample liquid transferred to the measurement cell of the vice, and the analyzing means reads the result of the analytical means accessing and reading the reactant of the diluted liquid sample in the measuring cell. The component analysis is performed by correcting the absorbance obtained by accessing and reading the mixing chamber holding only the diluent and the absorbance obtained by the analysis means accessing and reading the mixing chamber holding the diluted liquid sample. An operation unit for calculating the result is provided.

本発明の分析方法によれば、測定チャンバーの光路長バラつきに影響されず正確に希釈倍率を算出することができ、精度の良い分析を行うことができる。   According to the analysis method of the present invention, the dilution rate can be accurately calculated without being affected by the variation in the optical path length of the measurement chamber, and a highly accurate analysis can be performed.

本発明の分析用デバイスの実施の形態を図1〜図27に基づいて説明する。
図1(a)(b)は分析用デバイス1の保護キャップ2を閉じた状態と開いた状態を示している。図2は図1(a)における下側を上に向けた状態で分解した状態を示し、図3はその組立図を示している。
An embodiment of an analytical device of the present invention will be described with reference to FIGS.
FIGS. 1A and 1B show a state in which the protective cap 2 of the analysis device 1 is closed and opened. FIG. 2 shows an exploded view with the lower side in FIG. 1 (a) facing upward, and FIG. 3 shows an assembly drawing thereof.

図1と図2に示すようにこの分析用デバイス1は、微細な凹凸形状を表面に有するマイクロチャネル構造が片面に形成されたベース基板3と、ベース基板3の表面を覆うカバー基板4と、希釈液を保持している希釈液容器5と、試料液飛散防止用の保護キャップ2とを合わせた4つの部品で構成されている。   As shown in FIG. 1 and FIG. 2, this analytical device 1 includes a base substrate 3 having a microchannel structure having a fine concavo-convex shape on one surface, a cover substrate 4 covering the surface of the base substrate 3, It is composed of four parts including a diluent container 5 holding a diluent and a protective cap 2 for preventing sample liquid scattering.

ベース基板3とカバー基板4は、希釈液容器5などを内部にセットした状態で接合され、この接合されたものに保護キャップ2が取り付けられている。
ベース基板3の上面に形成されている数個の凹部の開口をカバー基板4で覆うことによって、後述の複数の収容エリア(後述の測定セルと同じ)とその収容エリアの間を接続するマイクロチャネル構造の流路などが形成されている。収容エリアのうちの必要なものには各種の分析に必要な試薬が予め担持されている。保護キャップ2の片側は、ベース基板3とカバー基板4に形成された軸6a,6bに係合して開閉できるように枢支されている。検査しようとする試料液が血液の場合、毛細管力の作用する前記マイクロチャネル構造の各流路の隙間は、50μm〜300μmに設定されている。
The base substrate 3 and the cover substrate 4 are joined with the diluent container 5 and the like set therein, and the protective cap 2 is attached to the joined substrate.
By covering the openings of several concave portions formed on the upper surface of the base substrate 3 with the cover substrate 4, a plurality of storage areas described later (same as measurement cells described later) and the microchannels connecting the storage areas A flow path having a structure is formed. Necessary ones in the storage area are preloaded with reagents necessary for various analyses. One side of the protective cap 2 is pivotally supported so that it can be opened and closed by engaging with shafts 6a and 6b formed on the base substrate 3 and the cover substrate 4. When the sample liquid to be examined is blood, the gap between the flow paths of the microchannel structure on which the capillary force acts is set to 50 μm to 300 μm.

この分析用デバイス1を使用した分析工程の概要は、希釈液が予めセットされた分析用デバイス1に試料液を点着し、この試料液の少なくとも一部を前記希釈液で希釈した後に測定しようとするものである。   The outline of the analysis process using this analytical device 1 is that the sample solution is spotted on the analytical device 1 in which a diluent is set in advance, and at least a part of the sample solution is diluted with the diluent, and then measurement is performed. It is what.

図4は希釈液容器5の形状を示している。
図4(a)は平面図、図4(b)は図4(a)のA−A断面図、図4(c)は側面図、図4(d)は背面図、図4(e)は開口部7から見た正面図である。この開口部7は希釈液容器5の内部5aに、図6(a)に示すように希釈液8を充填した後にシール部材としてのアルミシール9によって密封されている。希釈液容器5の開口部7とは反対側には、ラッチ部10が形成されている。この希釈液容器5は、ベース基板3とカバー基板4の間に形成され希釈液室11にセットされて図6(a)に示す液保持位置と、図6(c)に示す液放出位置とに移動自在に収容されている。
FIG. 4 shows the shape of the diluent container 5.
4A is a plan view, FIG. 4B is a cross-sectional view taken along line AA of FIG. 4A, FIG. 4C is a side view, FIG. 4D is a rear view, and FIG. These are front views seen from the opening 7. The opening 7 is sealed with an aluminum seal 9 as a seal member after filling the interior 5a of the diluent container 5 with the diluent 8 as shown in FIG. 6 (a). On the opposite side of the diluent container 5 from the opening 7, a latch portion 10 is formed. The dilution liquid container 5 is formed between the base substrate 3 and the cover substrate 4 and is set in the dilution liquid chamber 11 so that the liquid holding position shown in FIG. 6A and the liquid discharge position shown in FIG. Is movably accommodated.

図5は保護キャップ2の形状を示している。
図5(a)は平面図、図5(b)は図5(a)のB−B断面図、図5(c)は側面図、図5(d)は背面図、図5(e)は開口2aから見た正面図である。保護キャップ2の内側には、図1(a)に示した閉塞状態で図6(a)に示すように、希釈液容器5のラッチ部10が係合可能な係止用溝12が形成されている。
FIG. 5 shows the shape of the protective cap 2.
5A is a plan view, FIG. 5B is a cross-sectional view taken along line BB in FIG. 5A, FIG. 5C is a side view, FIG. 5D is a rear view, and FIG. These are the front views seen from the opening 2a. As shown in FIG. 6 (a) in the closed state shown in FIG. 1 (a), a locking groove 12 with which the latch portion 10 of the diluent container 5 can be engaged is formed inside the protective cap 2. ing.

この図6(a)は使用前の分析用デバイス1を示す。この状態では保護キャップ2が閉塞されており、保護キャップ2の係止用溝12に希釈液容器5のラッチ部10が係合して希釈液容器5が矢印J方向に移動しないように液保持位置に係止されている。この状態で利用者に供給される。   FIG. 6A shows the analysis device 1 before use. In this state, the protective cap 2 is closed, and the latch portion 10 of the diluent container 5 is engaged with the locking groove 12 of the protective cap 2 so as to prevent the diluent container 5 from moving in the arrow J direction. Locked in position. In this state, it is supplied to the user.

試料液の点着に際して保護キャップ2が図6(a)でのラッチ部10との係合に抗して図1(b)に示したように開かれると、保護キャップ2の係止用溝12が形成されている底部2bが弾性変形して図6(b)に示すように保護キャップ2の係止用溝12と希釈液容器5のラッチ部10との係合が解除される。   When the protective cap 2 is opened as shown in FIG. 1B against the engagement with the latch portion 10 in FIG. 6A when the sample liquid is spotted, the locking groove of the protective cap 2 As shown in FIG. 6 (b), the bottom portion 2b formed with 12 is elastically deformed, and the engagement between the locking groove 12 of the protective cap 2 and the latch portion 10 of the diluent container 5 is released.

この状態で、分析用デバイス1の露出した注入口13に試料液を点着して保護キャップ2を閉じる。この際、保護キャップ2を閉じることによって、係止用溝12を形成していた壁面12aが、希釈液容器5のラッチ部10の保護キャップ2の側の面5bに当接して、希釈液容器5を前記矢印J方向(液放出位置に近づく方向)に押し込む。希釈液室11には、ベース基板3の側から突出部としての開封リブ14が形成されており、希釈液容器5が保護キャップ2によって押し込まれると、希釈液容器5の斜めに傾斜した開口部7のシール面に張られていたアルミシール9が図6(c)に示すように開封リブ14に衝突して破られる。   In this state, the sample solution is spotted on the exposed inlet 13 of the analytical device 1 and the protective cap 2 is closed. At this time, by closing the protective cap 2, the wall surface 12 a forming the locking groove 12 comes into contact with the surface 5 b on the side of the protective cap 2 of the latch portion 10 of the diluent container 5, so that the diluent container 5 is pushed in the direction of arrow J (direction approaching the liquid discharge position). In the diluent chamber 11, an opening rib 14 is formed as a protruding portion from the base substrate 3 side. When the diluent container 5 is pushed in by the protective cap 2, an obliquely inclined opening portion of the diluent container 5 is formed. The aluminum seal 9 stretched on the seal surface 7 collides with the opening rib 14 as shown in FIG.

なお、図7は分析用デバイス1を図6(a)に示した出荷状態にセットする製造工程を示している。先ず、保護キャップ2を閉じる前に、希釈液容器5の下面に設けた溝42(図2と図4(d)参照)と、カバー基板4に設けた孔43とを位置合わせして、この液保持位置において孔43を通して希釈液容器5の溝42に、ベース基板3またはカバー基板4とは別に設けられた係止治具44の突起44aを係合させて、希釈液容器5を液保持位置に係止した状態にセットする。そして、保護キャップ2の上面に形成されている切り欠き45(図1参照)から、押圧治具46を差し入れて保護キャップ2の底面を押圧して弾性変形させた状態で保護キャップ2を閉じてから押圧治具46を解除することによって、図6(a)の状態にセットできる。   FIG. 7 shows a manufacturing process in which the analysis device 1 is set in the shipping state shown in FIG. First, before closing the protective cap 2, the groove 42 (see FIGS. 2 and 4 (d)) provided in the lower surface of the diluent container 5 and the hole 43 provided in the cover substrate 4 are aligned, At the liquid holding position, the protrusion 42a of the locking jig 44 provided separately from the base substrate 3 or the cover substrate 4 is engaged with the groove 42 of the diluent container 5 through the hole 43 to hold the diluent container 5 with the liquid. Set in a locked state. Then, the protective cap 2 is closed in a state where the pressing jig 46 is inserted from the notch 45 (see FIG. 1) formed on the upper surface of the protective cap 2 and the bottom surface of the protective cap 2 is pressed and elastically deformed. Can be set to the state shown in FIG. 6A by releasing the pressing jig 46.

なお、この実施の形態では希釈液容器5の下面に溝42を設けた場合を例に挙げて説明したが、希釈液容器5の上面に溝42を設け、この溝42に対応してベース基板3に孔43を設けて係止治具44の突起44aを溝42に係合させるようにも構成できる。   In this embodiment, the case where the groove 42 is provided on the lower surface of the diluent container 5 has been described as an example. However, the groove 42 is provided on the upper surface of the diluent container 5, and the base substrate corresponds to the groove 42. 3 can be configured such that a hole 43 is provided in the groove 3 and the protrusion 44 a of the locking jig 44 is engaged with the groove 42.

