JP5088282B2 - Direct-injection spark ignition internal combustion engine - Google Patents

Direct-injection spark ignition internal combustion engine Download PDF

Info

Publication number
JP5088282B2
JP5088282B2 JP2008241974A JP2008241974A JP5088282B2 JP 5088282 B2 JP5088282 B2 JP 5088282B2 JP 2008241974 A JP2008241974 A JP 2008241974A JP 2008241974 A JP2008241974 A JP 2008241974A JP 5088282 B2 JP5088282 B2 JP 5088282B2
Authority
JP
Japan
Prior art keywords
injection
fuel
engine
valve
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008241974A
Other languages
Japanese (ja)
Other versions
JP2010071250A (en
Inventor
大介 高木
勉 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008241974A priority Critical patent/JP5088282B2/en
Publication of JP2010071250A publication Critical patent/JP2010071250A/en
Application granted granted Critical
Publication of JP5088282B2 publication Critical patent/JP5088282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

本発明は、直噴火花点火式内燃機関に関し、特に、機関始動時の燃料噴射制御に関する。   The present invention relates to a direct-injection spark ignition internal combustion engine, and more particularly to fuel injection control at the time of engine start.

特許文献1では、直噴火花点火式内燃機関において、圧縮行程にて燃料を噴射する成層燃焼時に、燃料噴射を複数回に分割し、分割して噴射された燃料のうち先に噴射されたものに対して、その後に噴射された燃料が点火プラグの近傍において重なるように噴射させている。すなわち、分割された燃料のうち、先に噴射された燃料は、燃料噴射弁の噴射特性、噴射方向及び燃焼室内のガス流動の影響などによって定まる領域に、混合気を形成する。そして、この噴射の後に噴射される燃料に対しては、先の噴射の影響で噴射方向に沿った流れが生じているため、後に噴射された燃料は、同様な形態の噴霧を形成しつつも、先に噴射された燃料より高速で燃焼室内を進む。従って、後に噴射された燃料を先に噴射された燃料に追い付かせて重なり合わせることにより、その位置において適切な集中度の混合気を形成する。但し、機関冷間時には、機関壁面温度が低く、燃料の壁面付着による燃焼性能への悪影響が大きいため、分割噴射を禁止して、1回のみの単一噴射としている。
特開2002−115593号公報
In Patent Document 1, in a direct injection spark ignition internal combustion engine, at the time of stratified combustion in which fuel is injected in a compression stroke, the fuel injection is divided into a plurality of times, and the fuel that has been divided and injected is injected first On the other hand, the fuel injected thereafter is injected so as to overlap in the vicinity of the spark plug. That is, of the divided fuels, the previously injected fuel forms an air-fuel mixture in a region determined by the injection characteristics of the fuel injection valve, the injection direction, the influence of gas flow in the combustion chamber, and the like. The fuel injected after this injection has a flow along the injection direction due to the influence of the previous injection, so that the fuel injected later forms a spray of the same form. Then, it proceeds through the combustion chamber at a higher speed than the previously injected fuel. Therefore, the fuel injected later is made to catch up with the previously injected fuel so as to overlap, thereby forming an air-fuel mixture with an appropriate concentration degree at that position. However, when the engine is cold, the engine wall surface temperature is low and the adverse effect on the combustion performance due to the fuel wall surface adhesion is large, so split injection is prohibited and single injection is performed only once.
JP 2002-115593 A

特許文献1に記載の技術のように、機関始動時に分割噴射を禁止して1回のみの単一噴射とすると、成層混合気の集中度(均質度)が低下して燃焼安定性が低下し、また、単一噴射では分割噴射に比べて燃料噴霧のペネトレーションが強くなるため、かえって壁面への付着量が増大するおそれがある。   If the split injection is prohibited at the time of starting the engine and only one injection is performed as in the technique described in Patent Document 1, the concentration (homogeneity) of the stratified mixture decreases and the combustion stability decreases. Moreover, since the penetration of fuel spray is stronger in single injection than in split injection, the amount of adhesion to the wall surface may increase.

