JP2009183879A - Substrate sheet for separation membrane, manufacturing method thereof and separation membrane laminated sheet - Google Patents

Substrate sheet for separation membrane, manufacturing method thereof and separation membrane laminated sheet Download PDF

Info

Publication number
JP2009183879A
JP2009183879A JP2008027119A JP2008027119A JP2009183879A JP 2009183879 A JP2009183879 A JP 2009183879A JP 2008027119 A JP2008027119 A JP 2008027119A JP 2008027119 A JP2008027119 A JP 2008027119A JP 2009183879 A JP2009183879 A JP 2009183879A
Authority
JP
Japan
Prior art keywords
separation membrane
fiber
sheet
fibers
fused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008027119A
Other languages
Japanese (ja)
Inventor
Masaaki Kawabe
雅章 川部
Takashi Tarao
隆 多羅尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2008027119A priority Critical patent/JP2009183879A/en
Publication of JP2009183879A publication Critical patent/JP2009183879A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate sheet for separation membrane which has both of such smoothness as to produce no pin-hole in a separation membrane and air permeability sufficient for providing excellent gas diffusion property, to provide a manufacturing method of the substrate sheet for separation membrane, and to provide a separation membrane laminated sheet using the substrate sheet for separation membrane. <P>SOLUTION: Extra-fine fibers having an average fiber diameter of ≤1 μm are fused and fixed on one surface of a support fiber sheet essentially composed of fused fibers by the fused fibers. The substrate sheet for separation membrane can be manufactured by laminating the extra-fine fibers having the average fiber diameter of ≤1 μm on the one surface of the support fiber sheet essentially composed of the fused fibers, thereafter, by pressing the extra-fine fibers at a fusing point or above of the fused fibers and by fusing and fixing the extra-fine fibers with the fused fibers. Further, in the separation membrane laminated sheet, the separation membrane is laminated on the extra-fine fiber side surface of the substrate sheet for separation membrane. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は分離膜用基材シート、その製造方法並びに分離膜積層シートに関する。より具体的には、酸素ガス、窒素ガス或いは水素ガスなどのガス分離膜を支持できる基材シート、その製造方法並びに分離膜積層シートに関する。   The present invention relates to a base sheet for a separation membrane, a production method thereof, and a separation membrane laminated sheet. More specifically, the present invention relates to a base sheet that can support a gas separation membrane such as oxygen gas, nitrogen gas, or hydrogen gas, a manufacturing method thereof, and a separation membrane laminated sheet.

ガス分離膜は薄くて脆いため、ガス分離膜を基材シートで支持することが一般的に行われている。このような基材シートとして微多孔膜が使用されているが、微多孔膜は通気性が低く、ガスの拡散性に問題があるため、不織布からなる基材シートが提案されている。   Since the gas separation membrane is thin and brittle, it is generally performed to support the gas separation membrane with a base sheet. A microporous film is used as such a base sheet. However, since the microporous film has low air permeability and a problem in gas diffusibility, a base sheet made of a nonwoven fabric has been proposed.

例えば、「少なくとも、製膜側の表面層が、円形断面繊維よりも繊維比表面積の大きい、繊度が1.0〜6.0デニールの異形断面繊維を主体とする繊維よりなる分離膜支持体」が提案されている(特許文献1)。この分離膜支持体は「円形断面繊維よりも繊維比表面積の大きい異形断面繊維を主体とする繊維よりなる第1のウェブを形成し、これとは別に、円形断面繊維を主体とする繊維よりなる第2のウェブを形成し、しかる後、これら第1および第2ウェブを積層し加熱カレンダー処理を施すことにより、少なくとも一方の表面から、異形断面繊維を主体とする繊維からなる表面層および円形断面繊維を主体とする繊維からなる層をこの順に有する不織布として分離膜支持体を得る」ことを開示している。この分離膜支持体は異形断面繊維を使用しているものの、繊度が1.0〜6.0デニールと繊維が太いため平滑性に劣り、分離膜にピンホールが生じやすいものであった。そこで、平滑性を高めるために加熱カレンダー処理条件を強くすると、分離膜支持体の通気性を著しく低下させてしまい、ガスの拡散性に問題が生じるものであった。   For example, “a separation membrane support comprising fibers mainly composed of irregular cross-section fibers having a fiber specific surface area larger than that of circular cross-section fibers and having a fineness of 1.0 to 6.0 denier” Has been proposed (Patent Document 1). This separation membrane support “forms a first web composed mainly of a modified cross-section fiber having a larger fiber specific surface area than a circular cross-section fiber, and is composed of a fiber composed mainly of a circular cross-section fiber. A second web is formed, and then the first and second webs are laminated and subjected to a calendering treatment, so that a surface layer and a circular cross section composed of fibers mainly composed of irregular cross-section fibers are formed from at least one surface. It is disclosed that a separation membrane support is obtained as a nonwoven fabric having layers composed of fibers mainly composed of fibers in this order. Although this separation membrane support uses irregular cross-section fibers, the fineness is 1.0 to 6.0 denier and the fibers are thick, so that the smoothness is inferior and pinholes are likely to occur in the separation membrane. Therefore, if the heating calendering conditions are increased to improve the smoothness, the air permeability of the separation membrane support is remarkably lowered, causing a problem in gas diffusibility.

また、水素分離膜構造体として、「水素分離膜と、該水素分離膜を支持する気体透過性支持体とを備える水素分離膜構造体において、0.3〜8μmの範囲の厚さを備える水素分離膜が、フィブリル化された繊維をバインダーにより一体化してなる不織布の支持体に接合された水素分離膜構造体」が提案されている(特許文献2)。この支持体はフィブリル化された繊維をバインダーにより一体化してなる不織布からなるため、支持体表面から突出した繊維が存在しやすく、その繊維によって水素分離膜が破損し、ピンホールが生じやすいものであった。そこで、繊維の突出を抑えるためにバインダー量を多くすると、支持体の通気性を著しく低下させてしまい、ガスの拡散性に問題が生じるものであった。   Further, as a hydrogen separation membrane structure, “a hydrogen separation membrane structure comprising a hydrogen separation membrane and a gas permeable support for supporting the hydrogen separation membrane, a hydrogen having a thickness in the range of 0.3 to 8 μm. A hydrogen separation membrane structure in which a separation membrane is bonded to a nonwoven fabric support formed by integrating fibrillated fibers with a binder has been proposed (Patent Document 2). Since this support is made of a nonwoven fabric in which fibrillated fibers are integrated with a binder, fibers protruding from the surface of the support are likely to exist, and the hydrogen separation membrane is damaged by the fibers and pinholes are likely to occur. there were. Therefore, if the amount of the binder is increased in order to suppress the protrusion of the fiber, the air permeability of the support is remarkably lowered, which causes a problem in gas diffusibility.

特開平11−347383号公報(請求項1、請求項5、請求項9、請求項11)Japanese Patent Laid-Open No. 11-347383 (Claim 1, Claim 5, Claim 9, Claim 11) 特開2003−320214号公報(請求項1、段落番号0012)JP 2003-320214 A (Claim 1, paragraph number 0012)

本発明は上述のような問題点を解決するためになされたものである。つまり、分離膜にピンホールを発生させることのない平滑性と、ガス拡散性に優れる十分な通気性の両方を備えた分離膜用基材シート、その製造方法並びに分離膜積層シートを提供することを目的とする。   The present invention has been made to solve the above-described problems. That is, to provide a base sheet for a separation membrane that has both smoothness that does not cause pinholes in the separation membrane and sufficient air permeability that is excellent in gas diffusibility, a manufacturing method thereof, and a separation membrane laminated sheet With the goal.

