JP2007032437A - Cylinder injection internal combustion engine - Google Patents

Cylinder injection internal combustion engine Download PDF

Info

Publication number
JP2007032437A
JP2007032437A JP2005217449A JP2005217449A JP2007032437A JP 2007032437 A JP2007032437 A JP 2007032437A JP 2005217449 A JP2005217449 A JP 2005217449A JP 2005217449 A JP2005217449 A JP 2005217449A JP 2007032437 A JP2007032437 A JP 2007032437A
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
injection valve
spray
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005217449A
Other languages
Japanese (ja)
Inventor
Masato Kawachi
正人 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005217449A priority Critical patent/JP2007032437A/en
Publication of JP2007032437A publication Critical patent/JP2007032437A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylinder injection internal combustion engine capable of selectively using a plurality of types of fuel spray forms depending on the purpose. <P>SOLUTION: The internal combustion engine 1 comprises a first fuel injection valve 11 for injecting into a cylinder 2 hollow cone spray 21 spreading in a hollow conical shape in relation to a center line CL of the cylinder 2, and a second fuel injection valve 12 for injecting into the cylinder 2 fan spray 22 spreading in a fan shape in relation to the direction of intersecting the center line CL. When the load of the engine exceeds a predetermined level, the operation of each of the first fuel injection valve 11 and the second fuel injection valve 12 is controlled so that the hollow cone spray 21 is injected in an intake stroke and the fan spray 22 is injected in a compression stroke following the intake stroke. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、気筒内に燃料噴霧を噴射する筒内噴射式内燃機関に関する。   The present invention relates to a direct injection internal combustion engine that injects fuel spray into a cylinder.

筒内噴射式内燃機関として、機関回転数が高回転でかつ高負荷の場合に気筒内への燃料の噴射を吸気行程と圧縮行程とに分割して実施し、その分割比を機関回転数及び負荷のレベルに応じて変更するとともに、点火時期を補正するものが知られている(特許文献1)。また、機関の負荷が高負荷の場合に燃料噴射を吸気行程と圧縮行程とに分割し、低負荷の場合には圧縮行程のみで燃料噴射を実施して成層燃焼を実現するものもある(特許文献2)。   As an in-cylinder injection type internal combustion engine, when the engine speed is high and the load is high, fuel injection into the cylinder is divided into an intake stroke and a compression stroke, and the division ratio is determined based on the engine speed and There is known one that changes according to the load level and corrects the ignition timing (Patent Document 1). In some cases, fuel injection is divided into an intake stroke and a compression stroke when the engine load is high, and stratified combustion is realized by performing fuel injection only in the compression stroke when the load is low (patent) Reference 2).

特開2000−240492号公報Japanese Unexamined Patent Publication No. 2000-240492 特開2001−248482号公報JP 2001-248482 A

一般に、圧縮行程における燃料噴射は局所的に濃度の高い混合気を形成することを目的として実施され、一方、吸気行程における燃料噴射は気筒内に均質な混合気を形成することを目的として実施される。これらの目的に適した燃料噴霧の形態はそれぞれ存在し、一方に適した燃料噴霧の形態が他方にも適するとは限らない。上述した内燃機関は、燃料噴射を吸気行程と圧縮行程とに分割して実施しているが、燃料噴霧の形態が固定されているため、各行程に適した燃料噴霧を吹き分けることができない。   In general, fuel injection in the compression stroke is performed for the purpose of forming an air-fuel mixture having a high concentration locally, while fuel injection in the intake stroke is performed for the purpose of forming a homogeneous air-fuel mixture in the cylinder. The There are fuel spray forms suitable for these purposes, and a fuel spray form suitable for one is not necessarily suitable for the other. The internal combustion engine described above performs fuel injection by dividing it into an intake stroke and a compression stroke. However, since the form of the fuel spray is fixed, it is not possible to blow the fuel spray suitable for each stroke.

そこで、本発明は、複数種類の燃料噴霧を目的に応じて吹き分けることができる筒内噴射式内燃機関を提供することを目的とする。   Accordingly, an object of the present invention is to provide a cylinder injection type internal combustion engine that can spray a plurality of types of fuel sprays according to the purpose.

本発明の筒内噴射式内燃機関は、気筒の中心線の方向に関して中空円錐形状に広がる第1の燃料噴霧を前記気筒内に噴射可能な第1の燃料噴射弁と、前記中心線と交差する方向に関して扇形状に広がる第2の燃料噴霧を前記気筒内に噴射可能な第2の燃料噴射弁と、前記第1の燃料噴射弁及び前記第2の燃料噴射弁のそれぞれの動作を制御する燃料噴射制御手段と、を備えることにより、上述した課題を解決する(請求項1)。   The in-cylinder injection internal combustion engine of the present invention intersects the first fuel injection valve capable of injecting the first fuel spray spreading in a hollow conical shape into the cylinder with respect to the direction of the center line of the cylinder, and the center line. A fuel that controls the operation of each of the second fuel injection valve capable of injecting the second fuel spray spreading in a fan shape into the cylinder, and the first fuel injection valve and the second fuel injection valve. By providing the injection control means, the above-described problem is solved.

この発明によれば、気筒の中心線の方向に関して中空円錐形状に広がる第1の燃料噴霧と気筒の中心線と交差する方向に関して扇形状に広がる第2の燃料噴霧とを目的に応じて吹き分けることができる。第1の燃料噴霧は、気筒内の混合気の均質性を促進できる噴霧形態であり、第2の燃料噴霧は局所的に濃度の高い混合気の形成を促進できる噴霧形態である。そのため、燃料噴射制御手段が第1の燃料噴射弁及び第2の燃料噴射弁のそれぞれの動作を制御することで、二種類の燃料噴霧を目的に応じて吹き分けることができる。   According to the present invention, the first fuel spray that spreads in a hollow conical shape with respect to the direction of the center line of the cylinder and the second fuel spray that spreads in a fan shape with respect to the direction intersecting the center line of the cylinder are blown according to the purpose. be able to. The first fuel spray is a spray form that can promote the homogeneity of the air-fuel mixture in the cylinder, and the second fuel spray is a spray form that can promote the formation of a locally high-concentration air-fuel mixture. For this reason, the fuel injection control means controls the operations of the first fuel injection valve and the second fuel injection valve, whereby two types of fuel sprays can be sprayed according to the purpose.