但し、機関始動時には、図7に示すように、機関回転数Neの急激な上昇に伴って、燃圧Fpやブースト圧が急激に上昇することから、図8に示すように、燃料噴射弁の弁体のリフト量(静流量)が一定H0であれば、機関回転数Neが初爆時(例えば200rpm程度),低速(例えば500rpm程度)及び中速(例えば700rpm程度)へと上昇していくに伴って、分割噴射の各噴射IT1,IT2のパルス幅つまり噴射時間τ1,τ2が時間的に短くなっていき、前の噴射IT1の噴射開始時期と後の噴射IT2の噴射開始時期との噴射間隔τ12が時間的に短くなっていく。このため、例えば初爆時のように機関回転数が200rpm前後の始動開始直後の状態では、噴射間隔τ12が時間的に長くなり、前の噴射IT1の初期に噴射された燃料の拡散が進行し、上述したように後に噴射された燃料を先に噴射された燃料に追い付かせて重なり合わせることができなくなって、良好な成層燃焼を実現することができなくなるおそれがある。   However, at the time of starting the engine, as shown in FIG. 7, the fuel pressure Fp and the boost pressure are suddenly increased as the engine speed Ne is rapidly increased. Therefore, as shown in FIG. If the body lift amount (static flow rate) is constant H0, the engine speed Ne increases at the first explosion (for example, about 200 rpm), to a low speed (for example, about 500 rpm) and to a medium speed (for example, about 700 rpm). Along with this, the pulse width of each injection IT1, IT2 of divided injection, that is, the injection time τ1, τ2, becomes shorter in time, and the injection interval between the injection start timing of the previous injection IT1 and the injection start timing of the subsequent injection IT2. τ12 becomes shorter in time. For this reason, for example, in the state immediately after the start of the start at an engine speed of around 200 rpm, such as at the time of the first explosion, the injection interval τ12 becomes longer in time, and the diffusion of fuel injected at the initial stage of the previous injection IT1 proceeds. As described above, the fuel injected later cannot catch up with the previously injected fuel and overlap therewith, so that there is a possibility that good stratified combustion cannot be realized.

なお、本明細書において、『時間的』,『時間』とは、機関回転数(回転速度)に対する相対的な期間ではなく、絶対的な時間(秒・分等)を意味する。   In this specification, “time” and “time” mean an absolute time (second, minute, etc.) rather than a relative period with respect to the engine speed (rotation speed).

本発明は、このような課題に鑑みてなされたものであり、機関始動時にも分割噴射を利用した成層燃焼を安定して行えるようにすることを目的とする。   The present invention has been made in view of such a problem, and an object thereof is to stably perform stratified combustion using split injection even when the engine is started.

本発明に係る直噴火花点火式内燃機関は、燃焼室内に燃料噴射弁と点火プラグとを備えるとともに、上記燃料噴射弁及び点火プラグの動作を制御する制御部を有する。そして、この制御部は、機関始動時には、点火時期の直前に燃料噴射を行うことにより成層燃焼を行わせるとともに、燃料噴射を複数回に分割し、先の噴射の噴射開始時期と後の噴射の噴射開始時期との噴射間隔を一定時間に保つように、上記燃料噴射弁の動作を制御することを特徴としている。   A direct-injection spark ignition internal combustion engine according to the present invention includes a fuel injection valve and an ignition plug in a combustion chamber, and has a control unit that controls operations of the fuel injection valve and the ignition plug. Then, at the time of engine start, this control unit performs stratified combustion by performing fuel injection immediately before the ignition timing, and also divides the fuel injection into a plurality of times so that the injection start timing of the previous injection and the subsequent injection The operation of the fuel injection valve is controlled so that the injection interval from the injection start timing is maintained at a constant time.

本発明によれば、機関始動時に、分割噴射における噴射間隔を時間的に一定のものとしたことによって、成層燃焼における混合気の集中度(均質度)を高いレベルに維持し、機関始動時における燃焼安定性の向上を図ることができる。   According to the present invention, when the engine is started, the injection interval in the divided injection is made constant in time, so that the concentration (homogeneity) of the air-fuel mixture in stratified combustion is maintained at a high level, and at the time of engine start. The combustion stability can be improved.

以下、本発明の好ましい実施の形態を図面に基づいて説明する。図1は本発明の一実施例に係る直噴火花点火式内燃機関の構成図である。この内燃機関では、シリンダヘッド1とシリンダボア2とピストン3とによりペントルーフ型の燃焼室4が形成され、その上部中央に燃料噴射弁5が下向きに配置されている。燃料噴射弁5は、図2に示すようなアウトワード弁であり、燃料噴射弁本体50の先端部に軸心に沿って燃料通路51が形成され、この燃料通路51の下端にテーパ状開口部52が開口形成されている。燃料通路51にはロッド部53が通路方向に移動可能に嵌合しており、このロッド部53の先端にポペット型の弁体54が設けられ、テーパ状開口部52にポペット型の弁体54のテーパ面が相対している。従って、弁体54の下方へのリフト時に、テーパ状開口部52と弁体54のテーパ面との間に、外向きの環状の噴出口55が形成されて、この噴出口55から燃料が噴射され、その燃料噴霧は中空円錐状を呈する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a direct injection spark ignition internal combustion engine according to an embodiment of the present invention. In this internal combustion engine, a pent roof type combustion chamber 4 is formed by a cylinder head 1, a cylinder bore 2, and a piston 3, and a fuel injection valve 5 is disposed downward in the center of the upper part thereof. The fuel injection valve 5 is an outward valve as shown in FIG. 2, and a fuel passage 51 is formed along the axis at the tip of the fuel injection valve body 50, and a tapered opening is formed at the lower end of the fuel passage 51. An opening 52 is formed. A rod portion 53 is fitted to the fuel passage 51 so as to be movable in the passage direction. A poppet type valve element 54 is provided at the tip of the rod portion 53, and a poppet type valve element 54 is provided in the tapered opening 52. The taper surfaces are opposite. Accordingly, when the valve body 54 is lifted downward, an outward annular jet port 55 is formed between the tapered opening 52 and the tapered surface of the valve body 54, and fuel is injected from the jet port 55. The fuel spray has a hollow conical shape.