また、保護キャップ2の係止用溝12が希釈液容器5のラッチ部10に直接に係合して希釈液容器5を液保持位置に係止したが、保護キャップ2の係止用溝12と希釈液容器5のラッチ部10とを間接的に係合させて希釈液容器5を液保持位置に係止することもできる。   Further, the locking groove 12 of the protective cap 2 directly engages the latch portion 10 of the diluent container 5 to lock the diluent container 5 in the liquid holding position. And the latch portion 10 of the diluent container 5 can be indirectly engaged to lock the diluent container 5 in the liquid holding position.

この分析用デバイス1を図8と図9に示すように、カバー基板4を下側にして分析装置100のロータ101にセットすることで、試料液の成分分析を行うことができる。
ロータ101の上面には溝102が形成されており、分析用デバイス1をロータ101にセットした状態では分析用デバイス1のカバー基板4に形成された回転支持部15と保護キャップ2に形成された回転支持部16が溝102に係合してこれを収容している。
As shown in FIGS. 8 and 9, the analysis device 1 is set on the rotor 101 of the analyzer 100 with the cover substrate 4 facing downward, so that the component analysis of the sample solution can be performed.
A groove 102 is formed on the upper surface of the rotor 101. When the analysis device 1 is set on the rotor 101, the groove 102 is formed on the rotation support 15 and the protective cap 2 formed on the cover substrate 4 of the analysis device 1. The rotation support portion 16 engages with and accommodates the groove 102.

ロータ101に分析用デバイス1をセットした後に、ロータ101の回転させる前に分析装置のドア103を閉じると、セットされた分析用デバイス1は、ドア103の側に設けられた可動片104によって、ロータ101の回転軸心上の位置がバネ105の付勢力でロータ101の側に押さえられて、分析用デバイス1は、回転駆動手段106によって回転駆動されるロータ101と一体に回転する。107はロータ101の回転中の軸心を示している。保護キャップ2は注入口13の付近に付着した試料液が、分析中に遠心力によって外部へ飛散を防止するために取り付けられている。   When the analysis device 1 is set on the rotor 101 and the door 103 of the analyzer is closed before the rotor 101 is rotated, the set analysis device 1 is moved by the movable piece 104 provided on the door 103 side. The position on the rotational axis of the rotor 101 is pressed against the rotor 101 by the biasing force of the spring 105, and the analysis device 1 rotates integrally with the rotor 101 that is rotationally driven by the rotational driving means 106. Reference numeral 107 denotes an axial center during rotation of the rotor 101. The protective cap 2 is attached in order to prevent the sample liquid adhering to the vicinity of the inlet 13 from being scattered outside due to centrifugal force during analysis.

分析用デバイス1を構成する部品の材料としては、材料コストが安価で量産性に優れる樹脂材料が望ましい。前記分析装置100は、分析用デバイス1を透過した光を測定する光学的測定方法によって試料液の分析を行うため、ベース基板3およびカバー基板4の材料としては、PC,PMMA,AS,MSなどの透明性が高い合成樹脂が望ましい。   As a material of the parts constituting the analysis device 1, a resin material having a low material cost and excellent mass productivity is desirable. Since the analysis apparatus 100 analyzes the sample liquid by an optical measurement method for measuring light transmitted through the analysis device 1, the material of the base substrate 3 and the cover substrate 4 may be PC, PMMA, AS, MS, or the like. A synthetic resin having high transparency is desirable.

また、希釈液容器5の材料としては、希釈液容器5内部に希釈液8を長期間封入しておく必要があるため、PP,PEなどの水分透過率の低い結晶性の合成樹脂が望ましい。保護キャップ2の材料としては、成形性のよい材料であれば特に問題がなく、PP,PEなどの安価な樹脂が望ましい。   Further, as the material of the diluent container 5, since it is necessary to enclose the diluent 8 in the diluent container 5 for a long period of time, a crystalline synthetic resin having a low moisture permeability such as PP and PE is desirable. As a material for the protective cap 2, there is no particular problem as long as it is a material with good moldability, and an inexpensive resin such as PP or PE is desirable.

ベース基板3とカバー基板4との接合は、前記収容エリアに担持された試薬の反応活性に影響を与えにくい方法が望ましく、接合時に反応性のガスや溶剤が発生しにくい超音波溶着やレーザー溶着などが望ましい。   The base substrate 3 and the cover substrate 4 are preferably joined by a method that hardly affects the reaction activity of the reagent carried in the storage area. Ultrasonic welding or laser welding is less likely to generate reactive gas or solvent during joining. Etc. are desirable.

また、ベース基板3とカバー基板4との接合によって両基板3,4の間の微小な隙間による毛細管力によって溶液を移送させる部分には、毛細管力を高めるための親水処理がなされている。具体的には、親水性ポリマーや界面活性剤などを用いた親水処理が行われている。ここで、親水性とは水との接触角が90°未満のことをいい、より好ましくは接触角40°未満である。   Further, a hydrophilic treatment for increasing the capillary force is applied to the portion where the solution is transferred by the capillary force due to the minute gap between the substrates 3 and 4 by joining the base substrate 3 and the cover substrate 4. Specifically, hydrophilic treatment using a hydrophilic polymer or a surfactant is performed. Here, hydrophilic means that the contact angle with water is less than 90 °, more preferably less than 40 °.

図10は分析装置100の構成を示す。
この分析装置100は、ロータ101を回転させるための回転駆動手段106と、分析用デバイス1内の反応物にアクセスして分析する分析手段としての光学測定部108と、ロータ101の回転速度や回転方向および光学測定部108の測定タイミングなどを制御する制御手段109と、光学測定部108によって得られた信号を処理し測定結果を演算するための演算部110と、演算部110で得られた結果を表示するための表示部111とで構成されている。
FIG. 10 shows the configuration of the analyzer 100.
The analysis apparatus 100 includes a rotation driving unit 106 for rotating the rotor 101, an optical measurement unit 108 as an analysis unit that accesses and analyzes the reactant in the analysis device 1, and the rotation speed and rotation of the rotor 101. Control means 109 for controlling the direction and measurement timing of the optical measurement unit 108, a calculation unit 110 for processing a signal obtained by the optical measurement unit 108 and calculating a measurement result, and a result obtained by the calculation unit 110 It is comprised with the display part 111 for displaying.

回転駆動手段106は、ロータ101を介して分析用デバイス1を回転軸心107の回りに任意の方向に所定の回転速度で回転させるだけではなく、所定の停止位置で回転軸心107を中心に所定の振幅範囲、所定の周期で左右に往復運動をさせて分析用デバイス1を揺動させることができるように構成されている。   The rotation driving means 106 not only rotates the analyzing device 1 around the rotation axis 107 at a predetermined rotation speed around the rotation axis 107 via the rotor 101 but also centers on the rotation axis 107 at a predetermined stop position. The analyzing device 1 can be swung by reciprocating left and right in a predetermined amplitude range and a predetermined cycle.

光学測定部108には、分析用デバイス1の測定セルにレーザー光を照射するレーザー光源112aと、レーザー光源112aから照射されたレーザー光のうち、分析用デバイス1を通過した透過光の光量を検出するフォトディテクタ113aと、分析用デバイス1の測定セルとは別の測定部にレーザー光を照射するレーザー光源112bと、レーザー光源112bから照射されたレーザー光のうち、分析用デバイス1を通過した透過光の光量を検出するフォトディテクタ113bとを備えている。   The optical measurement unit 108 detects the amount of transmitted light that has passed through the analysis device 1 out of the laser light source 112a that irradiates the measurement cell of the analysis device 1 with laser light and the laser light emitted from the laser light source 112a. The photo detector 113a, the laser light source 112b for irradiating the measurement unit different from the measurement cell of the analysis device 1, and the transmitted light that has passed through the analysis device 1 out of the laser light emitted from the laser light source 112b And a photodetector 113b for detecting the amount of light.

分析用デバイス1をロータ101によって回転駆動して、注入口13から内部に取り込んだ試料液を、注入口13よりも内周にある前記回転軸心107を中心に分析用デバイス1を回転させて発生する遠心力と、分析用デバイス1内に設けられた毛細管流路の毛細管力を用いて、分析用デバイス1の内部で溶液を移送していくよう構成されており、分析用デバイス1のマイクロチャネル構造を分析工程とともに詳しく説明する。   The analysis device 1 is driven to rotate by the rotor 101, and the sample liquid taken into the inside from the injection port 13 is rotated around the rotation axis 107 located on the inner periphery of the injection port 13. The centrifugal force generated and the capillary force of the capillary channel provided in the analysis device 1 are used to transfer the solution inside the analysis device 1. The channel structure will be described in detail along with the analysis process.

図11は分析用デバイス1の注入口13の付近を示している。
図11(a)は注入口13を分析用デバイス1の外側から見た拡大図を示し、図11(b)は前記マイクロチャネル構造をロータ101の側からカバー基板4を透過して見たものである。
FIG. 11 shows the vicinity of the inlet 13 of the analytical device 1.
FIG. 11A shows an enlarged view of the injection port 13 viewed from the outside of the analytical device 1, and FIG. 11B shows the microchannel structure viewed through the cover substrate 4 from the rotor 101 side. It is.

注入口13は、ベース基板3とカバー基板4との間に形成された微小な隙間δの毛細管力の作用する誘導部17を介して、この誘導部17と同様に毛細管力の作用する隙間で必要量の試料液18を保持できる容積の液体試料室19と接続されている。誘導部17の流れ方向と直交する断面形状(図11(b)のD−D断面)は、奥側が垂直な矩形形ではなくて、図11(c)に示すように奥端ほどカバー基板4に向かって次第に狭くなる傾斜面20で形成されている。誘導部17と液体試料室19と接続部にはベース基板3に凹部21を形成して通路の向きを変更する屈曲部22が形成されている。   The inlet 13 is a gap where a capillary force acts like the guiding part 17 via a guiding part 17 where a capillary force acts in a minute gap δ formed between the base substrate 3 and the cover substrate 4. It is connected to a liquid sample chamber 19 having a volume capable of holding a necessary amount of sample liquid 18. The cross-sectional shape orthogonal to the flow direction of the guide portion 17 (the DD cross section in FIG. 11B) is not a rectangular shape with the back side vertical, but as shown in FIG. It forms in the inclined surface 20 which becomes narrow gradually toward. A bent portion 22 is formed in the guiding portion 17, the liquid sample chamber 19, and the connecting portion to form a recess 21 in the base substrate 3 and change the direction of the passage.