本発明の筒内噴射式内燃機関においては、二種類の燃料噴霧を吹き分ける目的に制限はない。例えば、前記燃料噴射制御手段は、機関の負荷が所定レベルを超えた場合、吸気行程で前記第1の燃料噴霧が噴射され、かつ当該吸気行程に続く圧縮行程で前記第2の燃料噴霧が噴射されるように、前記第1の燃料噴射弁及び前記第2の燃料噴射弁のそれぞれの動作を制御してもよい(請求項2)。この態様によれば、吸気行程で第1の燃料噴霧が噴射されることにより、混合気の均質性が促進される一方で、圧縮行程で第2の燃料噴霧が噴射されることにより、筒内の乱れが促進されて燃焼が促進されるのでノッキングの発生が抑制される。この態様の内燃機関の場合、機関回転数が低回転の場合ほどノッキングが発生し易くなるので、前記燃料噴射制御手段は、前記吸気行程における噴射量に対する前記圧縮行程における噴射量の割合が機関回転数が低いほど大きくなるように、前記第1の燃料噴射弁及び前記第2の燃料噴射弁のそれぞれの動作を制御してもよい(請求項3)。これによりノッキングの発生を確実に抑制できる。   In the in-cylinder internal combustion engine of the present invention, there is no limitation on the purpose of separating two types of fuel spray. For example, when the engine load exceeds a predetermined level, the fuel injection control means injects the first fuel spray in the intake stroke and injects the second fuel spray in the compression stroke following the intake stroke. As described above, the operations of the first fuel injection valve and the second fuel injection valve may be controlled (claim 2). According to this aspect, the first fuel spray is injected in the intake stroke, whereby the homogeneity of the air-fuel mixture is promoted, while the second fuel spray is injected in the compression stroke. The disturbance is promoted and the combustion is promoted, so that the occurrence of knocking is suppressed. In the case of the internal combustion engine of this aspect, knocking is more likely to occur as the engine speed is lower. Therefore, the fuel injection control means has a ratio of the injection amount in the compression stroke to the injection amount in the intake stroke. You may control each operation | movement of a said 1st fuel injection valve and a said 2nd fuel injection valve so that it may become so large that a number is low (Claim 3). Thereby, the occurrence of knocking can be reliably suppressed.

また、燃料噴射制御手段は、前記燃料噴射制御手段は、前記負荷が前記所定レベル以下で、かつ均質燃焼を実施すべき場合、吸気行程で前記第1の燃料噴霧が噴射され、かつ当該吸気行程に続く圧縮行程で前記第2の燃料噴霧の噴射が禁止されるように、前記第1の燃料噴射弁及び前記第2の燃料噴射弁のそれぞれの動作を制御してもよい(請求項4)。この場合には、吸気行程で第1の燃料噴霧が噴射されることにより、気筒内に均質な混合気を形成できるので、効果的に均質燃焼を実現できる。   The fuel injection control means is configured to inject the first fuel spray in an intake stroke when the load is equal to or lower than the predetermined level and to perform homogeneous combustion, and the intake stroke The operation of each of the first fuel injection valve and the second fuel injection valve may be controlled so that the injection of the second fuel spray is prohibited in the compression stroke that follows (Claim 4). . In this case, since the first fuel spray is injected in the intake stroke, a homogeneous air-fuel mixture can be formed in the cylinder, so that homogeneous combustion can be realized effectively.

また、前記燃料噴射制御手段は、前記負荷が前記所定レベル以下で、かつ弱成層燃焼を実施すべき場合、吸気行程で前記第1の燃料噴霧が噴射され、かつ当該吸気行程に続く圧縮行程で前記第1の燃料噴霧又は前記第2の燃料噴霧が噴射されるように、前記第1の燃料噴射弁及び前記第2の燃料噴射弁のそれぞれの動作を制御してもよい(請求項5)。この場合には、吸気行程で第1の燃料噴霧又は第2の燃料噴霧が噴射されて混合気の均質性が高められ、更に圧縮行程で第2の燃料噴霧が噴射されて燃焼が促進されるので、効果的に弱成層燃焼を実現できる。この場合、吸気行程における燃料噴射量に対する圧縮行程における燃料噴射量の割合を適宜に調整することで、混合気の成層度を変化させることができる。例えば、成層度を高めたい場合には、吸気行程における燃料噴射量に対する圧縮行程における燃料噴射量の割合を高めればよい。   Further, the fuel injection control means is configured such that when the load is equal to or lower than the predetermined level and weak stratified combustion is to be performed, the first fuel spray is injected in the intake stroke, and the compression stroke follows the intake stroke. The operations of the first fuel injection valve and the second fuel injection valve may be controlled so that the first fuel spray or the second fuel spray is injected. . In this case, the first fuel spray or the second fuel spray is injected in the intake stroke to improve the homogeneity of the air-fuel mixture, and the second fuel spray is injected in the compression stroke to promote combustion. Therefore, it is possible to effectively realize weak stratified combustion. In this case, the stratification degree of the air-fuel mixture can be changed by appropriately adjusting the ratio of the fuel injection amount in the compression stroke to the fuel injection amount in the intake stroke. For example, in order to increase the stratification degree, the ratio of the fuel injection amount in the compression stroke to the fuel injection amount in the intake stroke may be increased.

本発明の筒内噴射式内燃機関においては、排気通路に設けられて排気中の有害物質を浄化する触媒と、前記触媒の昇温が必要な期間内に点火時期を遅角させる点火時期遅角手段とを更に備え、前記燃料噴射制御手段は、前記点火時期遅角手段が点火時期を遅角させている間、吸気行程で前記第1の燃料噴霧が噴射され、かつ当該吸気行程に続く圧縮行程で前記第2の燃料噴霧が噴射されるように、前記第1の燃料噴射弁及び前記第2の燃料噴射弁のそれぞれの動作を制御してもよい(請求項6)。この態様によれば、点火時期制御手段により点火時期が遅角するように制御されている間、吸気行程で第1の燃料噴霧が噴射され、かつ圧縮行程で第2の燃料噴霧が噴射されるので、点火プラグの近辺で濃度が高く、それ以外の領域で低濃度かつ均質な混合気を形成できる。これにより、触媒を効果的に昇温することができる。   In the in-cylinder injection internal combustion engine of the present invention, a catalyst provided in the exhaust passage for purifying harmful substances in the exhaust, and an ignition timing retardation for retarding the ignition timing within a period in which the catalyst needs to be heated. And the fuel injection control means is configured to inject the first fuel spray in the intake stroke while the ignition timing retarding means retards the ignition timing, and to perform compression following the intake stroke. Each operation of the first fuel injection valve and the second fuel injection valve may be controlled so that the second fuel spray is injected in a stroke. According to this aspect, the first fuel spray is injected in the intake stroke and the second fuel spray is injected in the compression stroke while the ignition timing is controlled to be retarded by the ignition timing control means. Therefore, it is possible to form an air-fuel mixture having a high concentration in the vicinity of the spark plug and a low concentration and a homogeneous mixture in other regions. Thereby, the temperature of the catalyst can be effectively increased.