点火プラグ6は、燃焼室4の上部中央より偏心した位置に斜めに配置されていて、これにより、燃料噴射弁5から噴射される中空円錐状の燃料噴霧の外縁に点火するように配置されている。より詳しくは、燃料噴射弁5から噴射される中空円錐状の燃料噴霧の外縁の一部には、周囲の空気とのせん断で巻上がり部(膨らみ部)を生じるので、この巻上がり部に点火するように配置されている。   The spark plug 6 is disposed obliquely at a position eccentric from the upper center of the combustion chamber 4, and is thereby disposed to ignite the outer edge of the hollow conical fuel spray injected from the fuel injection valve 5. Yes. More specifically, a part of the outer edge of the hollow conical fuel spray injected from the fuel injection valve 5 is swelled (swelled) by shearing with the surrounding air. Are arranged to be.

制御部としてのエンジンコントロールユニット(ECU)7には、機関回転数センサにより検出される機関回転数Ne、燃圧センサにより検出される燃料圧力つまり燃圧Pf、水温センサにより検出される水温Tw等の信号が入力されている。燃圧Pfは、例えば各燃料噴射弁5へ高圧燃料を供給する高圧燃料レール内の圧力である。ECU7は、これらの信号に基づいて、燃料噴射弁5及び点火プラグ6の動作を制御する。特に、燃料噴射弁5については、弁体54が設けられたロッド部53を駆動するソレノイドへの通電制御により、燃料噴射タイミングすなわち噴射開始時期,噴射終了時期や噴射幅(噴射時間)を制御することに加え、静流量に対応する弁体54のリフト量を調整・制御することができるものである。   An engine control unit (ECU) 7 serving as a control unit includes signals such as the engine speed Ne detected by the engine speed sensor, the fuel pressure detected by the fuel pressure sensor, that is, the fuel pressure Pf, and the water temperature Tw detected by the water temperature sensor. Is entered. The fuel pressure Pf is, for example, the pressure in the high-pressure fuel rail that supplies high-pressure fuel to each fuel injection valve 5. The ECU 7 controls the operation of the fuel injection valve 5 and the spark plug 6 based on these signals. In particular, for the fuel injection valve 5, the fuel injection timing, that is, the injection start timing, the injection end timing, and the injection width (injection time) are controlled by energization control to the solenoid that drives the rod portion 53 provided with the valve element 54. In addition, the lift amount of the valve element 54 corresponding to the static flow rate can be adjusted and controlled.

この内燃機関の運転モード(燃焼モード)には、均質運転モードと成層運転モードとがある。均質運転モードでは、吸気行程にて燃料噴射弁5の燃料噴射を行い、点火プラグ6による点火時期までに、燃焼室4の全体に均質な混合気を形成することにより、ストイキ空燃比、又はリーン空燃比(A/F=20〜30)で、均質燃焼を行わせる。   The operation mode (combustion mode) of the internal combustion engine includes a homogeneous operation mode and a stratified operation mode. In the homogeneous operation mode, fuel injection of the fuel injection valve 5 is performed in the intake stroke, and a homogeneous air-fuel mixture is formed in the entire combustion chamber 4 by the ignition timing by the spark plug 6, so that the stoichiometric air-fuel ratio or lean Homogeneous combustion is performed at an air-fuel ratio (A / F = 20 to 30).

これに対し、成層運転モードでは、圧縮行程にて燃料噴射弁5の燃料噴射を行い、燃焼室4の一部(点火プラグ6により点火可能な燃焼室4の中央部)に成層化された混合気塊を形成することにより、全体としては極めてリーンな空燃比(A/F=30〜40)で、成層燃焼を行わせる。   On the other hand, in the stratified operation mode, the fuel injection of the fuel injection valve 5 is performed in the compression stroke, and the stratified mixture is formed in a part of the combustion chamber 4 (the central portion of the combustion chamber 4 that can be ignited by the spark plug 6). By forming an air mass, stratified combustion is performed at a very lean air-fuel ratio (A / F = 30 to 40) as a whole.

ところで、機関始動時に成層燃焼を行う場合、言い換えれば、成層燃焼で始動して、始動時及び始動直後のHC排出量の低減を図る場合、単に混合気を成層化するだけでなく、混合気をコンパクトにする必要がある。そこで、機関始動時には、アウトワード弁の特性を利用して成層燃焼のための燃料噴射を複数回に分割する。そして、この分割噴射(多段噴き)は、先に噴射した燃料噴霧に後から噴射する燃料噴霧が引込まれるタイミングで後の噴射を行う構成とする。   By the way, when stratified combustion is performed at the time of engine start-up, in other words, when starting with stratified combustion to reduce the amount of HC emissions at the start and immediately after start-up, not only stratifying the air-fuel mixture, It is necessary to make it compact. Therefore, when the engine is started, fuel injection for stratified combustion is divided into a plurality of times using the characteristics of the outward valve. And this division | segmentation injection (multistage injection) is set as the structure which performs subsequent injection at the timing at which the fuel spray injected later is drawn into the fuel spray injected previously.