本発明の請求項1にかかる発明は、「融着繊維を主体とする支持繊維シートの片面に、平均繊維径1μm以下の極細繊維が、前記融着繊維により融着固定されていることを特徴とする、分離膜用基材シート。」である。   The invention according to claim 1 of the present invention is characterized in that “ultrafine fibers having an average fiber diameter of 1 μm or less are fused and fixed on one side of a supporting fiber sheet mainly composed of fused fibers by the fused fibers. "A base material sheet for a separation membrane."

本発明の請求項2にかかる発明は、「融着繊維が低融点成分と高融点成分とを含み、低融点成分が繊維表面に露出した複合融着繊維からなることを特徴とする、請求項1記載の分離膜用基材シート。」である。   The invention according to claim 2 of the present invention is characterized in that "the fusion fiber is composed of a composite fusion fiber including a low melting point component and a high melting point component, and the low melting point component is exposed on the fiber surface. 1. The separation membrane substrate sheet according to 1.

本発明の請求項3にかかる発明は、「極細繊維が静電紡糸法により得られたものであることを特徴とする、請求項1又は請求項2に記載の分離膜用基材シート。」である。   The invention according to claim 3 of the present invention is “the substrate sheet for a separation membrane according to claim 1 or 2, wherein the ultrafine fibers are obtained by an electrostatic spinning method”. It is.

本発明の請求項4にかかる発明は、「極細繊維量が1mあたり500mg以下であることを特徴とする、請求項1〜請求項3のいずれかに記載の分離膜用基材シート。」である。 The invention according to claim 4 of the present invention is "the substrate sheet for a separation membrane according to any one of claims 1 to 3, wherein the amount of ultrafine fibers is 500 mg or less per 1 m 2. " It is.

本発明の請求項5にかかる発明は、「融着繊維を主体とする支持繊維シートの片面に、平均繊維径1μm以下の極細繊維を積層した後、前記融着繊維の融点以上で加圧し、前記融着繊維により前記極細繊維を融着固定することを特徴とする、分離膜用基材シートの製造方法。」である。   The invention according to claim 5 of the present invention is “after laminating ultrafine fibers having an average fiber diameter of 1 μm or less on one side of a supporting fiber sheet mainly composed of fused fibers, and then pressurizing at a melting point or higher of the fused fibers, A method for producing a base sheet for a separation membrane, wherein the ultrafine fibers are fused and fixed with the fused fibers. "

本発明の請求項6にかかる発明は、「静電紡糸法により得た極細繊維を、直接支持繊維シートに積層することを特徴とする、請求項5に記載の分離膜用基材シートの製造方法。」である。   The invention according to claim 6 of the present invention is “Manufacturing of substrate sheet for separation membrane according to claim 5, characterized in that ultrafine fibers obtained by an electrostatic spinning method are directly laminated on a supporting fiber sheet. Method. "

本発明の請求項7にかかる発明は、「請求項1〜請求項4のいずれかに記載の分離膜用基材シートの極細繊維側表面に、分離膜が積層されていることを特徴とする分離膜積層シート。」である。   The invention according to claim 7 of the present invention is characterized in that a separation membrane is laminated on the surface of the ultrafine fiber side of the base sheet for separation membrane according to any one of claims 1 to 4. Separation membrane laminated sheet. "

本発明の請求項1にかかる発明は、平均繊維径が1μm以下の極細繊維を融着固定しているため、分離膜にピンホールが発生することのない平滑性を有している。また、極細繊維によって支持繊維シートの見掛密度が極端に高くなったり、支持繊維シートの空隙が極細繊維で満たされる訳ではないため、優れた通気性を発揮できる。   The invention according to claim 1 of the present invention has smoothness in which pinholes are not generated in the separation membrane because the ultrafine fibers having an average fiber diameter of 1 μm or less are fused and fixed. Moreover, since the apparent density of the support fiber sheet is not extremely increased by the ultrafine fibers, and the voids of the support fiber sheet are not filled with the ultrafine fibers, excellent air permeability can be exhibited.

本発明の請求項2にかかる発明は、複合融着繊維を使用し、複合融着繊維の低融点成分のみで極細繊維を融着固定でき、極細繊維を融着固定する際に支持繊維シートの見掛密度が極端に高くならないため、優れた通気性を発揮しやすい。   In the invention according to claim 2 of the present invention, the composite fiber is used, the ultrafine fiber can be fused and fixed only with the low melting point component of the composite melt fiber, and when the ultrafine fiber is fused and fixed, Since the apparent density does not become extremely high, excellent air permeability is easily exhibited.

本発明の請求項3にかかる発明は、静電紡糸法により得られた極細繊維は繊維長が長く、支持繊維シートの空隙に極細繊維が埋没しにくいため、平滑性及び通気性に優れている。   In the invention according to claim 3 of the present invention, the ultrafine fiber obtained by the electrospinning method has a long fiber length, and the ultrafine fiber is difficult to be buried in the voids of the support fiber sheet, so that it is excellent in smoothness and air permeability. .

本発明の請求項4にかかる発明は、極細繊維量が1mあたり500mg以下と少なく、極細繊維が通気性を阻害しないため、通気性に優れている。また、極細繊維が確実に融着繊維によって融着固定され、極細繊維自体が毛羽立たないため、分離膜のピンホールを発生させにくい。 The invention according to claim 4 of the present invention is excellent in air permeability since the amount of ultrafine fibers is as small as 500 mg or less per 1 m 2 and the ultrafine fibers do not impair the air permeability. Further, since the ultrafine fibers are surely fused and fixed by the fusion fibers and the ultrafine fibers themselves are not fluffed, pinholes in the separation membrane are hardly generated.

本発明の請求項5にかかる発明は、請求項1にかかる、平滑でしかも通気性に優れる分離膜用基材シートを製造することができる。   The invention according to claim 5 of the present invention can produce the substrate sheet for separation membrane according to claim 1, which is smooth and excellent in air permeability.

本発明の請求項6にかかる発明は、請求項3にかかる、より平滑でしかも通気性に優れる分離膜用基材シートを製造することができる。   The invention concerning Claim 6 of this invention can manufacture the base material sheet for separation membrane concerning Claim 3 which is smoother and excellent in air permeability.

本発明の請求項7にかかる発明は、請求項1〜請求項4にかかる分離膜用基材シートの極細繊維側表面に分離膜が積層されているため、ピンホールがなく、しかも通気性に優れるものである。   In the invention according to claim 7 of the present invention, since the separation membrane is laminated on the ultrafine fiber side surface of the separation membrane substrate sheet according to claims 1 to 4, there is no pinhole, and air permeability is achieved. It is excellent.

本発明の分離膜用基材シート(以下、単に「基材シート」と表記する)は基材シートに機械的強度を付与するとともに、極細繊維を融着固定できるように、支持繊維シートを備えている。この支持繊維シートは機械的強度に優れているように、融着繊維を主体とし、融着繊維が融着している。本発明における主体とは、支持繊維シートを構成する繊維中、50mass%以上が融着繊維であることを意味する。融着繊維が多ければ多い程、極細繊維を確実に融着固定でき、極細繊維の毛羽立ちを抑制できる結果、分離膜の破損を抑制できるため、融着繊維は支持繊維シートを構成する繊維中、70mass%以上を占めているのが好ましく、90mass%以上を占めているのがより好ましく、100mass%を占めているのが最も好ましい。   The base material sheet for separation membrane of the present invention (hereinafter simply referred to as “base material sheet”) is provided with a support fiber sheet so as to impart mechanical strength to the base material sheet and to allow fusion and fixing of ultrafine fibers. ing. The supporting fiber sheet is mainly composed of fused fibers so that the mechanical strength is excellent, and the fused fibers are fused. The main body in the present invention means that 50 mass% or more of the fibers constituting the supporting fiber sheet is a fused fiber. As the number of fusion fibers increases, the fine fibers can be surely fused and fixed, and the fuzz of the ultrafine fibers can be suppressed, so that the separation membrane can be prevented from being damaged. It preferably occupies 70 mass% or more, more preferably occupies 90 mass% or more, and most preferably occupies 100 mass%.