以上説明したように、本発明によれば、気筒の中心線の方向に関して中空円錐形状に広がる第1の燃料噴霧を前記気筒内に噴射可能な第1の燃料噴射弁と、気筒の中心線と交差する方向に関して扇形状に広がる第2の燃料噴霧を気筒内に噴射可能な第2の燃料噴射弁とを備え、これらの燃料噴射弁の動作が燃料噴射制御手段にてそれぞれ制御されるので、互いに形態の異なる二種類の燃料噴霧を目的に応じて吹き分けることができる。   As described above, according to the present invention, the first fuel injection valve capable of injecting the first fuel spray spreading in a hollow conical shape with respect to the direction of the center line of the cylinder into the cylinder, the center line of the cylinder, A second fuel injection valve capable of injecting into the cylinder a second fuel spray that spreads in a fan shape in the intersecting direction, and the operation of these fuel injection valves is controlled by the fuel injection control means, Two types of fuel sprays having different forms can be sprayed according to the purpose.

(第1の実施形態)
図1は本発明の実施形態に係る内燃機関の要部を示している。内燃機関1は気筒内に燃料を直接噴射する筒内噴射式の火花点火内燃機関であり、気筒2と、気筒2内を往復運動し、頂面にキャビティ2aが形成されたピストン3と、を有している。気筒2には吸気通路4及び排気通路5がそれぞれ接続されている。吸気通路4にはこれを開閉する吸気弁6が、排気通路5にはこれを開閉する排気弁7がそれぞれ設けられている。排気弁7の下流側の排気通路5には、排気中の有害物質を浄化するための触媒8が設けられている。触媒8は周知の三元触媒として構成される。
(First embodiment)
FIG. 1 shows a main part of an internal combustion engine according to an embodiment of the present invention. The internal combustion engine 1 is an in-cylinder spark ignition internal combustion engine that directly injects fuel into a cylinder. The internal combustion engine 1 includes a cylinder 2 and a piston 3 that reciprocates in the cylinder 2 and has a cavity 2a formed on the top surface. Have. An intake passage 4 and an exhaust passage 5 are connected to the cylinder 2. The intake passage 4 is provided with an intake valve 6 for opening and closing the intake passage 4, and the exhaust passage 5 is provided with an exhaust valve 7 for opening and closing the intake passage 6. A catalyst 8 for purifying harmful substances in the exhaust is provided in the exhaust passage 5 on the downstream side of the exhaust valve 7. The catalyst 8 is configured as a well-known three-way catalyst.

内燃機関1は、気筒2の上部に臨むようにして配置された第1燃料噴射弁11と、気筒2の側部に臨むようにして配置された第2燃料噴射弁12と、第1燃料噴射弁11に隣接して配置された点火プラグ13とを有している。第1燃料噴射弁11及び第2燃料噴射弁12のそれぞれにはサプライポンプ(不図示)にて圧送された燃料が供給され、点火プラグ13にはディストリビュータ(不図示)等を備えた電力供給装置を介して必要な電力が供給される。第1燃料噴射弁11は、気筒2の中心線CLの方向に関して中空円錐形状に広がるホロコーン噴霧(第1の燃料噴霧)21を噴射可能に構成されている。一方、第2燃料噴射弁12は、気筒2の中心線CLと交差する方向に関して扇形状に広がるファン噴霧(第2の燃料噴霧)22を噴射可能に構成されている。   The internal combustion engine 1 is adjacent to the first fuel injection valve 11 disposed so as to face the upper portion of the cylinder 2, the second fuel injection valve 12 disposed so as to face the side portion of the cylinder 2, and the first fuel injection valve 11. The spark plug 13 is arranged in the same manner. Each of the first fuel injection valve 11 and the second fuel injection valve 12 is supplied with fuel pumped by a supply pump (not shown), and the spark plug 13 is provided with a distributor (not shown) and the like. Necessary electric power is supplied via. The first fuel injection valve 11 is configured to be able to inject a hollow cone spray (first fuel spray) 21 that spreads in a hollow cone shape in the direction of the center line CL of the cylinder 2. On the other hand, the second fuel injection valve 12 is configured to be able to inject fan spray (second fuel spray) 22 that spreads in a fan shape in the direction intersecting the center line CL of the cylinder 2.

図2(a)に示すように、第1燃料噴射弁11は外開弁の構造を有し、弁体14の進退動作により、所定幅のリング状のスリット15が形成される。このスリット15から燃料が噴射されることにより、図2(b)に示したホロコーン噴霧21が形成される。スリット15の寸法が適宜に設定されることにより、ホロコーン噴霧21の広がり角θ1が所望の大きさに設定される。一方、図3(a)に示すように、第2燃料噴射弁12の先端部分に設けられたノズル部12aには偏平状のスリット16が形成されていて、このスリット16から燃料が噴射されることにより図3(b)に示したファン噴霧22が形成される。スリット16の幅及び厚さ方向の各寸法が適宜に設定されて、ファン噴霧の広がり角θ2が所望の大きさに設定される。   As shown in FIG. 2A, the first fuel injection valve 11 has a structure of an outer valve, and a ring-shaped slit 15 having a predetermined width is formed by the forward and backward movement of the valve body 14. By injecting fuel from the slit 15, the hollow cone spray 21 shown in FIG. 2B is formed. By appropriately setting the dimension of the slit 15, the spread angle θ1 of the holocon spray 21 is set to a desired size. On the other hand, as shown in FIG. 3A, a flat slit 16 is formed in the nozzle portion 12 a provided at the tip of the second fuel injection valve 12, and fuel is injected from this slit 16. As a result, the fan spray 22 shown in FIG. 3B is formed. Each dimension in the width and thickness direction of the slit 16 is appropriately set, and the fan spray spread angle θ2 is set to a desired size.

図1に示すように、第1燃料噴射弁11、第2燃料噴射弁12、及び点火プラグ13は、エンジンコントロールユニット(ECU)30に接続されている。ECU30は各種センサの出力信号を参照して内燃機関1を適正な運転状態に制御する周知のコンピュータであり、マイクロプロセッサ及びその動作に必要なRAM、ROM等の周辺装置を備えている。ECU30に接続される各種センサには、内燃機関1のクランク角度(位置)に対応した信号を出力するクランク角センサ31や、吸入空気量に対応した信号を出力するエアフローメータ32の他、多数のセンサが接続されているが、本発明の要旨と直接関係しないセンサの図示は省略した。   As shown in FIG. 1, the first fuel injection valve 11, the second fuel injection valve 12, and the spark plug 13 are connected to an engine control unit (ECU) 30. The ECU 30 is a known computer that controls the internal combustion engine 1 to an appropriate operating state with reference to output signals of various sensors, and includes a microprocessor and peripheral devices such as a RAM and a ROM necessary for its operation. Various sensors connected to the ECU 30 include a crank angle sensor 31 that outputs a signal corresponding to the crank angle (position) of the internal combustion engine 1, an air flow meter 32 that outputs a signal corresponding to the intake air amount, and a number of other sensors. Although a sensor is connected, illustration of a sensor not directly related to the gist of the present invention is omitted.

図4及び図5はECU30が所定間隔で繰り返し実行する制御ルーチンの一例を示すもので、図4はメインルーチンを、図5は図4のステップS5で定義された燃料噴射制御のルーチンをそれぞれ示している。図4に示すように、ECU30は、ステップS1で内燃機関1の運転状態を取得する。ステップS1で取得される運転状態には、内燃機関1の機関回転数(回転速度)Neと、負荷を代表するパラメータとしての吸入空気量Gaとがそれぞれ含まれる。機関回転数Neはクランク角センサ31の出力信号から、吸入空気量Gaはエアフローメータ32の出力信号からそれぞれ取得することができる。次に、ステップS2では、ステップS1で取得した運転状態に基づいて目標となる空燃比(目標空燃比)を設定する。次いで、ステップS2で設定した空燃比に応じた燃料噴射量Qを算出する。燃料噴射量Qの算出は、吸入空気量Ga及び機関回転数Neを変数としたマップを予めECU30のROMに記憶させておき、このマップを参照することで実現できる。   4 and 5 show an example of a control routine repeatedly executed by the ECU 30 at predetermined intervals. FIG. 4 shows a main routine, and FIG. 5 shows a fuel injection control routine defined in step S5 of FIG. ing. As shown in FIG. 4, the ECU 30 acquires the operating state of the internal combustion engine 1 in step S1. The operating state acquired in step S1 includes an engine speed (rotation speed) Ne of the internal combustion engine 1 and an intake air amount Ga as a parameter representing the load. The engine speed Ne can be obtained from the output signal of the crank angle sensor 31, and the intake air amount Ga can be obtained from the output signal of the air flow meter 32. Next, in step S2, a target air-fuel ratio (target air-fuel ratio) is set based on the operating state acquired in step S1. Next, the fuel injection amount Q corresponding to the air-fuel ratio set in step S2 is calculated. The calculation of the fuel injection amount Q can be realized by storing a map with the intake air amount Ga and the engine speed Ne as variables in advance in the ROM of the ECU 30 and referring to this map.

次に、ECU30はステップS4で、内燃機関1の運転状態に応じた燃焼モードを選択する。内燃機関1の燃焼モードには、均質燃焼を実施すべき均質燃焼モード、成層燃焼を実施すべき成層燃焼モード、及び弱成層燃焼を実施すべき弱成層燃焼モードがそれぞれ含まれる。次に、ステップS5において、後述する燃料噴射制御を実行し、次いでECU30はステップS6において気筒2内の混合気が所定の時期に着火するように点火プラグ13に電力を供給し、今回のルーチンを終える。   Next, ECU30 selects the combustion mode according to the driving | running state of the internal combustion engine 1 by step S4. The combustion mode of the internal combustion engine 1 includes a homogeneous combustion mode in which homogeneous combustion is to be performed, a stratified combustion mode in which stratified combustion is to be performed, and a weak stratified combustion mode in which weak stratified combustion is to be performed. Next, in step S5, fuel injection control, which will be described later, is executed. Next, in step S6, the ECU 30 supplies power to the spark plug 13 so that the air-fuel mixture in the cylinder 2 is ignited at a predetermined time, and this routine is executed. Finish.

図5は、燃料噴射制御の制御ルーチンの一例を示すフローチャートである。まず、ECU30はステップS51で、内燃機関1の負荷が高負荷か否かをエアフローメータ32の出力信号を参照して判定する。高負荷か否かは負荷が所定の上限値(所定レベル)を超えたか否かにより判定できる。この上限値はノッキングの発生可能性を考慮して設定される。例えば、内燃機関1が全負荷時の場合にはステップS51で高負荷であると判定される。ステップS51で高負荷であると判定した場合には、ステップS52に進み、図4のステップS3で求めた燃料噴射量Qを吸気行程における燃料噴射と圧縮行程における燃料噴射とに分割するための分割比を決定する。この分割比は不変であってもよいし、内燃機関1の運転状態に応じて変化させてもよい。   FIG. 5 is a flowchart illustrating an example of a control routine for fuel injection control. First, in step S51, the ECU 30 determines whether or not the load of the internal combustion engine 1 is high with reference to the output signal of the air flow meter 32. Whether or not the load is high can be determined by whether or not the load exceeds a predetermined upper limit (predetermined level). This upper limit value is set in consideration of the possibility of knocking. For example, when the internal combustion engine 1 is at full load, it is determined in step S51 that the load is high. If it is determined in step S51 that the load is high, the process proceeds to step S52, where the fuel injection amount Q obtained in step S3 of FIG. 4 is divided into fuel injection in the intake stroke and fuel injection in the compression stroke. Determine the ratio. This division ratio may be unchanged or may be changed according to the operating state of the internal combustion engine 1.

例えば図6に示す分割比を算出するためのマップをECU30のROMに予め記憶させておき、このマップを参照して分割比を求めてもよい。このマップによれば、吸気行程における噴射量に対する圧縮行程における噴射量の割合が機関回転数Neが低いほど大きくなるように分割比が設定される。機関回転数Neが低回転の場合ほどノッキングが発生し易くなるため、このように分割比を変化させることでノッキングの発生を確実に防止できる。   For example, a map for calculating the division ratio shown in FIG. 6 may be stored in advance in the ROM of the ECU 30, and the division ratio may be obtained with reference to this map. According to this map, the division ratio is set so that the ratio of the injection amount in the compression stroke to the injection amount in the intake stroke increases as the engine speed Ne decreases. As the engine speed Ne is lower, knocking is more likely to occur. Thus, the occurrence of knocking can be reliably prevented by changing the division ratio in this way.

次に、ECU30はステップS52で決定した分割比に基づいて、吸気行程で第1燃料噴射弁11からホロコーン噴霧21を噴射させ(ステップS53)、更に、当該吸気行程に続く圧縮行程で第2燃料噴射弁12からファン噴霧22を噴射させる(ステップS54)。各行程における噴射期間は適宜に設定してよく、例えば図7に示すように、第1燃料噴射弁11による噴射期間T1を吸気行程の略中央に設定し、他方、第2燃料噴射弁12による噴射期間T2を圧縮上死点側に偏るように設定してもよい。以上の燃料噴射を実行することにより、図8(a)に示すように、吸気行程にて噴射されたホロコーン噴霧21は気筒2内において全体的に拡散して気化し、この気化潜熱により気筒2内の混合気が冷却されてノッキングの発生が抑えられる。一方、図8(b)に示すように、ファン噴霧22は上昇運動するピストン3のキャビティ3aの壁面に沿って巻き上げられて点火プラグ13付近まで導かれる。これにより筒内の乱れが増加して燃焼が促進される。   Next, the ECU 30 injects the hollow cone spray 21 from the first fuel injection valve 11 in the intake stroke based on the division ratio determined in step S52 (step S53), and further in the compression stroke following the intake stroke, the second fuel. The fan spray 22 is injected from the injection valve 12 (step S54). The injection period in each stroke may be set as appropriate. For example, as shown in FIG. 7, the injection period T1 by the first fuel injection valve 11 is set substantially at the center of the intake stroke, and on the other hand, by the second fuel injection valve 12 The injection period T2 may be set so as to be biased toward the compression top dead center. By performing the above fuel injection, as shown in FIG. 8 (a), the hollow cone spray 21 injected in the intake stroke is diffused and vaporized entirely in the cylinder 2, and the cylinder 2 is caused by this vaporization latent heat. The air-fuel mixture inside is cooled, so that the occurrence of knocking is suppressed. On the other hand, as shown in FIG. 8 (b), the fan spray 22 is wound up along the wall surface of the cavity 3 a of the piston 3 that moves upward and is guided to the vicinity of the spark plug 13. This increases turbulence in the cylinder and promotes combustion.

ステップS51において、高負荷でないと判定した場合はステップS55に進み、軽負荷か否かを判定する。軽負荷か否かは負荷が所定の下限値以下であるか否かにより判定される。軽負荷でない場合はステップS56に進み、一方、軽負荷である場合にはステップ63に進む。ステップS56では、図4のステップS2で設定した目標空燃比がリーンであるか否か、つまり目標空燃比が理論空燃比よりも空気過剰か否かを判定する。目標空燃比がリーンの場合には、ステップS57に進み、リーンでない場合にはステップS65に進む。ステップS57では、図4のステップS4で選択した燃焼モードが均質燃焼モードであるか否かを判定し、均質燃焼モードの場合にはステップS58に進み、吸気行程で第1燃料噴射弁11からホロコーン噴霧21を噴射させる(図8(a)参照)。この場合には、燃料噴射を吸気行程と圧縮行程とで分割せずに、吸気行程のみで燃料を噴射させる。言い換えれば圧縮行程における第2燃料噴射弁12からのファン噴霧22の噴射が禁止される。これにより気筒2内に均質な混合気が形成されて、いわゆる均質リーン燃焼が実現される。   If it is determined in step S51 that the load is not high, the process proceeds to step S55 to determine whether the load is light. Whether or not the load is light is determined by whether or not the load is equal to or lower than a predetermined lower limit value. If it is not a light load, the process proceeds to step S56, and if it is a light load, the process proceeds to step 63. In step S56, it is determined whether or not the target air-fuel ratio set in step S2 of FIG. 4 is lean, that is, whether or not the target air-fuel ratio is more air than the stoichiometric air-fuel ratio. If the target air-fuel ratio is lean, the process proceeds to step S57, and if not, the process proceeds to step S65. In step S57, it is determined whether or not the combustion mode selected in step S4 in FIG. 4 is the homogeneous combustion mode. If the combustion mode is the homogeneous combustion mode, the process proceeds to step S58, and the first fuel injection valve 11 performs the hollow cone from the first fuel injection valve in the intake stroke. Spray 21 is sprayed (see FIG. 8A). In this case, fuel is injected only in the intake stroke without dividing the fuel injection into the intake stroke and the compression stroke. In other words, the injection of the fan spray 22 from the second fuel injection valve 12 in the compression stroke is prohibited. As a result, a homogeneous air-fuel mixture is formed in the cylinder 2 and so-called homogeneous lean combustion is realized.

ステップS59では、図4のステップS4で選択した燃焼モードが弱成層燃焼モードであるか否かを判定し、弱成層燃焼モードの場合はステップS60に進み、弱成層燃焼モードでない場合はステップS65に進む。ステップS60では、図4のステップS3で求めた燃料噴射量Qを吸気行程における燃料噴射と圧縮行程における燃料噴射とに分割するための分割比を決定する。この分割比は不変であってもよいし、実現すべき成層度に応じて分割比を変化させてもよい。この成層度は、気筒2内の混合気の濃淡のコントラストを意味する。例えば、図9に示す分割比を算出するためのマップをECU30のROMに記憶させておき、このマップを参照して分割比を求めてもよい。このマップによれば、吸気行程における噴射量に対する圧縮行程における噴射量の割合が成層度が高いほど大きくなるように分割比が設定されるので、所望の成層度を実現できる。   In step S59, it is determined whether or not the combustion mode selected in step S4 of FIG. 4 is the weak stratified combustion mode. If the combustion mode is the weak stratified combustion mode, the process proceeds to step S60, and if not, the process proceeds to step S65. move on. In step S60, a division ratio for dividing the fuel injection amount Q obtained in step S3 of FIG. 4 into the fuel injection in the intake stroke and the fuel injection in the compression stroke is determined. This division ratio may be unchanged, or the division ratio may be changed according to the degree of stratification to be realized. This stratification means the contrast of the air-fuel mixture in the cylinder 2. For example, a map for calculating the division ratio shown in FIG. 9 may be stored in the ROM of the ECU 30, and the division ratio may be obtained with reference to this map. According to this map, since the division ratio is set so that the ratio of the injection amount in the compression stroke to the injection amount in the intake stroke increases as the stratification degree increases, a desired stratification degree can be realized.

次に、ECU30はステップS60で決定した分割比に基づいて、吸気行程で第1燃料噴射弁11からホロコーン噴霧21を噴射させ(ステップS61)、更に、当該吸気行程に続く圧縮行程で第2燃料噴射弁12からファン噴霧22を噴射させる(ステップS62)。ステップS61及びステップS62を実行することにより、気筒2内の混合気の空燃比が全体としてリーンでありながら、局所的に高濃度の混合気が存在するいわゆる成層リーン燃焼を実現できる。なお、ステップS62において、第2燃料噴射弁からのファン噴霧22に代えて、第1燃料噴射弁11からホロコーン噴霧21を圧縮行程で噴射させても同等の効果を得ることができる。   Next, the ECU 30 injects the hollow cone spray 21 from the first fuel injection valve 11 in the intake stroke based on the division ratio determined in step S60 (step S61), and further in the compression stroke following the intake stroke, the second fuel. The fan spray 22 is injected from the injection valve 12 (step S62). By executing step S61 and step S62, so-called stratified lean combustion in which a high-concentration air-fuel mixture locally exists while the air-fuel ratio of the air-fuel mixture in the cylinder 2 is lean as a whole can be realized. In step S62, the same effect can be obtained by injecting the holocorn spray 21 from the first fuel injection valve 11 in the compression stroke instead of the fan spray 22 from the second fuel injection valve.

ステップS63では、燃焼モードが成層燃焼モードか否かを判定する。成層燃焼モードでない場合はステップS65に進む。一方、成層燃焼モードの場合にはステップS64に進み、圧縮行程で第1燃料噴射弁11からホロコーン噴霧21を噴射させる。これにより、図10に示すようにホロコーン噴霧21の裾部が気筒2の中心線CLから離れる方向に巻き上げられて点火プラグ13付近に高濃度の混合気が導かれるので、内燃機関1の負荷が軽負荷で、かつ成層燃焼を実現すべき場合においてスプレーガイド燃焼が実現される。ステップS65では、通常の燃料噴射制御が実行される。通常の燃料噴射制御における燃料噴射の形態は適宜に設定してよい。例えば、図4のステップS4で選択した燃焼モードが均質燃焼モードであれば、第1燃料噴射弁11からホロコーン噴霧21を吸気行程で噴射させ、また、選択したモードが成層燃焼モードであれば、第2燃料噴射弁12からファン噴霧22を噴射させてもよい。   In step S63, it is determined whether the combustion mode is the stratified combustion mode. If it is not the stratified combustion mode, the process proceeds to step S65. On the other hand, in the case of the stratified combustion mode, the process proceeds to step S64, and the holocorn spray 21 is injected from the first fuel injection valve 11 in the compression stroke. As a result, as shown in FIG. 10, the skirt portion of the holocorn spray 21 is wound up in a direction away from the center line CL of the cylinder 2, and a high-concentration air-fuel mixture is introduced in the vicinity of the spark plug 13. Spray-guided combustion is realized when light load is applied and stratified combustion is to be realized. In step S65, normal fuel injection control is executed. The form of fuel injection in normal fuel injection control may be set as appropriate. For example, if the combustion mode selected in step S4 in FIG. 4 is the homogeneous combustion mode, the holographic cone 21 is injected from the first fuel injection valve 11 in the intake stroke, and if the selected mode is the stratified combustion mode, The fan spray 22 may be injected from the second fuel injection valve 12.

以上の実施形態において、ECU30は図5に示す制御ルーチンを実行することにより、本発明の燃料噴射制御手段として機能する。   In the above embodiment, the ECU 30 functions as the fuel injection control means of the present invention by executing the control routine shown in FIG.

(第2の実施形態)
次に、本発明の第2の実施形態について説明する。この実施形態は本発明を内燃機関1の始動時に適用したものである。内燃機関1及びその周辺装置の構成は第1の実施形態と共通するので重複する説明は省略する。図11はECU30が実行する制御ルーチンを示したフローチャートである。まず、ECU30はステップS11で内燃機関1の始動制御を実行する。この始動制御はイグニッションスイッチ(不図示)がONされてからクランキングを開始させて内燃機関1を始動させる周知のものである。次に、ステップS12で触媒8の昇温の必要性を判断する。この必要性は内燃機関1の冷却水温、触媒8の床温、内燃機関1が停止してからの経過時間等の各種のパラメータに基づいて判断できる。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In this embodiment, the present invention is applied when the internal combustion engine 1 is started. Since the configuration of the internal combustion engine 1 and its peripheral devices is the same as that of the first embodiment, a duplicate description is omitted. FIG. 11 is a flowchart showing a control routine executed by the ECU 30. First, the ECU 30 executes start control of the internal combustion engine 1 in step S11. This start control is well known to start the internal combustion engine 1 by starting cranking after an ignition switch (not shown) is turned on. Next, in step S12, the necessity of raising the temperature of the catalyst 8 is determined. This necessity can be determined based on various parameters such as the cooling water temperature of the internal combustion engine 1, the bed temperature of the catalyst 8, and the elapsed time after the internal combustion engine 1 is stopped.

触媒8の昇温が必要ない場合には、以後の処理をスキップしてルーチンを終える。一方、触媒8の昇温が必要な場合には、ステップS16で終了条件の成立が判定されるまで、ステップS13〜ステップS15を繰り返し実行して触媒8を昇温させる。即ち、吸気行程で第1燃料噴射弁11からホロコーン噴霧21を噴射させ(ステップS13)、続く圧縮行程で第2燃料噴射弁12からファン噴霧22を噴射させる(ステップS14)。そして、内燃機関1の点火時期が遅角される(ステップS15)。従って、この形態の燃料噴射は、点火時期が遅角するように制御されている間に繰り返し実行されることになる。吸気行程と圧縮行程とで燃料噴射量を分割するための分割比は、不変でもよいし内燃機関1の運転状態に応じて変化させてもよい。また、点火時期の遅角量は適宜に設定してよい。ステップS16の終了条件は、内燃機関1の冷却水温や触媒8の床温が所定レベルを超えた場合等の触媒8の昇温が不要と判断できる条件を適宜に設定してよい。   If it is not necessary to raise the temperature of the catalyst 8, the subsequent processing is skipped and the routine is terminated. On the other hand, when the temperature of the catalyst 8 needs to be increased, the temperature of the catalyst 8 is increased by repeatedly executing steps S13 to S15 until it is determined in step S16 that the end condition is satisfied. That is, the hollow cone spray 21 is injected from the first fuel injection valve 11 in the intake stroke (step S13), and the fan spray 22 is injected from the second fuel injection valve 12 in the subsequent compression stroke (step S14). Then, the ignition timing of the internal combustion engine 1 is retarded (step S15). Therefore, this form of fuel injection is repeatedly executed while the ignition timing is controlled to be retarded. The division ratio for dividing the fuel injection amount between the intake stroke and the compression stroke may be unchanged or may be changed according to the operating state of the internal combustion engine 1. Further, the retard amount of the ignition timing may be set as appropriate. The termination condition of step S16 may be appropriately set such that the temperature of the catalyst 8 can be determined to be unnecessary, such as when the cooling water temperature of the internal combustion engine 1 or the bed temperature of the catalyst 8 exceeds a predetermined level.

図11の制御を実行することにより、点火プラグ13の付近で濃度が高く、それ以外の領域で低濃度かつ均質な混合気を形成できる。これにより触媒8を効果的に昇温することができる。以上の形態で、図11のステップS13及びステップS14が実行されることにより、ECU30が本発明の燃料噴射制御手段として、図11のステップS15が実行されることにより、ECU30が本発明の点火時期遅角手段として、それぞれ機能する。   By executing the control of FIG. 11, it is possible to form a gas mixture having a high concentration in the vicinity of the spark plug 13 and a low concentration and a homogeneous mixture in other regions. Thereby, the temperature of the catalyst 8 can be raised effectively. 11 is executed as a fuel injection control means of the present invention, and step S15 of FIG. 11 is executed so that the ECU 30 performs the ignition timing of the present invention. Each functions as a retarding means.

本発明は以上の実施形態に限定されず、本発明の要旨の範囲内で種々の形態で実施できる。例えば、ファン噴霧22は、気筒2の中心線CL方向と直交する方向関して扇形状に広がるように形成してもよい。また、ファン噴霧22の偏平方向に制限はなく、上述した実施形態のように気筒2の横方向に偏平してもよいし、気筒2の縦方向に偏平しても構わない。また、第1燃料噴射弁11及び第2燃料噴射弁12のそれぞれ配置位置は図示の形態に制限されず、本発明のホロコーン噴霧及びファン噴霧を噴射できる限度でこれらを適所に配置してよい。   The present invention is not limited to the above embodiment, and can be implemented in various forms within the scope of the gist of the present invention. For example, the fan spray 22 may be formed so as to spread in a fan shape with respect to a direction orthogonal to the direction of the center line CL of the cylinder 2. Further, the flat direction of the fan spray 22 is not limited, and may be flattened in the horizontal direction of the cylinder 2 as in the above-described embodiment, or may be flattened in the vertical direction of the cylinder 2. Further, the arrangement positions of the first fuel injection valve 11 and the second fuel injection valve 12 are not limited to the illustrated form, and they may be arranged at appropriate positions as long as the holocon spray and the fan spray of the present invention can be injected.

本発明の実施形態に係る内燃機関の要部を示した図。The figure which showed the principal part of the internal combustion engine which concerns on embodiment of this invention. 第1燃料噴射弁と噴霧形態を示す説明図で、(a)は第1燃料噴射弁の先端部を示し、(b)は第1燃料噴射弁から噴射されるホロコーン噴霧の形態を示す。It is explanatory drawing which shows a 1st fuel injection valve and a spray form, (a) shows the front-end | tip part of a 1st fuel injection valve, (b) shows the form of the holo-cone spray injected from a 1st fuel injection valve. 第2燃料噴射弁と噴霧形態を示す説明図で、(a)は第2燃料噴射弁の先端部を示し、(b)は第2燃料噴射弁から噴射されるファン噴霧の形態を示す。It is explanatory drawing which shows a 2nd fuel injection valve and a spray form, (a) shows the front-end | tip part of a 2nd fuel injection valve, (b) shows the form of the fan spray injected from a 2nd fuel injection valve. ECUが実行する制御ルーチンの一例を示すフローチャート。The flowchart which shows an example of the control routine which ECU performs. 図4で定義された燃料噴射制御の制御ルーチンの一例を示すフローチャート。5 is a flowchart showing an example of a control routine of fuel injection control defined in FIG. 分割比を算出するためのマップの一例を示す説明図。Explanatory drawing which shows an example of the map for calculating a division ratio. 吸気行程及び圧縮行程の各行程における燃料噴射期間を説明する説明図。Explanatory drawing explaining the fuel-injection period in each stroke of an intake stroke and a compression stroke. 燃料噴射の状態を示す説明図で、(a)は吸気行程で第1燃料噴射弁がホロコーン噴霧を噴射した状態を示し、(b)は圧縮行程で第2燃料噴射弁がファン噴霧を噴射した状態を示す。It is explanatory drawing which shows the state of fuel injection, (a) shows the state which the 1st fuel injection valve injected the holocorn spray in the intake stroke, (b) showed the 2nd fuel injection valve in the compression stroke injected the fan spray. Indicates the state. 分割比を算出するためのマップの一例を示す説明図。Explanatory drawing which shows an example of the map for calculating a division ratio. 圧縮行程で第1燃料噴射弁がホロコーン噴霧を噴射した状態を示す説明図。Explanatory drawing which shows the state which the 1st fuel injection valve injected the holocorn spray in the compression stroke. 第2の実施形態に係る制御ルーチンの一例を示すフローチャート。The flowchart which shows an example of the control routine which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
8 触媒
11 第1燃料噴射弁(第1の燃料噴射弁)
12 第2燃料噴射弁(第2の燃料噴射弁)
21 ホロコーン噴霧(第1の燃料噴霧)
22 ファン噴霧(第2の燃料噴霧)
30 ECU(燃料噴射制御手段、点火時期遅角手段)
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 8 Catalyst 11 1st fuel injection valve (1st fuel injection valve)
12 Second fuel injection valve (second fuel injection valve)
21 Holocorn spray (first fuel spray)
22 Fan spray (second fuel spray)
30 ECU (fuel injection control means, ignition timing retarding means)

Claims (6)

気筒の中心線の方向に関して中空円錐形状に広がる第1の燃料噴霧を前記気筒内に噴射可能な第1の燃料噴射弁と、前記中心線と交差する方向に関して扇形状に広がる第2の燃料噴霧を前記気筒内に噴射可能な第2の燃料噴射弁と、前記第1の燃料噴射弁及び前記第2の燃料噴射弁のそれぞれの動作を制御する燃料噴射制御手段と、を備えることを特徴とする筒内噴射式内燃機関。   A first fuel injection valve capable of injecting into the cylinder a first fuel spray that spreads in a hollow conical shape with respect to the direction of the center line of the cylinder, and a second fuel spray that expands in a fan shape with respect to the direction intersecting the center line Comprising: a second fuel injection valve capable of injecting fuel into the cylinder; and fuel injection control means for controlling the operations of the first fuel injection valve and the second fuel injection valve. An in-cylinder injection internal combustion engine. 前記燃料噴射制御手段は、機関の負荷が所定レベルを超えた場合、吸気行程で前記第1の燃料噴霧が噴射され、かつ当該吸気行程に続く圧縮行程で前記第2の燃料噴霧が噴射されるように、前記第1の燃料噴射弁及び前記第2の燃料噴射弁のそれぞれの動作を制御することを特徴とする請求項1に記載の筒内噴射式内燃機関。   When the engine load exceeds a predetermined level, the fuel injection control means injects the first fuel spray in the intake stroke and injects the second fuel spray in the compression stroke following the intake stroke. The in-cylinder injection internal combustion engine according to claim 1, wherein each operation of the first fuel injection valve and the second fuel injection valve is controlled. 前記燃料噴射制御手段は、前記吸気行程における噴射量に対する前記圧縮行程における噴射量の割合が機関回転数が低いほど大きくなるように、前記第1の燃料噴射弁及び前記第2の燃料噴射弁のそれぞれの動作を制御することを特徴とする請求項2に記載の筒内噴射式内燃機関。   The fuel injection control means is configured so that the ratio of the injection amount in the compression stroke to the injection amount in the intake stroke becomes larger as the engine speed is lower, the first fuel injection valve and the second fuel injection valve. 3. The direct injection internal combustion engine according to claim 2, wherein each operation is controlled. 前記燃料噴射制御手段は、前記負荷が前記所定レベル以下で、かつ均質燃焼を実施すべき場合、吸気行程で前記第1の燃料噴霧が噴射され、かつ当該吸気行程に続く圧縮行程で前記第2の燃料噴霧の噴射が禁止されるように、前記第1の燃料噴射弁及び前記第2の燃料噴射弁のそれぞれの動作を制御することを特徴とする請求項2又は3に記載の筒内噴射式内燃機関。   The fuel injection control means is configured to inject the first fuel spray in an intake stroke and perform the second in a compression stroke following the intake stroke when the load is equal to or less than the predetermined level and homogeneous combustion is to be performed. 4. The in-cylinder injection according to claim 2, wherein the operation of each of the first fuel injection valve and the second fuel injection valve is controlled so that injection of the fuel spray is prohibited. 5. Internal combustion engine. 前記燃料噴射制御手段は、前記負荷が前記所定レベル以下で、かつ弱成層燃焼を実施すべき場合、吸気行程で前記第1の燃料噴霧が噴射され、かつ当該吸気行程に続く圧縮行程で前記第1の燃料噴霧又は前記第2の燃料噴霧が噴射されるように、前記第1の燃料噴射弁及び前記第2の燃料噴射弁のそれぞれの動作を制御することを特徴とする請求項2又は3に記載の筒内噴射式内燃機関。   When the load is less than the predetermined level and weak stratified combustion is to be performed, the fuel injection control means is configured to inject the first fuel spray in the intake stroke and perform the first injection in the compression stroke following the intake stroke. The operation of each of the first fuel injection valve and the second fuel injection valve is controlled so that one fuel spray or the second fuel spray is injected. The cylinder injection internal combustion engine described in 1. 排気通路に設けられて排気中の有害物質を浄化する触媒と、前記触媒の昇温が必要な期間内に点火時期を遅角させる点火時期遅角手段とを更に備え、
前記燃料噴射制御手段は、前記点火時期遅角手段が点火時期を遅角させている間、吸気行程で前記第1の燃料噴霧が噴射され、かつ当該吸気行程に続く圧縮行程で前記第2の燃料噴霧が噴射されるように、前記第1の燃料噴射弁及び前記第2の燃料噴射弁のそれぞれの動作を制御することを特徴とする請求項1に記載の筒内噴射式内燃機関。
A catalyst provided in the exhaust passage for purifying harmful substances in the exhaust, and ignition timing retarding means for retarding the ignition timing within a period in which the catalyst needs to be heated;
The fuel injection control means is configured to inject the first fuel spray in the intake stroke while the ignition timing retarding means retards the ignition timing, and in the compression stroke following the intake stroke, 2. The direct injection internal combustion engine according to claim 1, wherein operations of the first fuel injection valve and the second fuel injection valve are controlled so that fuel spray is injected.
JP2005217449A 2005-07-27 2005-07-27 Cylinder injection internal combustion engine Pending JP2007032437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005217449A JP2007032437A (en) 2005-07-27 2005-07-27 Cylinder injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005217449A JP2007032437A (en) 2005-07-27 2005-07-27 Cylinder injection internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007032437A true JP2007032437A (en) 2007-02-08

Family

ID=37791973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005217449A Pending JP2007032437A (en) 2005-07-27 2005-07-27 Cylinder injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007032437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174398A (en) * 2008-01-23 2009-08-06 Denso Corp Fuel injection valve and method for manufacturing the same
JP2009185688A (en) * 2008-02-06 2009-08-20 Nissan Motor Co Ltd Direct-injection spark-ignition internal combustion engine
JP2010196506A (en) * 2009-02-23 2010-09-09 Hitachi Automotive Systems Ltd Cylinder injection internal combustion engine
WO2017047248A1 (en) * 2015-09-17 2017-03-23 日立オートモティブシステムズ株式会社 Fuel injection control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174398A (en) * 2008-01-23 2009-08-06 Denso Corp Fuel injection valve and method for manufacturing the same
JP2009185688A (en) * 2008-02-06 2009-08-20 Nissan Motor Co Ltd Direct-injection spark-ignition internal combustion engine
JP2010196506A (en) * 2009-02-23 2010-09-09 Hitachi Automotive Systems Ltd Cylinder injection internal combustion engine
WO2017047248A1 (en) * 2015-09-17 2017-03-23 日立オートモティブシステムズ株式会社 Fuel injection control device
JP2017057797A (en) * 2015-09-17 2017-03-23 日立オートモティブシステムズ株式会社 Fuel injection control device
CN108026855A (en) * 2015-09-17 2018-05-11 日立汽车系统株式会社 Fuel injection control system

Similar Documents

Publication Publication Date Title
JP6260795B2 (en) Engine fuel control device
JP6784214B2 (en) Internal combustion engine control device
JP6323683B2 (en) Engine control device
JP6323684B2 (en) Engine control device
US20090071440A1 (en) Direct injection spark ignition internal combustion engine and fuel injection control method for same engine
EP1559889B1 (en) Direct fuel injection/spark ignition engine control device
CN108730053B (en) Control device for internal combustion engine
US10968859B2 (en) Premixed compression ignition engine and method for controlling premixed compression ignition engine
US10215126B2 (en) Control device for internal combustion engine
JP4089109B2 (en) Ignition control device for internal combustion engine
JP2007032437A (en) Cylinder injection internal combustion engine
JP2006257921A (en) Control device and control method of cylinder direct injection type spark ignition internal combustion engine
JP2007177739A (en) Spark-ignition direct injection engine
WO2017022088A1 (en) Fuel injection control method and fuel injection control device
JP2011247110A (en) Control device of internal combustion engine
EP3309378B1 (en) Fuel injection control device and fuel injection control method
JP2006299854A (en) Cylinder injection spark ignition type internal combustion engine
JP2014156852A (en) Compression ignition engine
US11391236B2 (en) Control method of internal combustion engine and internal combustion engine
JP2019065773A (en) Fuel injection control method and fuel injection device of spark ignition internal combustion
JP4269895B2 (en) Control device for internal combustion engine and control method for internal combustion engine
JP2017219017A (en) Method and device for controlling engine
JP6300186B2 (en) Engine control device
JP2016008601A (en) Internal combustion engine
JP2018003753A (en) Control device of internal combustion engine