このようなアウトワード弁の特性を利用した分割噴射による成層燃焼について、図3を参照して説明する。一度噴きの場合(要求噴射量を一度に噴射する場合)は、図3(a)に示すように、ペネトレーションが大きく、中空円錐状噴霧の内側は大きく空間があいている。これに対し、分割噴射の場合(要求噴射量を二度度に分けて噴射する場合;二度噴きの場合)は、次のようになる。   The stratified combustion by the divided injection using the characteristics of such an outward valve will be described with reference to FIG. In the case of a single injection (when the required injection amount is injected at a time), as shown in FIG. 3A, the penetration is large, and the inside of the hollow conical spray has a large space. On the other hand, in the case of divided injection (when the required injection amount is divided into two injections; in the case of two injections), it is as follows.

二度噴きの1回目噴射では、図3(b−1)に示すように、一度噴きの場合に比べ、1回当たりの噴射量が減るため、ペネトレーションが小さくなる。それゆえ、拡がりも小さくなる。言い換えれば、アウトワード弁の燃料噴霧はそもそも低ペネトレーションであるが、噴射量が分割されることで、更に運動量が少なくなって、噴霧点に近いところで噴霧が留まるのである。そして、1回目噴射の噴霧後方に噴射の流速による負圧領域が発生する。2度噴きの2回目噴射は、図3(b−2)に示すように、1回目噴射の噴霧後方の負圧領域に向けてなされる。従って、2回目噴射の噴霧は、負圧に引かれるため、1回目噴射の噴霧より流速が高くなり、1回目噴射の噴霧に追いついて、2回目噴射の噴霧が1回目噴射の噴霧に入り込む。言い換えれば、噴霧後端は負圧となり、通常であれば周囲の空気が流入してくるが、そこに2回目噴射を行うことで、2回目噴射の噴霧が1回目噴射の噴霧に引込まれるのである。   As shown in FIG. 3 (b-1), in the first injection of the second injection, the amount of injection per injection is reduced as compared to the case of a single injection, so the penetration is reduced. Therefore, the spread is also reduced. In other words, the fuel spray of the outward valve has a low penetration in the first place, but by dividing the injection amount, the momentum is further reduced and the spray stays near the spray point. And the negative pressure area | region by the flow velocity of injection generate | occur | produces behind the spray of the 1st injection. As shown in FIG. 3B-2, the second injection of the second injection is performed toward the negative pressure region behind the spray of the first injection. Therefore, since the spray of the second injection is attracted by negative pressure, the flow velocity is higher than that of the spray of the first injection, catching up with the spray of the first injection, and the spray of the second injection entering the spray of the first injection. In other words, the rear end of the spray has a negative pressure, and normally ambient air flows in. However, by performing the second injection there, the second spray is drawn into the first spray. It is.

こうして、最終的には図3(b−3)に示すように、2回目噴射の噴霧が1回目噴射の噴霧の中に入り込み、拡散防止と均一度向上が見込まれる。また、引込まれる際の周囲空気との衝突とによって、気化も促進される。   Thus, finally, as shown in FIG. 3 (b-3), the spray of the second injection enters the spray of the first injection, and diffusion prevention and improvement in uniformity are expected. Moreover, vaporization is also accelerated | stimulated by the collision with the surrounding air at the time of drawing.

このように、機関始動時に成層燃焼を行わせるに際し、燃料を複数回に分けて噴射することで、単に集中度を高めるだけでなく、燃料噴霧のペネトレーションを抑え、コンパクトでかつ均質な成層混合気を形成することができ、火炎伝播の安定性向上並びに燃焼速度の短縮を図り、燃焼安定度の向上や、拡散によるガスクエンチ量の減少を図ることができる。   In this way, when stratified combustion is performed at the time of engine start-up, the fuel is injected in a plurality of times, thereby not only increasing the concentration level but also suppressing fuel spray penetration, and a compact and homogeneous stratified mixture. The flame propagation stability and combustion speed can be shortened, combustion stability can be improved, and the amount of gas quench due to diffusion can be reduced.

そして本実施例では、機関始動時には、上述したように点火時期の直前における圧縮行程中に燃料噴射を行うことにより成層燃焼を行わせるとともに、図4に示すように、燃料噴射を複数回に分割し、先の噴射IT1の噴射開始時期と後の噴射IT2の噴射開始時期との噴射間隔τ12を一定時間に保つように、燃料噴射弁5の動作を制御している。つまり、機関始動時には、噴射間隔τ12を一定時間に保つように、機関回転数Neの上昇に応じて弁体のリフト量をH1からH2,H3へと小さくしていく。   In this embodiment, when the engine is started, stratified combustion is performed by performing fuel injection during the compression stroke immediately before the ignition timing as described above, and the fuel injection is divided into a plurality of times as shown in FIG. Then, the operation of the fuel injection valve 5 is controlled so that the injection interval τ12 between the injection start timing of the previous injection IT1 and the injection start timing of the subsequent injection IT2 is maintained at a constant time. That is, when the engine is started, the lift amount of the valve body is decreased from H1 to H2 and H3 in accordance with the increase in the engine speed Ne so as to keep the injection interval τ12 at a constant time.

