JP2010128005A - Composite sound absorbing material - Google Patents

Composite sound absorbing material Download PDF

Info

Publication number
JP2010128005A
JP2010128005A JP2008299884A JP2008299884A JP2010128005A JP 2010128005 A JP2010128005 A JP 2010128005A JP 2008299884 A JP2008299884 A JP 2008299884A JP 2008299884 A JP2008299884 A JP 2008299884A JP 2010128005 A JP2010128005 A JP 2010128005A
Authority
JP
Japan
Prior art keywords
absorbing material
sound
composite sound
fiber
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008299884A
Other languages
Japanese (ja)
Inventor
Hirobumi Iwasaki
岩崎  博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2008299884A priority Critical patent/JP2010128005A/en
Publication of JP2010128005A publication Critical patent/JP2010128005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin, lightweight sound absorbing material having high sound absorbing properties in a low frequency region and exhibiting high sound absorbing effect even with low basis weight. <P>SOLUTION: In the composite sound absorbing material produced by sticking a facing material composed of a laminate nonwoven fabric containing at least one very thin fiber layer and a base material composed of staple fiber nonwoven fabric with a mean apparent density of 0.4-0.8 g/cm<SP>3</SP>to each other, adhesiveness between the facing material and the base material is 0.1 N/10 mm or higher while acoustic absorptivity at a frequency of 1,000 Hz is 50% or more. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は複合吸音材に関し、特に自動車エンジンや建設機械エンジンの駆動音に代表される低周波数騒音の吸音性に優れた吸音材に関する。   The present invention relates to a composite sound-absorbing material, and more particularly to a sound-absorbing material having excellent sound-absorbing properties for low-frequency noise represented by driving sounds of automobile engines and construction machinery engines.

従来から自動車や住宅の内装には、吸音材として、グラスウール、ロックウール、アルミ繊維、多孔性セラミックおよび屑綿などが使用されている。しかし、これらの吸音材は、施工性、人体への障害、リサイクルおよび環境などの点で問題があるため、近年では不織布を用いた種々の吸音材が提案されている。   Conventionally, glass wool, rock wool, aluminum fibers, porous ceramics, waste cotton, and the like have been used as sound absorbing materials in interiors of automobiles and houses. However, since these sound absorbing materials have problems in terms of workability, obstacles to the human body, recycling, and environment, various sound absorbing materials using nonwoven fabrics have been proposed in recent years.

例えば、特許文献1には、密度が0.013〜0.05g/cm3 のメルトブローン極細繊維不織布を用いた防音シート材料が提案されている。しかし、このシート材料は厚みの変形が生じ易く、取扱性に劣り、さらに耐熱性が不足するなどの問題がある。 For example, Patent Document 1, soundproofing sheet materials have been proposed density using meltblown microfibrous non-woven fabric of 0.013~0.05g / cm 3. However, this sheet material is prone to thickness deformation, is inferior in handleability, and has problems such as insufficient heat resistance.

特許文献2には、融点差を有する2種以上の混綿繊維で構成された、難燃性を有する吸音材が提案されている。しかし、この吸音材は、難燃性およびリサイクル性に優れるが、密度が0.01〜0.1g/cm3 なので、厚み変形が生じ易く、取扱性などに問題がある。 Patent Document 2 proposes a sound-absorbing material having flame retardancy, which is composed of two or more kinds of mixed cotton fibers having a melting point difference. However, this sound-absorbing material is excellent in flame retardancy and recyclability. However, since the density is 0.01 to 0.1 g / cm 3 , thickness deformation is likely to occur and there is a problem in handling properties.

特許文献3には、繊維径が6μm以下の極細繊維を含有し、目付けが30〜200g/m2 の不織布と、繊維径が7〜40μmで目付けが50〜2000g/m2 の短繊維不織布を流体交絡法またはニードルパンチ法により一体化した吸音材が提案されている。しかし、このような方法で一体化処理を行うと極細繊維が切断され、穴が開いた構成となり、吸音性および形態安定性が低下し易いという欠点がある。 Patent Document 3, the fiber diameter contained the following ultrafine fibers 6 [mu] m, and a basis weight of 30 to 200 g / m 2 nonwoven, fiber diameter is the basis weight in 7~40μm short fiber nonwoven fabric of 50 to 2000 g / m 2 A sound absorbing material integrated by a fluid entanglement method or a needle punch method has been proposed. However, when the integration process is performed by such a method, there is a disadvantage that the ultrafine fibers are cut and a hole is formed, and the sound absorption and form stability are likely to be lowered.

特許文献4には、平均繊維径が10μm以下、平均見掛け密度が0.1〜0.4g/cm3 および目付けが5〜30g/m2 のメルトブローン不織布と、見掛け密度が0.01〜0.10g/cm3 および目付けが50〜2000g/m2 の繊維集合体とからなる吸音材が提案されている。しかし、この吸音材は、メルトブローン不織布面の強度が低く、形態安定性および取扱性などに問題がある。 Patent Document 4 discloses a melt blown nonwoven fabric having an average fiber diameter of 10 μm or less, an average apparent density of 0.1 to 0.4 g / cm 3 and a basis weight of 5 to 30 g / m 2 , and an apparent density of 0.01 to 0.00. A sound-absorbing material composed of a fiber assembly having a weight of 10 g / cm 3 and a basis weight of 50 to 2000 g / m 2 has been proposed. However, this sound-absorbing material has a low strength on the surface of the meltblown nonwoven fabric, and has problems in form stability and handleability.

さらに特許文献5には、繊維径6μm以下の極細繊維を含み、目付けが20〜100g/m2 のメルトブローン不織布と、繊維径が7〜40μm、目付けが50〜2000g/m2 および厚みが5〜30mmの基布入り短繊維不織布とが積層一体化された吸音材が提案されている。しかし、この吸音材でもメルトブローン不織布面の強度が低く、形態安定性、取扱性および価格などに問題がある。 Further, Patent Document 5, comprising the following ultrafine fibers having a fiber diameter of 6 [mu] m, and melt blown non-woven fabric of a basis weight of 20 to 100 g / m 2, fiber diameter 7~40Myuemu, basis weight is 50 to 2000 g / m 2 and thickness 5 There has been proposed a sound absorbing material in which a 30 mm short fiber nonwoven fabric with a base fabric is laminated and integrated. However, even this sound-absorbing material has low strength on the surface of the melt-blown nonwoven fabric, and there are problems in form stability, handleability and price.

特許文献6には、メルトブロー極細繊維層と合繊繊維層との積層不織布からなる表面材と、粗な構造の裏面材とからなる吸音材が記載されているが、低周波領域の吸音性についての記載がない。
このような従来技術に対し、低周波領域において高い吸音性を有し、かつ、低目付けでも吸音効果の高い、薄くて軽量な吸音材が望まれている。
Patent Document 6 describes a sound-absorbing material composed of a surface material composed of a laminated nonwoven fabric of a meltblown ultrafine fiber layer and a synthetic fiber layer and a back material having a rough structure. There is no description.
In contrast to such conventional techniques, there is a demand for a thin and light-weight sound-absorbing material that has a high sound-absorbing property in a low-frequency region and has a high sound-absorbing effect even with low weight.

特開平06−212546号公報Japanese Patent Laid-Open No. 06-212546 特開平10−268871号公報Japanese Patent Laid-Open No. 10-268871 特開2001−279567号公報JP 2001-279567 A 特開2002−69824号公報JP 2002-69824 A 特開2002−161464号公報JP 2002-161464 A 特開2006−28708号公報JP 2006-28708 A

本発明の課題は、上記従来技術の問題点を解決し、低周波領域において高い吸音性を有し、低目付けでも吸音効果の高い、薄くて軽量な吸音材を提供することである。具体的には、500〜1500HZの低周波数領域に高い吸音性を有する吸音材を提供することである。   An object of the present invention is to solve the above-described problems of the prior art, and to provide a thin and lightweight sound absorbing material that has high sound absorption in a low frequency region and has a high sound absorption effect even with low weight. Specifically, it is to provide a sound absorbing material having a high sound absorbing property in a low frequency region of 500 to 1500 HZ.

本発明者らは、上記課題について鋭意検討した結果、特定の面材と特定の基材を組み合わせた複合吸音材が、低周波数領域において、高い吸音性が得られることを見出し本発明に到達した。即ち、本発明は下記の発明を提供する。   As a result of intensive studies on the above problems, the present inventors have found that a composite sound-absorbing material in which a specific face material and a specific base material are combined can obtain high sound-absorbing properties in a low-frequency region, and have reached the present invention. . That is, the present invention provides the following inventions.

