JP2009185688A - Direct-injection spark-ignition internal combustion engine - Google Patents

Direct-injection spark-ignition internal combustion engine Download PDF

Info

Publication number
JP2009185688A
JP2009185688A JP2008026352A JP2008026352A JP2009185688A JP 2009185688 A JP2009185688 A JP 2009185688A JP 2008026352 A JP2008026352 A JP 2008026352A JP 2008026352 A JP2008026352 A JP 2008026352A JP 2009185688 A JP2009185688 A JP 2009185688A
Authority
JP
Japan
Prior art keywords
injection
fuel
timing
valve
fuel spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008026352A
Other languages
Japanese (ja)
Inventor
Daisuke Takagi
大介 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008026352A priority Critical patent/JP2009185688A/en
Publication of JP2009185688A publication Critical patent/JP2009185688A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve combustion stability by improving a degree of concentration (degree of homogeneity) of a stratified air-fuel ratio when performing stratified combustion during a cold period including an engine start period. <P>SOLUTION: A fuel injection valve (outward valve) 5 forming hollow conical fuel spray is arranged in the upper center of a combustion chamber 4. During the cold period including the engine start period, fuel injection for stratified combustion from the fuel injection valve 5 is divided into a plurality of times, and subsequent injection is performed at timing with fuel spray injected later brought in fuel spray injected in first. After engine start, injection timing is delayed to a TDC (compression top dead center) or later together with ignition timing to ensure expansion stroke injection; meanwhile, an injection interval of divided injection is shortened in comparison with an injection interval of compression stroke injection. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、直噴火花点火式内燃機関に関し、特に機関の始動時を含む冷間時の燃料噴射制御に関する。   The present invention relates to a direct-injection spark-ignition internal combustion engine, and more particularly, to fuel injection control during cold including the engine start.

特許文献1では、直噴火花点火式内燃機関において、圧縮行程にて燃料を噴射する成層燃焼時に、燃料噴射を複数回に分割し、分割して噴射された燃料のうち先に噴射されたものに対して、その後に噴射された燃料が点火プラグの近傍において重なるように噴射させるようにしている。   In Patent Document 1, in a direct injection spark ignition internal combustion engine, at the time of stratified combustion in which fuel is injected in a compression stroke, the fuel injection is divided into a plurality of times, and the fuel that has been divided and injected is injected first On the other hand, the fuel injected thereafter is injected so as to overlap in the vicinity of the spark plug.

すなわち、分割された燃料のうち、先に噴射された燃料は、燃料噴射弁の噴射特性、噴射方向及び燃焼室内のガス流動の影響などによって定まる領域に、混合気を形成する。そして、この噴射の後に噴射される燃料に対しては、先の噴射の影響で噴射方向に沿った流れが生じているため、後に噴射された燃料は、同様な形態の噴霧を形成しつつも、先に噴射された燃料より高速で燃焼室内を進む。従って、後に噴射された燃料を先に噴射された燃料に追い付かせて重なり合わせることにより、その位置において適切な集中度の混合気を形成する。   That is, of the divided fuels, the previously injected fuel forms an air-fuel mixture in a region determined by the injection characteristics of the fuel injection valve, the injection direction, the influence of gas flow in the combustion chamber, and the like. The fuel injected after this injection has a flow along the injection direction due to the influence of the previous injection, so that the fuel injected later forms a spray of the same form. Then, it proceeds through the combustion chamber at a higher speed than the previously injected fuel. Accordingly, the fuel injected later is caught up with the previously injected fuel and overlapped to form an air-fuel mixture with an appropriate concentration degree at that position.

但し、機関冷間時には、機関壁面温度が低く、燃料の壁面付着による燃焼性能への悪影響が大きいため、分割噴射を禁止して、1回のみの単一噴射としている。
特開2002−115593号公報
However, when the engine is cold, the engine wall surface temperature is low, and the adverse effect on the combustion performance due to the fuel wall adhesion is large, so split injection is prohibited and single injection is performed only once.
JP 2002-115593 A

特許文献1に記載の技術では、機関の始動時を含む冷間時には、分割噴射を禁止して、1回のみの単一噴射とするため、成層混合気の集中度(均質度)が低下して、燃焼安定性が悪化する。   In the technique described in Patent Document 1, since the split injection is prohibited and the injection is performed only once in the cold including the start of the engine, the concentration (homogeneity) of the stratified mixture is reduced. As a result, the combustion stability deteriorates.