誘導部17から見て液体試料室19を介してその先には、毛細管力が作用しない隙間の試料液保持室23が形成されている。液体試料室19と屈曲部22および誘導部17の一部の側方には、一端が試料液保持室23に接続され、他端が大気に開放したキャビティ24が形成されている。   A sample liquid holding chamber 23 is formed at the tip of the liquid sample chamber 19 as viewed from the guiding portion 17 so that a capillary force is not applied. A cavity 24 having one end connected to the sample solution holding chamber 23 and the other end opened to the atmosphere is formed on a part of the side of the liquid sample chamber 19, the bent portion 22, and the guiding portion 17.

このように構成したため、試料液18として血液を注入口13に点着すると、試料液18は誘導部17を介して液体試料室19まで取り込まれる。図12はこのようにして点着後の分析用デバイス1をロータ101にセットして回転させる前の状態を示している。このとき、図6(c)で説明したように希釈液容器5のアルミシール9が開封リブ14に衝突して破られている。25a〜25g,25h,25i1,25i2,25j〜25nはベース基板3に形成された空気孔である。   With this configuration, when blood is spotted on the inlet 13 as the sample liquid 18, the sample liquid 18 is taken into the liquid sample chamber 19 via the guide portion 17. FIG. 12 shows a state before the analysis device 1 after spotting is set on the rotor 101 and rotated. At this time, as explained in FIG. 6C, the aluminum seal 9 of the diluent container 5 collides with the opening rib 14 and is broken. Reference numerals 25a to 25g, 25h, 25i1, 25i2, and 25j to 25n denote air holes formed in the base substrate 3.

希釈液容器5から流れ出した希釈液が通過していく流路と、希釈液または受け入れた希釈液と液体試料とを攪拌混合する混合室29の周辺を図13に示す。
希釈液室11から流れ出た希釈液を、希釈液定量室27と混合室29に分配できるよう分配流路が次のように構成されている。
FIG. 13 shows the flow path through which the diluent flowing out from the diluent container 5 passes, and the periphery of the mixing chamber 29 for stirring and mixing the diluent or the received diluent and the liquid sample.
The distribution channel is configured as follows so that the diluent flowing out from the diluent chamber 11 can be distributed to the diluent quantification chamber 27 and the mixing chamber 29.

混合室29よりも内周側に配置された希釈液定量室27は、排出流路26を介して希釈液室11と連結され、流入した希釈液を必要量だけ定量して希釈液の余剰分を溢流させる。希釈液定量室27から溢流した余剰分の希釈液は、溢流流路28を介して混合室29に分配される。また、希釈液定量室27の外周側は、サイフォン構造を有している第2連結流路41を介して混合室29に連結されている。混合室29の外周側底部は、サイフォン構造を有している第3連結流路34aを介して、混合室29の外周側に流入口を設けた溢流室36bに連通している。溢流室36bは、毛細管力が作用する隙に形成された逆流防止流路35aを介して溢流室36a,36cに接続されている。また、第3連結流路34aのサイフォンの最内周位置よりも更に内周側には、混合室29での過剰量の希釈液を溢流室36aに溢流させる第4の溢流流路34bが設けられている。   The dilution liquid quantification chamber 27 disposed on the inner peripheral side of the mixing chamber 29 is connected to the dilution liquid chamber 11 via the discharge channel 26 and quantifies the required amount of the diluted liquid to a surplus amount of the dilution liquid. Overflow. The excess dilution liquid overflowing from the dilution liquid determination chamber 27 is distributed to the mixing chamber 29 via the overflow channel 28. In addition, the outer peripheral side of the dilution liquid quantification chamber 27 is connected to the mixing chamber 29 via a second connection channel 41 having a siphon structure. The outer peripheral side bottom of the mixing chamber 29 communicates with an overflow chamber 36b provided with an inlet on the outer peripheral side of the mixing chamber 29 via a third connection channel 34a having a siphon structure. The overflow chamber 36b is connected to the overflow chambers 36a and 36c via the backflow prevention flow path 35a formed in the gap where the capillary force acts. Further, a fourth overflow channel that causes an excessive amount of dilution liquid in the mixing chamber 29 to overflow into the overflow chamber 36a further to the inner circumferential side than the innermost circumferential position of the siphon of the third connection channel 34a. 34b is provided.

分析工程を、回転駆動手段106の運転を制御している制御手段109の構成と共に説明する。
− 工程1 −
検査を受ける試料液が注入口13に点着された分析用デバイス1は、図14(a)に示すように液体試料室19内に試料液を保持し、希釈液容器5のアルミシール9が破られた状態でロータ101にセットされる。
The analysis process will be described together with the configuration of the control means 109 that controls the operation of the rotation drive means 106.
− Step 1 −
The analytical device 1 in which the sample liquid to be inspected is spotted at the inlet 13 holds the sample liquid in the liquid sample chamber 19 as shown in FIG. 14A, and the aluminum seal 9 of the diluent container 5 It is set on the rotor 101 in a torn state.

− 工程2 −
ドア103を閉じた後にロータ101を時計方向(C2方向)に回転駆動すると、保持されている試料液が屈曲部22の位置で破断し、誘導部17内の試料液は保護キャップ2内に排出され、液体試料室19内の試料液18は図14(b)に示すように試料液保持室23に流入して一定量が一時的に保持される。
− Step 2 −
When the rotor 101 is rotationally driven in the clockwise direction (C2 direction) after the door 103 is closed, the held sample solution is broken at the position of the bent portion 22, and the sample solution in the guide portion 17 is discharged into the protective cap 2. Then, the sample liquid 18 in the liquid sample chamber 19 flows into the sample liquid holding chamber 23 as shown in FIG.

希釈液容器5から流出した希釈液8は、排出流路26を介して希釈液定量室27に流入する。
なお、希釈液容器5は、アルミシール9でシールされている開口部7とは反対側の底部の形状が、図4(a)(b)に示すように円弧面32で形成され、かつ図14(b)に示す状態の希釈液容器5の液放出位置においては、図15に示すように円弧面32の中心mが回転軸心107よりも排出流路26側に近づくよう距離dだけオフセットするように形成されているため、この円弧面32に向かうように流れた希釈液8が円弧面32に沿って外側から開口部7に向かう流れ(矢印n方向)に変更されて、希釈液容器5の開口部7から効率よく希釈液室11に放出される。
The diluent 8 that has flowed out of the diluent container 5 flows into the diluent quantification chamber 27 via the discharge channel 26.
The diluent container 5 has a bottom portion opposite to the opening 7 sealed with the aluminum seal 9 and is formed with an arcuate surface 32 as shown in FIGS. 4 (a) and 4 (b). At the liquid discharge position of the diluent container 5 in the state shown in FIG. 14 (b), the center m of the arc surface 32 is offset by a distance d so as to be closer to the discharge channel 26 side than the rotation axis 107 as shown in FIG. Therefore, the diluent 8 that has flowed toward the arc surface 32 is changed to a flow (in the direction of arrow n) from the outside toward the opening 7 along the arc surface 32, so that the diluent container 5 is efficiently discharged into the diluent chamber 11 from the opening 7.

希釈液定量室27に流入した希釈液8が所定量を超えると、超えた希釈液8は溢流流路28を介して図14(b)に示すように混合室29に流れ込み、さらに混合室29に流入した希釈液8が所定量を超えると、超えた希釈液8は第3連結流路34a,第4連結流路34bおよび溢流流路38を介して溢流室36a,36b,36c,36dに流れ込む。溢流室36a,36b,36cに流入した希釈液8は逆流防止流路35a,35bの毛細管力によって溢流室36a,36b,36cから流出しないように保持される。   When the diluent 8 flowing into the diluent quantification chamber 27 exceeds a predetermined amount, the excess diluent 8 flows into the mixing chamber 29 via the overflow channel 28 as shown in FIG. When the dilution liquid 8 that has flowed into 29 exceeds a predetermined amount, the excess dilution liquid 8 flows into the overflow chambers 36a, 36b, 36c via the third connection channel 34a, the fourth connection channel 34b, and the overflow channel 38. , 36d. The diluent 8 that has flowed into the overflow chambers 36a, 36b, and 36c is held so as not to flow out of the overflow chambers 36a, 36b, and 36c by the capillary force of the backflow prevention flow paths 35a and 35b.

本実施の形態では、試料液保持室23に一定量の試料液が保持される構成としているが、未計量の試料液を液体試料室19に供給し、試料液保持室23に移送した際に、試料液保持室から所定量を超える試料液を溢流させて計量できるように溢流流路(図示せず)を設けてもかまわない。   In the present embodiment, a certain amount of sample liquid is held in the sample liquid holding chamber 23, but when an unmetered sample liquid is supplied to the liquid sample chamber 19 and transferred to the sample liquid holding chamber 23. An overflow channel (not shown) may be provided so that a sample liquid exceeding a predetermined amount overflows from the sample liquid holding chamber and can be measured.

ここで、希釈液8は特定の波長域で規定の吸光度を有する溶液であり、混合室29に流入した希釈液8が混合室29に滞在している間に、希釈液8の吸光度が測定(一次測光)される。具体的には、分析用デバイス1を時計方向(C2方向)に回転駆動して、希釈液8だけが入った混合室29がレーザー光源112bとフォトディテクタ113bの間を通過するタイミングに、演算部110がフォトディテクタ113bの検出値を読み取る。図14(b)のP1が一次測光の光の透過位置を表している。   Here, the diluent 8 is a solution having a specified absorbance in a specific wavelength region, and the absorbance of the diluent 8 is measured while the diluent 8 flowing into the mixing chamber 29 stays in the mixing chamber 29 ( Primary metering). Specifically, the analyzing device 1 is rotationally driven in the clockwise direction (C2 direction), and at the timing when the mixing chamber 29 containing only the diluent 8 passes between the laser light source 112b and the photodetector 113b, the calculation unit 110 is operated. Reads the detection value of the photodetector 113b. P1 in FIG. 14B represents the light transmission position of the primary photometry.

第3連結流路34aは混合室29の最外周部から内周方向に屈曲部をもつサイフォン構造を有しており、第3連結流路34aの屈曲部を超える希釈液8が流入してくると、サイフォン効果によって混合室29内の希釈液8が溢流室36a,36b,36cに排出される。また、第3連結流路34aのさらに内周位置に所定量を超えた希釈液を排出するための連結流路34bを設けることで、過剰な希釈液が流入した際に混合室29から試料液保持室23へ流入するのを防いでいる。   The third connection channel 34a has a siphon structure having a bent portion in the inner circumferential direction from the outermost peripheral portion of the mixing chamber 29, and the diluent 8 exceeding the bent portion of the third connection channel 34a flows in. Then, the diluent 8 in the mixing chamber 29 is discharged into the overflow chambers 36a, 36b, and 36c by the siphon effect. Further, by providing a connecting channel 34b for discharging a diluent exceeding a predetermined amount at the inner peripheral position of the third connecting channel 34a, the sample solution is mixed from the mixing chamber 29 when an excessive diluent flows. Inflow to the holding chamber 23 is prevented.