(1)少なくとも1層の極細繊維層を含む積層不織布からなる面材と、平均見掛け密度が0.4〜0.8g/cm3の短繊維不織布からなる基材とを貼り合わせてなる複合吸音材であって、該面材と該基材との接着力が0.1N/10mm以上であり、周波数1000HZの吸音率が50%以上であることを特徴とする複合吸音材。
(2)積層不織布が、平均繊維径が10〜30μmの熱可塑性繊維からなり、目付けが40〜100g/m2の熱可塑性繊維層を少なくとも1層含む上記1項に記載の複合吸音材。
(3)極細繊維層が、平均繊維径が0.1〜5μmの極細繊維からなり、目付けが3〜30g/m2である上記1または2項に記載の複合吸音材。
(4)積層不織布が熱圧着で一体化されている上記1〜3項のいずれか一項に記載の複合吸音材。
(5)面材の厚みが0.1〜0.3mmであり、目付けが50〜120g/m2である上記1〜4項のいずれか一項に記載の複合吸音材。
(6)基材が、平均繊維径が10〜30μmのポリエステル系短繊維と低融点短繊維との混合繊維からなる上記1〜5項のいずれか一項に記載の複合吸音材。
(7)基材の厚みが20〜50mmであり、目付けが500〜1500g/m2である上記1〜6項のいずれか一項に記載の複合吸音材。
(8)面材と基材が、ホットメルト系接着剤が5〜20g/m2塗布されて接着されている上記1〜7項のいずれか一項に記載の複合吸音材。
(9)複合吸音材の撥水性が50以上である上記1〜8項のいずれか一項に記載の複合吸音材。
(10)複合吸音材の難燃性が自己消化性である上記1〜9項のいずれか一項に記載の複合吸音材。
(1) Composite sound absorption formed by bonding a face material made of a laminated nonwoven fabric including at least one ultrafine fiber layer and a base material made of a short fiber nonwoven fabric having an average apparent density of 0.4 to 0.8 g / cm 3. A composite sound-absorbing material, characterized in that an adhesive force between the face material and the substrate is 0.1 N / 10 mm or more, and a sound absorption coefficient at a frequency of 1000 HZ is 50% or more.
(2) The composite sound-absorbing material according to the above item 1, wherein the laminated nonwoven fabric is made of thermoplastic fibers having an average fiber diameter of 10 to 30 μm and includes at least one thermoplastic fiber layer having a basis weight of 40 to 100 g / m 2 .
(3) The composite sound-absorbing material as described in 1 or 2 above, wherein the ultrafine fiber layer is made of ultrafine fibers having an average fiber diameter of 0.1 to 5 μm and has a basis weight of 3 to 30 g / m 2 .
(4) The composite sound absorbing material according to any one of the above items 1 to 3, wherein the laminated nonwoven fabric is integrated by thermocompression bonding.
(5) the thickness of the face material is 0.1 to 0.3 mm, composite sound absorbing material according to any one of the above 1 to 4, wherein the basis weight is 50 to 120 / m 2.
(6) The composite sound-absorbing material according to any one of 1 to 5 above, wherein the base material is a mixed fiber of polyester short fibers having an average fiber diameter of 10 to 30 μm and low melting point short fibers.
(7) The composite sound-absorbing material according to any one of 1 to 6 above, wherein the base material has a thickness of 20 to 50 mm and a basis weight of 500 to 1500 g / m 2 .
(8) The composite sound-absorbing material according to any one of the above 1 to 7, wherein the face material and the base material are bonded by applying 5 to 20 g / m 2 of a hot melt adhesive.
(9) The composite sound absorbing material according to any one of the above items 1 to 8, wherein the water repellency of the composite sound absorbing material is 50 or more.
(10) The composite sound absorbing material according to any one of 1 to 9 above, wherein the flame retardant property of the composite sound absorbing material is self-digestible.

本発明の複合吸音材は、400〜1500HZの低周波領域において、高い吸音性を有する。従って、自動車、家電製品および建設機械などの部材であるモーターが発生する低周波領域の騒音に高い吸音性が得られる。   The composite sound-absorbing material of the present invention has a high sound-absorbing property in a low frequency region of 400 to 1500 HZ. Therefore, a high sound absorption property can be obtained for noise in a low frequency region generated by a motor which is a member of an automobile, a household appliance, a construction machine, or the like.

本発明の複合吸音材において、第一の特徴は、少なくとも1層の極細繊維層を有する積層不織布を面材として用いることで、吸音特性が低周波領域にスライドし、低周波領域の吸音性が向上することである。
本発明に用いる面材は、極細繊維層を含有する積層不織布からなり、音の振動エネルギーを熱エネルギーに変換し、吸音適性領域が低周波領域にスライドする効果を有する。
In the composite sound-absorbing material of the present invention, the first feature is that the laminated nonwoven fabric having at least one ultrafine fiber layer is used as a face material, so that the sound-absorbing property slides in the low-frequency region, and the sound-absorbing property in the low-frequency region It is to improve.
The face material used in the present invention is made of a laminated non-woven fabric containing an ultrafine fiber layer, converts sound vibration energy into heat energy, and has the effect of sliding the sound absorption suitability region to a low frequency region.

第二の特徴は、緻密な繊維構成からなる基材を用いることで、低周波領域において良好な吸音性を有することである。
本発明に用いる基材は、平均見掛け密度が0.4〜0.8g/cm3の短繊維不織布から形成され、低周波領域に高い吸音性が得られる。ポリエステル系短繊維と低融点短繊維との混合繊維から短繊維不織布を構成すると、細い繊維構成となることで、繊維間隙が小さく、密度の高い繊維構成となり、低周波領域の吸音性がさらに改良される。
The second feature is that it has a good sound absorbing property in a low frequency region by using a base material having a dense fiber structure.
The base material used in the present invention is formed from a short fiber nonwoven fabric having an average apparent density of 0.4 to 0.8 g / cm 3 , and high sound absorption is obtained in a low frequency region. When a short fiber non-woven fabric is composed of a mixture of polyester short fibers and low melting point short fibers, a thin fiber structure results in a small fiber gap and a high density fiber structure, further improving sound absorption in the low frequency range. Is done.

本発明の複合吸音材は、上記の、より低周波領域に高い吸音性を有する基材と、吸音適性領域が低周波領域にスライドする効果を有する面材とを組み合わせることで、低周波領域の高い吸音性を達成したものである。   The composite sound-absorbing material of the present invention is a combination of the above-described base material having a high sound-absorbing property in a lower frequency region and a face material having an effect that the sound-absorbing suitability region slides in the low-frequency region. High sound absorption is achieved.

本発明の複合吸音材を構成する面材は、少なくとも1層の極細繊維層を有する積層不織布からなる。
極細繊維層を構成する極細繊維の平均繊維径は0.1〜5μmが好ましく、さらに好ましくは0.3〜4μmである。極細繊維層の目付けは3〜30g/m2が好ましく、さらに好ましくは5〜25g/m2である。積層不織布を構成する極細繊維層は、積層不織布の繊維間隙を小さくし、音の振動エネルギーを熱エネルギーに変換して、高い吸音性の得るために有効である。
The face material constituting the composite sound-absorbing material of the present invention comprises a laminated nonwoven fabric having at least one ultrafine fiber layer.
The average fiber diameter of the ultrafine fibers constituting the ultrafine fiber layer is preferably 0.1 to 5 μm, and more preferably 0.3 to 4 μm. The basis weight of the ultrafine fiber layer is preferably 3 to 30 g / m 2 , more preferably 5 to 25 g / m 2 . The ultrafine fiber layer constituting the laminated nonwoven fabric is effective for reducing the fiber gap of the laminated nonwoven fabric and converting sound vibration energy into thermal energy to obtain high sound absorption.

本発明に用いられる極細繊維層はメルトブロー法で形成することが好ましい。
極細繊維層を製造するポリマーとしては、低粘度で、メルトブロー方式で極細繊維が形成できる合成樹脂が用いられる。例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、共重合ポリエチレンおよび共重合ポリプロピレンなどのポリオレフイン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレートにフタル酸、イソフタル酸、セバシン酸、アジピン酸、ジエチレングリコールおよび1,4−ブタンジオールの1種又は2種以上の化合物を共重合した芳香族ポリエステル共重合体および、ポリD−乳酸、ポリL−乳酸、D−乳酸とL−乳酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、D−乳酸とL−乳酸とヒドロキシカルボン酸との共重合体、或いはこれらのブレンド体から成る生分解性の脂肪族ポリエステルなどのポリエステル、および共重合ポリアミドなどが用いられる。
The ultrafine fiber layer used in the present invention is preferably formed by a melt blow method.
As the polymer for producing the ultrafine fiber layer, a synthetic resin having a low viscosity and capable of forming ultrafine fibers by a melt blow method is used. For example, polyolefins such as low density polyethylene, high density polyethylene, polypropylene, copolymer polyethylene and copolymer polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene terephthalate, phthalic acid, isophthalic acid, sebacic acid, adipic acid, diethylene glycol and 1,4 An aromatic polyester copolymer obtained by copolymerizing one or more compounds of butanediol, poly-D-lactic acid, poly-L-lactic acid, a copolymer of D-lactic acid and L-lactic acid, and D-lactic acid A biodegradable product comprising a copolymer of L-lactic acid and hydroxycarboxylic acid, a copolymer of L-lactic acid and hydroxycarboxylic acid, a copolymer of D-lactic acid, L-lactic acid and hydroxycarboxylic acid, or a blend thereof. Polyester, such as aliphatic polyester Such as beauty copolyamide is used.