また、単一噴射では、分割噴射に比べ、燃料噴霧のペネトレーションが強くなるため、かえって壁面への付着量が増大する恐れがある。
本発明は、このような実状に鑑み、機関の始動時を含む冷間時に、成層燃焼をより安定して行えるようにすることを目的とする。
In addition, in the single injection, since the penetration of the fuel spray is stronger than in the split injection, there is a possibility that the amount of adhesion to the wall surface is increased.
The present invention has been made in view of such a situation, and an object of the present invention is to make it possible to perform stratified combustion more stably during cold including the start of the engine.

このため、本発明では、機関の始動時を含む冷間時に、点火時期の直前に燃料噴射を行って燃料噴霧に点火することにより成層燃焼を行わせると共に、燃料噴射を複数回に分割し、先に噴射した燃料噴霧に後から噴射する燃料噴霧が引込まれるタイミングで後の燃料噴射を行う構成とする。   For this reason, in the present invention, during cold including the start of the engine, fuel injection is performed immediately before the ignition timing and fuel spray is ignited to cause stratified combustion, and the fuel injection is divided into a plurality of times. It is set as the structure which performs subsequent fuel injection at the timing at which the fuel spray injected later is drawn into the fuel spray injected previously.

本発明によれば、機関の始動時を含む冷間時の成層燃焼に際し、上記の分割噴射によって、混合気の集中度(均質度)を高めることができ、燃焼安定性の向上を図ることができる。   According to the present invention, at the time of stratified combustion in the cold state including when the engine is started, the concentration (homogeneity) of the air-fuel mixture can be increased by the above-described divided injection, and the combustion stability can be improved. it can.

以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示す直噴火花点火式内燃機関の構成図である。
図1において、シリンダヘッド1とシリンダボア2とピストン3とにより、ペントルーフ型の燃焼室4が形成され、その上部中央に燃料噴射弁5が下向きに配置されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a configuration diagram of a direct injection spark ignition internal combustion engine showing an embodiment of the present invention.
In FIG. 1, a pent roof type combustion chamber 4 is formed by a cylinder head 1, a cylinder bore 2, and a piston 3, and a fuel injection valve 5 is disposed downward in the center of the upper part thereof.

燃料噴射弁5は、図2に示すようなアウトワード弁であり、燃料噴射弁本体50の先端部に軸心に沿って燃料通路51が形成され、この燃料通路51は先端面にてテーパ状開口部52をなしている。   The fuel injection valve 5 is an outward valve as shown in FIG. 2, and a fuel passage 51 is formed along the axis at the tip of the fuel injection valve body 50. The fuel passage 51 is tapered at the tip. An opening 52 is formed.

そして、燃料通路51をその通路方向に貫通するロッド部53の先端にポペット型の弁体54が設けられ、テーパ状開口部52にポペット型の弁体54のテーパ面が相対している。   A poppet-type valve element 54 is provided at the tip of a rod 53 that penetrates the fuel passage 51 in the direction of the passage, and the tapered surface of the poppet-type valve element 54 is opposed to the tapered opening 52.

従って、弁体54の外側へのリフト時に、テーパ状開口部52と弁体54のテーパ面との間に、外向きの環状の噴出口55が形成されて、この噴出口55から燃料が噴射され、燃料噴霧は中空円錐状を呈する。   Accordingly, when the valve body 54 is lifted to the outside, an outward annular jet 55 is formed between the tapered opening 52 and the tapered surface of the valve 54, and fuel is injected from the jet 55. The fuel spray has a hollow conical shape.

点火プラグ6は、燃焼室4の上部中央より偏心した位置に斜めに配置されていて、これにより、燃料噴射弁5から噴射される中空円錐状の燃料噴霧の外縁に点火するように配置されている。   The spark plug 6 is disposed obliquely at a position eccentric from the upper center of the combustion chamber 4, and is thereby disposed to ignite the outer edge of the hollow conical fuel spray injected from the fuel injection valve 5. Yes.

より詳しくは、燃料噴射弁5から噴射される中空円錐状の燃料噴霧の外縁の一部には、周囲の空気とのせん断で巻上がり部(膨らみ部)を生じるので、この巻上がり部に点火するように配置されている。   More specifically, a part of the outer edge of the hollow conical fuel spray injected from the fuel injection valve 5 is swelled (swelled) by shearing with the surrounding air. Are arranged to be.