混合室29に滞在していた希釈液8は、時間の経過と共に溢流室36a,36b,36cにすべて排出されて、図16(a)に示すように試料液保持室23と、希釈液定量室27にそれぞれ所定量の試料液18と希釈液8が保持された状態になる。   The diluent 8 staying in the mixing chamber 29 is all discharged to the overflow chambers 36a, 36b, 36c with the passage of time, and as shown in FIG. A predetermined amount of the sample solution 18 and the diluted solution 8 are held in the chambers 27, respectively.

− 工程3 −
次に、ロータ101の回転を停止させると、試料液18は図16(b)に示すように試料液保持室23と混合室29を連結しているサイフォン形状を有する第1連結流路30に呼び水され、同様に、希釈液8も希釈液定量室27と混合室29を連結しているサイフォン形状を有する第2連結流路41に呼び水される。
− Step 3 −
Next, when the rotation of the rotor 101 is stopped, the sample liquid 18 enters the first connection channel 30 having a siphon shape connecting the sample liquid holding chamber 23 and the mixing chamber 29 as shown in FIG. Similarly, the diluent 8 is also drawn into the second connection channel 41 having a siphon shape that connects the diluent quantification chamber 27 and the mixing chamber 29.

− 工程4 −
ロータ101を反時計方向(C1方向)に回転駆動すると、試料液保持室23の試料液18と希釈液定量室27の希釈液8は図17(a)に示すように混合室29に流入するとともに、混合室29で希釈血漿成分18aと血球成分18bとに遠心分離される。18cは希釈血漿成分18aと血球成分18bとの分離界面を表している。ここで、試料液18と希釈液8はリブ31に一旦衝突してから混合室29に流入させるので、試料液18中の血漿成分と希釈液8とを均一に攪拌できる。
− Step 4 −
When the rotor 101 is rotated counterclockwise (C1 direction), the sample liquid 18 in the sample liquid holding chamber 23 and the diluting liquid 8 in the diluting liquid quantifying chamber 27 flow into the mixing chamber 29 as shown in FIG. At the same time, the diluted plasma component 18a and the blood cell component 18b are centrifuged in the mixing chamber 29. Reference numeral 18c represents a separation interface between the diluted plasma component 18a and the blood cell component 18b. Here, since the sample solution 18 and the diluent 8 once collide with the rib 31 and flow into the mixing chamber 29, the plasma component in the sample solution 18 and the diluent 8 can be uniformly stirred.

そして、混合室29で遠心分離された希釈血漿成分18aの吸光度が測定(二次測光)される。具体的には、分析用デバイス1を反時計方向(C1方向)に回転駆動して、希釈血漿成分18aの入った混合室29がレーザー光源112bとフォトディテクタ113bの間を通過するタイミングに、演算部110がフォトディテクタ113bの検出値を読み取る。図17(a)のP2が一次測光の光の透過位置を表しており、混合室29における二次測光の位置P2は、図14(b)に示した一次測光の位置P1と同一場所である。   Then, the absorbance of the diluted plasma component 18a centrifuged in the mixing chamber 29 is measured (secondary photometry). Specifically, when the analysis device 1 is rotationally driven in the counterclockwise direction (C1 direction), the calculation unit is at a timing when the mixing chamber 29 containing the diluted plasma component 18a passes between the laser light source 112b and the photodetector 113b. 110 reads the detection value of the photodetector 113b. P2 in FIG. 17A represents the transmission position of the primary photometry light, and the secondary photometry position P2 in the mixing chamber 29 is the same as the primary photometry position P1 shown in FIG. 14B. .

一次測光の位置P1と二次測光の位置P2が必ずしも同一でなくても両測定が単一の混合室29を測定していることで従来に比べて測定精度の向上を期待できるが、同一位置の測定がより望ましい。   Even if the primary photometry position P1 and the secondary photometry position P2 are not necessarily the same, both measurements can be expected to improve the measurement accuracy as compared with the prior art by measuring a single mixing chamber 29. Is more desirable.

ここで、この実施の形態では、試料液18である血液と希釈液8を直接に混合してから希釈血漿成分18aを抽出し、試薬と反応させて血漿成分中の特定成分を分析する構成としているが、血液中の血漿成分の割合は個人差があるため、直接に混合した際に血漿成分の希釈倍率が大きくばらつく。そのため、希釈血漿成分18aと試薬を反応させた際に反応濃度がばらついて測定精度に影響を与えてしまう。そのため、試料液18と希釈液8とを混合した時の希釈倍率のばらつきを補正するために、特定の波長域で規定の吸光度を有する希釈液を用いて、試料液との混合前後の吸光度を、混合室29の同一箇所にて測定して希釈倍率を算出しているため、測定部の光路長ばらつきを除くことができると共に、測定部の表面状態(うねり、表面粗さ)のばらつきによる受光量変化を除くことができるため、精度の良い希釈倍率の測定ができるとともに、測定セルにおける測定結果に対して、希釈倍率のばらつきを補正することができ測定精度が大幅に改善される。また、この補正方法は試料液18と希釈液8の液量のばらつきによる希釈倍率のばらつき補正にも有用である。   Here, in this embodiment, the blood that is the sample liquid 18 and the diluent 8 are directly mixed and then the diluted plasma component 18a is extracted and reacted with a reagent to analyze a specific component in the plasma component. However, since the ratio of the plasma component in the blood varies among individuals, the dilution ratio of the plasma component varies greatly when directly mixed. Therefore, when the diluted plasma component 18a is reacted with the reagent, the reaction concentration varies and affects the measurement accuracy. Therefore, in order to correct the dispersion of the dilution ratio when the sample solution 18 and the diluent 8 are mixed, the absorbance before and after mixing with the sample solution is measured using a diluent having a specified absorbance in a specific wavelength region. Since the dilution rate is calculated by measuring at the same location in the mixing chamber 29, it is possible to eliminate variations in the optical path length of the measurement unit and to receive light due to variations in the surface state (waviness, surface roughness) of the measurement unit. Since the change in the amount can be eliminated, it is possible to measure the dilution ratio with high accuracy and to correct the variation in the dilution ratio with respect to the measurement result in the measurement cell, thereby greatly improving the measurement accuracy. This correction method is also useful for correcting variation in the dilution ratio due to variations in the liquid amounts of the sample liquid 18 and the diluent 8.

− 工程5 −
次に、ロータ101の回転を停止させると、希釈血漿成分18aは、混合室29の壁面に形成された毛細管キャビティ33に吸い上げられ、毛細管キャビティ33と連通する毛細管流路37を介して図17(b)に示すように溢流流路38,計量流路39a,39b,39c,39d,39e,39f,39gに流れて、計量流路39a〜39gに定量が保持される。
− Step 5 −
Next, when the rotation of the rotor 101 is stopped, the diluted plasma component 18a is sucked up into the capillary cavity 33 formed on the wall surface of the mixing chamber 29 and is connected to the capillary cavity 33 through the capillary channel 37 in FIG. As shown in b), it flows into the overflow channel 38, the metering channels 39a, 39b, 39c, 39d, 39e, 39f, and 39g, and the fixed amount is held in the metering channels 39a to 39g.

なお、図18(a)に毛細管キャビティ33とその周辺の斜視図を示す。図18(a)におけるE−E断面を図18(b)に示す。この毛細管キャビティ33とその周辺を詳しく説明する。   FIG. 18A shows a perspective view of the capillary cavity 33 and its periphery. The EE cross section in Fig.18 (a) is shown in FIG.18 (b). The capillary cavity 33 and its periphery will be described in detail.

毛細管キャビティ33は、混合室29の底部29bから内周側に向かって形成されている。換言すると、毛細管キャビティ33の最外周の位置は、図17(a)に示す希釈血漿成分18aと血球成分18bとの分離界面18cよりも外周方向に伸長して形成されている。このように毛細管キャビティ33の外周側の位置を上記のように設定することによって、毛細管キャビティ33の外周端が、混合室29において分離された希釈血漿成分18aと血球成分18bに浸かっており、希釈血漿成分18aは血球成分18bに比べて粘度が低いため、希釈血漿成分18aの方が優先的に毛細管キャビティ33によって吸い出され、毛細管流路37と溢流流路38、計量流路39a,39b,39c,39d,39e,39f,39gを介して測定セル40a〜40f,40gに向かって希釈血漿成分18aを移送できる。   The capillary cavity 33 is formed from the bottom 29 b of the mixing chamber 29 toward the inner peripheral side. In other words, the outermost peripheral position of the capillary cavity 33 is formed to extend in the outer peripheral direction from the separation interface 18c between the diluted plasma component 18a and the blood cell component 18b shown in FIG. Thus, by setting the outer peripheral side position of the capillary cavity 33 as described above, the outer peripheral end of the capillary cavity 33 is immersed in the diluted plasma component 18a and the blood cell component 18b separated in the mixing chamber 29. Since the plasma component 18a has a lower viscosity than the blood cell component 18b, the diluted plasma component 18a is preferentially sucked out by the capillary cavity 33, and the capillary channel 37, the overflow channel 38, and the metering channels 39a, 39b. , 39c, 39d, 39e, 39f, and 39g, the diluted plasma component 18a can be transferred toward the measurement cells 40a to 40f and 40g.

また、希釈血漿成分18aが吸い出された後、血球成分18bも希釈血漿成分18aの後を追って吸い出されるため、毛細管キャビティ33および毛細管流路37の途中までの経路を血球成分18bで置換することができ、溢流流路38および計量流路39a〜39gが希釈血漿成分18aで満たされると、毛細管流路37および毛細管キャビティ33内の液の移送も止まるため、溢流流路38および計量流路39a〜39gに血球成分18bが混入することはない。   Further, since the blood cell component 18b is also sucked out after the diluted plasma component 18a after the diluted plasma component 18a is sucked out, the path to the middle of the capillary cavity 33 and the capillary channel 37 is replaced with the blood cell component 18b. When the overflow channel 38 and the metering channels 39a to 39g are filled with the diluted plasma component 18a, the transfer of the liquid in the capillary channel 37 and the capillary cavity 33 is stopped. The blood cell component 18b is not mixed into the flow paths 39a to 39g.

したがって、従来の構成よりも送液ロスを最小限に抑えることができるため、測定に必要な試料液の量を低減することができる。
− 工程6 −
更に、ロータ101を反時計方向(C1方向)に回転駆動すると、図19(a)に示すように、計量流路39a〜39gに保持されていた希釈血漿成分18aは、大気と連通する大気開放キャビティ48との連結部である屈曲部49a,49b,49c,49d,49e,49f,49gの位置で破断して測定セル40a〜40f,40gに流れ込む。ここでは測定セル40a〜40fのそれぞれに同じ量の希釈血漿成分18aが流れ込む。
Therefore, since the liquid feeding loss can be minimized as compared with the conventional configuration, the amount of the sample liquid necessary for the measurement can be reduced.
-Step 6-
Further, when the rotor 101 is rotationally driven in the counterclockwise direction (C1 direction), as shown in FIG. 19A, the diluted plasma component 18a held in the measurement flow paths 39a to 39g is released into the atmosphere. It breaks at the positions of the bent portions 49a, 49b, 49c, 49d, 49e, 49f, and 49g, which are connected to the cavity 48, and flows into the measurement cells 40a to 40f and 40g. Here, the same amount of diluted plasma component 18a flows into each of the measurement cells 40a to 40f.

また、このとき溢流流路38の希釈血漿成分18aは、溢流室36dと逆流防止通路35bを介して溢流室36c,36aに流れ込む。また、このとき混合室29内の試料液は、サイフォン形状の第3連結流路34aと溢流室36bを介して溢流室36a,36cに流れ込む。   At this time, the diluted plasma component 18a in the overflow channel 38 flows into the overflow chambers 36c and 36a via the overflow chamber 36d and the backflow prevention passage 35b. At this time, the sample liquid in the mixing chamber 29 flows into the overflow chambers 36a and 36c via the siphon-shaped third connection channel 34a and the overflow chamber 36b.

測定セル40a〜40f,40gの形状は、遠心力の働く方向に伸長した形状で、具体的には、分析用デバイス1の回転中心から最外周に向かって分析用デバイス1の周方向の幅が細く形成されている。複数の測定セル40a〜40f,40gの外周側の底部は分析用デバイス1の同一半径上に配置されているため、複数の測定セル40a〜40f,40gを測定するのに同一波長のレーザー光源112aやそれに対応するフォトディテクタ113aを別の半径距離に複数個配置する必要が無く、装置のコストを削減できると共に、同一測定セル内に複数の異なる波長を用いて測定することもできるため、混合溶液の濃度に応じて最適な波長を選択することで測定感度を向上させることができる。   The shape of the measurement cells 40a to 40f and 40g is a shape extended in the direction in which the centrifugal force acts. Specifically, the width in the circumferential direction of the analysis device 1 from the center of rotation of the analysis device 1 toward the outermost periphery. It is thin. Since the bottoms on the outer peripheral side of the plurality of measurement cells 40a to 40f and 40g are arranged on the same radius of the analyzing device 1, the laser light source 112a having the same wavelength is used to measure the plurality of measurement cells 40a to 40f and 40g. In addition, it is not necessary to arrange a plurality of photodetectors 113a corresponding to them and different radial distances, so that the cost of the apparatus can be reduced and measurement can be performed using a plurality of different wavelengths in the same measurement cell. Measurement sensitivity can be improved by selecting an optimum wavelength according to the concentration.

さらに、各測定セル40a,40b,40d〜40fの周方向に位置する側壁の一側壁には、前記測定セルの外周位置から内周方向に伸長するように毛細管エリア47a,47b,47d,47e,47fが形成されている。図19(a)におけるF−F断面を図21(a)に示す。   Further, on one side wall of the measurement cells 40a, 40b, 40d to 40f in the circumferential direction, capillary areas 47a, 47b, 47d, 47e, and so on extend from the outer peripheral position of the measurement cell to the inner peripheral direction. 47f is formed. The FF cross section in Fig.19 (a) is shown to Fig.21 (a).

また、測定セル40cの周方向に位置する側壁の両側壁には、前記測定セルの外周位置から内周方向に伸長するように毛細管エリア47c1,47c2が形成されている。図19(a)におけるG−G断面を図21(b)に示す。   Capillary areas 47c1 and 47c2 are formed on both side walls of the measurement cell 40c in the circumferential direction so as to extend in the inner circumferential direction from the outer circumferential position of the measurement cell. A GG cross section in FIG. 19A is shown in FIG.

なお、測定セル40gには測定セル40a〜40fに見られたような毛細管エリアは形成されていない。
毛細管エリア47aの吸い上げ可能な容量は、測定セル40aに保持される試料液を全て収容できる容量よりも少ない容量に形成されている。毛細管エリア47b,47d〜47fも同様に、それぞれの測定セル40b,40d〜40fに保持される試料液を全て収容できる容量よりも少ない容量に形成されている。測定セル40cの毛細管エリア47c1,47c2については、毛細管エリア47c1の吸い上げ可能な容量と毛細管エリア47c2の吸い上げ可能な容量との加算値が、測定セル40cに保持される試料液を全て収容できる容量に形成されている。測定セル40b〜40f,40gの光路長は互いに同じ長さに形成されている。
Note that the capillary area as seen in the measurement cells 40a to 40f is not formed in the measurement cell 40g.
The capacitable capacity of the capillary area 47a is formed to be smaller than the capacity capable of accommodating all the sample liquid held in the measurement cell 40a. Similarly, the capillary areas 47b and 47d to 47f are formed to have a capacity smaller than the capacity capable of accommodating all the sample liquids held in the respective measurement cells 40b and 40d to 40f. For the capillary areas 47c1 and 47c2 of the measurement cell 40c, the sum of the capacity that can be sucked up in the capillary area 47c1 and the capacity that can be sucked up in the capillary area 47c2 is a capacity that can accommodate all the sample liquid held in the measurement cell 40c. Is formed. The optical path lengths of the measurement cells 40b to 40f and 40g are formed to be the same length.

また、図20に示すように毛細管エリア47a,47b,47c1,47c2,47d,47e,47fには、試料液と反応させる試薬T1が担持されている。測定セル40gには試薬が設けられていない。   As shown in FIG. 20, the capillary areas 47a, 47b, 47c1, 47c2, 47d, 47e, and 47f carry a reagent T1 that reacts with the sample solution. No reagent is provided in the measurement cell 40g.

なお、上記の実施の形態において毛細管エリア47a,47b,47c1,47c2,47d〜47fに担持させた試薬T1は、分析する特定成分に応じて異なっており、溶けやすい試薬を毛細管エリア47a,47b,47d〜47fに担持させ、毛細管エリア47cには溶けにくい試薬を担持させる。   In the above-described embodiment, the reagent T1 carried in the capillary areas 47a, 47b, 47c1, 47c2, 47d to 47f differs depending on the specific component to be analyzed, and a reagent that is easily soluble is capillary areas 47a, 47b, 47d to 47f are carried, and the capillary area 47c is made to carry a reagent that is hardly soluble.

− 工程7 −
次に、分析用デバイス1の回転を減速または停止、または所定の停止位置で回転軸心107を中心に所定の振幅範囲、周期で左右に往復運動をさせて分析用デバイス1を揺動させることによって、各測定セル40a〜40fに移送された試料液または試薬と試料液の混合溶液が、毛細管力によって図19(b)に示すように毛細管エリア47a〜47fに吸い上げられ、この時点で試薬T1の溶解が開始され、希釈血漿成分18a内に含まれる特定の成分と試薬の反応が開始される。
-Step 7-
Next, the analysis device 1 is decelerated or stopped, or the analysis device 1 is swung by reciprocating left and right with a predetermined amplitude range and period around the rotation axis 107 at a predetermined stop position. Thus, the sample solution or the mixed solution of the reagent and the sample solution transferred to each of the measurement cells 40a to 40f is sucked up into the capillary areas 47a to 47f by the capillary force as shown in FIG. 19B, and at this time, the reagent T1 And the reaction of the specific component contained in the diluted plasma component 18a and the reagent is started.

− 工程8 −
図19(b)に示したように、試料液または試薬と試料液の混合溶液が毛細管エリア47a〜47fに吸い上げられた状態から、分析用デバイス1の回転を加速させて、分析用デバイス1を反時計方向(C1方向)または時計方向(C2方向)に回転駆動すると、図19(a)に示すように、毛細管エリア47a〜47fに保持されていた液が遠心力によって、測定セル40a〜40fの外周側に移送することで、試薬T1と希釈血漿成分18aの攪拌が行われる。
− Step 8 −
As shown in FIG. 19B, from the state in which the sample solution or the mixed solution of the reagent and the sample solution is sucked up into the capillary areas 47a to 47f, the rotation of the analysis device 1 is accelerated to make the analysis device 1 When rotationally driven counterclockwise (C1 direction) or clockwise (C2 direction), as shown in FIG. 19A, the liquid held in the capillary areas 47a to 47f is measured by the centrifugal force, thereby measuring cells 40a to 40f. The reagent T1 and the diluted plasma component 18a are agitated by being transferred to the outer peripheral side.

ここでは、工程7と工程8の動作を繰り返し行うことで、試薬と希釈血漿成分18aの攪拌を促進しているため、拡散のみの攪拌に比べて確実に且つ短時間で攪拌を行うことが可能となる。   Here, since the agitation of the reagent and the diluted plasma component 18a is promoted by repeating the operations of the step 7 and the step 8, the agitation can be surely performed in a shorter time than the agitation only by diffusion. It becomes.

− 工程9−
分析用デバイス1を反時計方向(C1方向)または時計方向(C2方向)に回転駆動して、各測定セル40a〜40f,40gがレーザー光源112aとフォトディテクタ113aの間を通過するタイミングに、演算部110がフォトディテクタ113aの検出値を読み取って、これを前記一次測光と二次測光の結果で補正して特定成分の濃度を算出する。
− Step 9−
When the analysis device 1 is rotationally driven counterclockwise (C1 direction) or clockwise (C2 direction), each of the measurement cells 40a to 40f and 40g passes through between the laser light source 112a and the photodetector 113a, and the arithmetic unit 110 reads the detection value of the photo detector 113a and corrects it with the result of the primary photometry and the secondary photometry to calculate the density of the specific component.

なお、測定セル40gでの測定結果は、演算部110での計算処理に測定セル40a〜40fのリファレンスデータとして利用されている。
本実施の形態では、図24に示すように希釈液定量室27から溢流させた希釈液を溢流流路28を介して混合室29に移送し、移送された希釈液が第3連結流路34aと第4連結流路34bを介して混合室29から溢流室36(溢流室36a,36b,36c,36d,逆流防止通路35a,35b)へ排出されている間に希釈液の吸光度を測定する構成となっているが、図25に示すように図24に見られた第4連結流路34bを除いた構成でも同様の効果が得られる。
The measurement result in the measurement cell 40g is used as reference data for the measurement cells 40a to 40f in the calculation process in the calculation unit 110.
In the present embodiment, as shown in FIG. 24, the diluent overflowed from the diluent quantification chamber 27 is transferred to the mixing chamber 29 via the overflow channel 28, and the transferred diluent is transferred to the third connected flow. The absorbance of the diluted solution while being discharged from the mixing chamber 29 to the overflow chamber 36 (overflow chambers 36a, 36b, 36c, 36d, and the backflow prevention passages 35a, 35b) via the channel 34a and the fourth connection channel 34b. However, as shown in FIG. 25, the same effect can be obtained with the configuration excluding the fourth connection channel 34b seen in FIG.

また、図26に示すように希釈液室11と混合室29とを希釈液定量室27を介さずに連結流路301で接続して、希釈液容器5から移送される希釈液を分配して希釈液定量室27および混合室29にそれぞれ移送できるよう構成してもかまわない。302は溢流流路28を通過する希釈液を収容する溢流室である。   Further, as shown in FIG. 26, the diluent chamber 11 and the mixing chamber 29 are connected to each other through the connecting channel 301 without passing through the diluent quantification chamber 27, and the diluent transferred from the diluent container 5 is distributed. You may comprise so that it can respectively transfer to the dilution liquid fixed_quantity | quantitative_assay chamber 27 and the mixing chamber 29. FIG. Reference numeral 302 denotes an overflow chamber that stores the diluent that passes through the overflow channel 28.

さらには、図27に示すように、第1連結流路30のサイフォン屈曲部の位置を第2連結流路41のサイフォン屈曲部の位置よりも内周位置になるように構成し、希釈液が定量された後、分析用デバイス1の回転を減速させて希釈液だけがサイフォンの屈曲部を超えて混合室29に移送できるように回転数を制御することで、混合室29に希釈液だけを先に保持させて測定することができる。また、図27では、第1連結流路30のサイフォン屈曲部の位置を第2連結流路41のサイフォン屈曲部の位置よりも内周位置になるように構成しているが、第1連結流路30および第2連結流路41内に保持されたそれぞれの液に働く毛細管力と遠心力の関係を任意に設定することで、第2連結流路41内の液が先にサイフォン屈曲部を超えるように構成することができるため、必ずしも第1連結流路30および第2連結流路41のサイフォン屈曲部の位置関係に限定されるものではない。毛細管力と遠心力の関係を設定するためのパラメータとしては、流路幅、流路深さ、液体の密度、試料液保持室23および希釈液定量室27に保持される液面高さ(液量、各室の幅や深さ)、液面の半径位置、回転数等がある。   Furthermore, as shown in FIG. 27, the position of the siphon bent portion of the first connection channel 30 is configured to be an inner peripheral position relative to the position of the siphon bent portion of the second connection channel 41, and the dilution liquid is After the quantification, the rotation of the analytical device 1 is decelerated and the number of revolutions is controlled so that only the diluent can be transferred to the mixing chamber 29 beyond the bending portion of the siphon. It can be measured by holding it first. Further, in FIG. 27, the siphon bent portion of the first connecting channel 30 is configured to be located at the inner peripheral position than the siphon bent portion of the second connecting channel 41. By arbitrarily setting the relationship between the capillary force and the centrifugal force acting on the respective liquids held in the channel 30 and the second connection flow path 41, the liquid in the second connection flow path 41 first causes the siphon bending portion to move. Since it can be configured to exceed, it is not necessarily limited to the positional relationship between the siphon bent portions of the first connection channel 30 and the second connection channel 41. Parameters for setting the relationship between the capillary force and the centrifugal force include the channel width, the channel depth, the density of the liquid, the height of the liquid level held in the sample solution holding chamber 23 and the diluted solution quantification chamber 27 (liquid Volume, width and depth of each chamber), the radial position of the liquid level, the number of rotations, and the like.

このように、利用者が試料液を採取する際の保護キャップ2の開閉操作で希釈液容器5を開封し、希釈液を分析用デバイス1内に移送させることができるため、分析装置の簡略化、コストダウンができ、さらには利用者の操作性も向上させることができる。   As described above, since the diluent container 5 can be opened by opening and closing the protective cap 2 when the user collects the sample solution, and the diluent can be transferred into the analysis device 1, the analyzer can be simplified. The cost can be reduced, and the operability for the user can be improved.

さらに、シール部材としてのアルミシール9で封止された希釈液容器5を使用し、突出部としての開封リブ14によってアルミシール9を破って希釈液容器5を開封するので、長期間の保存によって希釈液が蒸発して減少することもなく、分析精度の向上を実現できる。   Further, the diluent container 5 sealed with the aluminum seal 9 as the sealing member is used, and the diluent container 5 is opened by breaking the aluminum seal 9 with the opening rib 14 as the protruding portion. The analysis accuracy can be improved without the dilution liquid evaporating and decreasing.

また、図6(a)に示した分析用デバイス1の出荷状態では、閉塞された保護キャップ2の係止用溝12に希釈液容器5のラッチ部10が係合して、希釈液容器5が矢印J方向に移動しないように液保持位置に係止されているため、保護キャップ2の開閉操作で希釈液容器5を希釈液室11において移動自在に構成しているにもかかわらず、利用者が保護キャップ2を開放して使用するまでの期間は、希釈液室11における希釈液容器5の位置が、液保持位置に係止されるため、利用者が使用前の輸送中に希釈液容器5が誤って開封されて希釈液が零れるようなことがない。   6A, the latch portion 10 of the diluent container 5 is engaged with the locking groove 12 of the closed protective cap 2, and the diluent container 5 is engaged. Is held at the liquid holding position so that it does not move in the direction of arrow J, so that it can be used even though the diluent container 5 is configured to be movable in the diluent chamber 11 by opening and closing the protective cap 2. Since the position of the diluent container 5 in the diluent chamber 11 is locked at the liquid holding position until the person opens the protective cap 2 for use, the user can use the diluent during transportation before use. There is no case where the container 5 is accidentally opened and the diluted solution is spilled.

また、分析用デバイス1の遠心方向(半径方向)に伸長するように形成した各測定セル40a〜40f,40gの幅(周方向の寸法)を、光学測定部108によって検出できる最小限の寸法に規定し、回転中に測定セル40a〜40f,40gに保持される液の液面高さを光学測定部108によって検出できる半径位置、すなわちレーザーの照射エリアが満たされる液面高さに規定することで、必要最小限の液量で測定することが可能となる。   In addition, the width (circumferential dimension) of each of the measurement cells 40a to 40f and 40g formed so as to extend in the centrifugal direction (radial direction) of the analytical device 1 is set to a minimum dimension that can be detected by the optical measurement unit 108. The liquid level height of the liquid held in the measurement cells 40a to 40f and 40g during rotation is defined as a radial position where the optical measurement unit 108 can detect the liquid level height, that is, the liquid level height that fills the laser irradiation area. Therefore, it becomes possible to measure with the minimum necessary liquid amount.

このように、測定セル40a〜40fは遠心力の働く方向に伸長して形成され、回転方向に位置する側壁の少なくとも一側壁に、測定セル40a〜40fの外周位置から内周方向に伸長するよう毛細管エリア47a〜47fを形成し、工程7〜工程9を実行するので、特許文献1に見られたような試料液と試薬を攪拌するための流入路114、測定セル115、流路117で構成されるU字形状の攪拌機構を設けなくても、十分な攪拌効果を得ることができ、分析用デバイスの小型化を実現できる。   As described above, the measurement cells 40a to 40f are formed to extend in the direction in which the centrifugal force acts, and extend from the outer peripheral position of the measurement cells 40a to 40f in the inner peripheral direction on at least one side wall of the rotation direction. Since the capillary areas 47a to 47f are formed and the steps 7 to 9 are executed, the capillary tube areas 47a to 47f are configured to include the inflow path 114, the measurement cell 115, and the flow path 117 for stirring the sample solution and the reagent as seen in Patent Document 1. Even if the U-shaped stirring mechanism is not provided, a sufficient stirring effect can be obtained, and the analysis device can be downsized.

また、測定セル40a〜40f,40gは遠心力の働く方向に伸長して形成されているため、測定セルを満たすための試料液が特許文献1の場合よりも少なくて済み、微量な試料液で測定ができる。   In addition, since the measurement cells 40a to 40f and 40g are formed to extend in the direction in which the centrifugal force acts, the sample liquid for filling the measurement cell is smaller than in the case of Patent Document 1, and a very small amount of sample liquid is required. Can measure.

上記の実施の形態においては、試薬T1を毛細管エリア47a〜47fに担持させたが、図22に示すように、毛細管エリア47a〜47fに試薬T1とこの試薬T1とは異なる試薬T2とを担持させることもできる。また、図23に示すように、試薬T1を測定セル40a〜40fの外周側の底部付近に設け、毛細管エリア47a,47b,47c1,47c2,47d〜47fに必要に応じて仮想線で示すように試薬T2を担持させることもできる。単一の測定セルについて、測定セルの底部に試薬T1を設けると共に毛細管エリアにも試薬T2を設ける場合において、試薬T1と試薬T2は同じ成分であっても、互いに異なっていてもよい。毛細管エリアに設けた試薬T2としては、成分の異なる複数の試薬とすることもできる。   In the above embodiment, the reagent T1 is supported on the capillary areas 47a to 47f. However, as shown in FIG. 22, the reagent T1 and a reagent T2 different from the reagent T1 are supported on the capillary areas 47a to 47f. You can also. Further, as shown in FIG. 23, the reagent T1 is provided near the bottom on the outer peripheral side of the measurement cells 40a to 40f, and the capillary areas 47a, 47b, 47c1, 47c2, and 47d to 47f are indicated by virtual lines as necessary. The reagent T2 can also be supported. For a single measurement cell, when the reagent T1 is provided at the bottom of the measurement cell and the reagent T2 is also provided in the capillary area, the reagent T1 and the reagent T2 may be the same component or different from each other. The reagent T2 provided in the capillary area can be a plurality of reagents having different components.

本発明にかかる分析方法と分析用デバイスは、血液の分析や、希釈液の長期保存が必要な医療分析検査装置などの用途にも適用できる。   The analysis method and the analysis device according to the present invention can also be applied to uses such as a medical analysis test apparatus that requires blood analysis and long-term storage of a diluted solution.