更に言えば、機関始動時には、上記の噴射間隔τ12の他、各燃料噴射IT1,IT2の噴射幅(パルス幅・噴射時間)τ1,τ2や、両噴射間の噴射休止時間τrのそれぞれが、初爆時,低速時及び中速時を含む始動開始から始動完了までの始動過渡期にわたって一定時間を保つように制御している。   Furthermore, when starting the engine, in addition to the above-described injection interval τ12, each of the injection widths (pulse width / injection time) τ1, τ2 of each fuel injection IT1, IT2 and the injection pause time τr between both injections are initially set. Control is performed to maintain a certain period of time during the start-up transition period from the start to the completion of start-up, including during explosion, low speed, and medium speed.

このような機関始動時の始動時噴射制御におけるリフト量の具体的な設定の一例として、始動後の通常噴射制御に演算・設定される要求パルス幅(噴射時間)Tiを利用した例について、図5を参照して説明する。なお、機関始動中における要求燃料噴射量は一定である。通常噴射制御における要求パルス幅Tiは、エアフロメータからの入力値に対して燃圧や水温で補正したパルス幅Ti1と、燃圧・水温・機関回転数のテーブル値から求めたパルス幅Ti2と、の大きい方を選択する。図5(A)は燃圧テーブルの一例を示し、このテーブルは図5(B),(C)に示すように燃圧やパルス幅に応じて静流量が増加することを考慮して設定される。機関回転数のテーブルは、機関回転数の上昇に伴う充填効率の低下分を考慮して設定され、水温のテーブルは、水温の変化に伴う壁流分燃料や充填効率の変化を考慮して設定される。   As an example of the specific setting of the lift amount in the start-up injection control at the time of starting the engine, an example using the required pulse width (injection time) Ti calculated and set in the normal injection control after the start will be described. This will be described with reference to FIG. Note that the required fuel injection amount during engine startup is constant. The required pulse width Ti in the normal injection control is large between the pulse width Ti1 corrected by the fuel pressure and the water temperature with respect to the input value from the air flow meter, and the pulse width Ti2 obtained from the table value of the fuel pressure / water temperature / engine speed. Select the direction. FIG. 5A shows an example of a fuel pressure table, and this table is set in consideration of an increase in static flow rate according to the fuel pressure and pulse width as shown in FIGS. 5B and 5C. The engine speed table is set in consideration of the decrease in charging efficiency as the engine speed increases, and the water temperature table is set in consideration of wall flow fuel and charging efficiency changes due to changes in water temperature. Is done.

このような通常噴射制御における要求パルス幅Tiを利用して、始動時噴射制御における燃料噴射弁5の弁体54の要求リフト量Hが設定される。具体的には、機関始動時におけるパルス幅(噴射時間)は一定の値τ(=τ1+τ2)とされるので、通常噴射制御での基準リフト量H0でのパルス幅Tiと、機関始動時に実際に設定されるパルス幅τ(=τ1+τ2)とのパルス幅比Ti/τを求め、このパルス幅比Ti/τに基づいて要求リフト量Hを求める。具体的には図5(D)に示すように、リフト量(インジェクタリフト量)が大きくなるほど噴射量が大きくなる関係にあることから、図5(E)に示すように、パルス幅比が大きくなるほどリフト量Hが小さくなるように設定される。   Using the required pulse width Ti in such normal injection control, the required lift amount H of the valve body 54 of the fuel injection valve 5 in the starting injection control is set. Specifically, since the pulse width (injection time) at the time of starting the engine is a constant value τ (= τ1 + τ2), the pulse width Ti at the reference lift amount H0 in the normal injection control and the actual value at the time of starting the engine A pulse width ratio Ti / τ with a set pulse width τ (= τ1 + τ2) is obtained, and a required lift amount H is obtained based on the pulse width ratio Ti / τ. Specifically, as shown in FIG. 5D, since the injection amount increases as the lift amount (injector lift amount) increases, the pulse width ratio increases as shown in FIG. 5E. The lift amount H is set so as to become smaller.

なお、機関始動時におけるリフト量の設定としては、これに限らず、より簡易的に、機関回転数(あるいは燃圧)の上昇に伴ってリフト量を小さくしていくようにしても良い。   The setting of the lift amount at the time of starting the engine is not limited to this, and the lift amount may be reduced more simply as the engine speed (or fuel pressure) increases.