本発明に用いられる積層不織布は極細繊維層以外に熱可塑性合成繊維層を含むことができる。
熱可塑性合成繊維層を構成する熱可塑性合成繊維の繊維径は10〜30μmが好ましく、さらに好ましくは12〜25μmである。熱可塑性合成繊維層の目付けは40〜100g/m2が好ましく、さらに好ましくは45〜90g/m2である。
極細繊維層(M層)と熱可塑性合成繊維層(S層)の積層は、SM、SMSおよびSMSMSなどの多層構成から選択できる。
熱可塑性合成繊維層を構成する繊維は溶融紡糸法、好ましくはスパンボンド法で形成される。
The laminated nonwoven fabric used in the present invention can contain a thermoplastic synthetic fiber layer in addition to the ultrafine fiber layer.
As for the fiber diameter of the thermoplastic synthetic fiber which comprises a thermoplastic synthetic fiber layer, 10-30 micrometers is preferable, More preferably, it is 12-25 micrometers. The basis weight of the thermoplastic synthetic fiber layer is preferably 40 to 100 g / m 2 , more preferably 45 to 90 g / m 2 .
Lamination | stacking of a microfiber layer (M layer) and a thermoplastic synthetic fiber layer (S layer) can be selected from multilayered structures, such as SM, SMS, and SMSMS.
The fibers constituting the thermoplastic synthetic fiber layer are formed by a melt spinning method, preferably a spunbond method.

熱可塑性合成繊維層を構成する熱可塑性合成繊維を製造するポリマーとしては、高粘度で、溶融紡糸法で繊維化できる合成樹脂が用いられる。例えば、ポリプロピレン、共重合ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレートにフタル酸、イソフタル酸、セバシン酸、アジピン酸、ジエチレングリコールおよび1,4−ブタンジオールの1種又は2種以上の化合物を共重合した芳香族ポリエステル共重合体および、ポリD−乳酸、ポリL−乳酸、D−乳酸とL−乳酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、D−乳酸とL−乳酸とヒドロキシカルボン酸との共重合体、或いはこれらのブレンド体から成る生分解性の脂肪族ポリエステルなどのポリエステル、および共重合ポリアミドなどが用いられる。特に、耐熱性および耐水性などに優れた、ポリエステルが好ましく用いられる。   As the polymer for producing the thermoplastic synthetic fiber constituting the thermoplastic synthetic fiber layer, a synthetic resin having a high viscosity and capable of being fiberized by a melt spinning method is used. For example, polypropylene, copolymerized polypropylene, polyethylene terephthalate, polybutylene terephthalate, and polyethylene terephthalate are copolymerized with one or more compounds of phthalic acid, isophthalic acid, sebacic acid, adipic acid, diethylene glycol, and 1,4-butanediol. Aromatic polyester copolymer, poly D-lactic acid, poly L-lactic acid, copolymer of D-lactic acid and L-lactic acid, copolymer of D-lactic acid and hydroxycarboxylic acid, L-lactic acid and hydroxy Copolymers with carboxylic acids, copolymers of D-lactic acid, L-lactic acid and hydroxycarboxylic acid, or polyesters such as biodegradable aliphatic polyesters composed of blends thereof, and copolyamides are used. It is done. In particular, polyester excellent in heat resistance and water resistance is preferably used.

更に、面材と基材の接着性を良好に保つために、基材と接触する層を低融点の繊維構成にすることもできる。例えば、低融点繊維としては、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、共重合ポリエチレンおよび共重合ポリプロピレンなどのポリオレフイン繊維、およびポリエチレンテレフタレートにフタル酸、イソフタル酸、セバシン酸、アジピン酸、ジエチレングリコールおよび1,4−ブタンジオールから選ばれた1種又は2種以上の化合物を共重合した芳香族ポリエステル共重合体からなる繊維などが好ましく用いられる。   Furthermore, in order to maintain good adhesion between the face material and the base material, the layer in contact with the base material can have a low melting point fiber configuration. For example, the low melting point fibers include polyolefin fibers such as low density polyethylene, high density polyethylene, polypropylene, copolymer polyethylene and copolymer polypropylene, and polyethylene terephthalate to phthalic acid, isophthalic acid, sebacic acid, adipic acid, diethylene glycol and 1, A fiber made of an aromatic polyester copolymer obtained by copolymerizing one or two or more compounds selected from 4-butanediol is preferably used.

本発明の積層不織布を構成する各不織布は、熱圧着で一体化されることが好ましい。例えば、公知のエンボスロールと平滑ロール間で加熱、圧着して接合することが好ましい。加熱温度は、例えば、融点より20〜150℃低温の範囲が好ましく、更に繊維の劣化およびロール融着などの影響を緩和する目的で、上下ロールに温度差を設け熱圧着できる。熱圧着時の圧力は10〜1000kPa/cmが好ましく、さらに好ましくは50〜700kPa/cmである。
部分熱圧着することにより、比較的緻密な積層不織布にすることができる。
Each nonwoven fabric constituting the laminated nonwoven fabric of the present invention is preferably integrated by thermocompression bonding. For example, it is preferable to join by heating and pressure bonding between a known embossing roll and a smooth roll. For example, the heating temperature is preferably in the range of 20 to 150 ° C. lower than the melting point, and for the purpose of alleviating the effects of fiber degradation and roll fusion, a temperature difference can be provided between the upper and lower rolls for thermocompression bonding. The pressure during thermocompression bonding is preferably 10 to 1000 kPa / cm, and more preferably 50 to 700 kPa / cm.
A relatively dense laminated nonwoven fabric can be obtained by partial thermocompression bonding.

本発明に用いられる積層不織布の厚みは0.1〜0.3mmが好ましく、さらに好ましくは0.12〜0.27mmであり、目付けは50〜120g/m2が好ましく、さらに好ましくは60〜110g/m2である。厚みが0.1mm未満で、目付けが50g/m2未満の場合は、補強材としての強度が低下する。一方、厚みが0.3mmを超え、目付けが120g/m2を超えると、補強材の強度は大きくなるが、貼り合わせ加工性が低下し、接着力が低下する。 The thickness of the laminated nonwoven fabric used in the present invention is preferably 0.1 to 0.3 mm, more preferably 0.12 to 0.27 mm, and the basis weight is preferably 50 to 120 g / m 2 , more preferably 60 to 110 g. / M 2 . The thickness is less than 0.1 mm, if the basis weight is less than 50 g / m 2, the strength of the reinforcing material is lowered. On the other hand, when the thickness exceeds 0.3 mm and the basis weight exceeds 120 g / m 2 , the strength of the reinforcing material increases, but the bonding processability decreases and the adhesive strength decreases.

本発明に用いられる積層不織布は、吸音材の補強材として有効であると共に、黒色などの印刷性、撥水性および難燃性などの表面機能を付与する加工を行うことができる。具体的には、染色および印刷などの着色加工、フッソ樹脂による撥水加工および燐系などの難燃剤による難燃加工である。   The laminated nonwoven fabric used in the present invention is effective as a reinforcing material for a sound absorbing material, and can be processed to impart surface functions such as black printability, water repellency and flame retardancy. Specifically, coloring processing such as dyeing and printing, water-repellent processing using a fluorine resin, and flame-retardant processing using a flame retardant such as a phosphorus-based material.

本発明に用いられる基材は、平均見掛け密度が0.4〜0.8g/cm3の短繊維不織布から構成され、比較的繊維密度が高く、特定厚みの保持が可能である。従って、基材には音の振動を受ける空気層が形成され、基材を構成する単糸が振動して、音の振動エネルギーを熱エネルギーに変換できる。
基材に用いられる短繊維の平均繊維径は10〜30μmが好ましく、さらに好ましくは12〜25μmである。また、繊維長は25〜90mmが好ましく、さらに好ましくは38〜76mmである。
本発明に用いる基材は、カード方式などにより開繊した繊維ウェブを、ニードル針を用いたニーパン機によって機械交絡させて得られる。更に、表面層の平坦化および厚み調整の目的で、熱プレス機などで熱処理が行われる。
The substrate used in the present invention, the average apparent density is composed of the short fiber nonwoven fabric of 0.4 to 0.8 g / cm 3, a relatively fiber density is high, it is possible to hold a certain thickness. Therefore, an air layer that receives sound vibration is formed on the base material, and the single yarn constituting the base material vibrates, so that the vibration energy of the sound can be converted into heat energy.
As for the average fiber diameter of the short fiber used for a base material, 10-30 micrometers is preferable, More preferably, it is 12-25 micrometers. The fiber length is preferably 25 to 90 mm, more preferably 38 to 76 mm.
The base material used in the present invention can be obtained by mechanically interlacing a fiber web opened by a card method or the like with a knee pan machine using a needle needle. Furthermore, heat treatment is performed with a hot press machine or the like for the purpose of planarizing the surface layer and adjusting the thickness.

本発明に用いる基材の平均見掛け密度は0.4〜0.8g/cm3が好ましく、さらに好ましくは0.45〜0.8g/cm3である。特に、低周波数の吸音性を得るために、比較的細い繊維構成で且つ、高密度の構成が好ましい。
更に、構成繊維同士の接着を行い、緻密構成にするため、低融点短繊維と混合することがより好ましい。低融点短繊維を5〜60%混合することが好ましく、より好ましくは10〜50%混合する。
The average apparent density of the substrate used in the present invention is preferably 0.4 to 0.8 g / cm 3 , more preferably 0.45 to 0.8 g / cm 3 . In particular, in order to obtain low-frequency sound absorption, a relatively thin fiber configuration and a high-density configuration are preferable.
Furthermore, it is more preferable to mix with the low melting point short fibers in order to bond the constituent fibers to form a dense structure. It is preferable to mix 5 to 60% of low melting point short fibers, more preferably 10 to 50%.

本発明に用いる基材の厚みは20〜50mmが好ましく、さらに好ましくは25〜40mmであり、目付けは500〜1500g/m2が好ましく、さらに好ましくは550〜1400g/m2である。厚みが20mm未満で、目付け500g/m2未満の場合は、低周波数の吸音性が低下する。一方、厚みが50mmを超え、目付けが1500g/m2を超えると、低周波数の吸音性は良くなるが、吸音材のスペースが大きくなり、貼り合わせ加工性、取り扱い性および製品輸送性などが低下する。 The thickness of the substrate used in the present invention is preferably 20 to 50 mm, more preferably 25 to 40 mm, and the basis weight is preferably 500 to 1500 g / m 2 , more preferably 550 to 1400 g / m 2 . When the thickness is less than 20 mm and the basis weight is less than 500 g / m 2 , the low frequency sound absorption is reduced. On the other hand, when the thickness exceeds 50 mm and the basis weight exceeds 1500 g / m 2 , the sound absorption at low frequencies is improved, but the space for the sound absorbing material is increased, and the bonding workability, handling properties, and product transportability are reduced. To do.

基材を構成する熱可塑性合成短繊維不織布の素材は特に限定されないが、耐熱性および加工性などの観点からポリエチレンテレフタレート、ポリプロピレンテレフタレートおよびポリブチレンテレフタレートなどのポリエステル系短繊維が好ましい。   Although the raw material of the thermoplastic synthetic short fiber nonwoven fabric which comprises a base material is not specifically limited, From a viewpoint, such as heat resistance and workability, polyester-type short fibers, such as a polyethylene terephthalate, a polypropylene terephthalate, and a polybutylene terephthalate, are preferable.

基材に混合する低融点短繊維としては、鞘がポリエチレン、ポリプロピレンおよび共重合ポリエステル、芯がポリプロピレンおよびポリエチレンテレフタレートなどの組み合わせからなる芯鞘構造の複合繊維、ポリエチレンテレフタレートにフタル酸、イソフタル酸、セバシン酸、アジピン酸、ジエチレングリコールおよび1,4−ブタンジオールの1種又は2種以上の化合物を共重合した芳香族ポリエステル共重合体からなる繊維などが好ましく用いられる。
更に、基材に難燃性を付与させるため、アクリル繊維、モダアクリル繊維、難燃剤練り込み繊維およびポリエステル繊維などを5〜30%含ませることもできる。
Low-melting short fibers to be mixed with the base material include a composite fiber having a core-sheath structure in which the sheath is made of polyethylene, polypropylene and copolymer polyester, the core is made of polypropylene and polyethylene terephthalate, etc., polyethylene terephthalate, phthalic acid, isophthalic acid, sebacin A fiber made of an aromatic polyester copolymer obtained by copolymerizing one or more compounds of acid, adipic acid, diethylene glycol and 1,4-butanediol is preferably used.
Furthermore, 5-30% of acrylic fiber, modacrylic fiber, flame retardant kneaded fiber, polyester fiber, etc. can be included in order to impart flame retardancy to the substrate.

本発明に用いる面材と基材の接着は、熱接着および接着剤を用いた接着などで行うことができる。熱接着方法としては、面材側から加熱し、基材の構成繊維の低融点成分を、温度90〜230℃に加熱し、軟化または融解させるプレス機などを用いて接着される。又は、面材側から、遠赤外線ヒーターおよびカーボンヒーターなどで予熱し、加熱加圧装置などを用いて接着される。   Adhesion between the face material and the substrate used in the present invention can be performed by thermal adhesion or adhesion using an adhesive. As a heat bonding method, heating is performed from the face material side, and the low melting point component of the constituent fibers of the base material is heated to a temperature of 90 to 230 ° C. and bonded using a press machine or the like that softens or melts. Alternatively, from the face material side, preheating is performed with a far-infrared heater, a carbon heater, or the like, and bonding is performed using a heating and pressing device or the like.

従って、本発明の複合吸音材は、貼り合わせにより、加圧接着で厚みが小さくなることから、接着前は、厚みを目標の厚みより2〜10mm大きくし、貼り合わせ後に、目標の厚みに仕上げることが好ましい。この時、厚み調整のためにスペーサーなどを利用してプレスすることが好ましい。   Accordingly, the composite sound-absorbing material of the present invention is reduced in thickness by pressure bonding by bonding, so that the thickness is increased by 2 to 10 mm from the target thickness before bonding and finished to the target thickness after bonding. It is preferable. At this time, it is preferable to press using a spacer or the like for thickness adjustment.

接着剤を用いた接着方法は、カーテンスプレー方式、ドット方式およびスクリーン方式などにより、面材にホットメルト系接着剤を、2〜30g/m2塗布し、面材側から加熱して、塗布した接着剤を軟化、融解させて、プレス機などで加圧して接着する。 The bonding method using an adhesive is a curtain spray method, a dot method, a screen method, and the like. A hot melt adhesive is applied to the face material in an amount of 2 to 30 g / m 2 and is applied by heating from the face material side. The adhesive is softened and melted, and is pressed and bonded with a press machine.

面材と基材の接着力は0.1N/10mm以上が好ましく、さらに好ましくは0.2N/10mm〜5N/10mmである。
接着力が0.1N未満では、吸音材の裁断および輸送などの作業で剥離するなどの問題が生じる。従って、高い接着力を得るためには、基材の低融点成分の含有率を大きくするか、面材の接着面に低融点成分層を設けることが好ましい。更に、面材にホットメルト系の接着剤を塗布することも好ましい。
The adhesive force between the face material and the base material is preferably 0.1 N / 10 mm or more, and more preferably 0.2 N / 10 mm to 5 N / 10 mm.
When the adhesive strength is less than 0.1 N, problems such as peeling due to operations such as cutting and transporting the sound absorbing material occur. Therefore, in order to obtain a high adhesive strength, it is preferable to increase the content of the low-melting-point component of the substrate or to provide a low-melting-point component layer on the bonding surface of the face material. Furthermore, it is also preferable to apply a hot-melt adhesive to the face material.

本発明の複合吸音材は、面材と基材の接合性に優れているため、巻取加工性、裁断加工性、重ね梱包や運搬時等の取扱性および経済性に優れた複合吸音材である。従って、本発明の複合吸音材は、取り扱い時の端部や全体の厚みのへたりが少なく、施工後において安定した吸音性を得ることができる。   The composite sound-absorbing material of the present invention is a composite sound-absorbing material that is excellent in winding workability, cutting workability, wrapping and transportability, etc. is there. Therefore, the composite sound-absorbing material of the present invention has little edge sag during handling and the thickness of the entire thickness, and can provide a stable sound-absorbing property after construction.

本発明の複合吸音材は、500〜1500HZの低周波領域において、高い吸音性を有する。つまり、周波数500HZで30%以上、1000HZで50%以上、1500HZで60%以上の吸音性を有する。
本発明の複合吸音材の吸音性は、面材と組み合わされているので、基材のみの吸音性より200〜300HZ低周波領域にスライドし、且つ、高い吸音性を有する。従って、本発明の面材と基材との組み合わせは、より低周波領域に高い吸音性を得るための相乗効果が得られる。
The composite sound-absorbing material of the present invention has a high sound-absorbing property in a low frequency region of 500 to 1500 HZ. That is, it has a sound absorbing property of 30% or more at a frequency of 500HZ, 50% or more at 1000HZ, and 60% or more at 1500HZ.
Since the sound-absorbing property of the composite sound-absorbing material of the present invention is combined with the face material, the sound-absorbing property slides in the 200 to 300 Hz low frequency region and has a high sound-absorbing property than the sound-absorbing property of the base material alone. Therefore, the combination of the face material and the base material of the present invention provides a synergistic effect for obtaining high sound absorption in a lower frequency region.

本発明の複合吸音材は、面材と基材との組み合わせであり、比較的薄く且つ軽量で、高い吸音性を有する。また、2層以上の面材を基材と組み合わせ、基材と2層以上面材を貼り合わせた多層にして用いることもできる。このことで、さらに高い吸音性を得ることが可能となる。   The composite sound-absorbing material of the present invention is a combination of a face material and a base material, is relatively thin and lightweight, and has a high sound-absorbing property. Moreover, it can also be used as a multilayer which combined the base material of 2 or more layers with the base material, and bonded together the base material and the surface layer of 2 or more layers. This makes it possible to obtain even higher sound absorption.

複合吸音材厚みは20〜50mmが好ましく、さらに好ましくは20〜40mmであり、目付けは550〜1600g/m2が好ましく、さらに好ましくは580〜1500g/m2である。厚みが20mm未満で、目付け550g/m2未満の場合は、低周波領域の吸音性が低下する。 The thickness of the composite sound absorbing material is preferably 20 to 50 mm, more preferably 20 to 40 mm, and the basis weight is preferably 550 to 1600 g / m 2 , more preferably 580 to 1500 g / m 2 . When the thickness is less than 20 mm and the basis weight is less than 550 g / m 2 , the sound absorption in the low frequency region is lowered.

以下、本発明を実施例によりさらに詳しく説明するが、本発明はこれらのみに限られるものではない。なお、各特性値は、下記の方法により測定した。
1)目付け(g/m2 ):JIS−L−1906に準じて測定した。
2)平均繊維径(μm):顕微鏡で500倍の拡大写真を取り、10本の繊維の直径を測定し、その平均値を求めた。
3)厚み(mm):JIS−L−1906に準じて測定した。荷重10kPaの圧力下で厚みを3カ所測定し、平均値で示した。
4)平均見掛け密度(g/cm3 ):(目付け)/(厚み)から算出し、単位容積あたりの重量を求めた。
5)吸音性(%):JIS−1405に準じ、垂直の入射法の測定機で周波数500〜1500HZを測定した。
6)接合強度:基材と面材との180度剥離を引張試験機で縦方向および横方向を3箇所測定し、その平均値で示した。
7)撥水度:JIS−L−1092(スプレー法)に準じて測定し、下記基準で評価した。
1:表面全体に湿潤を示すもの。
2:表面の半分に湿潤を示し、小さな個々の湿潤が布に浸透するもの。
3:表面に小さな個々の水滴状の湿潤を示すもの。
4:表面に湿潤しないが、小さな水滴の付着を示すもの。
5:表面に湿潤や水滴の付着があるもの。
8)燃焼性:JIS−D−1201自動車内装材基準(水平法)に準じて測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited only to these. Each characteristic value was measured by the following method.
1) Weight per unit area (g / m 2 ): Measured according to JIS-L-1906.
2) Average fiber diameter (μm): 500 times magnified photograph was taken with a microscope, the diameter of 10 fibers was measured, and the average value was obtained.
3) Thickness (mm): Measured according to JIS-L-1906. The thickness was measured at three points under a pressure of 10 kPa and indicated by an average value.
4) Average apparent density (g / cm 3 ): Calculated from (weight per unit area) / (thickness) to determine the weight per unit volume.
5) Sound absorption (%): Frequency of 500 to 1500 HZ was measured with a vertical incidence measuring instrument in accordance with JIS-1405.
6) Joining strength: 180 degree peeling between the base material and the face material was measured at three places in the longitudinal direction and the transverse direction with a tensile tester, and the average value was shown.
7) Water repellency: measured according to JIS-L-1092 (spray method) and evaluated according to the following criteria.
1: The surface shows wetness.
2: Shows wetness on half of the surface and small individual wetness penetrates the fabric.
3: The surface shows small individual water droplets.
4: The surface does not wet, but shows adhesion of small water droplets.
5: The surface has wetness or adhesion of water droplets.
8) Flammability: Measured according to JIS-D-1201 automobile interior material standard (horizontal method).

(実施例1)
スパンボンド法により、ポリエチレンテレフタレート(融点263℃)を紡糸温度300℃で溶融紡糸し、繊維化させ、繊維ウェブA(目付け40g/m2、平均繊維径15μm)を捕集ネット上に形成した。次いで、ポリエチレンテレフタレート(融点260℃)を紡糸温度300℃で、温度が320℃、流量が1000Nm3/hrの加熱空気を用い、メルトブロー方式で糸条を繊維ウェブA上に直接に噴出させ、極細繊維ウェブB(目付け20g/m2、平均繊維径2μm)を積層した。さらに、極細繊維ウェブB上に、ポリエチレンテレフタレート(融点263℃)を紡糸温度300℃で、スパンボンド法により溶融紡糸して、繊維化させ、繊維ウェブC(目付け40g/m2、平均繊維径15μm)を形成し、3層積層繊維ウェブを得た。得られた3層積層繊維ウェブを、一対のエンボスロール/フラットロールで部分熱圧着し(温度230℃/215℃、圧力300N/cm)、目付けが100g/m2、平均見掛け密度が0.27g/cm3および熱圧着率が25%の積層不織布からなる面材を得た。
Example 1
Polyethylene terephthalate (melting point: 263 ° C.) was melt-spun at a spinning temperature of 300 ° C. by a spunbond method to form a fiber web A (weight per unit area: 40 g / m 2 , average fiber diameter: 15 μm) on a collection net. Next, polyethylene terephthalate (melting point 260 ° C.) is spun at 300 ° C., heated at 320 ° C., and heated at a flow rate of 1000 Nm 3 / hr. A fiber web B (weighing 20 g / m 2 , average fiber diameter 2 μm) was laminated. Further, polyethylene terephthalate (melting point 263 ° C.) is melt spun by a spunbond method at a spinning temperature of 300 ° C. on the ultrafine fiber web B to be fiberized, and the fiber web C (weight is 40 g / m 2 , average fiber diameter is 15 μm). ) To obtain a three-layer laminated fiber web. The resulting three-layer fiber web partially thermocompression bonding the pair of embossing rolls / flat roll (temperature 230 ° C. / 215 ° C., a pressure 300N / cm), a basis weight of 100 g / m 2, an average apparent density 0.27g A face material made of a laminated nonwoven fabric having a / cm 3 and a thermocompression bonding rate of 25% was obtained.

次いで、基材となる短繊維不織布を、ポリエステル短繊維と低融点短繊維の混合繊維で作った。ポリエステル短繊維(繊維径17μm、繊維長51mm)と共重合ポリエステル短繊維(融点135℃、繊維径20μm、繊維長38mm)とを70:30の割合で混合し、カード機で開繊し、短繊維ウェブを得た。得られた短繊維ウェブをニードルパンチ機で機械交絡して、厚み30mm、目付け1000g/m2の基材を得た(平均見掛け密度0.33g/cm3)。 Subsequently, the short fiber nonwoven fabric used as a base material was made of a mixed fiber of polyester short fibers and low melting point short fibers. Polyester short fibers (fiber diameter 17 μm, fiber length 51 mm) and copolymer polyester short fibers (melting point 135 ° C., fiber diameter 20 μm, fiber length 38 mm) are mixed in a ratio of 70:30, opened with a card machine, and short. A fiber web was obtained. The obtained short fiber web was mechanically entangled with a needle punch machine to obtain a base material having a thickness of 30 mm and a basis weight of 1000 g / m 2 (average apparent density of 0.33 g / cm 3 ).

面材にポリアミド系ホットメルト接着剤(融点130℃)を20g/m2で塗布した後、25mmスペーサーを用いた熱板プレス機で、面材側から温度160℃に加熱して、面材と基材とを接着して本発明の複合吸音材を得た。得られた複合吸音材は、厚みが25mm、目付けが1120g/m2、平均みかけ密度が0.45g/cm3、周波数500HZの吸音率が55%、周波数1000HZの吸音率が94%、周波数1500HZの吸音率が88%であり、低周波領域に高い吸音性が得られた。また、面材の基材に対する重量比率は10%であった。
面材と基材との剥離強力は1.6N/cmであり、面材と基材が裁断加工および輸送工程で剥離することはなかった。
After applying a polyamide-based hot melt adhesive (melting point 130 ° C.) at 20 g / m 2 to the face material, it was heated to 160 ° C. from the face material side with a hot plate press using a 25 mm spacer. The composite sound-absorbing material of the present invention was obtained by bonding the substrate. The obtained composite sound-absorbing material has a thickness of 25 mm, a basis weight of 1120 g / m 2 , an average apparent density of 0.45 g / cm 3 , a sound absorption rate of 55% at a frequency of 500 HZ, a sound absorption rate of 94% at a frequency of 1000 HZ, and a frequency of 1500 HZ. The sound absorption coefficient was 88%, and high sound absorption was obtained in the low frequency region. Further, the weight ratio of the face material to the base material was 10%.
The peel strength between the face material and the base material was 1.6 N / cm, and the face material and the base material were not peeled off during the cutting process and the transport process.

(実施例2)
スパンボンド法により、ポリエチレンテレフタレート(融点263℃)を紡糸温度300℃で溶融紡糸し、繊維化させ、繊維ウェブA(目付け20g/m2、平均繊維径13μm)を捕集ネット上に形成した。次いで、ポリエチレンテレフタレート(融点260℃)を紡糸温度300℃で、温度が320℃、流量が1000Nm3/hrの加熱空気を用い、メルトブロー方式で糸条を繊維ウェブA上に直接に噴出させ、極細繊維ウェブB(目付け15g/m2、平均繊維径2μm)を積層した。さらに、極細繊維ウェブB上に、ポリエチレンテレフタレート(融点263℃)を紡糸温度300℃で、スパンボンド法により溶融紡糸して、繊維化させ、繊維ウェブC(目付け20g/m2、平均繊維径13μm)を形成し、3層積層繊維ウェブを得た。得られた3層積層繊維ウェブを、一対のエンボスロール/フラットロールで部分熱圧着し(温度225℃/215℃、圧力300N/cm)、目付けが55g/m2、平均見掛け密度が0.25g/cm3、熱圧着率が25%の積層不織布からなる面材を得た。
(Example 2)
Polyethylene terephthalate (melting point: 263 ° C.) was melt-spun at a spinning temperature of 300 ° C. by the spunbond method, and fiberized to form a fiber web A (weighing 20 g / m 2 , average fiber diameter 13 μm) on the collection net. Then, a polyethylene terephthalate (melting point 260 ° C.) at a spinning temperature of 300 ° C., the temperature is 320 ° C., flow rate using a heated air 1000 Nm 3 / hr, the yarn is ejected directly onto the fiber web A in meltblowing method, ultrafine A fiber web B (weighing 15 g / m 2 , average fiber diameter 2 μm) was laminated. Further, polyethylene terephthalate (melting point: 263 ° C.) is melt spun by a spunbond method at a spinning temperature of 300 ° C. on the ultrafine fiber web B to be fiberized, and the fiber web C (weight is 20 g / m 2 , average fiber diameter is 13 μm). ) To obtain a three-layer laminated fiber web. The obtained three-layer laminated fiber web was partially thermocompression bonded with a pair of embossing rolls / flat rolls (temperature 225 ° C./215° C., pressure 300 N / cm), basis weight 55 g / m 2 , and average apparent density 0.25 g. A face material made of a laminated nonwoven fabric having a thermal compression ratio of 25% / cm 3 was obtained.

次いで、基材となる短繊維不織布を、ポリエステル短繊維と低融点短繊維の混合繊維で作った。ポリエステル短繊維(繊維径17μm、繊維長51mm)と共重合ポリエステル短繊維(融点135℃、繊維径20μm、繊維長38mm)とを60:40の割合で混合し、カード機で開繊し、短繊維ウェブを得た。得られた短繊維ウェブをニードルパンチ機で機械交絡して、厚み25mm、目付け1000g/m2の基材を得た(平均見掛け密度0.4g/cm3)。 Subsequently, the short fiber nonwoven fabric used as a base material was made of a mixed fiber of polyester short fibers and low melting point short fibers. Short polyester fibers (fiber diameter 17 μm, fiber length 51 mm) and copolymerized polyester short fibers (melting point 135 ° C., fiber diameter 20 μm, fiber length 38 mm) are mixed in a ratio of 60:40, opened with a card machine, and short. A fiber web was obtained. The obtained short fiber web was mechanically entangled with a needle punch machine to obtain a base material having a thickness of 25 mm and a basis weight of 1000 g / m 2 (average apparent density 0.4 g / cm 3 ).

面材にポリアミド系ホットメルト接着剤(融点130℃)を20g/m2で塗布した後、20mmスペーサーを用いた熱板プレス機で、面材側から温度160℃に加熱して、面材と基材とを接着して本発明の複合吸音材得た。得られた複合吸音材は、厚みが20mm、目付けが1075g/m2、平均見掛け密度が0.54g/cm3、周波数500HZの吸音率が45%、周波数1000HZの吸音率が86%、周波数1500HZの吸音率が78%であり、低周波領域に高い吸音性が得られた。また、面材の基材に対する重量比率は5%であった。
面材と基材との剥離強力は1.8N/cmであり、面材と基材が裁断加工および輸送工程で剥離することはなかった。
After applying a polyamide-based hot melt adhesive (melting point 130 ° C.) at 20 g / m 2 to the face material, it was heated to 160 ° C. from the face material side with a hot plate press using a 20 mm spacer. The composite sound-absorbing material of the present invention was obtained by bonding the substrate. The obtained composite sound-absorbing material has a thickness of 20 mm, a basis weight of 1075 g / m 2 , an average apparent density of 0.54 g / cm 3 , a sound absorption of 45% at a frequency of 500 Hz, a sound absorption of 86% at a frequency of 1000 HZ, and a frequency of 1500 HZ. The sound absorption coefficient was 78%, and high sound absorption was obtained in the low frequency region. The weight ratio of the face material to the base material was 5%.
The peel strength between the face material and the base material was 1.8 N / cm, and the face material and the base material were not peeled off during the cutting process and the transporting process.

(実施例3)
面材に用いる積層不織布の接着面に低融点繊維層を設けた。
スパンボンド法により、ポリエチレンテレフタレート(融点263℃)を紡糸温度300℃で溶融紡糸し、繊維化させ、繊維ウェブA(目付け40g/m2、平均繊維径13μm)を捕集ネット上に形成した。次いで、ポリエチレンテレフタレート(融点260℃)を紡糸温度300℃で、温度が320℃、流量が1000Nm3/hrの加熱空気を用い、メルトブロー方式で糸条を繊維ウェブA上に直接に噴出させ、極細繊維ウェブB(目付け20g/m2、平均繊維径2μm)を積層した。さらに、極細繊維ウェブB上に、2成分紡糸口金を用いて、鞘成分が共重合ポリエステル樹脂(融点160℃)からなり、芯成分がポリエチレンテレフタレート(融点263℃)からなる複合長繊維ウェブC(目付け40g/m2、平均繊維径17μm)を積層し、3層積層繊維ウェブを得た。得られた3層積層繊維ウェブを、一対のエンボスロール/フラットロールで部分圧着し(温度230℃/145℃、線圧300N/cm)、目付けが100g/m2、平均見掛け密度が0.25g/cm3、熱圧着率が25%の積層不織布からなる面材を得た。
(Example 3)
A low melting point fiber layer was provided on the adhesive surface of the laminated nonwoven fabric used for the face material.
Polyethylene terephthalate (melting point: 263 ° C.) was melt-spun at a spinning temperature of 300 ° C. by a spunbond method to form a fiber web A (weight per unit area: 40 g / m 2 , average fiber diameter: 13 μm) on a collection net. Next, polyethylene terephthalate (melting point 260 ° C.) is spun at 300 ° C., heated at 320 ° C., and heated at a flow rate of 1000 Nm 3 / hr. A fiber web B (weighing 20 g / m 2 , average fiber diameter 2 μm) was laminated. Furthermore, on the ultrafine fiber web B, using a two-component spinneret, a composite long fiber web C (with a sheath component made of a copolyester resin (melting point 160 ° C.) and a core component made of polyethylene terephthalate (melting point 263 ° C.) A basis weight of 40 g / m 2 and an average fiber diameter of 17 μm) was laminated to obtain a three-layer laminated fiber web. The obtained three-layer laminated fiber web was partially press-bonded with a pair of embossing rolls / flat rolls (temperature 230 ° C./145° C., linear pressure 300 N / cm), basis weight 100 g / m 2 , and average apparent density 0.25 g. A face material made of a laminated nonwoven fabric having a thermal compression ratio of 25% / cm 3 was obtained.

次いで、基材となる短繊維不織布を、ポリエステル短繊維、低融点短繊維および難燃性短繊維の混合繊維で作った。ポリエステル短繊維(繊維径17μm、繊維長51mm)、共重合ポリエステル短繊維(融点135℃、繊維径20μm、繊維長38mm)および燐系難燃剤練りこみ難燃性ポリエステル短繊維(融点260℃、繊維径18μm、繊維長51mm)を50:25:25の割合で混合して、カード機で開繊し、短繊維ウェブを得た。得られた短繊維ウェブをニードルパンチ機で機械交絡して、厚み35mm、目付け1200g/m2の基材を得た(平均見掛け密度0.34g/cm3)。 Next, a short fiber nonwoven fabric as a base material was made of a mixed fiber of polyester short fibers, low melting point short fibers and flame retardant short fibers. Polyester short fiber (fiber diameter 17 μm, fiber length 51 mm), copolymer polyester short fiber (melting point 135 ° C., fiber diameter 20 μm, fiber length 38 mm) and phosphorus-based flame retardant kneaded flame retardant polyester short fiber (melting point 260 ° C., fiber (Diameter 18 μm, fiber length 51 mm) were mixed at a ratio of 50:25:25, and opened with a card machine to obtain a short fiber web. The obtained short fiber web was mechanically entangled with a needle punch machine to obtain a substrate having a thickness of 35 mm and a basis weight of 1200 g / m 2 (average apparent density 0.34 g / cm 3 ).

面材にポリアミド系ホットメルト接着剤(融点130℃)を20g/m2で塗布した後、30mmスペーサーを用いた熱板プレス機で、面材側から温度160℃に加熱して、面材と基材とを接着して本発明の複合吸音材得た。得られた複合吸音材は、厚みが30mm、目付けが1320g/m2、平均見掛け密度が0.44g/cm3、周波数500HZの吸音率が60%、周波数1000HZの吸音率が97%、周波数1500HZの吸音率が85%であり、低周波領域に高い吸音性が得られた。また、面材の基材に対する重量比率は8.3%であった。
面材と基材との剥離強力は2.3N/cmであり、面材と基材が裁断加工および輸送工程で剥離することはなかった。
After applying a polyamide-based hot melt adhesive (melting point 130 ° C.) at 20 g / m 2 to the face material, it was heated to 160 ° C. from the face material side with a hot plate press using a 30 mm spacer. The composite sound-absorbing material of the present invention was obtained by bonding the substrate. The obtained composite sound-absorbing material has a thickness of 30 mm, a basis weight of 1320 g / m 2 , an average apparent density of 0.44 g / cm 3 , a sound absorption of 60% at a frequency of 500 HZ, a sound absorption of 97 H at a frequency of 1000 HZ, and a frequency of 1500 HZ. The sound absorptivity was 85%, and high sound absorption was obtained in the low frequency region. The weight ratio of the face material to the base material was 8.3%.
The peel strength between the face material and the base material was 2.3 N / cm, and the face material and the base material were not peeled off during the cutting process and the transport process.

(実施例4)
実施例1で得られた目付けが100g/m2の積層不織布の片面に、黒色グラビア印刷及びグラビア方法により撥水加工を行った(溶剤系黒色インキ:東洋インキ製造(株)製、及び、溶剤系のフッソ系撥水剤:旭硝子(株)製)。次いで、実施例1と同様にホットメルト接着剤を塗布してから、実施例1と同様の基材を用いて貼り合わせ加工を行い、面材と基材とを接着して本発明の複合吸音材を得た。得られた複合吸音材は、厚みが20mm、目付けが1079g/m2、平均見掛け密度が0.54g/cm3、周波数500HZの吸音率が48%、周波数1000HZの吸音率が88%および周波数1500HZの吸音率が77%であり、低周波数領域に高い吸音性が得られた。表面の撥水度は4であり、燃焼性を評価した結果、自己消化性であった。
また、面材と基材との剥離強力は1.6N/cmであり、面材と基材が裁断加工および輸送工程で剥離することはなかった。
Example 4
Water repellent processing was carried out on one side of the laminated nonwoven fabric obtained in Example 1 with a basis weight of 100 g / m 2 by a black gravure printing and gravure method (solvent black ink: manufactured by Toyo Ink Manufacturing Co., Ltd., and solvent -Based fluorine-based water repellent: manufactured by Asahi Glass Co., Ltd.). Next, after applying a hot melt adhesive in the same manner as in Example 1, bonding is performed using the same base material as in Example 1, and the face material and the base material are adhered to each other to combine the sound absorption of the present invention. The material was obtained. The obtained composite sound-absorbing material has a thickness of 20 mm, a basis weight of 1079 g / m 2 , an average apparent density of 0.54 g / cm 3 , a sound absorption rate of 48% at a frequency of 500 Hz, a sound absorption rate of 88% at a frequency of 1000 Hz and a frequency of 1500 Hz. The sound absorptivity was 77%, and high sound absorption was obtained in the low frequency region. The water repellency of the surface was 4, and as a result of evaluating the flammability, it was self-digesting.
The peel strength between the face material and the base material was 1.6 N / cm, and the face material and the base material were not peeled off during the cutting process and the transporting process.

(比較例1)
実施例1の基材のみの吸音性を測定した。周波数500HZの吸音率が20%、周波数1000HZの吸音率が40%、周波数1500HZの吸音率が60%であり、低周波領域の吸音性が低かった。
(Comparative Example 1)
The sound absorption of only the base material of Example 1 was measured. The sound absorption coefficient at a frequency of 500HZ was 20%, the sound absorption coefficient at a frequency of 1000HZ was 40%, the sound absorption coefficient at a frequency of 1500HZ was 60%, and the sound absorption in the low frequency region was low.

(比較例2)
実施例2の基材のみの吸音性を測定した。周波数500HZの吸音率が16%、周波数1000HZの吸音率が34%、周波数1500HZの吸音率が53%であり、低周波領域の吸音性が低かった。
(Comparative Example 2)
The sound absorbing property of only the base material of Example 2 was measured. The sound absorption coefficient at a frequency of 500HZ was 16%, the sound absorption coefficient at a frequency of 1000HZ was 34%, the sound absorption coefficient at a frequency of 1500HZ was 53%, and the sound absorption in the low frequency region was low.

(比較例3)
実施例3の基材のみの吸音性を測定した。周波数500HZの吸音率が26%、周波数1000HZの吸音率が46%、周波数1500HZの吸音率が69%であり、低周波領域の吸音性が低かった。
(Comparative Example 3)
The sound absorption property of only the base material of Example 3 was measured. The sound absorption coefficient at a frequency of 500HZ was 26%, the sound absorption coefficient at a frequency of 1000HZ was 46%, the sound absorption coefficient at a frequency of 1500HZ was 69%, and the sound absorption in the low frequency region was low.

本発明の複合吸音材は、低周波領域の吸音性に優れているため、自動車、建設機械および家電製品などのモーター駆動部に対して高い吸音性を有する。従って、自動車部材、建築材料、家電製品および建設機械などの吸音材として好適に用いられる。   Since the composite sound-absorbing material of the present invention has excellent sound-absorbing properties in the low-frequency region, it has high sound-absorbing properties for motor drive parts such as automobiles, construction machines, and home appliances. Therefore, it is suitably used as a sound absorbing material for automobile members, building materials, home appliances, construction machines and the like.

Claims (10)