本発明の実施の形態の分析用デバイスの保護キャップを閉じた状態と開いた状態の外観斜視図FIG. 3 is an external perspective view of the analytical device according to the embodiment of the present invention with the protective cap closed and opened. 同実施の形態の分析用デバイスの分解斜視図Exploded perspective view of the analysis device of the same embodiment 保護キャップを閉じた状態の分析用デバイスを背面から見た斜視図A perspective view of the analytical device with the protective cap closed as seen from the back 同実施の形態の希釈液容器の説明図Explanatory drawing of the diluent container of the embodiment 同実施の形態の保護キャップの説明図Explanatory drawing of the protective cap of the embodiment 同実施の形態の分析用デバイスの使用前と試料液を点着する際ならびに点着後に保護キャップを閉じた状態の断面図Sectional drawing of the state in which the protective cap is closed before using the analytical device of the same embodiment, when spotting the sample liquid, and after spotting 出荷状態にセットする工程の断面図Cross-sectional view of the process to set to the shipment 分析用デバイスを分析装置にセットする直前の斜視図Perspective view just before setting the analysis device to the analyzer 分析用デバイスを分析装置にセットした状態の断面図Sectional view of the analysis device set in the analyzer 同実施の形態の分析装置の構成図Configuration diagram of the analyzer of the same embodiment 同実施の形態の分析デバイスの要部の拡大説明図Expansion explanatory drawing of the principal part of the analysis device of the embodiment 分析用デバイスを分析装置にセットして回転開始前の断面図Sectional view before setting the analysis device to the analyzer and starting rotation 分析用デバイスのベース基板の斜視図Perspective view of base substrate of analytical device 分析用デバイスを分析装置にセットし回転後とその後の遠心分離後の断面図Sectional view after setting the analytical device in the analyzer and rotating and then centrifuging 分析用デバイスの回転軸心と希釈液容器から希釈液が放出されるタイミングの希釈液容器の断面図Cross section of the diluent container at the timing when the diluent is released from the rotational axis of the analytical device and the diluent container 遠心分離後の試料液の固体成分を定量採取し希釈するときの断面図Sectional view when the solid component of the sample solution after centrifugation is quantitatively collected and diluted 工程4と工程5の断面図Cross section of process 4 and process 5 毛細管キャビティ33とその周辺の拡大斜視図とE−E断面図Capillary cavity 33 and its surrounding enlarged perspective view and EE cross section 工程6と工程7の断面図Sectional drawing of process 6 and process 7 図12における測定セル40a〜40fの拡大平面図FIG. 12 is an enlarged plan view of the measurement cells 40a to 40f. 図19におけるF−F断面図とG−G断面図FF sectional view and GG sectional view in FIG. 測定セル40a〜40fの別の例の拡大平面図An enlarged plan view of another example of the measurement cells 40a to 40f 測定セル40a〜40fの更に別の例の拡大平面図An enlarged plan view of still another example of the measurement cells 40a to 40f. 図13における混合室29の周辺の概略図Schematic diagram around the mixing chamber 29 in FIG. 混合室29の周辺の別の実施の形態の概略図Schematic of another embodiment around the mixing chamber 29 混合室29の周辺の更に別の実施の形態の概略図Schematic of still another embodiment around the mixing chamber 29 混合室29の周辺の更に別の実施の形態の概略図Schematic of still another embodiment around the mixing chamber 29 特許文献1の分析用デバイスの要部の平面図The top view of the principal part of the device for analysis of patent documents 1

符号の説明Explanation of symbols

1 分析用デバイス
2 保護キャップ
2a 開口
2b 底部
3 ベース基板
4 カバー基板
5 希釈液容器
5a 内部
5b ラッチ部10の面
6a,6b 軸
7 開口部
8 希釈液
9 アルミシール(シール部材)
10 ラッチ部
11 希釈液室
12 係止用溝
12a 壁面
13 注入口
14 開封リブ(突出部)
15,16 回転支持部
17 誘導部
18 試料液
18a 希釈血漿成分
18b 血球成分
19 液体試料室
20 傾斜面
21 凹部
22 屈曲部
23 試料液保持室
24 キャビティ
25a〜25h,25i1,25i2,25j〜25n 空気孔
26 排出流路
27 希釈液定量室
28 溢流流路
29 混合室
30 第1連結流路
31 リブ
32 円弧面
33 毛細管キャビティ
34a 第3連結流路
34b 第4連結流路
35a,35b 逆流防止通路
36a,36b,36c,36d 溢流室
37 毛細管流路
38 溢流流路
39a,39b,39c,39d,39e,39f,39g 計量流路
40a,40b,40c,40d,40e,40f,40g 測定セル
41 第2連結流路
42 溝
43 孔
44 係止治具
44a 突起
45 切り欠き
46 押圧治具
47a,47b,47c1,47c2,47d,47e,47f 毛細管エリア
48 大気開放キャビティ
49a,49b,49c,49d,49e,49f,49g 屈曲部
100 分析装置
101 ロータ
102 溝
103 ドア
104 可動片
105 バネ
106 回転駆動手段
107 回転軸心
108 光学測定部(分析手段)
109 制御手段
110 演算部
111 表示部
112a,112b レーザー光源
113a,113b フォトディテクタ
T1,T2 試薬
P1 一次測光の位置
P2 二次測光の位置
DESCRIPTION OF SYMBOLS 1 Analytical device 2 Protective cap 2a Opening 2b Bottom part 3 Base substrate 4 Cover substrate 5 Diluent container 5a Inside 5b Surface of latch part 10 6a, 6b Shaft 7 Opening 8 Diluent 9 Aluminum seal (seal member)
DESCRIPTION OF SYMBOLS 10 Latch part 11 Diluent chamber 12 Locking groove 12a Wall surface 13 Inlet 14 Opening rib (protrusion part)
DESCRIPTION OF SYMBOLS 15,16 Rotation support part 17 Guidance part 18 Sample liquid 18a Diluted plasma component 18b Blood cell component 19 Liquid sample chamber 20 Inclined surface 21 Recessed part 22 Bending part 23 Sample liquid holding chamber 24 Cavity 25a-25h, 25i1, 25i2, 25j-25n Air Hole 26 Discharge flow path 27 Diluent determination chamber 28 Overflow flow path 29 Mixing chamber 30 First connection flow path 31 Rib 32 Arc surface 33 Capillary cavity 34a Third connection flow path 34b Fourth connection flow path 35a, 35b Backflow prevention flow path 36a, 36b, 36c, 36d Overflow chamber 37 Capillary channel 38 Overflow channel 39a, 39b, 39c, 39d, 39e, 39f, 39g Metering channel 40a, 40b, 40c, 40d, 40e, 40f, 40g Measurement cell 41 Second connecting flow path 42 Groove 43 Hole 44 Locking jig 44a Projection 45 Notch 46 Push Jig 47a, 47b, 47c1, 47c2, 47d, 47e, 47f Capillary area 48 Air release cavity 49a, 49b, 49c, 49d, 49e, 49f, 49g Bending part 100 Analyzing device 101 Rotor 102 Groove 103 Door 104 Movable piece 105 Spring 106 Rotation Drive Means 107 Rotation Center 108 Optical Measurement Unit (Analysis Means)
109 Control Unit 110 Calculation Unit 111 Display Unit 112a, 112b Laser Light Source 113a, 113b Photodetector T1, T2 Reagent P1 Primary Photometric Position P2 Secondary Photometric Position

Claims (11)

希釈液と液体試料とを分析用デバイスの混合室に受け入れて混合し、前記混合室で攪拌混合された希釈液体試料を前記分析用デバイスの測定セルに移送し、前記測定セルにおける前記希釈液体試料の反応物にアクセスして成分分析するに際し、
前記混合室に希釈液のみを保持した状態で前記混合室に検出光を透過させて前記希釈液のみの吸光度を測定する第1ステップと、
前記混合室に希釈液体試料を保持した状態で前記混合室に検出光を透過させて前記希釈液体試料の吸光度を測定する第2ステップと、
前記測定セルにおける前記希釈液体試料の反応物にアクセスして読み取った結果を、前記第1,第2ステップで求めた吸光度に基づいて求まる希釈倍率によって補正して成分分析の結果を計算する第3ステップと
からなる分析方法。
The dilution liquid and the liquid sample are received and mixed in the mixing chamber of the analytical device, the diluted liquid sample stirred and mixed in the mixing chamber is transferred to the measurement cell of the analytical device, and the diluted liquid sample in the measurement cell When accessing the reactants and analyzing the components,
A first step of measuring the absorbance of only the diluent by allowing detection light to pass through the mixing chamber while holding only the diluent in the mixing chamber;
A second step of measuring the absorbance of the diluted liquid sample by transmitting detection light to the mixed chamber in a state where the diluted liquid sample is held in the mixed chamber;
A result obtained by accessing and reading the reactant of the diluted liquid sample in the measurement cell is corrected by the dilution factor determined based on the absorbance obtained in the first and second steps, and a result of component analysis is calculated. An analysis method comprising steps.
前記第1ステップは、
希釈液を前記混合室に向かって移送中に前記混合室に受け入れた前記希釈液のみの吸光度を測定する
請求項1に記載の分析方法。
The first step includes
The analysis method according to claim 1, wherein the absorbance of only the diluent received in the mixing chamber during transfer of the diluent toward the mixing chamber is measured.
前記第1ステップは、
分析用デバイスの回転中に希釈液を計量する計量作業を有し、前記計量作業の終了後に分析用デバイスを減速させて、前記希釈液を前記混合室に移送する
請求項1に記載の分析方法。
The first step includes
2. The analysis method according to claim 1, further comprising a weighing operation of weighing the diluent while the analysis device is rotating, wherein the analysis device is decelerated after the weighing operation and the diluent is transferred to the mixing chamber. .
希釈液を貯留する希釈液室と、
液体試料を一定量保持できるように構成された液体試料室と、
前記液体試料室と連結され前記液体試料を一時的に保持する液体試料保持室と、
前記希釈液室と連結され希釈液を必要量定量するための希釈液定量室と、
前記希釈液定量室と連結され前記希釈液定量室に移送された希釈液の余剰分を溢流させる溢流流路と、
前記液体試料保持室とは第1連結流路を介して連結され前記希釈液定量室とは第2連結流路を介して連結された混合室と、
前記混合室とは毛細管流路を介して連結され希釈液と液体試料とを前記混合室で攪拌混合した希釈液体試料を受け入れる測定セルと
を設けた分析用デバイス。
A diluent chamber for storing the diluent,
A liquid sample chamber configured to hold a certain amount of liquid sample;
A liquid sample holding chamber connected to the liquid sample chamber and temporarily holding the liquid sample;
A diluent quantification chamber connected to the diluent chamber for quantifying the required amount of the diluent;
An overflow channel connected to the dilution liquid determination chamber and overflowing an excess of the dilution liquid transferred to the dilution liquid determination chamber;
A mixing chamber connected to the liquid sample holding chamber via a first connection channel and connected to the dilution liquid determination chamber via a second connection channel;
An analytical device provided with a measurement cell that is connected to the mixing chamber via a capillary channel and receives a diluted liquid sample obtained by stirring and mixing the diluent and the liquid sample in the mixing chamber.
前記溢流流路が前記混合室と連結している
請求項4に記載の分析用デバイス。
The analytical device according to claim 4, wherein the overflow channel is connected to the mixing chamber.
試料液保持室に所定量を超える前記液体試料を溢流させて計量できるように溢流流路を設けた
請求項4に記載の分析用デバイス。
The analytical device according to claim 4, wherein an overflow channel is provided so that the liquid sample exceeding a predetermined amount can be overflowed and measured in the sample liquid holding chamber.
前記希釈液室と前記混合室を前記希釈液定量室を介さずに分配流路で連結して、希釈液を前記希釈液定量室と前記混合室に分配できるよう構成した
請求項4に記載の分析用デバイス。
5. The configuration according to claim 4, wherein the diluent chamber and the mixing chamber are connected by a distribution channel without going through the diluent quantitation chamber, and the diluent can be distributed to the diluent quantitation chamber and the mixing chamber. Analytical device.
前記第1連結流路および前記第2連結流路がサイフォン構造を有している
請求項4に記載の分析用デバイス。
The analysis device according to claim 4, wherein the first connection channel and the second connection channel have a siphon structure.
前記混合室とサイフォン構造を有する第3連結流路を介して連通する溢流室を備えている
請求項4に記載の分析用デバイス。
The analytical device according to claim 4, further comprising an overflow chamber communicating with the mixing chamber via a third connection channel having a siphon structure.
前記混合室には、前記第3連結流路のサイフォンの最内周位置よりも更に内周側に過剰量の希釈液を溢流させる第4の溢流流路を有している
請求項9に記載の分析用デバイス。
10. The fourth overflow channel for allowing an excessive amount of diluent to overflow further to the inner peripheral side than the innermost peripheral position of the siphon of the third connection channel in the mixing chamber. The analytical device described in 1.
請求項4に記載の分析用デバイスがセットされ、希釈液と液体試料とを分析用デバイスの混合室に受け入れて混合し、前記混合室で攪拌混合された希釈液体試料を前記分析用デバイスの測定セルに移送し、前記測定セルにおける前記希釈液体試料の反応物にアクセスして成分分析する分析装置であって、
前記分析用デバイスを軸心周りに回転させる回転駆動手段と、
前記混合室に希釈液のみを保持した状態と前記混合室に希釈液と液体試料とを受け入れて攪拌混合した希釈液体試料を保持した状態ならびに前記混合室から前記測定セルへ移送させるよう前記回転駆動手段を制御する制御手段と、
前記混合室に検出光を透過させて前記希釈液のみの吸光度と前記希釈液体試料の吸光度ならびに前記分析用デバイスの測定セルに移送された前記試料液に基づく反応物にアクセスする分析手段と、
前記分析手段が前記測定セルにおける前記希釈液体試料の反応物にアクセスして読み取った結果を、前記分析手段が希釈液のみを保持した前記混合室にアクセスして読み取った吸光度と前記分析手段が希釈液体試料を保持した前記混合室にアクセスして読み取った吸光度に基づいて求まる希釈倍率によって補正して成分分析の結果を計算する
演算部と
を設けた分析装置。
The analysis device according to claim 4 is set, and the diluted liquid and the liquid sample are received and mixed in the mixing chamber of the analytical device, and the diluted liquid sample stirred and mixed in the mixing chamber is measured by the analytical device. An analyzer that transfers to the cell and accesses the reactant of the diluted liquid sample in the measurement cell to analyze the components;
Rotational drive means for rotating the analytical device about an axis;
The state where only the diluting liquid is held in the mixing chamber, the state where the diluting liquid sample received in the mixing chamber is stirred and mixed, and the rotation drive so as to be transferred from the mixing chamber to the measuring cell Control means for controlling the means;
Analyzing means for transmitting detection light to the mixing chamber to access the absorbance of only the diluent, the absorbance of the diluted liquid sample, and the reactant based on the sample liquid transferred to the measurement cell of the analytical device;
The analysis means accesses and reads the reaction product of the diluted liquid sample in the measurement cell, and the analysis means accesses the mixing chamber that holds only the diluent and reads the absorbance and the analysis means dilutes. An analyzer provided with an arithmetic unit that calculates the result of component analysis by correcting the dilution factor obtained based on the absorbance read by accessing the mixing chamber holding the liquid sample.
JP2008024623A 2007-11-08 2008-02-05 Analysis method and analyzer Active JP5322447B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2008024623A JP5322447B2 (en) 2008-02-05 2008-02-05 Analysis method and analyzer
EP08848318.5A EP2219034B1 (en) 2007-11-08 2008-11-07 Analyzing device and analyzing method using same
CN201310443482.3A CN103499702B (en) 2007-11-08 2008-11-07 Analyzing device
CN201310443484.2A CN103487596B (en) 2007-11-08 2008-11-07 Analyzing method using analyzing device
PCT/JP2008/003222 WO2009060617A1 (en) 2007-11-08 2008-11-07 Analyzing device and analyzing method using same
US12/741,929 US9182384B2 (en) 2007-11-08 2008-11-07 Analyzing device and analyzing method using same
CN2008801077592A CN101802622B (en) 2007-11-08 2008-11-07 Analyzing device and analyzing method using same
US14/877,663 US10101317B2 (en) 2007-11-08 2015-10-07 Rotatable analyzing device with a separating cavity and a capillary cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008024623A JP5322447B2 (en) 2008-02-05 2008-02-05 Analysis method and analyzer

Publications (2)

Publication Number Publication Date
JP2009186247A true JP2009186247A (en) 2009-08-20
JP5322447B2 JP5322447B2 (en) 2013-10-23

Family

ID=41069646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008024623A Active JP5322447B2 (en) 2007-11-08 2008-02-05 Analysis method and analyzer

Country Status (1)

Country Link
JP (1) JP5322447B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202697A (en) * 2011-03-23 2012-10-22 Rohm Co Ltd Disk type analysis chip
JP2013050435A (en) * 2011-07-29 2013-03-14 Rohm Co Ltd Disk-shaped analysis chip
JP2017075807A (en) * 2015-10-13 2017-04-20 国立大学法人山梨大学 Micro-device, and checkup apparatus equipped with the same
WO2019156017A1 (en) 2018-02-09 2019-08-15 Phcホールディングス株式会社 Substrate for sample analysis, sample analysis device, sample analysis system, and method for controlling sample analysis device
WO2020100987A1 (en) 2018-11-16 2020-05-22 Phcホールディングス株式会社 Sample analysis substrate
CN114839133A (en) * 2022-04-06 2022-08-02 高分(北京)生物科技有限公司 Cell imaging counting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502850A (en) * 1987-04-01 1989-09-28 ベックマン インスツルメンツ インコーポレーテッド Liquid dilution and mixing device and dynamic analysis using it
JPH07503794A (en) * 1992-02-11 1995-04-20 アバクシス,インコーポレイテッド Reagent containers for analytical rotors
JP2001083081A (en) * 1999-09-17 2001-03-30 Hitachi Ltd Method for preparing nonlinear calibration curve in automatic chemical analysis device
JP2004205292A (en) * 2002-12-24 2004-07-22 Sysmex Corp Sample analyzer
JP2007078676A (en) * 2005-08-19 2007-03-29 Matsushita Electric Ind Co Ltd Device for analytical use, and analyzing apparatus using this
JP2010503859A (en) * 2006-09-15 2010-02-04 アーテル インク Dilution effect measurement by quantitative double staining photometry

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502850A (en) * 1987-04-01 1989-09-28 ベックマン インスツルメンツ インコーポレーテッド Liquid dilution and mixing device and dynamic analysis using it
JPH07503794A (en) * 1992-02-11 1995-04-20 アバクシス,インコーポレイテッド Reagent containers for analytical rotors
JP2001083081A (en) * 1999-09-17 2001-03-30 Hitachi Ltd Method for preparing nonlinear calibration curve in automatic chemical analysis device
JP2004205292A (en) * 2002-12-24 2004-07-22 Sysmex Corp Sample analyzer
JP2007078676A (en) * 2005-08-19 2007-03-29 Matsushita Electric Ind Co Ltd Device for analytical use, and analyzing apparatus using this
JP2010503859A (en) * 2006-09-15 2010-02-04 アーテル インク Dilution effect measurement by quantitative double staining photometry

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202697A (en) * 2011-03-23 2012-10-22 Rohm Co Ltd Disk type analysis chip
JP2013050435A (en) * 2011-07-29 2013-03-14 Rohm Co Ltd Disk-shaped analysis chip
JP2017075807A (en) * 2015-10-13 2017-04-20 国立大学法人山梨大学 Micro-device, and checkup apparatus equipped with the same
WO2019156017A1 (en) 2018-02-09 2019-08-15 Phcホールディングス株式会社 Substrate for sample analysis, sample analysis device, sample analysis system, and method for controlling sample analysis device
US11946943B2 (en) 2018-02-09 2024-04-02 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and method for controlling sample analysis device
WO2020100987A1 (en) 2018-11-16 2020-05-22 Phcホールディングス株式会社 Sample analysis substrate
US11874210B2 (en) 2018-11-16 2024-01-16 Phc Holdings Corporation Sample analysis substrate
CN114839133A (en) * 2022-04-06 2022-08-02 高分(北京)生物科技有限公司 Cell imaging counting device
CN114839133B (en) * 2022-04-06 2023-07-21 高分(北京)生物科技有限公司 Cell imaging counting device

Also Published As

Publication number Publication date
JP5322447B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
EP2219034B1 (en) Analyzing device and analyzing method using same
US20180221880A1 (en) Analyzing apparatus
JP5247460B2 (en) Microchip
US8865472B2 (en) Analyzing apparatus and method that use centrifugal force
JP5137528B2 (en) Analytical device, analytical apparatus and analytical method using the same
US8596150B2 (en) Analytical device with mixing cavity
US7938030B2 (en) Analytical device
JP5322447B2 (en) Analysis method and analyzer
JP5376436B2 (en) ANALYSIS APPARATUS AND ANALYSIS METHOD USING ANALYSIS DEVICE
JP5408992B2 (en) Analytical device and analytical method using this analytical device
JP5376429B2 (en) Analytical device, analytical apparatus and analytical method using the same
JP5376430B2 (en) Analytical device and analytical method using this analytical device
JP4645211B2 (en) HDL-cholesterol analysis disk and HDL-cholesterol analysis device
JP5455479B2 (en) Analytical devices and methods
US20140377851A1 (en) Analysis device
JP2011021955A (en) Analyzing device, and analyzing method
JP2011137673A (en) Analyzing device, analysis apparatus using the same, and analysis method
JP5207709B2 (en) Analytical device, analytical apparatus and analytical method using the same
JP5268382B2 (en) Analytical device, analytical apparatus and analytical method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R151 Written notification of patent or utility model registration

Ref document number: 5322447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250