燃料噴射弁5及び点火プラグ6の作動はエンジンコントロールユニット(ECU)7により制御され、ECU7には、機関回転数センサにより検出される機関回転数Ne、燃圧センサにより検出される燃圧Pf、水温センサにより検出される水温Tw等の信号が入力されている。   The operation of the fuel injection valve 5 and the spark plug 6 is controlled by an engine control unit (ECU) 7, which includes an engine speed Ne detected by an engine speed sensor, a fuel pressure Pf detected by a fuel pressure sensor, and a water temperature sensor. A signal such as the water temperature Tw detected by is input.

この内燃機関の運転モード(燃焼モード)には、均質運転モードと成層運転モードとがある。
均質運転モードでは、吸気行程にて燃料噴射弁5の燃料噴射を行い、点火プラグ6による点火時期までに、燃焼室4の全体に均質な混合気を形成することにより、ストイキ空燃比、又はリーン空燃比(A/F=20〜30)で、均質燃焼を行わせる。
The operation mode (combustion mode) of the internal combustion engine includes a homogeneous operation mode and a stratified operation mode.
In the homogeneous operation mode, fuel injection of the fuel injection valve 5 is performed in the intake stroke, and a homogeneous air-fuel mixture is formed in the entire combustion chamber 4 by the ignition timing by the spark plug 6, so that the stoichiometric air-fuel ratio or lean Homogeneous combustion is performed at an air-fuel ratio (A / F = 20 to 30).

これに対し、成層運転モードでは、圧縮行程にて燃料噴射弁5の燃料噴射を行い、燃焼室4の一部(点火プラグ6により点火可能な燃焼室4の中央部)に成層化された混合気塊を形成することにより、全体としては極めてリーンな空燃比(A/F=30〜40)で、成層燃焼を行わせる。   On the other hand, in the stratified operation mode, the fuel injection of the fuel injection valve 5 is performed in the compression stroke, and the stratified mixture is formed in a part of the combustion chamber 4 (the central portion of the combustion chamber 4 that can be ignited by the spark plug 6). By forming an air mass, stratified combustion is performed at a very lean air-fuel ratio (A / F = 30 to 40) as a whole.

ところで、機関の始動時を含む冷間時に成層燃焼を行う場合、言い換えれば、成層燃焼で始動して、始動時及び始動直後のHC排出量の低減を図る場合、単に混合気を成層化するだけでなく、混合気をコンパクトにする必要がある。   By the way, when stratified combustion is performed during cold including the start of the engine, in other words, when starting with stratified combustion and reducing the amount of HC emissions at the start and immediately after start, the mixture is simply stratified. Instead, it is necessary to make the air-fuel mixture compact.

また、始動直後の暖機中は、点火時期を上死点以降まで遅角して暖機促進(排気温度上昇による排気浄化触媒の早期活性化)を図るため、噴射時期も上死点以降まで遅角することから、膨張行程噴射となる。膨張行程噴射では、ピストンが下向きに進んでいるため、圧縮行程噴射に比べ、混合気が拡散しやすい状態にあるので、混合気をよりコンパクトにする必要がある。   In addition, during warm-up immediately after starting, the ignition timing is retarded from the top dead center to promote warm-up (early activation of the exhaust purification catalyst due to the exhaust temperature rise), so the injection timing is also from the top dead center Since it is retarded, it becomes expansion stroke injection. In the expansion stroke injection, since the piston advances downward, the mixture is more easily diffused than in the compression stroke injection. Therefore, the mixture needs to be made more compact.

そこで、本発明では、機関の始動時を含む冷間時に、成層燃焼のための燃料噴射を複数回に分割する。そして、この分割噴射(多段噴き)は、先に噴射した燃料噴霧に後から噴射する燃料噴霧が引込まれるタイミングで後の噴射を行う構成とする。   Therefore, in the present invention, fuel injection for stratified combustion is divided into a plurality of times during cold including the start of the engine. And this division | segmentation injection (multistage injection) is set as the structure which performs subsequent injection at the timing at which the fuel spray injected later is drawn into the fuel spray injected previously.