図6は燃料噴射制御の流れを簡略的に示すフローチャートである。ステップS1では、機関回転数Ne,燃圧Pf及び水温Tw等の機関運転状態を表す各種信号を読み込む。ステップS2では、機関回転数Neが所定の始動完了回転数N1(例えば700〜800rpm)未満であるか、つまり機関始動の開始から完了までの機関始動時(始動過渡期)であるかを判定する。   FIG. 6 is a flowchart schematically showing the flow of fuel injection control. In step S1, various signals representing the engine operating state such as the engine speed Ne, the fuel pressure Pf, and the water temperature Tw are read. In step S2, it is determined whether the engine rotational speed Ne is less than a predetermined start completion rotational speed N1 (for example, 700 to 800 rpm), that is, whether the engine starts from the start to the completion of the engine start (starting transition period). .

機関回転数Neが始動完了回転数N1未満であればステップS3へ進み、燃圧Fpが機関始動可能な判定値P1を超えているかを判定する。そして、燃圧Fpが判定値P1を超えると、ステップS4へ進み、上述した機関始動時の噴射制御が行われる。   If the engine speed Ne is less than the start completion speed N1, the process proceeds to step S3, and it is determined whether the fuel pressure Fp exceeds a determination value P1 at which the engine can be started. When the fuel pressure Fp exceeds the determination value P1, the process proceeds to step S4, and the above-described injection control at the time of engine start is performed.

一方、機関回転数Neが始動完了回転数N1を超えていれば、ステップS2からステップS5へ進み、始動後の噴射制御が行われる。この始動後噴射制御については、本件の要部ではないので、簡単に説明すると、例えば暖機後の通常制御では、運転条件(主に機関回転数及び負荷)に応じて均質燃焼と成層燃焼とを切り換え、すなわち低回転・低負荷領域にて成層燃焼を行い、高回転・高負荷領域にて均質燃焼を行う。   On the other hand, if the engine speed Ne exceeds the start completion speed N1, the process proceeds from step S2 to step S5, and the injection control after the start is performed. Since this post-startup injection control is not the main part of the present case, it will be briefly described. For example, in normal control after warm-up, homogeneous combustion and stratified combustion are performed according to operating conditions (mainly engine speed and load). Is switched, that is, stratified combustion is performed in a low rotation / low load region, and homogeneous combustion is performed in a high rotation / high load region.

また、始動直後の暖機運転中には、例えば点火時期と共に噴射時期をTDC以降まで遅角して膨張行程噴射とする。この場合、ピストンが下向きに進んでいるため、圧縮行程噴射に比べ、混合気が拡散しやすい状態にあり、また先の噴射による噴霧後端の負圧の発生時期も早くなることから、分割噴射の噴射間隔を上述した機関始動時における圧縮行程噴射での噴射間隔よりも短くすることにより、膨張行程噴射の際は、ピストンが下向きに進んでいるため、混合気が拡散しやすい状態であるにもかかわらず、混合気の集中度を高く維持することができ、また先の噴射による噴霧後端の負圧の発生時期が早くなるのに対応して、的確な時期に後噴射できるという効果が得られる。   Further, during the warm-up operation immediately after starting, for example, the ignition timing is retarded to TDC or later together with the ignition timing, and the expansion stroke injection is performed. In this case, since the piston is moving downward, the air-fuel mixture is more easily diffused than the compression stroke injection, and the generation timing of the negative pressure at the rear end of the spray due to the previous injection is also earlier, so the divided injection By making the injection interval shorter than the injection interval in the compression stroke injection at the time of starting the engine described above, the air-fuel mixture is likely to diffuse because the piston is moving downward during the expansion stroke injection. Nevertheless, the concentration of the air-fuel mixture can be maintained at a high level, and in response to the earlier generation of negative pressure at the rear end of the spray due to the earlier injection, the effect of being able to perform the post-injection at an appropriate time is effective. can get.

以上のように、本実施例では、機関始動時には、点火時期の直前の圧縮行程中に燃料噴射を行うことにより成層燃焼を行わせるとともに、燃料噴射を複数回に分割し、先の噴射IT1の噴射開始時期と後の噴射IT2の噴射開始時期との噴射間隔τ12を、機関始動過渡期にわたって一定時間に保つように燃料噴射弁5の動作を制御するようにしたので、前の噴射IT1の初期に噴射された燃料の拡散が過度に進行するようなことがなく、機関始動の開始から終了にわたって、分割噴射による成層混合気の集中度・均質度を高いレベルに維持することで、良好な燃焼を実現するとともに、機関始動時におけるガスクエンチ量を減らして、HC排出量の低減を図ることができる。   As described above, in this embodiment, at the time of engine start, stratified combustion is performed by performing fuel injection during the compression stroke immediately before the ignition timing, and the fuel injection is divided into a plurality of times, and the previous injection IT1 Since the operation of the fuel injection valve 5 is controlled so that the injection interval τ12 between the injection start timing and the injection start timing of the subsequent injection IT2 is kept constant over the engine start transition period, the initial interval of the previous injection IT1 Diffusion of fuel injected into the engine does not progress excessively, and good combustion is achieved by maintaining the concentration and homogeneity of the stratified mixture by split injection at a high level from the start to the end of the engine start. In addition, the amount of gas quenching at the time of engine start can be reduced to reduce the amount of HC emissions.