支持繊維シートを構成する融着繊維は特に限定するものではないが、低融点成分と高融点成分とを含み、低融点成分が繊維表面に露出した複合融着繊維からなるのが好ましい。このような複合融着繊維であると、極細繊維を融着固定させるために加熱及び加圧したとしても、低融点成分のみの溶融で留まり、支持繊維シートの見掛密度を著しく増加させず、通気性を損なわないためである。このような複合融着繊維としては、例えば、繊維横断面が芯鞘型(芯が偏っているかどうかは問わない)、海島型、サイドバイサイド型、多層貼り合わせ型などを挙げることができ、これらの中でも低融点成分が繊維表面全て(端部を除く)を占めることができ、融着固定力に優れる芯鞘型又は海島型であるのが好ましい。   The fusion fiber constituting the support fiber sheet is not particularly limited, but preferably comprises a composite fusion fiber including a low melting point component and a high melting point component, and the low melting point component exposed on the fiber surface. Even if it is heated and pressurized to fuse and fix the ultrafine fibers, such a composite fused fiber stays in the melting of only the low melting point component, without significantly increasing the apparent density of the supporting fiber sheet, This is because the air permeability is not impaired. Examples of such composite fused fibers include a core-sheath type (whether the core is biased), a sea-island type, a side-by-side type, a multi-layer bonded type, etc. Among these, the low melting point component can occupy the entire fiber surface (excluding the ends), and is preferably a core-sheath type or sea-island type that is excellent in fusion fixing strength.

なお、低融点成分と高融点成分との融点差は特に限定するものではないが、低融点成分で融着させる際の熱によって高融点成分が溶融しにくいように、10℃以上であるのが好ましく、15℃以上であるのがより好ましく、20℃以上であるのが更に好ましい。低融点成分と高融点成分との組み合わせは特に限定するものではないが、例えば、低密度ポリエチレン−ポリプロピレン、高密度ポリエチレン−ポリプロピレン、プロピレン共重合体−ポリプロピレン、共重合ポリエステル−ポリエステル、6ナイロン−66ナイロン、共重合ナイロン−6ナイロン、6ナイロン−ポリエステルなど従来から知られている組み合わせを挙げることができる。   In addition, the melting point difference between the low melting point component and the high melting point component is not particularly limited, but it is 10 ° C. or higher so that the high melting point component is not easily melted by heat at the time of fusing with the low melting point component. Preferably, it is 15 ° C. or higher, more preferably 20 ° C. or higher. The combination of the low melting point component and the high melting point component is not particularly limited. For example, low density polyethylene-polypropylene, high density polyethylene-polypropylene, propylene copolymer-polypropylene, copolymer polyester-polyester, 6 nylon-66. Conventionally known combinations such as nylon, copolymer nylon-6 nylon, and 6 nylon-polyester can be listed.

また、低融点成分と高融点成分との体積比率は特に限定するものではないが、低融点成分による融着固定力と高融点成分による繊維形態維持性能のバランスに優れるように、30:70〜70:30であるのが好ましく、40:60〜60:40であるのがより好ましい。更に、低融点成分の繊維表面における露出の程度も特に限定するものではないが、極細繊維の融着固定力に優れるように、繊維表面(端部を除く)の50%以上を占めているのが好ましく、70%以上を占めているのがより好ましく、90%以上を占めているのが更に好ましく、100%を占めているのが最も好ましい。   Further, the volume ratio of the low melting point component and the high melting point component is not particularly limited, but 30:70 to be excellent in the balance between the fusion fixing force by the low melting point component and the fiber shape maintaining performance by the high melting point component. 70:30 is preferable, and 40:60 to 60:40 is more preferable. Further, the degree of exposure of the low melting point component on the fiber surface is not particularly limited, but it accounts for 50% or more of the fiber surface (excluding the end) so that the fusion fixing force of the ultrafine fiber is excellent. It is preferable that it occupies 70% or more, more preferably 90% or more, and most preferably 100%.

本発明の融着繊維の平均繊維径は特に限定するものではないが、融着繊維の平均繊維径が小さければ小さい程、支持繊維シートの平滑性を高めることができ、結果として基材シートの平滑性を高めることができるため、50μm以下であるのが好ましく、20μm以下であるのがより好ましい。他方、基材シートに機械的強度を付与できるように、1μmよりも太いのが好ましく、5μm以上であるのがより好ましい。また、繊維長も特に限定するものではないが、繊維端部の突出が多数できないように1mm以上であるのが好ましく、5mm以上であるのがより好ましい。   The average fiber diameter of the fusion fiber of the present invention is not particularly limited. However, the smaller the average fiber diameter of the fusion fiber, the higher the smoothness of the support fiber sheet. Since smoothness can be improved, the thickness is preferably 50 μm or less, and more preferably 20 μm or less. On the other hand, it is preferably thicker than 1 μm and more preferably 5 μm or more so that mechanical strength can be imparted to the base sheet. Further, the fiber length is not particularly limited, but is preferably 1 mm or more, more preferably 5 mm or more so that a large number of fiber end portions cannot be projected.

なお、本発明の支持繊維シートは前述のような融着繊維に加えて、公知の繊維を含んでいることもできる。また、支持繊維シートはどのような態様でも良く、特に限定するものではないが、例えば、不織布、織物であることができる。これらの中でも不織布は緻密な構造を採ることができ、より平滑な基材シートであることができるため好適である。この好適である不織布としては、例えば、融着繊維で融着した融着不織布、水流又はニードルで絡合した絡合不織布、スパンボンド不織布、メルトブロー不織布を挙げることができる。これらの中でも機械的強度の優れる融着繊維で融着した融着不織布であるのが好ましい。   In addition, the support fiber sheet of this invention can also contain a well-known fiber in addition to the above fusion fibers. Further, the supporting fiber sheet may be in any form, and is not particularly limited. For example, the supporting fiber sheet can be a nonwoven fabric or a woven fabric. Among these, the nonwoven fabric is suitable because it can take a dense structure and can be a smoother substrate sheet. As this suitable nonwoven fabric, there can be mentioned, for example, a fused nonwoven fabric fused with a fused fiber, an entangled nonwoven fabric entangled with a water stream or a needle, a spunbond nonwoven fabric, and a melt blown nonwoven fabric. Among these, a fused nonwoven fabric fused with a fused fiber having excellent mechanical strength is preferable.

本発明の基材シートは上述のような支持繊維シートの片面に、極細繊維が融着繊維により融着固定されたものである。そのため、分離膜にピンホールが発生することのない平滑性が付与されている。なお、極細繊維によって支持繊維シートが押し潰されて見掛密度が極端に高くなったり、支持繊維シートの空隙が極細繊維で満たされる訳ではないため、優れた通気性を発揮できる基材シートである。   The base sheet of the present invention is obtained by fusing and fixing ultrafine fibers with fusing fibers on one side of the support fiber sheet as described above. Therefore, the smoothness which does not generate a pinhole in the separation membrane is given. In addition, since the support fiber sheet is crushed by the ultrafine fibers and the apparent density becomes extremely high, or the voids of the support fiber sheet are not filled with the ultrafine fibers, it is a base sheet that can exhibit excellent air permeability. is there.