図3を参照して説明する。
一度噴きの場合(要求噴射量を一度に噴射する場合)は、図3(a)に示すように、ペネトレーションが大きく、中空円錐状噴霧の内側は大きく空間があいている。
This will be described with reference to FIG.
In the case of a single injection (when the required injection amount is injected at a time), as shown in FIG. 3A, the penetration is large, and the inside of the hollow conical spray has a large space.

これに対し、分割噴射の場合(要求噴射量を二度度に分けて噴射する場合;二度噴きの場合)は、次のようになる。
二度噴きの1回目噴射では、図3(b−1)に示すように、一度噴きの場合に比べ、1回当たりの噴射量が減るため、ペネトレーションが小さくなる。それゆえ、拡がりも小さくなる。
On the other hand, in the case of divided injection (when the required injection amount is divided into two injections; in the case of two injections), it is as follows.
As shown in FIG. 3 (b-1), in the first injection of the second injection, the amount of injection per injection is reduced as compared with the case of a single injection, so the penetration is reduced. Therefore, the spread is also reduced.

言い換えれば、アウトワード弁の燃料噴霧はそもそも低ペネトレーションであるが、噴射量が分割されることで、更に運動量が少なくなって、噴霧点に近いところで噴霧が留まるのである。   In other words, the fuel spray of the outward valve has a low penetration in the first place, but by dividing the injection amount, the momentum is further reduced and the spray stays near the spray point.

そして、1回目噴射の噴霧後方に噴射の流速による負圧領域が発生する。
2度噴きの2回目噴射は、図3(b−2)に示すように、1回目噴射の噴霧後方の負圧領域に向けてなされる。従って、2回目噴射の噴霧は、負圧に引かれるため、1回目噴射の噴霧より流速が高くなり、1回目噴射の噴霧に追いついて、2回目噴射の噴霧が1回目噴射の噴霧に入り込む。
And the negative pressure area | region by the flow velocity of injection generate | occur | produces behind the spray of the 1st injection.
As shown in FIG. 3B-2, the second injection of the second injection is performed toward the negative pressure region behind the spray of the first injection. Accordingly, since the spray of the second injection is attracted by negative pressure, the flow velocity is higher than that of the spray of the first injection, catching up with the spray of the first injection, and the spray of the second injection enters the spray of the first injection.

言い換えれば、噴霧後端は負圧となり、通常であれば周囲の空気が流入してくるが、そこに2回目噴射を行うことで、2回目噴射の噴霧が1回目噴射の噴霧に引込まれるのである。   In other words, the rear end of the spray has a negative pressure, and normally ambient air flows in. However, by performing the second injection there, the second spray is drawn into the first spray. It is.

こうして、最終的には図3(b−3)に示すように、2回目噴射の噴霧が1回目噴射の噴霧の中に入り込み、拡散防止と均一度向上が見込まれる。また、引込まれる際の周囲空気との衝突とによって、気化も促進される。   Thus, finally, as shown in FIG. 3 (b-3), the spray of the second injection enters the spray of the first injection, and diffusion prevention and improvement in uniformity are expected. Moreover, vaporization is also accelerated | stimulated by the collision with the surrounding air at the time of drawing.

このように、機関始動時を含む冷間時に、成層燃焼を行わせるに際し、燃料を複数回に分けて噴射することで、単に集中度を高めるだけでなく、燃料噴霧のペネトレーションを抑え、コンパクトでかつ均質な成層混合気を形成することができ、火炎伝播の安定性向上並びに燃焼速度の短縮を図り、燃焼安定度の向上や、拡散によるガスクエンチ量の減少を図ることができる。   In this way, when stratified combustion is performed during cold including engine start, fuel is injected in multiple times, not only increasing the concentration, but also reducing fuel spray penetration and compact In addition, a homogeneous stratified mixture can be formed, the flame propagation stability can be improved and the combustion speed can be shortened, the combustion stability can be improved, and the amount of gas quench due to diffusion can be reduced.

また、始動直後の暖機中に、膨張行程噴射する際は、ピストンが下向きに進んでいるため、圧縮行程噴射に比べ、混合気が拡散しやすい状態にあり、また先の噴射による噴霧後端の負圧の発生時期も早くなることから、圧縮行程噴射に比べ、分割噴射の噴射間隔(先の噴射の開始時期から後の噴射の開始時期までの間隔)を狭める。   Also, when the expansion stroke is injected during warm-up immediately after starting, the piston advances downward, so that the air-fuel mixture is more easily diffused than the compression stroke injection, and the rear end of the spray by the previous injection Since the generation time of the negative pressure also becomes earlier, the injection interval of the divided injection (interval from the start timing of the previous injection to the start timing of the subsequent injection) is narrowed compared to the compression stroke injection.

図4は機関の始動時を含む冷間時の燃料噴射制御のフローチャートである。
S1では、水温センサにより検出される水温Twを読込み、水温Twが所定値Tw1未満か否か、すなわち冷間時か否かを判定する。
FIG. 4 is a flowchart of the fuel injection control in the cold state including when the engine is started.
In S1, the water temperature Tw detected by the water temperature sensor is read, and it is determined whether or not the water temperature Tw is lower than a predetermined value Tw1, that is, when it is cold.

水温Twが所定値Tw1未満(冷間時)の場合は、S2へ進む。これに対し、水温Twが所定値Tw1以上の場合(ホットリスタート時などの場合)は、本ルーチンを終了して、通常制御へ移行する。   When the water temperature Tw is less than the predetermined value Tw1 (when cold), the process proceeds to S2. On the other hand, when the water temperature Tw is equal to or higher than the predetermined value Tw1 (in the case of hot restart or the like), this routine is terminated and the normal control is started.

S2では、機関回転数Neが所定値Ne1未満か否か、すなわち始動時か否かを判定する。尚、所定値Ne1はファストアイドル回転数相当(例えば700〜800rpm)に設定される。   In S2, it is determined whether or not the engine speed Ne is less than a predetermined value Ne1, that is, at the time of starting. The predetermined value Ne1 is set to be equivalent to the fast idle rotation speed (for example, 700 to 800 rpm).

機関回転数Neが所定値Ne1未満(始動時)の場合は、S3へ進む。これに対し、機関回転数Neが所定値Ne1以上の場合は、S5へ進む。
S3では、分割噴射で成層燃焼を行って、始動する。これをモードAといい、具体的には、下記のように制御する。
If the engine speed Ne is less than the predetermined value Ne1 (when starting), the process proceeds to S3. On the other hand, if the engine speed Ne is greater than or equal to the predetermined value Ne1, the process proceeds to S5.
In S3, stratified combustion is performed by split injection, and the engine is started. This is called mode A. Specifically, the control is performed as follows.

・点火時期は、TDC(圧縮上死点)前に設定する。
・噴射時期は、TDC前で、点火時期の直前に設定する。
・分割噴射の噴射間隔(先の噴射の噴射開始時期から後の噴射の噴射開始時期までの間隔)τは、所定値τAとする。
・ Ignition timing is set before TDC (compression top dead center).
-The injection timing is set immediately before the ignition timing before TDC.
The injection interval of divided injection (interval from the injection start timing of the previous injection to the injection start timing of the subsequent injection) τ is a predetermined value τA.

尚、始動時の要求噴射量は一定であり、燃圧Pfに応じて噴射パルス幅(噴射時間)を設定する。
次のS4では、機関回転数Neが所定値Ne1以上になったか否かを判定し、NOの場合は、S3へ戻って、モードAを続行する。その後、YESになった場合(ファストアイドル回転数に達した場合)は、S4からS5へ進む。
The required injection amount at the time of starting is constant, and the injection pulse width (injection time) is set according to the fuel pressure Pf.
In next S4, it is determined whether or not the engine speed Ne has become equal to or greater than a predetermined value Ne1, and in the case of NO, the process returns to S3 and continues the mode A. Thereafter, when the answer is YES (when the fast idle speed is reached), the process proceeds from S4 to S5.

S5では、分割噴射で成層燃焼を行って、暖機運転を行う。これをモードBといい、具体的には、下記のように制御する。
・点火時期は、TDC後に設定する。点火時期リタードにより暖機促進(排気温度上昇による排気浄化触媒の早期活性化)を図るためである。
In S5, stratified charge combustion is performed by split injection, and warm-up operation is performed. This is called mode B. Specifically, the control is performed as follows.
・ Ignition timing is set after TDC. This is to promote warm-up by ignition timing retard (early activation of the exhaust purification catalyst due to an increase in exhaust temperature).