少なくとも1層の極細繊維層を含む積層不織布からなる面材と、平均見掛け密度が0.4〜0.8g/cm3の短繊維不織布からなる基材とを貼り合わせてなる複合吸音材であって、該面材と該基材との接着力が0.1N/10mm以上であり、周波数1000HZの吸音率が50%以上であることを特徴とする複合吸音材。 A composite sound-absorbing material in which a face material made of a laminated nonwoven fabric including at least one ultrafine fiber layer and a base material made of a short-fiber nonwoven fabric having an average apparent density of 0.4 to 0.8 g / cm 3 are bonded together. A composite sound-absorbing material, wherein the adhesive force between the face material and the base material is 0.1 N / 10 mm or more, and the sound absorption coefficient at a frequency of 1000 HZ is 50% or more. 積層不織布が、平均繊維径が10〜30μmの熱可塑性繊維からなり、目付けが40〜100g/m2の熱可塑性繊維層を少なくとも1層含む請求項1に記載の複合吸音材。 The composite sound-absorbing material according to claim 1, wherein the laminated nonwoven fabric is made of thermoplastic fibers having an average fiber diameter of 10 to 30 μm and includes at least one thermoplastic fiber layer having a basis weight of 40 to 100 g / m 2 . 極細繊維層が、平均繊維径が0.1〜5μmの極細繊維からなり、目付けが3〜30g/m2である請求項1または2に記載の複合吸音材。 The composite sound-absorbing material according to claim 1 or 2, wherein the ultrafine fiber layer is made of ultrafine fibers having an average fiber diameter of 0.1 to 5 µm and has a basis weight of 3 to 30 g / m 2 . 積層不織布が熱圧着で一体化されている請求項1〜3のいずれか一項に記載の複合吸音材。   The composite sound-absorbing material according to any one of claims 1 to 3, wherein the laminated nonwoven fabric is integrated by thermocompression bonding. 面材の厚みが0.1〜0.3mmであり、目付けが50〜120g/m2である請求項1〜4のいずれか一項に記載の複合吸音材。 The thickness of the facing material is 0.1 to 0.3 mm, composite sound absorbing material according to claim 1 having a basis weight is 50 to 120 / m 2. 基材が、平均繊維径が10〜30μmのポリエステル系短繊維と低融点短繊維との混合繊維からなる請求項1〜5のいずれか一項に記載の複合吸音材。   The composite sound-absorbing material according to any one of claims 1 to 5, wherein the base material comprises a mixed fiber of polyester short fibers having an average fiber diameter of 10 to 30 µm and low melting point short fibers. 基材の厚みが20〜50mmであり、目付けが500〜1500g/m2である請求項1〜6のいずれか一項に記載の複合吸音材。 The thickness of a base material is 20-50 mm, and a fabric weight is 500-1500 g / m < 2 >, The composite sound-absorbing material as described in any one of Claims 1-6. 面材と基材が、ホットメルト系接着剤が5〜20g/m2塗布されて接着されている請求項1〜7のいずれか一項に記載の複合吸音材。 The composite sound-absorbing material according to any one of claims 1 to 7, wherein the face material and the base material are bonded by applying 5 to 20 g / m 2 of a hot melt adhesive. 複合吸音材の撥水性が50以上である請求項1〜8のいずれか一項に記載の複合吸音材。   The composite sound-absorbing material according to any one of claims 1 to 8, wherein the water-repellent property of the composite sound-absorbing material is 50 or more. 複合吸音材の難燃性が自己消化性である請求項1〜9のいずれか一項に記載の複合吸音材。   The composite sound-absorbing material according to any one of claims 1 to 9, wherein the flame-retardant property of the composite sound-absorbing material is self-digestible.
JP2008299884A 2008-11-25 2008-11-25 Composite sound absorbing material Pending JP2010128005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299884A JP2010128005A (en) 2008-11-25 2008-11-25 Composite sound absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299884A JP2010128005A (en) 2008-11-25 2008-11-25 Composite sound absorbing material

Publications (1)

Publication Number Publication Date
JP2010128005A true JP2010128005A (en) 2010-06-10

Family

ID=42328471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299884A Pending JP2010128005A (en) 2008-11-25 2008-11-25 Composite sound absorbing material

Country Status (1)

Country Link
JP (1) JP2010128005A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163869A (en) * 2012-02-09 2013-08-22 Asahi Kasei Fibers Corp Molded acoustic material for dash silencer of vehicle
JP2014031073A (en) * 2012-08-02 2014-02-20 Howa Textile Industry Co Ltd Method for manufacturing molded ceiling for vehicle
WO2016121468A1 (en) * 2015-01-30 2016-08-04 株式会社オートネットワーク技術研究所 Sound-absorbing material, and wiring harness with sound-absorbing material
CN105981098A (en) * 2014-02-19 2016-09-28 株式会社自动网络技术研究所 Sound absorber and wire harness with a sound absorber
JP2017037173A (en) * 2015-08-10 2017-02-16 東レ株式会社 Sound absorbing felt
CN107635831A (en) * 2015-05-19 2018-01-26 Hp佩尔泽控股有限公司 Fire wall
JP2018199253A (en) * 2017-05-26 2018-12-20 Jnc株式会社 Laminate sound absorber containing ultra-fine fiber
WO2018235741A1 (en) * 2017-06-21 2018-12-27 Jxtgエネルギー株式会社 Sound absorbing material
JP2019128510A (en) * 2018-01-26 2019-08-01 日本バイリーン株式会社 Sound absorption material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182655A (en) * 2000-12-18 2002-06-26 Toray Ind Inc Acoustic material and acoustic panen using the same
JP2003082568A (en) * 2001-09-06 2003-03-19 Toyobo Co Ltd Sound-absorbing material having excellent formability
JP2005208599A (en) * 2003-12-26 2005-08-04 Takayasu Co Ltd Water-repellent acoustic material and interior material for vehicle using the same
JP2005208494A (en) * 2004-01-26 2005-08-04 Takehiro:Kk Extra-lightweight soundproof material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182655A (en) * 2000-12-18 2002-06-26 Toray Ind Inc Acoustic material and acoustic panen using the same
JP2003082568A (en) * 2001-09-06 2003-03-19 Toyobo Co Ltd Sound-absorbing material having excellent formability
JP2005208599A (en) * 2003-12-26 2005-08-04 Takayasu Co Ltd Water-repellent acoustic material and interior material for vehicle using the same
JP2005208494A (en) * 2004-01-26 2005-08-04 Takehiro:Kk Extra-lightweight soundproof material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163869A (en) * 2012-02-09 2013-08-22 Asahi Kasei Fibers Corp Molded acoustic material for dash silencer of vehicle
JP2014031073A (en) * 2012-08-02 2014-02-20 Howa Textile Industry Co Ltd Method for manufacturing molded ceiling for vehicle
CN105981098A (en) * 2014-02-19 2016-09-28 株式会社自动网络技术研究所 Sound absorber and wire harness with a sound absorber
CN107251135A (en) * 2015-01-30 2017-10-13 株式会社自动网络技术研究所 Sound-absorbing material and the wire harness with sound-absorbing material
JP2016142831A (en) * 2015-01-30 2016-08-08 株式会社オートネットワーク技術研究所 Sound absorber and sound-absorber-equipped wire harness
WO2016121468A1 (en) * 2015-01-30 2016-08-04 株式会社オートネットワーク技術研究所 Sound-absorbing material, and wiring harness with sound-absorbing material
US10583627B2 (en) 2015-01-30 2020-03-10 Autonetworks Technologies, Ltd. Sound-absorbing material and wire harness provided with sound-absorbing material
CN107635831A (en) * 2015-05-19 2018-01-26 Hp佩尔泽控股有限公司 Fire wall
JP2017037173A (en) * 2015-08-10 2017-02-16 東レ株式会社 Sound absorbing felt
JP7032032B2 (en) 2015-08-10 2022-03-08 東レ株式会社 Sound absorbing felt
JP2018199253A (en) * 2017-05-26 2018-12-20 Jnc株式会社 Laminate sound absorber containing ultra-fine fiber
WO2018235741A1 (en) * 2017-06-21 2018-12-27 Jxtgエネルギー株式会社 Sound absorbing material
JP2019005939A (en) * 2017-06-21 2019-01-17 Jxtgエネルギー株式会社 Sound absorber
US11705098B2 (en) 2017-06-21 2023-07-18 Eneos Corporation Sound absorbing material
JP2019128510A (en) * 2018-01-26 2019-08-01 日本バイリーン株式会社 Sound absorption material

Similar Documents

Publication Publication Date Title
JP2010128005A (en) Composite sound absorbing material
JP4919881B2 (en) Composite sound-absorbing material
KR102343534B1 (en) Nonwoven fabric and composite sound-absorbing material using this as a skin material
JP4574262B2 (en) SOUND ABSORBING LAMINATE AND METHOD FOR PRODUCING THE SAME
JP2006047628A (en) Sound absorption heat insulating material
KR20200102448A (en) Laminated sound absorbing material
JP6498454B2 (en) Sheet for multilayer molding and sheet molded body
JP2019045636A (en) Composite sound absorbing material
JP3968648B2 (en) Sound absorbing material
JP2006098890A (en) Sound-deadening material and manufacturing method thereof
JP2006285086A (en) Sound absorbing heat insulating material
JP6774042B2 (en) Laminated sound absorbing material
JP4540417B2 (en) Sound absorbing material and manufacturing method thereof
JP2019043014A (en) Composite sound absorbing material
JP2018146942A (en) Laminated sound absorption material including ultrafine fiber
JP6751278B1 (en) Laminated sound absorbing material
JP7145231B2 (en) Nonwoven fabrics, laminated nonwoven fabrics of said nonwoven fabrics, and composite sound absorbing materials using these as surface materials
JP7462748B2 (en) Composite sound absorbing material
JP2007314906A (en) Carpet backing
JP2001277953A (en) Vehicular ceiling material and method of manufacturing it
JP2001018314A (en) Nonwoven fabric laminate and interior finish material for car
JP2022117628A (en) sound absorbing material
JP2001279567A (en) Sound-absorbing material and method for producing the same
JP2022117661A (en) Sound-absorbing skin material
JP2004237497A (en) Method for manufacturing composite material using cloth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507