このように、極細繊維は基材シートに平滑性を付与する作用を奏するため、平均繊維径が小さい方が好ましい。より具体的には、1μm以下である必要があり、0.6μm以下であるのが好ましく、0.4μm以下であるのがより好ましく、0.2μm以下であるのが更に好ましい。なお、極細繊維の平均繊維径の下限は特に限定するものではないが、0.01μm以上であるのが適当である。本発明における平均繊維径は、走査型電子顕微鏡写真における繊維の太さが1mm〜5mmとなる倍率で撮影した走査型電子顕微鏡写真から測定した、50本の繊維の横断面の直径(繊維径)の算術平均値を意味する。   Thus, since an ultrafine fiber has the effect | action which provides smoothness to a base material sheet, the one where an average fiber diameter is smaller is preferable. More specifically, it needs to be 1 μm or less, preferably 0.6 μm or less, more preferably 0.4 μm or less, and still more preferably 0.2 μm or less. The lower limit of the average fiber diameter of the ultrafine fibers is not particularly limited, but is suitably 0.01 μm or more. The average fiber diameter in the present invention is the diameter (fiber diameter) of the cross section of 50 fibers measured from a scanning electron micrograph taken at a magnification such that the fiber thickness in the scanning electron micrograph is 1 mm to 5 mm. Means the arithmetic mean of

極細繊維の繊維長は特に限定するものではないが、繊維長が長ければ長い程、極細繊維が支持繊維シートの空隙に埋没しにくく、平滑な表面とすることができるため、10μm以上であるのが好ましく、50μm以上であるのがより好ましい。理想的には連続繊維である。この繊維長は500〜5000倍の走査型電子顕微鏡写真から測定した50本の繊維の長さの算術平均値を意味する。この測定範囲で繊維の端部を確認することができず、繊維長を測定不可能場合には、連続繊維とみなす。   The fiber length of the ultrafine fiber is not particularly limited, but the longer the fiber length, the harder the ultrafine fiber is buried in the voids of the support fiber sheet, and the smooth surface can be obtained. Is preferable, and it is more preferable that it is 50 micrometers or more. Ideally a continuous fiber. This fiber length means the arithmetic average value of the length of 50 fibers measured from the scanning electron micrograph of 500-5000 times. If the end of the fiber cannot be confirmed in this measurement range and the fiber length cannot be measured, it is regarded as a continuous fiber.

本発明の極細繊維は平均繊維径が1μm以下である限り、どのような方法で得られたものであっても良い。例えば、静電紡糸法により得たもの、海島型複合繊維から海成分を除去して得たもの、メルトブロー法により得たもの、バクテリアセルロース繊維、或いは2,2,6,6−テトラメチルピペリジン−1−オキシルを酸化触媒として用いた植物由来のセルロース繊維などを挙げることができる。これらの中でも静電紡糸法により得られた極細繊維は繊維長が長く、支持繊維シートの空隙に極細繊維が埋没しにくいことから、平滑性に優れる基材シートを製造しやすいため好ましい。   The ultrafine fibers of the present invention may be obtained by any method as long as the average fiber diameter is 1 μm or less. For example, those obtained by electrospinning method, those obtained by removing sea components from sea-island type composite fibers, those obtained by melt blow method, bacterial cellulose fibers, or 2,2,6,6-tetramethylpiperidine- Examples thereof include plant-derived cellulose fibers using 1-oxyl as an oxidation catalyst. Among these, the ultrafine fibers obtained by the electrospinning method are preferable because the fiber length is long and the ultrafine fibers are not easily embedded in the gaps of the supporting fiber sheet, and thus it is easy to produce a base sheet having excellent smoothness.

この極細繊維はどのような樹脂から構成されていても良く、特に限定するものではないが、例えば、ポリエチレングリコール、部分けん化ポリビニルアルコール、完全けん化ポリビニルアルコール、ポリビニルピロリドン、ポリ乳酸、ポリグリコール酸、ポリアクリロニトリル、ポリメタクリル酸、ポリメタクリル酸メチル、ポリカーボネート、ポリスチレン、ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホンなど1種類以上から構成することができる。なお、極細繊維は融着繊維により融着固定されるため、融着繊維で融着固定する際の熱による影響を受けないように、融着繊維の融着する成分(特には低融点成分)よりも融点、軟化点、又は分解温度の高い樹脂から構成されているのが好ましい。   This ultrafine fiber may be composed of any resin and is not particularly limited. For example, polyethylene glycol, partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, polyvinyl pyrrolidone, polylactic acid, polyglycolic acid, poly It can be composed of one or more types such as acrylonitrile, polymethacrylic acid, polymethyl methacrylate, polycarbonate, polystyrene, polyamide, polyimide, polyethersulfone, and polysulfone. In addition, since the ultrafine fiber is fused and fixed by the fusion fiber, the component (particularly, the low melting point component) of the fusion fiber is fused so as not to be affected by heat when the fusion fiber is fused and fixed. It is preferable that the resin is composed of a resin having a higher melting point, softening point, or decomposition temperature.

なお、極細繊維は1mあたり500mg以下の質量であるのが好ましい。極細繊維量が少なく、極細繊維が通気性を阻害しないため、通気性に優れているとともに、極細繊維同士の重なりが少なく、融着繊維によって極細繊維を確実に融着固定できるため、極細繊維自体が毛羽立たず、分離膜のピンホールを発生させにくいためである。より好ましくは200mg以下であり、更に好ましくは100mg以下である。一方、極細繊維は前述の通り、基材シートに平滑性を付与する作用をするため、5mg以上であるのが好ましく、10mg以上であるのがより好ましい。 The ultrafine fibers preferably have a mass of 500 mg or less per 1 m 2 . Since the amount of ultrafine fibers is small and the ultrafine fibers do not impair the breathability, they have excellent breathability, and there is little overlap between the ultrafine fibers, and the ultrafine fibers can be securely fused and fixed by the fused fibers. This is because there is no fluffing and it is difficult to generate pinholes in the separation membrane. More preferably, it is 200 mg or less, More preferably, it is 100 mg or less. On the other hand, as described above, the ultrafine fiber has an effect of imparting smoothness to the substrate sheet, and is preferably 5 mg or more, and more preferably 10 mg or more.

このような極細繊維は支持繊維シートの片面で融着固定されているが、必要であれば、両面ともに極細繊維が融着固定されていても良い。なお、極細繊維が融着繊維で融着固定された場合、その融着固定された箇所における極細繊維は融着繊維に完全に埋没した状態にあっても、一部が埋没した状態にあっても、埋没しておらず、接点で融着した状態にあっても良い。   Such ultrafine fibers are fused and fixed on one side of the support fiber sheet, but if necessary, the ultrafine fibers may be fused and fixed on both sides. In addition, when the ultrafine fiber is fused and fixed with the fusion fiber, the ultrafine fiber at the fusion-fixed portion is in a state of being partially buried even if it is completely buried in the fusion fiber. However, it may be in a state where it is not buried and is fused at the contact point.

このような本発明の基材シートは、例えば、融着繊維を主体とする支持繊維シートの片面に、平均繊維径1μm以下の極細繊維を積層した後、前記融着繊維の融点以上で加圧し、前記融着繊維により前記極細繊維を融着固定することによって製造することができる。   Such a base sheet of the present invention is obtained by, for example, laminating ultrafine fibers having an average fiber diameter of 1 μm or less on one side of a supporting fiber sheet mainly composed of fused fibers, and then pressurizing at a temperature equal to or higher than the melting point of the fused fibers. , And can be produced by fusing and fixing the ultrafine fibers with the fusing fibers.