・噴射時期は、TDC後で、点火時期の直前に設定する。点火時期の遅角に伴い成層燃焼可能とするため同様に遅角する必要があるからである。
・分割噴射の噴射間隔τは、所定値τBとし、モードAでの噴射間隔τAより短くする(τB<τA)。圧縮行程噴射時より分割噴射の噴射間隔を短くして拡散をより防止するためである。
-The injection timing is set after TDC and immediately before the ignition timing. This is because it is necessary to similarly retard the ignition timing in order to enable stratified combustion.
The injection interval τ of the divided injection is set to a predetermined value τB, which is shorter than the injection interval τA in mode A (τB <τA). This is because the injection interval of the divided injection is shortened from the time of the compression stroke injection to further prevent diffusion.

・スロットル開度TVOを増大補正する。点火時期リタードによるトルク低下を補うようにトルク補正を行うためである。
次のS6では、水温Twが所定値Tw1以上になったか否かを判定し、NOの場合は、S5へ戻って、モードBを続行する。その後、YESになった場合(暖機完了の場合)は、本ルーチンを終了し、通常制御へ移行する。
-Increase the throttle opening TVO. This is because torque correction is performed so as to compensate for the torque drop due to the ignition timing retard.
In next S6, it is determined whether or not the water temperature Tw has become equal to or higher than the predetermined value Tw1, and in the case of NO, the process returns to S5 and continues the mode B. Thereafter, when the answer is YES (when the warm-up is completed), this routine is terminated and the routine proceeds to normal control.

尚、通常制御へ移行した後は、運転条件(主に機関回転数及び負荷)に応じて、均質燃焼と成層燃焼とを切換える。すなわち、低回転・低負荷領域にて成層燃焼を行い、高回転・高負荷領域にて均質燃焼を行う。   After shifting to the normal control, the homogeneous combustion and the stratified combustion are switched according to the operating conditions (mainly engine speed and load). That is, stratified combustion is performed in a low rotation / low load region, and homogeneous combustion is performed in a high rotation / high load region.

図6は同上制御のタイムチャートである。
始動時(ファストアイドル回転数に達するまで)は、点火時期及び噴射時期をTDC前に設定し、分割噴射の噴射間隔は比較的長く設定する。
FIG. 6 is a time chart of the above control.
At the start (until the fast idle speed is reached), the ignition timing and the injection timing are set before TDC, and the injection interval of the divided injection is set relatively long.

ファストアイドル回転数に達して暖機運転に移行すると、点火時期及び噴射時期をTDC後に設定し、分割噴射の噴射間隔は比較的短く設定する。また、スロットル開度を増大補正して、点火時期遅角によるトルク低下を補う。   When the fast idle rotation speed is reached and the warm-up operation is started, the ignition timing and the injection timing are set after TDC, and the injection interval of the divided injection is set relatively short. In addition, the throttle opening is corrected to increase to compensate for the torque drop due to the ignition timing retardation.

また、本実施形態によれば、機関の始動後に、点火時期と共に噴射時期をTDC以降まで遅角して膨張行程噴射とした場合に、分割噴射の噴射間隔τBを圧縮行程噴射での噴射間隔τBより短くすることにより、膨張行程噴射の際は、ピストンが下向きに進んでいるため、混合気が拡散しやすい状態であるにもかかわらず、混合気の集中度を高く維持することができ、また先の噴射による噴霧後端の負圧の発生時期が早くなるのに対応して、的確な時期に後噴射できるという効果が得られる。   In addition, according to the present embodiment, after the engine is started, the injection interval τB of the divided injection is set to the injection interval τB in the compression stroke injection when the injection timing is retarded to TDC and later after the ignition is started to perform the expansion stroke injection. By making it shorter, since the piston is moving downward during the expansion stroke injection, the concentration of the air-fuel mixture can be kept high even though the air-fuel mixture is likely to diffuse, and Corresponding to the earlier generation timing of the negative pressure at the rear end of the spray due to the previous injection, an effect is obtained that the post injection can be performed at an appropriate timing.

また、本実施形態によれば、燃料噴射弁5として、燃焼室の上部中央に下向きに設けられて、外向きの環状の噴出口により、中空円錐状の燃料噴霧を形成するアウトワード弁を用い、点火プラグ6は、前記中空円錐状の燃料噴霧の外縁に直接点火するように配置することにより、そもそも低ペネトレーションのアウトワード弁からの燃料噴霧を分割噴射により更に低ペネトレーション化して、成層混合気の集中度(均質度)をより一層高めることができると共に、燃料噴霧をピストン冠面やシリンダ壁面に達しさせることなく点火・燃焼させて始動時等のHC排出量の低減を図ることができる。   Further, according to the present embodiment, as the fuel injection valve 5, an outward valve that is provided downward in the center of the upper portion of the combustion chamber and that forms a hollow conical fuel spray by an outward annular jet outlet is used. The spark plug 6 is arranged so as to directly ignite the outer edge of the hollow conical fuel spray, so that the fuel spray from the low-penetration outward valve is reduced to a lower penetration by split injection in the first place. The concentration (homogeneity) of the fuel can be further increased, and the fuel spray can be ignited and burned without reaching the piston crown surface or the cylinder wall surface, thereby reducing the HC emission amount at the time of starting.

尚、以上の説明では、分割噴射の回数を2回としたが、可能であれば、3回以上に分割して、更にペネトレーションを抑えることで、成層混合気の均質度を向上させるようにしても良い。   In the above description, the number of divided injections is two. However, if possible, the number of divided injections is divided into three or more to further suppress penetration, thereby improving the homogeneity of the stratified mixture. Also good.

本発明の一実施形態を示す直噴火花点火式内燃機関の構成図The block diagram of the direct-injection spark-ignition internal combustion engine which shows one Embodiment of this invention 燃料噴射弁(アウトワード弁)の説明図Illustration of fuel injection valve (outward valve) 分割噴射の説明図Illustration of split injection 機関の始動時を含む冷間時の燃料噴射制御のフローチャートFlow chart of cold fuel injection control including engine start 同上の燃料噴射制御のタイムチャートFuel injection control time chart

符号の説明Explanation of symbols

1 シリンダヘッド
2 シリンダボア
3 ピストン
4 燃焼室
5 燃料噴射弁
50 燃料噴射弁本体
51 燃料通路
52 テーパ状開口部
53 ロッド部
54 ポペット状の弁体
55 環状の噴出口
6 点火プラグ
7 ECU
DESCRIPTION OF SYMBOLS 1 Cylinder head 2 Cylinder bore 3 Piston 4 Combustion chamber 5 Fuel injection valve 50 Fuel injection valve main body 51 Fuel passage 52 Tapered opening 53 Rod part 54 Poppet-like valve body 55 Annular jet 6 Spark plug 7 ECU

Claims (3)

燃焼室内に燃料噴射弁と点火プラグとを備える直噴火花点火式内燃機関において、
機関の始動時を含む冷間時に、点火時期の直前に燃料噴射を行って燃料噴霧に点火することにより成層燃焼を行わせると共に、
燃料噴射を複数回に分割し、先に噴射した燃料噴霧に後から噴射する燃料噴霧が引込まれるタイミングで後の噴射を行うことを特徴とする直噴火花点火式内燃機関。
In a direct-injection spark-ignition internal combustion engine having a fuel injection valve and an ignition plug in the combustion chamber,
At the time of cold including when the engine is started, fuel injection is performed immediately before the ignition timing to ignite the fuel spray, and stratified combustion is performed.
A direct-injection spark-ignition internal combustion engine characterized by dividing a fuel injection into a plurality of times and performing a subsequent injection at a timing at which a fuel spray injected later is drawn into a previously injected fuel spray.
機関の始動後は、点火時期と共に噴射時期を上死点以降まで遅角して膨張行程噴射とする一方、分割噴射の噴射間隔を圧縮行程噴射での噴射間隔より短くすることを特徴とする請求項1記載の直噴火花点火式内燃機関。   After the engine is started, the injection timing is retarded from the top dead center together with the ignition timing to make the expansion stroke injection, while the injection interval of the divided injection is made shorter than the injection interval in the compression stroke injection. Item 5. A direct-injection spark-ignition internal combustion engine according to Item 1. 前記燃料噴射弁は、燃焼室の上部中央に下向きに設けられて中空円錐状の燃料噴霧を形成するアウトワード弁であり、
前記点火プラグは、前記中空円錐状の燃料噴霧の外縁に点火するように配置されることを特徴とする直噴火花点火式内燃機関。
The fuel injection valve is an outward valve provided downward in the upper center of the combustion chamber to form a hollow conical fuel spray,
The direct-injection spark-ignition internal combustion engine, wherein the spark plug is disposed so as to ignite an outer edge of the hollow conical fuel spray.
JP2008026352A 2008-02-06 2008-02-06 Direct-injection spark-ignition internal combustion engine Pending JP2009185688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008026352A JP2009185688A (en) 2008-02-06 2008-02-06 Direct-injection spark-ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008026352A JP2009185688A (en) 2008-02-06 2008-02-06 Direct-injection spark-ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009185688A true JP2009185688A (en) 2009-08-20

Family

ID=41069187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008026352A Pending JP2009185688A (en) 2008-02-06 2008-02-06 Direct-injection spark-ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009185688A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132920A (en) * 2009-12-25 2011-07-07 Toyota Motor Corp Control device of internal combustion engine
WO2016152102A1 (en) * 2015-03-23 2016-09-29 マツダ株式会社 Fuel injection control device for direct injection engine
JP2018003749A (en) * 2016-07-05 2018-01-11 トヨタ自動車株式会社 Control device of internal combustion engine
JP2019019721A (en) * 2017-07-14 2019-02-07 アイシン精機株式会社 Control device for internal combustion engine
US10202928B2 (en) 2017-01-11 2019-02-12 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10309322B2 (en) 2017-04-12 2019-06-04 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10378464B2 (en) 2017-04-05 2019-08-13 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132546A (en) * 2006-02-09 2006-05-25 Hitachi Ltd Cylinder injection type internal combustion engine
JP2007032437A (en) * 2005-07-27 2007-02-08 Toyota Motor Corp Cylinder injection internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032437A (en) * 2005-07-27 2007-02-08 Toyota Motor Corp Cylinder injection internal combustion engine
JP2006132546A (en) * 2006-02-09 2006-05-25 Hitachi Ltd Cylinder injection type internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132920A (en) * 2009-12-25 2011-07-07 Toyota Motor Corp Control device of internal combustion engine
WO2016152102A1 (en) * 2015-03-23 2016-09-29 マツダ株式会社 Fuel injection control device for direct injection engine
US10480438B2 (en) 2015-03-23 2019-11-19 Mazda Motor Corporation Fuel injection control device for direct injection engine
DE112016000982B4 (en) 2015-03-23 2021-08-05 Mazda Motor Corporation FUEL INJECTION CONTROL DEVICE FOR DIRECT INJECTION ENGINE
JP2018003749A (en) * 2016-07-05 2018-01-11 トヨタ自動車株式会社 Control device of internal combustion engine
US10215126B2 (en) 2016-07-05 2019-02-26 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10202928B2 (en) 2017-01-11 2019-02-12 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10378464B2 (en) 2017-04-05 2019-08-13 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10309322B2 (en) 2017-04-12 2019-06-04 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2019019721A (en) * 2017-07-14 2019-02-07 アイシン精機株式会社 Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4424147B2 (en) Exhaust gas purification device for internal combustion engine
US7051701B2 (en) Direct fuel injection/spark ignition engine control device
US10400706B2 (en) Control apparatus for internal combustion engine
JP3325232B2 (en) In-cylinder injection engine
US7096853B2 (en) Direct fuel injection/spark ignition engine control device
JP4353216B2 (en) In-cylinder injection spark ignition internal combustion engine
JP4736518B2 (en) In-cylinder direct injection internal combustion engine control device
JP2009185688A (en) Direct-injection spark-ignition internal combustion engine
JP4379286B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP5088282B2 (en) Direct-injection spark ignition internal combustion engine
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP2007064187A (en) Knock suppression device for internal combustion engine
JP3627546B2 (en) Direct cylinder injection spark ignition engine
JP2006112329A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
JP4379164B2 (en) In-cylinder direct injection engine
JPWO2002020957A1 (en) In-cylinder injection spark ignition engine
JP2004340040A (en) Warm-up control method for cylinder injection type spark-ignition engine
JP2011236802A (en) Internal combustion engine control apparatus
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4046055B2 (en) In-cylinder internal combustion engine
JP4442491B2 (en) Direct injection internal combustion engine and combustion method thereof
JP4609227B2 (en) Internal combustion engine
JPH1182029A (en) Stratified charge combustion of internal combustion engine
JP5067566B2 (en) In-cylinder injection type spark ignition internal combustion engine
JP2005214039A (en) Control device for direct spark ignition type internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612