また、燃料噴射弁5として、燃焼室4の上部中央に下向きに設けられて、外向きの環状の噴出口55により、中空円錐状の燃料噴霧を形成するアウトワード弁を用い、点火プラグ6は、上記中空円錐状の燃料噴霧の外縁に直接点火するように配置することにより、そもそも低ペネトレーションのアウトワード弁5からの燃料噴霧を分割噴射により更に低ペネトレーション化して、成層混合気の集中度(均質度)をより一層高めることができると共に、燃料噴霧をピストン冠面やシリンダ壁面に達しさせることなく点火・燃焼させて機関始動時におけるHC排出量の低減を図ることができる。   Further, as the fuel injection valve 5, an outward valve that is provided downward in the center of the upper portion of the combustion chamber 4 and that forms a hollow conical fuel spray by an outward annular jet outlet 55 is used. The fuel spray from the low-penetration outward valve 5 is further reduced to a lower penetration by split injection in the first place by direct ignition at the outer edge of the hollow conical fuel spray. (Homogeneity) can be further increased, and fuel spray can be ignited and burned without reaching the piston crown surface or cylinder wall surface, thereby reducing the amount of HC emissions at the time of engine start.

以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば上記実施例では分割噴射の回数を2回としたが、可能であれば、3回以上に分割して、更にペネトレーションを抑えることで、成層混合気の均質度を向上させるようにしても良い。   As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described embodiments, and includes various modifications and changes without departing from the spirit of the present invention. . For example, in the above embodiment, the number of divided injections is set to two. However, if possible, the number of divided injections may be divided into three or more to further suppress penetration, thereby improving the homogeneity of the stratified mixture. .

更に、機関始動時における可変動弁機構等による筒内圧変化に応じて、先の噴射と後の噴射との噴射量(パルス幅)の割合・比を変更・制御することにより、噴霧のペネトレーションを筒内圧変化に応じた適切なものとすることも可能である。   Furthermore, by changing / controlling the ratio / ratio of the injection amount (pulse width) between the previous injection and the subsequent injection in accordance with the change in the in-cylinder pressure due to the variable valve mechanism or the like at the time of starting the engine, the spray penetration can be controlled. It is also possible to make it appropriate according to the in-cylinder pressure change.

本発明の一実施例に係る直噴火花点火式内燃機関を示す構成図。1 is a configuration diagram showing a direct injection spark ignition internal combustion engine according to an embodiment of the present invention. 燃料噴射弁(アウトワード弁)を示す説明図。Explanatory drawing which shows a fuel injection valve (outward valve). 分割噴射の説明図。Explanatory drawing of division | segmentation injection. 本実施例に係る機関始動時における始動時噴射制御を示すタイミングチャート。The timing chart which shows the starting injection control at the time of engine starting which concerns on a present Example. 本実施例の燃料噴射制御の流れを簡略的に示すフローチャート。The flowchart which shows simply the flow of the fuel-injection control of a present Example. 本実施例の燃料噴射弁の弁体の一設定例に係る説明図。Explanatory drawing which concerns on the example of 1 setting of the valve body of the fuel injection valve of a present Example. 機関始動時における機関回転数と燃圧の変化を示すグラフ。The graph which shows the change of engine speed and fuel pressure at the time of engine starting. 従来例に係る機関始動時の燃料噴射制御を示す説明図。Explanatory drawing which shows the fuel-injection control at the time of engine starting which concerns on a prior art example.

符号の説明Explanation of symbols

1…シリンダヘッド
2…シリンダボア
3…ピストン
4…燃焼室
5…燃料噴射弁
6…点火プラグ
7…ECU(制御部)
50…燃料噴射弁本体
51…燃料通路
52…テーパ状開口部
53…ロッド部
54…弁体
55…噴出口
DESCRIPTION OF SYMBOLS 1 ... Cylinder head 2 ... Cylinder bore 3 ... Piston 4 ... Combustion chamber 5 ... Fuel injection valve 6 ... Spark plug 7 ... ECU (control part)
DESCRIPTION OF SYMBOLS 50 ... Fuel-injection-valve main body 51 ... Fuel channel 52 ... Tapered opening part 53 ... Rod part 54 ... Valve body 55 ... Injection hole

Claims (3)