より具体的には、まず、前述のような融着繊維を主体とする支持繊維シートを準備する。前述の通り、融着繊維が融着した融着不織布を準備するのが好ましい。また、極細繊維を融着固定する際に支持繊維シートの見掛密度が極端に高くならず、優れた通気性を発揮しやすいように、低融点成分と高融点成分とを含み、低融点成分が繊維表面に露出した複合融着繊維を使用するのが好ましい。なお、支持繊維シートとして、熱カレンダーローラ等によって加熱加圧して平滑性を高めたり、毛羽を抑えたものを使用することができる。   More specifically, first, a support fiber sheet mainly composed of the above-described fused fiber is prepared. As described above, it is preferable to prepare a fused nonwoven fabric in which fused fibers are fused. In addition, the low-melting-point component includes a low-melting-point component and a high-melting-point component so that the apparent density of the support fiber sheet does not become extremely high when the ultrafine fibers are fused and fixed, and excellent air permeability is easily exhibited. It is preferable to use a composite fused fiber in which is exposed on the fiber surface. In addition, as a support fiber sheet, the thing which heat-pressed with the heat | fever calendar roller etc., improved smoothness, or suppressed fluff can be used.

次いで、この支持繊維シートの片面に極細繊維を積層する。なお、通気性を阻害せず、通気性に優れているとともに、極細繊維同士の重なりが少なく、融着繊維によって極細繊維を確実に融着固定できて、極細繊維自体が毛羽立たず、分離膜のピンホールを発生させにくいように、極細繊維は1mあたり500mg以下の質量であるのが好ましい。 Next, ultrafine fibers are laminated on one side of the supporting fiber sheet. In addition, air permeability is not hindered, air permeability is excellent, and there is little overlap between the ultrafine fibers, and the ultrafine fibers can be securely fused and fixed by the fused fibers, the ultrafine fibers themselves are not fluffy, and the separation membrane It is preferable that the ultrafine fiber has a mass of 500 mg or less per 1 m 2 so that pinholes are hardly generated.

なお、積層方法は特に限定するものではないが、例えば、静電紡糸法により得た極細繊維を、直接支持繊維シートに積層する方法、極細繊維を分散させたスラリーを支持繊維シート上に漉き上げる方法、メルトブロー法により得た極細繊維を、直接支持繊維シートに積層する方法などを挙げることができる。これらの中でも静電紡糸法により得た極細繊維は繊維長が長く、支持繊維シートの空隙に極細繊維が埋没しにくいことから、平滑性に優れる基材シートを製造しやすいため好適である。   The lamination method is not particularly limited. For example, a method in which ultrafine fibers obtained by an electrospinning method are directly laminated on a support fiber sheet, and a slurry in which the ultrafine fibers are dispersed is sprinkled on the support fiber sheet. The method, the method of laminating | stacking the ultrafine fiber obtained by the melt blow method directly on a support fiber sheet, etc. can be mentioned. Among these, the ultrafine fibers obtained by the electrospinning method are preferable because the fiber length is long and the ultrafine fibers are not easily buried in the voids of the support fiber sheet, and thus it is easy to produce a base sheet having excellent smoothness.

この静電紡糸法は従来公知の方法であり、ポリマー溶液供給材料から紡糸空間へ供給したポリマー溶液に対して電界を作用させることにより、ポリマー溶液を繊維化する方法である。このポリマー溶液供給材料から紡糸空間へのポリマー溶液の供給は、例えば、1本又は2本以上のノズルで行うことができ、極細繊維が均一に分散した状態にあるように、ノズルを往復移動させるのが好ましい。特に、ノズルを長円状に循環移動させると、ノズルの移動速度を一定にできるため極細繊維を均一に分散させることができる(例えば、特開2006−112023号公報に開示の方法)。なお、ポリマー溶液は極細繊維の原料であるため、前述のような極細繊維構成材料を溶媒に溶解させたものである。また、電界は、ポリマー溶液供給材料側(例えば、ポリマー溶液供給材料自体、ポリマー溶液供給材料へのポリマーの供給路)とポリマー溶液供給材料と対向する捕集体側(例えば、捕集体自体、捕集体の裏面側に位置する対向電極)との間に電位差を設けることによって作用させることができる。   This electrostatic spinning method is a conventionally known method, in which a polymer solution is fiberized by applying an electric field to the polymer solution supplied from the polymer solution supply material to the spinning space. The polymer solution can be supplied from the polymer solution supply material to the spinning space with, for example, one or more nozzles, and the nozzles are reciprocated so that the ultrafine fibers are uniformly dispersed. Is preferred. In particular, when the nozzle is circulated and moved in an oval shape, the moving speed of the nozzle can be made constant, so that the ultrafine fibers can be uniformly dispersed (for example, the method disclosed in JP-A-2006-112023). In addition, since a polymer solution is a raw material for ultrafine fibers, the ultrafine fiber constituent material as described above is dissolved in a solvent. In addition, the electric field is applied to the polymer solution supply material side (for example, the polymer solution supply material itself, the polymer supply path to the polymer solution supply material) and the collector side facing the polymer solution supply material (for example, the collector itself, the collector). Can be made to act by providing a potential difference with the counter electrode located on the back surface side of the electrode.

このような静電紡糸法により得た極細繊維を直接支持繊維シートに積層するには、例えば、上述のようなポリマー溶液供給材料と対向する捕集体上に支持繊維シートを配置しておくことにより実施できる。このように、「直接」とは一旦極細繊維を集積し、シート化した後に支持繊維シート上に積層するのではなく、支持繊維シート上で極細繊維を集積して積層することをいう。   In order to laminate the ultrafine fibers obtained by such an electrospinning method directly on the support fiber sheet, for example, by placing the support fiber sheet on the collector facing the polymer solution supply material as described above. Can be implemented. Thus, “directly” means that the ultrafine fibers are not collected and laminated on the support fiber sheet, but are accumulated and laminated on the support fiber sheet.

次いで、融着繊維の融点以上で加圧して、融着繊維によって極細繊維を融着固定し、本発明の基材シートを製造することができる。好ましくは融点よりも5℃高い温度以上で加圧し、より好ましくは10℃高い温度以上で加圧し、更に好ましくは15℃高い温度以上で加圧する。融着繊維の融点はJIS K 7121−1987(プラスチックの転移温度測定方法)9.1(2)に規定されている熱流束DSC曲線の融解ピーク温度(Tpm)をいう。なお、融着繊維が低融点成分と高融点成分とを含む場合には、低融点成分の融点以上とする。 Next, pressurization is performed at a temperature equal to or higher than the melting point of the fused fiber, and the ultrafine fiber is fused and fixed with the fused fiber, whereby the base sheet of the present invention can be manufactured. The pressure is preferably higher than the temperature 5 ° C. higher than the melting point, more preferably higher than the temperature higher than 10 ° C., more preferably higher than the temperature higher than 15 ° C. The melting point of the fused fiber refers to the melting peak temperature (T pm ) of the heat flux DSC curve defined in JIS K 7121-1987 (Plastic Transition Temperature Measurement Method) 9.1 (2). When the fusion fiber contains a low melting point component and a high melting point component, the melting point of the low melting point component is set.

なお、加圧は極細繊維を融着固定できる加圧である限り、特に限定するものではない。この加圧力によって、融着繊維による極細繊維の融着固定状態が変化する。つまり、極細繊維が融着繊維に完全に埋没した状態から埋没しておらず接点で融着した状態まで変化する。前述のように、極細繊維量が1mあたり500mg以下と少ない場合には、加圧力が小さくても確実に極細繊維を融着固定することができ、しかも加圧による通気性の低下も低く抑えることができる。なお、この加圧は加熱と同時に実施することができるし、加熱した後に実施することもできる。いずれの場合であっても加圧は、例えば、平板プレス装置、ロールプレス装置によって実施することができる。加熱のみを行う場合には、例えば、オーブン、熱風透過型熱処理機、赤外線ヒータ、マイクロ波によって実施することができる。 The pressurization is not particularly limited as long as it is a pressurization capable of fusing and fixing ultrafine fibers. With this applied pressure, the fusion-fixed state of the ultrafine fibers by the fusion fibers changes. That is, the state changes from a state in which the ultrafine fiber is completely buried in the fusion fiber to a state in which the ultrafine fiber is not buried but is fused at the contact point. As described above, when the amount of ultrafine fibers is as small as 500 mg or less per 1 m 2 , the ultrafine fibers can be surely fused and fixed even if the applied pressure is small, and the decrease in air permeability due to pressurization is also kept low. be able to. In addition, this pressurization can be performed simultaneously with heating, and can also be performed after heating. In either case, the pressurization can be performed by, for example, a flat plate press device or a roll press device. When only heating is performed, for example, an oven, a hot air transmission heat treatment machine, an infrared heater, and a microwave can be used.

本発明の分離膜積層シートは前述のような基材シートの極細繊維側表面に分離膜が積層されたものであるため、ピンホールがなく、しかも通気性に優れるものである。なお、分離膜としては、従来から公知のものを使用することができ、例えば、酸素富化膜、窒素富化膜、水素分離膜、脱湿膜、有機ガス透過膜などを挙げることができる。本発明の基材シートを使用すれば、分離膜の厚さが1μm以下の超薄膜であったとしても、ピンホールがなく、通気性に優れるものであることができる。なお、分離膜積層シートは、例えば、公知の水面展開法、溶剤キャスト法で基材シートの極細繊維側表面に分離膜を積層して製造することができる。   Since the separation membrane laminated sheet of the present invention is obtained by laminating a separation membrane on the surface of the substrate sheet as described above, there is no pinhole and excellent air permeability. In addition, as a separation membrane, a conventionally well-known thing can be used, For example, an oxygen enriched membrane, a nitrogen enriched membrane, a hydrogen separation membrane, a dehumidification membrane, an organic gas permeable membrane etc. can be mentioned. If the substrate sheet of the present invention is used, even if the separation membrane is an ultra-thin film having a thickness of 1 μm or less, there can be no pinholes and excellent air permeability. In addition, a separation membrane lamination sheet can be manufactured by laminating | stacking a separation membrane on the ultrafine fiber side surface of a base material sheet by the well-known water surface expansion | deployment method and the solvent casting method, for example.

以下に本発明の実施例を記載するが、本発明は以下の実施例に限定されるものではない。なお、通気性はJIS L 1096:1999 8.27.1 A法(フラジール形法)に則って測定した値である。   Examples of the present invention will be described below, but the present invention is not limited to the following examples. The air permeability is a value measured according to JIS L 1096: 1999 8.27.1 A method (Fragile method).

(実施例1)
鞘成分が高密度ポリエチレン(融点:127℃、)からなり、芯成分がポリプロピレン(融点:165℃)からなる芯鞘型複合融着繊維(平均繊維径:10.6μm、繊維長:5mm、鞘成分と芯成分の体積比率=40:60、鞘成分が繊維表面100%を占める(両端部を除く))を用い、湿式法により繊維ウエブを形成した後、温度138℃に設定したオーブンに供給し、芯鞘型複合融着繊維の鞘成分で融着した湿式融着不織布(=支持繊維シート、目付:15g/m、厚さ:80μm、通気性:544cm/(cm・sec))を用意した。
Example 1
A core-sheath-type composite fused fiber (average fiber diameter: 10.6 μm, fiber length: 5 mm, sheath) whose sheath component is made of high-density polyethylene (melting point: 127 ° C.) and whose core component is polypropylene (melting point: 165 ° C.) After forming the fiber web by a wet method using the volume ratio of the component and the core component = 40: 60, and the sheath component occupying 100% of the fiber surface (excluding both ends), supply to an oven set at a temperature of 138 ° C. Wet non-woven fabric fused with the sheath component of the core-sheath type composite fusion fiber (= support fiber sheet, basis weight: 15 g / m 2 , thickness: 80 μm, air permeability: 544 cm 3 / (cm 2 · sec) ) Was prepared.

他方、重量平均分子量が40万のホモポリアクリロニトリルをジメチルホルムアミドに溶かして濃度10.5重量%溶液を作成し、静電紡糸用のポリマー溶液とした。   On the other hand, homopolyacrylonitrile having a weight average molecular weight of 400,000 was dissolved in dimethylformamide to prepare a solution having a concentration of 10.5% by weight as a polymer solution for electrospinning.

静電紡糸装置として、直径20cm、長さ40cmのアースされたステンレス製ドラムを捕集体兼対向電極とし、内径0.4mmの金属ノズルをポリマー溶液供給材料とするものを用意した。なお、前記金属ノズルは先端とドラム表面との距離が10cmとなるように設置した。   As an electrostatic spinning device, a grounded stainless steel drum having a diameter of 20 cm and a length of 40 cm was used as a collector and counter electrode, and a metal nozzle having an inner diameter of 0.4 mm was used as a polymer solution supply material. The metal nozzle was installed so that the distance between the tip and the drum surface was 10 cm.

次いで、前記湿式融着不織布をドラム表面に巻き付け、ドラムの長さ方向端部をテープで止めた後、温度20℃、相対湿度25%の環境下、金属ノズルからポリマー溶液を1g/時間の量で押し出しながら、金属ノズルに+12kVの直流高電圧を印加し、同時にドラムを一定速度(15rpm)で回転させ、前記湿式融着不織布上に、極細連続繊維(平均繊維径:400nm、融点:320℃)を直接積層し、湿式融着不織布−極細連続繊維積層シートを形成した。なお、極細連続繊維の積層量は50mg/mとした。また、ポリマー溶液を金属ノズルから押し出す際には、金属ノズルを一定速度(1cm/秒)で、ドラムの長さ方向に往復移動(往復幅:20cm)させた。 Next, the wet-bonded nonwoven fabric is wrapped around the drum surface, and the end in the longitudinal direction of the drum is fixed with tape, and then the polymer solution is supplied from a metal nozzle in an amount of 1 g / hour in an environment of a temperature of 20 ° C. and a relative humidity of 25%. While applying extrusion, a DC high voltage of +12 kV was applied to the metal nozzle, and at the same time, the drum was rotated at a constant speed (15 rpm). On the wet-bonded nonwoven fabric, ultrafine continuous fibers (average fiber diameter: 400 nm, melting point: 320 C.) was directly laminated to form a wet-fused nonwoven fabric-ultrafine continuous fiber laminated sheet. Incidentally, the amount of lamination of ultrafine continuous fibers was 50 mg / m 2. Moreover, when extruding the polymer solution from the metal nozzle, the metal nozzle was reciprocated in the length direction of the drum (reciprocal width: 20 cm) at a constant speed (1 cm / second).

次いで、この湿式融着不織布−極細連続繊維積層シートを温度135℃で加熱した後に、フラットプレス機により圧力50g/cmの条件で15秒間加圧し、湿式融着不織布(=支持繊維シート)の片面に極細連続繊維が融着固定された本発明の基材シート(通気性:167cm/(cm・sec))を製造した。この基材シートは図1に示すように、極細連続繊維が湿式融着不織布を構成する芯鞘型複合融着繊維との接触領域においてのみ、完全に埋没、一部が埋没、又は接点で融着固定された状態にあった。 Next, after this wet-bonded nonwoven fabric-extra-fine continuous fiber laminated sheet was heated at a temperature of 135 ° C., it was pressed with a flat press machine at a pressure of 50 g / cm 2 for 15 seconds to obtain a wet-bonded nonwoven fabric (= support fiber sheet). A base sheet of the present invention (breathability: 167 cm 3 / (cm 2 · sec)) in which ultrafine continuous fibers were fused and fixed on one side was produced. As shown in FIG. 1, this base sheet is completely buried, partially buried, or melted at a contact point only in the contact region with the core-sheath type composite fused fiber that constitutes the wet fused nonwoven fabric. It was in a fixed state.

そして、この基材シートを用い、分離膜積層シートを次の手順により作製した。   And using this base material sheet, the separation membrane lamination sheet was produced with the following procedure.

まず、ポリトリメチルシリルプロピンをヘキサンに溶解させ、水面展開用溶液とした。この溶液を、注射針を用いて純水面上に滴下して薄膜を形成した。そして、前記基材シートを純水中に浸漬し、純水中から斜め上方向にゆっくりと引き上げて、基材シートの極細連続繊維積層面上に前記薄膜(厚さ:約0.2μm)を積層し、風乾して、本発明の分離膜積層シートを製造した。この分離膜積層シートの分離膜を電子顕微鏡で観察したが、分離膜にピンホールは観察されず、平滑な表面を有していた。   First, polytrimethylsilylpropyne was dissolved in hexane to obtain a water surface developing solution. This solution was dropped on the pure water surface using an injection needle to form a thin film. And the said base material sheet is immersed in pure water, it pulls up diagonally upward from pure water slowly, and the said thin film (thickness: about 0.2 micrometer) is carried out on the ultrafine continuous fiber lamination surface of a base material sheet. It laminated | stacked and air-dried and the separation membrane laminated sheet of this invention was manufactured. The separation membrane of this separation membrane laminated sheet was observed with an electron microscope, but no pinholes were observed in the separation membrane, and it had a smooth surface.

(実施例2)
極細連続繊維の積層量を約20mg/mにしたこと以外は実施例1と同様にして、基材シートを作成した。この基材シートの通気度を測定したところ、412cm/(cm・sec)であり、通気性の高いものであった。なお、この基材シートにおいては、極細連続繊維が湿式融着不織布を構成する芯鞘型複合融着繊維との接触領域においてのみ、完全に埋没、一部が埋没、又は接点で融着固定された状態にあった。
(Example 2)
A base sheet was prepared in the same manner as in Example 1 except that the amount of superfine continuous fibers was about 20 mg / m 2 . When the air permeability of this base material sheet was measured, it was 412 cm 3 / (cm 2 · sec), and the air permeability was high. In this base sheet, the ultrafine continuous fiber is completely buried, partially buried, or fused and fixed at the contact point only in the contact region with the core-sheath type composite fused fiber constituting the wet fused nonwoven fabric. It was in the state.

引き続き実施例1と同様に分離膜積層シートを製造したところ、分離膜にピンホールは観察されず、平滑な表面を有していた。   Subsequently, when a separation membrane laminated sheet was produced in the same manner as in Example 1, no pinholes were observed in the separation membrane, and it had a smooth surface.

(実施例3)
極細連続繊維の積層量を約100mg/mにしたこと以外は実施例1と同様にして、基材シートを作成した。この基材シートの通気度を測定したところ、75cm/(cm・sec)であり、通気性の比較的高いものであった。なお、この基材シートにおいては、極細連続繊維が湿式融着不織布を構成する芯鞘型複合融着繊維との接触領域においてのみ、完全に埋没、一部が埋没、又は接点で融着固定された状態にあった。
(Example 3)
A substrate sheet was prepared in the same manner as in Example 1 except that the amount of superfine continuous fibers was about 100 mg / m 2 . When the air permeability of this base material sheet was measured, it was 75 cm 3 / (cm 2 · sec), and the air permeability was relatively high. In this base material sheet, the ultrafine continuous fibers are completely buried, partially buried, or fused and fixed at the contact points only in the contact area with the core-sheath type composite fused fiber constituting the wet fused nonwoven fabric. It was in the state.

引き続き実施例1と同様に分離膜積層シートを製造したところ、分離膜にピンホールは観察されず、平滑な表面を有していた。   Subsequently, when a separation membrane laminated sheet was produced in the same manner as in Example 1, no pinholes were observed in the separation membrane, and it had a smooth surface.

(実施例4)
極細連続繊維の積層量を約400mg/mにしたこと以外は実施例1と同様にして、基材シートを作成した。この基材シートの通気度を測定したところ、18cm/(cm・sec)であり、通気性の比較的高いものであった。なお、この基材シートにおいては、極細連続繊維が湿式融着不織布を構成する芯鞘型複合融着繊維との接触領域においてのみ、完全に埋没、一部が埋没、又は接点で融着固定された状態にあった。
Example 4
A base sheet was prepared in the same manner as in Example 1 except that the amount of superfine continuous fibers was about 400 mg / m 2 . When the air permeability of this substrate sheet was measured, it was 18 cm 3 / (cm 2 · sec), and the air permeability was relatively high. In this base sheet, the ultrafine continuous fiber is completely buried, partially buried, or fused and fixed at the contact point only in the contact region with the core-sheath type composite fused fiber constituting the wet fused nonwoven fabric. It was in the state.

引き続き実施例1と同様に分離膜積層シートを製造したところ、分離膜にピンホールは観察されず、平滑な表面を有していた。   Subsequently, when a separation membrane laminated sheet was produced in the same manner as in Example 1, no pinholes were observed in the separation membrane, and it had a smooth surface.

(比較例1)
実施例1における湿式融着不織布(極細連続繊維を積層していない)を用いたこと以外は実施例1と同様にして、湿式融着不織布の片面上に、純水面上の薄膜を積層し、風乾して、比較用の分離膜積層シートを製造した。この分離膜積層シートの分離膜を電子顕微鏡で観察すると、繊維と繊維との間の空隙に沿った凹凸構造を有する分離膜であるばかりでなく、所々で分離膜が破損した状態にあった。
(Comparative Example 1)
A thin film on a pure water surface is laminated on one side of the wet-fused nonwoven fabric in the same manner as in Example 1 except that the wet-fused nonwoven fabric in Example 1 (not laminated with ultrafine continuous fibers) was used. Air-dried to produce a comparative separation membrane laminated sheet. When the separation membrane of this separation membrane laminated sheet was observed with an electron microscope, it was not only a separation membrane having a concavo-convex structure along the gap between the fibers, but the separation membrane was broken in some places.

実施例1における基材シートの極細連続繊維積層面側電子顕微鏡写真(1000倍)Electron micrograph (1000 times) of the ultrafine continuous fiber laminate surface side of the base material sheet in Example 1

Claims (7)

融着繊維を主体とする支持繊維シートの片面に、平均繊維径1μm以下の極細繊維が、前記融着繊維により融着固定されていることを特徴とする、分離膜用基材シート。 A base sheet for a separation membrane, wherein ultrafine fibers having an average fiber diameter of 1 µm or less are fused and fixed to one side of a supporting fiber sheet mainly composed of fused fibers by the fused fibers. 融着繊維が低融点成分と高融点成分とを含み、低融点成分が繊維表面に露出した複合融着繊維からなることを特徴とする、請求項1記載の分離膜用基材シート。 The base sheet for a separation membrane according to claim 1, wherein the fusion fiber comprises a composite fusion fiber including a low melting point component and a high melting point component, and the low melting point component is exposed on the fiber surface. 極細繊維が静電紡糸法により得られたものであることを特徴とする、請求項1又は請求項2に記載の分離膜用基材シート。 The substrate sheet for a separation membrane according to claim 1 or 2, wherein the ultrafine fibers are obtained by an electrostatic spinning method. 極細繊維量が1mあたり500mg以下であることを特徴とする、請求項1〜請求項3のいずれかに記載の分離膜用基材シート。 The substrate sheet for a separation membrane according to any one of claims 1 to 3, wherein the amount of ultrafine fibers is 500 mg or less per 1 m 2 . 融着繊維を主体とする支持繊維シートの片面に、平均繊維径1μm以下の極細繊維を積層した後、前記融着繊維の融点以上で加圧し、前記融着繊維により前記極細繊維を融着固定することを特徴とする、分離膜用基材シートの製造方法。 After laminating ultrafine fibers having an average fiber diameter of 1 μm or less on one side of a support fiber sheet mainly composed of fused fibers, pressurization is performed at a temperature equal to or higher than the melting point of the fused fibers, and the ultrafine fibers are fused and fixed by the fused fibers. A process for producing a base sheet for a separation membrane. 静電紡糸法により得た極細繊維を、直接支持繊維シートに積層することを特徴とする、請求項5に記載の分離膜用基材シートの製造方法。 6. The method for producing a base sheet for a separation membrane according to claim 5, wherein ultrafine fibers obtained by an electrostatic spinning method are directly laminated on a supporting fiber sheet. 請求項1〜請求項4のいずれかに記載の分離膜用基材シートの極細繊維側表面に、分離膜が積層されていることを特徴とする分離膜積層シート。 A separation membrane laminated sheet, characterized in that a separation membrane is laminated on the surface of the ultrafine fiber side of the separation membrane substrate sheet according to any one of claims 1 to 4.
JP2008027119A 2008-02-07 2008-02-07 Substrate sheet for separation membrane, manufacturing method thereof and separation membrane laminated sheet Pending JP2009183879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008027119A JP2009183879A (en) 2008-02-07 2008-02-07 Substrate sheet for separation membrane, manufacturing method thereof and separation membrane laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027119A JP2009183879A (en) 2008-02-07 2008-02-07 Substrate sheet for separation membrane, manufacturing method thereof and separation membrane laminated sheet

Publications (1)

Publication Number Publication Date
JP2009183879A true JP2009183879A (en) 2009-08-20

Family

ID=41067707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027119A Pending JP2009183879A (en) 2008-02-07 2008-02-07 Substrate sheet for separation membrane, manufacturing method thereof and separation membrane laminated sheet

Country Status (1)

Country Link
JP (1) JP2009183879A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105709505A (en) * 2011-07-21 2016-06-29 Emd密理博公司 Nanofiber containing composite structures
US9889214B2 (en) 2009-03-19 2018-02-13 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US10675588B2 (en) 2015-04-17 2020-06-09 Emd Millipore Corporation Method of purifying a biological material of interest in a sample using nanofiber ultrafiltration membranes operated in tangential flow filtration mode
US11154821B2 (en) 2011-04-01 2021-10-26 Emd Millipore Corporation Nanofiber containing composite membrane structures
JP2022107809A (en) * 2017-03-24 2022-07-22 三菱製紙株式会社 Translucent membrane support

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200013A (en) * 2002-01-07 2003-07-15 Daikin Ind Ltd Air filter medium, air filter bag and air filter unit using the same, and method for manufacturing air filter medium
JP2006272067A (en) * 2005-03-28 2006-10-12 Kurita Water Ind Ltd Separation membrane and water treatment apparatus
JP2006331722A (en) * 2005-05-24 2006-12-07 Nitto Denko Corp Filter medium for fuel cell and filter for fuel cell using it
JP2008012101A (en) * 2006-07-06 2008-01-24 Ube Nitto Kasei Co Ltd Sheet or laminated sheet for massaging foot sole

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200013A (en) * 2002-01-07 2003-07-15 Daikin Ind Ltd Air filter medium, air filter bag and air filter unit using the same, and method for manufacturing air filter medium
JP2006272067A (en) * 2005-03-28 2006-10-12 Kurita Water Ind Ltd Separation membrane and water treatment apparatus
JP2006331722A (en) * 2005-05-24 2006-12-07 Nitto Denko Corp Filter medium for fuel cell and filter for fuel cell using it
JP2008012101A (en) * 2006-07-06 2008-01-24 Ube Nitto Kasei Co Ltd Sheet or laminated sheet for massaging foot sole

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9889214B2 (en) 2009-03-19 2018-02-13 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US9943616B2 (en) 2009-03-19 2018-04-17 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US10064965B2 (en) 2009-03-19 2018-09-04 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US10722602B2 (en) 2009-03-19 2020-07-28 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US11154821B2 (en) 2011-04-01 2021-10-26 Emd Millipore Corporation Nanofiber containing composite membrane structures
CN105709505A (en) * 2011-07-21 2016-06-29 Emd密理博公司 Nanofiber containing composite structures
US10675588B2 (en) 2015-04-17 2020-06-09 Emd Millipore Corporation Method of purifying a biological material of interest in a sample using nanofiber ultrafiltration membranes operated in tangential flow filtration mode
JP2022107809A (en) * 2017-03-24 2022-07-22 三菱製紙株式会社 Translucent membrane support
JP7464655B2 (en) 2017-03-24 2024-04-09 三菱製紙株式会社 Semipermeable membrane support

Similar Documents

Publication Publication Date Title
JP4668210B2 (en) Separation membrane support
JP5464813B2 (en) Heat resistant fiber nonwoven fabric
JP5887799B2 (en) Manufacturing method of fiber sheet
JP5272315B2 (en) Nonwoven fabric and underlay material comprising the nonwoven fabric
JP2013071456A (en) Porous sheet and method for manufacturing the same
JP2007514073A5 (en)
KR20120022732A (en) Laminated non-woven fabric
EP3730684B1 (en) Nonwoven fabric and composite sound-absorbing material using same as skin material
KR101068048B1 (en) laminating method using electrospinning
JP2009183879A (en) Substrate sheet for separation membrane, manufacturing method thereof and separation membrane laminated sheet
US20190193032A1 (en) Spunbonded nonwoven fabric and production method therefor
JP6625916B2 (en) Semipermeable membrane support
CN105593423A (en) Non-woven fabric, separation membrane support, separation membrane, fluid separation element, and method for manufacturing the non-woven fabric
JP2010128005A (en) Composite sound absorbing material
JP5802373B2 (en) Thin membrane support
KR20140069085A (en) Extra-fine fiber sheet
JP4799097B2 (en) Medical adhesive tape substrate and method for producing the same
JP2014100625A (en) Semipermeable membrane support and method of producing the same
JP2004100047A (en) Method for producing polyester thermocompression bonded nonwoven fabric
JPWO2018043324A1 (en) Spunbond nonwoven fabric and method for producing the same
JP2007197891A (en) Spun-bond nonwoven fabric
JP2013139030A (en) Semipermeable membrane support and method of manufacturing the same
JPH11347383A (en) Separation membrane support and production thereof
JP2013544975A (en) High uniformity spunbond nonwoven
JP5671203B2 (en) Heat resistant fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305