燃焼室内に燃料噴射弁と点火プラグとを備える直噴火花点火式内燃機関において、
上記燃料噴射弁及び点火プラグの動作を制御する制御部を有し、
上記燃料噴射弁は、燃焼室の上部中央に下向きに設けられ、弁体がリフトすることで開口部との間の噴出口より中空円錐状の燃料噴霧を形成するアウトワード弁であり、
上記制御部は、機関始動時には、点火時期の直前に燃料噴射を行うことにより成層燃焼を行わせるとともに、燃料噴射を複数回に分割し、先の噴射の噴射開始時期と後の噴射の噴射開始時期との噴射間隔を一定時間に保つように、機関回転数の上昇に応じて上記弁体のリフト量を小さくすることを特徴とする直噴火花点火式内燃機関。
In a direct-injection spark ignition internal combustion engine having a fuel injection valve and a spark plug in the combustion chamber,
A control unit for controlling the operation of the fuel injection valve and the spark plug;
The fuel injection valve is an outward valve that is provided downward in the upper center of the combustion chamber, and forms a hollow conical fuel spray from a jet port between the opening and the valve body,
The controller may, at the time of engine starting, with to perform stratified combustion by performing fuel injection immediately before the ignition timing, the fuel injection is divided into a plurality of times, the start of the injection tip of the injection start timing and the later injection of the injection A direct-injection spark-ignition internal combustion engine characterized in that the lift amount of the valve body is reduced in accordance with an increase in engine speed so as to keep the injection interval with the time constant.
上記点火プラグは、上記中空円錐状の燃料噴霧の外縁に点火するように配置されることを特徴とする請求項に記載の直噴火花点火式内燃機関。 2. The direct injection spark ignition internal combustion engine according to claim 1 , wherein the spark plug is arranged to ignite an outer edge of the hollow conical fuel spray. 上記制御部は、上記機関始動時には、各燃料噴射の噴射時間が一定となるように、上記燃料噴射弁の動作を制御することを特徴とする請求項1又は2に記載の直噴火花点火式内燃機関。 3. The direct injection spark ignition type according to claim 1, wherein the control unit controls the operation of the fuel injection valve so that an injection time of each fuel injection becomes constant when the engine is started. 4. Internal combustion engine.
JP2008241974A 2008-09-22 2008-09-22 Direct-injection spark ignition internal combustion engine Expired - Fee Related JP5088282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008241974A JP5088282B2 (en) 2008-09-22 2008-09-22 Direct-injection spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008241974A JP5088282B2 (en) 2008-09-22 2008-09-22 Direct-injection spark ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010071250A JP2010071250A (en) 2010-04-02
JP5088282B2 true JP5088282B2 (en) 2012-12-05

Family

ID=42203260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008241974A Expired - Fee Related JP5088282B2 (en) 2008-09-22 2008-09-22 Direct-injection spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP5088282B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011086350A1 (en) * 2011-11-15 2013-05-16 Robert Bosch Gmbh Method for operating a direct-injection internal combustion engine
JP6098489B2 (en) * 2013-11-25 2017-03-22 マツダ株式会社 Control unit for direct injection gasoline engine
JP6098648B2 (en) * 2015-01-23 2017-03-22 マツダ株式会社 Fuel injection control device for direct injection engine
JP6866754B2 (en) 2016-05-17 2021-04-28 トヨタ自動車株式会社 Control device for compression ignition type internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09317510A (en) * 1996-05-27 1997-12-09 Yamaha Motor Co Ltd Controller for stopping/operating multi-cylinder engine
JP3852277B2 (en) * 2000-10-04 2006-11-29 日産自動車株式会社 Combustion control device for internal combustion engine
JP3571014B2 (en) * 2001-08-30 2004-09-29 本田技研工業株式会社 Automatic stop / start control device for internal combustion engine
JP4548204B2 (en) * 2005-04-27 2010-09-22 日産自動車株式会社 In-cylinder injection internal combustion engine

Also Published As

Publication number Publication date
JP2010071250A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
JP3975702B2 (en) Control device for self-igniting engine
JP4424147B2 (en) Exhaust gas purification device for internal combustion engine
JP5238097B2 (en) Method of selecting between two operating modes in a diesel-type dual fuel internal combustion engine and a diesel-type dual fuel internal combustion engine operable according to such a method
US8082093B2 (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
JP4736518B2 (en) In-cylinder direct injection internal combustion engine control device
JP6172375B2 (en) Control unit for direct injection gasoline engine
US10436170B2 (en) Internal combustion engine control device and internal combustion engine control method
EP3533987A1 (en) Premixed compression ignition engine and method for controlling premixed compression ignition engine
US20090177364A1 (en) Fuel injection control method for a direct injection spark ignition internal combustion engine
JP2009185688A (en) Direct-injection spark-ignition internal combustion engine
JP5088282B2 (en) Direct-injection spark ignition internal combustion engine
JP2006328999A (en) Premixed compression self-ignition type internal combustion engine
JPH1182139A (en) Fuel injection control device for internal combustion engine
JP4552660B2 (en) Compression ignition internal combustion engine
JP4244745B2 (en) In-cylinder direct injection gasoline engine
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP2002276442A (en) Combustion control device for internal combustion engine
JP2009156045A (en) Fuel injection control device of engine
JP3852277B2 (en) Combustion control device for internal combustion engine
JP2009185687A (en) Direct-injection spark-ignition internal combustion engine
EP3460223A1 (en) Internal combustion engine control device
JP2006336502A (en) Cylinder injection internal combustion engine
JP2010007584A (en) Fuel injection control device
JP2000179441A (en) Direct cylinder inside injection type spark ignition engine
JP2002285844A (en) Compression self-ignition type internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5088282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees