JP4540417B2 - Sound absorbing material and manufacturing method thereof - Google Patents

Sound absorbing material and manufacturing method thereof Download PDF

Info

Publication number
JP4540417B2
JP4540417B2 JP2004212768A JP2004212768A JP4540417B2 JP 4540417 B2 JP4540417 B2 JP 4540417B2 JP 2004212768 A JP2004212768 A JP 2004212768A JP 2004212768 A JP2004212768 A JP 2004212768A JP 4540417 B2 JP4540417 B2 JP 4540417B2
Authority
JP
Japan
Prior art keywords
fiber
sound absorbing
fibers
absorbing material
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004212768A
Other languages
Japanese (ja)
Other versions
JP2006028709A (en
Inventor
岩崎  博文
幸政 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2004212768A priority Critical patent/JP4540417B2/en
Publication of JP2006028709A publication Critical patent/JP2006028709A/en
Application granted granted Critical
Publication of JP4540417B2 publication Critical patent/JP4540417B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、中程度の周波数の吸音性に優れ、薄く、軽量で、形態安定性に優れた自動車内装用などに好適な吸音材およびその製造法に関する。   The present invention relates to a sound-absorbing material excellent in sound absorption at a medium frequency, thin, lightweight, and excellent in form stability and suitable for automobile interiors and the like and a method for producing the same.

従来から自動車や住宅の内装には、吸音材として、グラスウール、ロックウール、アルミ繊維、多孔性セラミック、屑綿などが使用されている。しかし、これらの吸音材は、施工性、人体への障害、リサイクル、環境などの点で問題があったため、近年では不織布を用いた種々の吸音材が提案されている。
例えば、特許文献1には、密度0.013〜0.05g/cm3 のメルトブローン極細繊維不織布を用いた防音シート材料が提案されている。しかし、このシート材料は厚みの変形が生じ易く、取扱性に劣り、さらに耐熱性が不足するなどの問題がある。
特許文献2には、融点差を有する2種以上の混綿繊維で構成された、難燃性を有する吸音材が提案されている。しかし、この吸音材は、難燃性、リサイクル性に優れるが、0.01〜0.1g/cm3 の密度で厚み変形が生じ易く、取扱性などに問題がある。
特許文献3には、繊維径が6μm以下の極細繊維を含有し、目付け30〜200g/m2 の不織布と、繊維径が7〜40μmで目付け50〜2000g/m2 の短繊維不織布とを流体交絡法またはニードルパンチ法により一体化した吸音材が提案されている。しかし、このような方法で一体化処理を行うと極細繊維が切断され、穴が開いた構成となり、吸音性、形態安定性が低下し易いという欠点がある。
特許文献4には、平均繊維径10μm以下、平均みかけ密度0.1〜0.4g/cm3 および目付け5〜300g/m2 のメルトブローン不織布と、みかけ密度0.01〜0.10g/cm3 および目付け50〜2000g/m2 の繊維集合体とからなる吸音材が提案されている。しかし、この吸音材は、メルトブローン不織布面の強度が低く、形態安定性、取扱性などに問題がある。
さらに特許文献5には、繊維径6μm以下の極細繊維を含み、目付け20〜100g/m2 のメルトブローン不織布と、繊維径7〜40μm、目付け50〜2000g/m2 、厚み5〜30mm基布入り短繊維不織布とが積層一体化された吸音材が提案されている。しかし、この吸音材でもメルトブローン不織布面の強度が低く、形態安定性、取扱性、価格などに問題があった。
特開平06−212546号公報 特開平10−268871号公報 特開2001−279567号公報 特開2002−69824号公報 特開2002−161464号公報
Conventionally, glass wool, rock wool, aluminum fibers, porous ceramics, scrap cotton, and the like have been used as sound absorbing materials in the interior of automobiles and houses. However, since these sound absorbing materials have problems in terms of workability, obstacles to the human body, recycling, environment, and the like, in recent years, various sound absorbing materials using nonwoven fabrics have been proposed.
For example, Patent Document 1 proposes a soundproof sheet material using a melt blown ultrafine fiber nonwoven fabric having a density of 0.013 to 0.05 g / cm 3 . However, this sheet material is prone to thickness deformation, is inferior in handleability, and has problems such as insufficient heat resistance.
Patent Document 2 proposes a sound-absorbing material having flame retardancy, which is composed of two or more kinds of mixed cotton fibers having a melting point difference. However, this sound-absorbing material is excellent in flame retardancy and recyclability, but thickness deformation tends to occur at a density of 0.01 to 0.1 g / cm 3 , and there is a problem in handling properties.
Patent Document 3, the fiber diameter contained the following ultrafine fibers 6 [mu] m, fluid and having a basis weight of 30 to 200 g / m 2 nonwoven fabric having a fiber diameter of the short fiber nonwoven fabric having a basis weight of 50 to 2000 g / m 2 in 7~40μm A sound absorbing material integrated by a confounding method or a needle punch method has been proposed. However, when the integration process is carried out by such a method, there is a drawback that the ultrafine fibers are cut and a hole is formed, and the sound absorption and form stability are likely to be lowered.
Patent Document 4 discloses a melt blown nonwoven fabric having an average fiber diameter of 10 μm or less, an average apparent density of 0.1 to 0.4 g / cm 3 and a basis weight of 5 to 300 g / m 2 , and an apparent density of 0.01 to 0.10 g / cm 3. A sound absorbing material comprising a fiber assembly having a basis weight of 50 to 2000 g / m 2 has been proposed. However, this sound-absorbing material has low strength on the surface of the meltblown nonwoven fabric, and has problems in form stability, handling properties, and the like.
Further, Patent Document 5 includes a melt blown nonwoven fabric containing ultrafine fibers having a fiber diameter of 6 μm or less, a basis weight of 20 to 100 g / m 2 , a fiber diameter of 7 to 40 μm, a basis weight of 50 to 2000 g / m 2 , and a thickness of 5 to 30 mm. A sound absorbing material in which a short fiber nonwoven fabric is laminated and integrated has been proposed. However, even this sound-absorbing material has low strength on the surface of the meltblown nonwoven fabric, and has problems in form stability, handleability, and price.
Japanese Patent Laid-Open No. 06-212546 Japanese Patent Laid-Open No. 10-268871 JP 2001-279567 A JP 2002-69824 A JP 2002-161464 A

本発明の課題は、上記従来技術の問題点を解決し、中程度の領域周波数の吸音性が高く、薄く、軽量で、形態安定性に優れ、自動車内装用などに好適な吸音材およびその製造法を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art, to obtain a sound absorbing material having a high sound absorbing property at a medium frequency range, thin, lightweight, excellent in form stability, and suitable for automobile interior use and the like. To provide a law.

本発明者らは、上記課題に鑑み、鋭意検討した結果、熱圧着された緻密構造の表面材と、粗な構造の裏面材とをホットメルト接着剤等により接合することにより、表面材の小さな空隙に侵入した音を裏面材の繊維単糸に伝達して振動させ、効率よく熱エネルギーに変化させることができるため、音エネルギーが減少し、大幅な吸音性の向上が図れることを見いだし、本発明に到達した。
すなわち、本願で特許請求される発明は以下のとおりである。
As a result of diligent research in view of the above problems, the inventors of the present invention have made the surface material small by joining the surface material having a dense structure that has been thermocompression bonded and the back material having a rough structure with a hot melt adhesive or the like. The sound that penetrated into the air gap was transmitted to the single fiber yarn on the back material and vibrated to efficiently convert it into thermal energy, so it was found that the sound energy was reduced and the sound absorption was greatly improved. The invention has been reached.
That is, the invention claimed in the present application is as follows.

(1)部分熱圧着後、更にカレンダー加工されたスパンボンド法による熱可塑性合成繊維不織布からなる表面材と合成繊維不織布からなる裏面材との接合不織布であって、該表面材の繊維の平均繊維径が10〜30μm、厚みが0.03〜1mm、平均みかけ密度が0.3g/cm3 以上および目付けが20〜250g/m2 であり、該裏面材の厚みが5〜45mmおよび平均みかけ密度が0.1g/cm3 以下であり、さらに前記接合不織布の厚みが5〜50mm、目付けが100〜1000g/m2 および周波数4000Hzの吸音率が50%以上であることを特徴とする吸音材。
(2)前記表面材および裏面材を構成する繊維の平均繊維径が10〜30μmであることを特徴とする(1)に記載の吸音材。
(3)前記表面材および裏面材が、ポリエステル系繊維またはポリエステル系共重合繊維を主体とする繊維で構成されていることを特徴とする(1)または(2)に記載の吸音材。
(4)前記表面材の構成繊維が異形断面繊維であることを特徴とする(1)〜(3)のいずれかに記載の吸音材。
(5)前記表面材の構成繊維が複合繊維であることを特徴とする(1)〜(4)のいずれかに記載の吸音材。
(6)前記表面材が、長繊維不織布であり、部分熱圧着率3〜35%で熱圧着されていることを特徴とする(1)〜(5)のいずれかに記載の吸音材。
(7)前記裏面材が、短繊維不織布であり、かつ熱融着繊維および/または難燃性繊維を5〜50重量%含有していることを特徴とする(1)〜(6)のいずれかに記載の吸音材。
(8)前記裏面材を構成する不織布に5〜50重量%の合成樹脂が塗布されていることを特徴とする(1)〜(7)のいずれかに記載の吸音材。
(1) A bonded non-woven fabric of a surface material composed of a thermoplastic synthetic long- fiber non-woven fabric and a back surface composed of a synthetic non-woven fabric by a spunbond method, which is further calendered after partial thermocompression bonding, and the average of the fibers of the surface material The fiber diameter is 10 to 30 μm, the thickness is 0.03 to 1 mm, the average apparent density is 0.3 g / cm 3 or more, the basis weight is 20 to 250 g / m 2 , and the thickness of the back material is 5 to 45 mm and the average appearance A sound-absorbing material having a density of 0.1 g / cm 3 or less, a thickness of the bonded nonwoven fabric of 5 to 50 mm, a basis weight of 100 to 1000 g / m 2, and a sound absorption rate of 4000 Hz or more. .
(2) The sound absorbing material according to (1), wherein an average fiber diameter of fibers constituting the surface material and the back surface material is 10 to 30 μm.
(3) The sound-absorbing material according to (1) or (2), wherein the surface material and the back material are composed of fibers mainly composed of a polyester fiber or a polyester copolymer fiber.
(4) The sound absorbing material according to any one of (1) to (3), wherein the constituent fibers of the surface material are irregular cross-section fibers.
(5) The sound absorbing material according to any one of (1) to (4), wherein the constituent fiber of the surface material is a composite fiber.
(6) The sound absorbing material according to any one of (1) to (5), wherein the surface material is a long-fiber non-woven fabric and is thermocompression bonded at a partial thermocompression rate of 3 to 35%.
(7) Any one of (1) to (6), wherein the back material is a short fiber nonwoven fabric and contains 5 to 50% by weight of heat-fusible fiber and / or flame-retardant fiber. The sound absorbing material according to crab.
(8) The sound absorbing material according to any one of (1) to (7), wherein 5 to 50% by weight of a synthetic resin is applied to the nonwoven fabric constituting the back material.

(9)厚み0.03〜1mm、平均みかけ密度0.3g/cm3 以上および目付け20〜250g/m2 および繊維の平均繊維径が10〜30μmである部分熱圧着されたスパンボンド法による熱可塑性合成繊維不織布からなる表面材と、厚み5〜45mmおよび平均みかけ密度0.1g/cm3 以下である合成繊維不織布からなる裏面材とを接合して吸音材を製造するに際し、該表面材と裏面材の間に接着剤または熱融着繊維を介在させて熱処理することを特徴とする吸音材の製造法。
(9) Heat by a partial thermocompression-bonded spunbond method having a thickness of 0.03 to 1 mm, an average apparent density of 0.3 g / cm 3 or more, a basis weight of 20 to 250 g / m 2 and an average fiber diameter of 10 to 30 μm When producing a sound-absorbing material by joining a surface material made of a plastic synthetic long- fiber nonwoven fabric and a back material made of a synthetic fiber nonwoven fabric having a thickness of 5 to 45 mm and an average apparent density of 0.1 g / cm 3 or less, the surface material A method for producing a sound-absorbing material, characterized in that heat treatment is performed with an adhesive or a heat-sealing fiber interposed between the back surface material and the back surface material.

本発明の吸音材は、表面材が小さな空隙を有する高密度構成の熱可塑性合成繊維不織布からなるため、音の波長を小さくして不織布の空隙に侵入させ、かつ大きな空隙を有する粗な構成の合成繊維不織布からなる裏面材の繊維単糸に、該侵入した音波を伝達して振動させ、音エネルギーを効率よく熱エネルギーに変換することができ、優れた吸音効果を得ることができる。また表面材と裏面材とをホットメルト接着剤等の使用により接合することにより、特定の厚みや目付等を有する接合不織布を得ることができるため、貫通孔の形成がなく、優れた吸音効果を得ることができ、また摩擦強度、突刺し強度に優れ、優れた形状安定性を有し、裁断加工性などに優れ、良好な取扱性が得られる。 The sound-absorbing material of the present invention is made of a thermoplastic synthetic fiber nonwoven fabric having a high density structure with small voids on the surface material. Therefore, the sound absorbing material has a rough structure having a small sound wavelength and entering into the voids of the nonwoven fabric and having large voids. The invading sound wave is transmitted to and vibrated into the single fiber yarn of the back material made of synthetic fiber nonwoven fabric, so that sound energy can be efficiently converted into thermal energy, and an excellent sound absorption effect can be obtained. In addition, by joining the surface material and the back material by using a hot melt adhesive or the like, it is possible to obtain a bonded nonwoven fabric having a specific thickness, basis weight, etc., so there is no formation of through holes and an excellent sound absorbing effect. getting can, or friction strength, excellent in piercing strength, has excellent dimensional stability, excellent in such cutting processability, good handling properties are obtained.

以下、本発明を詳しく説明する。
本発明の吸音材は、熱圧着された熱可塑性合成繊維不織布からなる表面材と合成繊維不織布からなる裏面材との接合不織布で構成される。
本発明に用いられる表面材は、厚みが0.03〜1mm、好ましくは0.04〜0.7mmであり、平均みかけ密度が0.3g/cm3 以上、好ましくは0.35〜1.0g/m2 であり、さらに目付けが20〜250g/m2 、好ましくは30〜200g/m2 である。このような構成とすることにより、表面材が高密度構造となり、侵入する音の波長を細孔中の摩擦抵抗で小さくできる。表面材の厚みが0.03mm未満、平均みかけ密度が0.3g/cm3 未満、また目付けが20g/m2 未満では、強度、剛性、取扱性、繊維密度などが低下し、吸音効果が低下する。一方、厚みが1mmを超え、目付けが250g/m2 を超えると、強度、繊維密度は大きくなるが、剛性が大きすぎて裁断性、取扱性が低下する。
The present invention will be described in detail below.
The sound-absorbing material of the present invention is composed of a bonded non-woven fabric of a surface material made of a thermoplastic synthetic fiber non-woven fabric and a back material made of a synthetic fiber non-woven fabric.
The surface material used in the present invention has a thickness of 0.03 to 1 mm, preferably 0.04 to 0.7 mm, and an average apparent density of 0.3 g / cm 3 or more, preferably 0.35 to 1.0 g. / M 2 and a basis weight of 20 to 250 g / m 2 , preferably 30 to 200 g / m 2 . By adopting such a configuration, the surface material has a high-density structure, and the wavelength of sound that enters can be reduced by the frictional resistance in the pores. When the thickness of the surface material is less than 0.03 mm, the average apparent density is less than 0.3 g / cm 3 , and the basis weight is less than 20 g / m 2 , the strength, rigidity, handleability, fiber density, etc. are lowered, and the sound absorption effect is lowered. To do. On the other hand, when the thickness exceeds 1 mm and the basis weight exceeds 250 g / m 2 , the strength and the fiber density increase, but the rigidity is too high and the cutting property and the handling property deteriorate.

表面材を構成する熱可塑性合成繊維不織布は、公知のスパンボンド法などにより得られる部分熱圧着された長繊維不織布であるのが好ましく、部分熱圧着率は3〜35%の範囲が好ましく、より好ましくは5〜30%である。部分熱圧着は全面に均一にされているのが好ましいが、部分熱圧着の形状には特に限定はない。部分熱圧着率が3%未満では充分な不織布強力が得られず、35%超えると非部分圧着部分が少なくなり、音が進入する不織布の空隙が少なくなる。部分熱圧着の方法としては基本的には、凹凸金属エンボスロール/金属フラットロールで1回通しで行われるが、金属エンボス/ゴム、ペーパー、コットンロールなどの組み合わせで2回通しで全面にカレンダー加工してもよい。
または部分熱圧着した後、さらに一対の金属フラットロール/金属フラットロール、金属フラットロール/ペーパーロール、金属フラットロール/コットンロール、金属フラットロール/樹脂ロールなどで2段に分け、全面をカレンダー加工するのが表面材の緻密化の点から好ましい。熱圧着またはカレンダー加工は、熱可塑性合成繊維の樹脂融点より15〜80℃程度低い温度で、線圧100〜1000N/cmの範囲で行うのが好ましい。
The thermoplastic synthetic fiber nonwoven fabric constituting the surface material is preferably a partially thermocompressed long fiber nonwoven fabric obtained by a known spunbond method or the like, and the partial thermocompression bonding rate is preferably in the range of 3 to 35%, more Preferably it is 5 to 30%. The partial thermocompression bonding is preferably made uniform over the entire surface, but the shape of the partial thermocompression bonding is not particularly limited. If the partial thermocompression rate is less than 3%, sufficient strength of the nonwoven fabric cannot be obtained, and if it exceeds 35%, the non-partial crimping portion is reduced and the voids of the nonwoven fabric through which sound enters decreases. As a method of partial thermocompression bonding, it is basically carried out once with an uneven metal embossing roll / metal flat roll, but the entire surface is calendered with a combination of metal embossing / rubber, paper, cotton roll, etc. May be.
Or after partial thermocompression bonding, it is further divided into two stages by a pair of metal flat roll / metal flat roll, metal flat roll / paper roll, metal flat roll / cotton roll, metal flat roll / resin roll, and the entire surface is calendered Is preferable from the viewpoint of densification of the surface material. The thermocompression bonding or calendering is preferably performed at a temperature lower by about 15 to 80 ° C. than the resin melting point of the thermoplastic synthetic fiber at a linear pressure of 100 to 1000 N / cm.

本発明に用いられる裏面材は、厚みが5〜45mm、好ましくは7〜40mm、平均みかけ密度が0.1g/cm3 以下、好ましくは0.01〜0.07g/cm3 である。このような構成とすることにより、粗な構造にすることができ、緻密構造の表面材から侵入した波長の小さくなった音波を、効率よく繊維単糸に伝達させて繊維単糸を振動させることができる。単糸の振動により音エネルギーが熱エネルギーに変換されると、吸音効果が発現する。裏面材の厚みが5mm未満では、薄すぎて吸音効果が低下する。また平均みかけ密度0.1g/cm3 超えると、緻密構造となり、繊維単糸の振動が低下して吸音効果が低下する。このように裏面材は、粗な構造の合成繊維不織布の構成繊維単糸を効率よく振動させ、音エネルギーを減少させて吸音性を大幅に向上させる役割を有する。 Back sheet used in the present invention has a thickness 5~45Mm, preferably 7~40Mm, average apparent density of 0.1 g / cm 3 or less, preferably 0.01~0.07g / cm 3. By adopting such a configuration, a rough structure can be obtained, and a sound wave having a reduced wavelength invading from a surface material having a dense structure can be efficiently transmitted to the fiber single yarn to vibrate the fiber single yarn. Can do. When sound energy is converted into thermal energy by vibration of a single yarn, a sound absorbing effect is exhibited. If the thickness of the back material is less than 5 mm, the sound absorbing effect is reduced because the thickness is too thin. On the other hand, when the average apparent density exceeds 0.1 g / cm 3 , a dense structure is obtained, and the vibration of the fiber single yarn is lowered, so that the sound absorbing effect is lowered. As described above, the back material has a role of effectively vibrating the constituent fiber single yarn of the synthetic fiber nonwoven fabric having a rough structure to reduce sound energy and greatly improve sound absorption.

裏面材の合成繊維からなる不織布は、短繊維または短繊維と長繊維を積層し、公知のニードルパンチ法などで交絡して得ることができる。また交絡した繊維同士を結合させるために、加熱処理や、スプレー法、浸漬法、キスロール法等により合成樹脂を該不織布に塗布してもよい。交絡した繊維同士を結合させることにより、振動エネルギーを効率よく熱エネルギーに変換させることができ、また不織布の厚みの変化を少なくすることができ、取扱性が向上する。塗布する合成樹脂としては、公知のアクリル系樹脂、合成ゴム系、酢酸ビニル系樹脂、ウレタン系樹脂、エステル系樹脂などの水系エマルジョンが挙げられ、繊維重量に対して5〜50%の範囲で塗布するのが好ましくより、好ましくは7〜30%である。   The nonwoven fabric made of the synthetic fiber of the back material can be obtained by laminating short fibers or short fibers and long fibers, and entangled by a known needle punch method or the like. Further, in order to bond the entangled fibers, a synthetic resin may be applied to the nonwoven fabric by a heat treatment, a spray method, a dipping method, a kiss roll method, or the like. By combining the entangled fibers, vibration energy can be efficiently converted into thermal energy, and the change in the thickness of the nonwoven fabric can be reduced, thereby improving the handleability. Examples of the synthetic resin to be applied include water-based emulsions such as known acrylic resins, synthetic rubber resins, vinyl acetate resins, urethane resins, ester resins, and the like. More preferably, it is 7 to 30%.

また裏面材に用いる不織布には、構成繊維の接着、剛性や難燃性などの機能を付加することができる。例えば、熱融着性繊維、難燃性繊維などを繊維重量に対して5〜50重量%の範囲で含有させてもよい。より好ましくは10〜30重量%である。
熱融着性繊維としては、鞘部がポリエチレン、ポリプロピレン、共重合エステルなどで芯部がポリプロピレン、ポリエチレンテレフタレートなどで構成される複合繊維、低融点の共重合ポリエステル繊維などが挙げられる。また難燃性繊維としては、リン系樹脂、チオ尿素系樹脂、ハロゲン系樹脂などの樹脂に練り込んだ繊維が挙げられる。また上記水系エマルジョンに難燃性樹脂を混合して用いてもよい。
In addition, functions such as adhesion of constituent fibers, rigidity and flame retardancy can be added to the nonwoven fabric used for the back material. For example, a heat-fusible fiber, a flame-retardant fiber, or the like may be contained in the range of 5 to 50% by weight with respect to the fiber weight. More preferably, it is 10 to 30% by weight.
Examples of the heat-fusible fiber include a composite fiber having a sheath part made of polyethylene, polypropylene, copolymerized ester, etc. and a core part made of polypropylene, polyethylene terephthalate, or the like, and a low-melting copolymer polyester fiber. Examples of the flame retardant fiber include fibers kneaded into a resin such as a phosphorus resin, a thiourea resin, and a halogen resin. Further, a flame retardant resin may be mixed with the aqueous emulsion.

本発明において、表面材および裏面材には、例えば、ポリエチレン、ポリプロピレン、共重合ポリプロピレンなどのポリオレフイン系繊維、ナイロン6、ナイロン66、共重合ポリアミドなどのポリアミド系繊維、ポリエチレンテレフタレート、ポリブチレンテレフタレート、共重合ポリエステル、脂肪族ポリエステルなどのポリエステル系繊維、鞘がポリエチレン、ポリプロピレンまたは共重合ポリエステルで芯がポリプロピレンまたはポリエステルなどで構成された芯鞘構造等の複合繊維、ポリ乳酸、ポリブチレンサクシネート、ポリエチレンサクシネートなどの生分解性繊維などの熱可塑性合成繊維を用いることができ、また裏面材としては、これらの他、ポリウレタン繊維などの合成繊維を用いることができる。これらの繊維は単独でまたは2種以上を混合して用いることができ、また、扁平糸などの異形断面繊維、捲縮繊維、割繊繊維などを混合または積層して用いることもできる。特に、耐熱性、難燃性などから、ポリエステル系繊維が好ましい。   In the present invention, the surface material and the back material include, for example, polyolefin fibers such as polyethylene, polypropylene, copolymer polypropylene, polyamide fibers such as nylon 6, nylon 66, copolymer polyamide, polyethylene terephthalate, polybutylene terephthalate, co-polymer. Polyester-based fibers such as polymerized polyester and aliphatic polyester, composite fibers such as a core-sheath structure in which the sheath is composed of polyethylene, polypropylene or copolymer polyester and the core is composed of polypropylene or polyester, polylactic acid, polybutylene succinate, polyethylene succin Thermoplastic synthetic fibers such as biodegradable fibers such as nates can be used. In addition to these, synthetic fibers such as polyurethane fibers can be used as the back material. These fibers can be used alone or in admixture of two or more, and can also be used by mixing or laminating irregular cross-section fibers such as flat yarns, crimped fibers, split fibers and the like. In particular, polyester fibers are preferred from the viewpoint of heat resistance and flame retardancy.

また表面材および裏面材を構成する繊維の平均繊維径は10〜30μmの範囲が好ましく、より好ましくは12〜25μmである。特に表面材の繊維径は、小さな空隙を有する高密度構造とするために、繊維径を小さくすることが好ましい。また、熱圧着により小さい繊維空隙を形成させるために、太い繊維に細い繊維を混繊したもの、異形断面繊維、複合繊維、非晶化繊維などの使用がより好ましい。   Moreover, the average fiber diameter of the fibers constituting the surface material and the back material is preferably in the range of 10 to 30 μm, more preferably 12 to 25 μm. In particular, the fiber diameter of the surface material is preferably reduced in order to obtain a high-density structure having small voids. In order to form smaller fiber voids in thermocompression bonding, it is more preferable to use thick fibers mixed with thin fibers, irregular cross-section fibers, composite fibers, amorphous fibers, and the like.

本発明の吸音材は、上記した緻密構造の表面材と、粗な構造の裏面材を接合して得られる。接合方法としては、表面材または裏面材の接合面に、接着繊維または接着剤を介在させて熱処理する方法が挙げられる。具体的には、熱融着繊維、ホットメルト系粉末樹脂、接着剤を5〜30g/m2 程度塗布した後、熱処理する方法、またはホットメルト系樹脂をカーテンスプレー方式で塗布した後、接合する方法が挙げられる。特に、裏面材に熱融着繊維を積層または混合し、表面材との接合時に加熱処理して該熱融着繊維を溶融させて接合するのが好ましい。 The sound-absorbing material of the present invention is obtained by joining the above-described surface material having a dense structure and the back material having a rough structure. Examples of the bonding method include a method of performing heat treatment by interposing an adhesive fiber or an adhesive on the bonding surface of the front surface material or the back surface material. Specifically, after applying about 5 to 30 g / m 2 of heat-fusible fiber, hot-melt powder resin, and adhesive, heat treatment, or applying hot-melt resin by curtain spray method and then joining. A method is mentioned. In particular, it is preferable to laminate or mix the heat-sealing fibers on the back surface material and heat-treat at the time of joining with the surface material to melt the heat-sealing fibers and join them.

本発明の吸音材は、厚みが5〜50mm、好ましくは8〜40mm、より好ましくは10〜30mmであり、目付けが100〜1000g/m2 、好ましくは120〜800g/m2 、より好ましくは140〜600g/m2 であり、また周波数4000Hzの吸音率が50%以上、好ましくは60%以上、より好ましくは70%以上である。
中程度の周波数領域(2000〜4000Hz)における吸音率は、吸音材の厚みを大きくし、表面材のみかけ密度を増加させることによって向上させることができるが、一方においてコスト高、嵩高になるなどの問題を生じるが、本発明では、吸音材の厚みおよび目付を上記範囲とすることにより、周波数4000Hzの吸音率を50%以上に確保しつつ、巻取加工性、裁断加工性、重ね梱包や運搬時等の取扱性に優れた吸音材を得ることができる。また、本発明の吸音材は、取り扱い時の端部や全体の厚みのへたりが少なく、施工後において安定した吸音性を得ることができる。
Sound-absorbing material of the present invention has a thickness of 5 to 50 mm, preferably 8 to 40 mm, more preferably 10 to 30 mm, a basis weight of 100 to 1000 g / m 2, preferably 120~800g / m 2, more preferably 140 a ~600g / m 2, also the sound absorption coefficient of frequency 4000Hz is 50% or more, preferably 60% or more, more preferably 70% or more.
The sound absorption coefficient in the medium frequency range (2000 to 4000 Hz) can be improved by increasing the thickness of the sound absorbing material and increasing the apparent density of the surface material. Although this causes a problem, in the present invention, by setting the thickness and basis weight of the sound absorbing material within the above range, the sound absorption rate at a frequency of 4000 Hz is ensured to be 50% or more, and the winding workability, the cutting workability, the overpacking and the transportation are ensured. A sound-absorbing material excellent in handling properties such as time can be obtained. In addition, the sound absorbing material of the present invention has little edge sag during handling and the thickness of the entire thickness, and can provide stable sound absorbing properties after construction.

以下、本発明を実施例によりさらに詳しく説明するが、本発明はこれらに限定されるものではない。なお、例中の特性は下記の方法で測定した。
1)目付け(g/m2) :JIS−1913に準ずる。
2)平均繊維径(μm):顕微鏡で500倍の拡大写真を取り、10本の平均値で求める。
3)平均みかけ密度(g/cm3 ):(目付け)/(厚み)から算出し、単位容積あたりの重量を求める。
4)厚み(mm) :JIS−L−1913−B法に準ずる。荷重0.02kPaの圧力の厚みを3カ所以上測定し、その平均値で示す。ただし、表面材の厚みは、荷重20kPaで測定した。
5)吸音性(%) :JIS−1405に準じ、垂直の入射法の測定機で周波数2000〜4000Hzを測定する。
6)通気性(cc/cm2 /sec):JIS−L−1906フラジュール形法で測定する。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these. The characteristics in the examples were measured by the following methods.
1) Weight per unit area (g / m 2 ): According to JIS-1913.
2) Average fiber diameter (μm): Take a 500 times magnified photograph with a microscope, and obtain the average value of 10 fibers.
3) Average apparent density (g / cm 3 ): Calculated from (weight per unit area) / (thickness) to determine the weight per unit volume.
4) Thickness (mm): According to JIS-L-1913-B method. Three or more thicknesses of pressure with a load of 0.02 kPa are measured, and the average value is shown. However, the thickness of the surface material was measured at a load of 20 kPa.
5) Sound absorption (%): Frequency 2000 to 4000 Hz is measured with a measuring device using a vertical incidence method according to JIS-1405.
6) Breathability (cc / cm 2 / sec): Measured by JIS-L-1906 Frajour type method.

[実施例1〜、比較例1〜3]
公知のスパンボンド法でポリエチレンテレフタレート(o−クロロフエノールを用いた1%、25℃法の溶融粘度ηsp/c 0.77)を用い、溶融紡糸方式で、温度300℃の紡糸口金から紡出し、高速牽引装置で延伸、開繊、捕集工程により、表1に示す繊維径および目付の長繊維ウエブを得た。該長繊維ウエブを、それぞれ一対のエンボスロール/フラットロールで温度230℃、線圧500N/cmで部分熱圧着し、さらに一対の金属フラットロール/金属フラットロールで温度235℃、線圧1000N/cmでカレンダー加工して表1に示す(実施例1〜7)みかけ密度の表面材用不織布を得た。
[Example 1-9, Comparative Examples 1-3]
Using a known spunbond method, polyethylene terephthalate (1% using o-chlorophenol, melt viscosity ηsp / c 0.77 of the 25 ° C. method) was spun from a spinneret at a temperature of 300 ° C. by a melt spinning method, The fiber diameters and basis weight long fiber webs shown in Table 1 were obtained by drawing, opening, and collecting processes using a high-speed traction device. The long fiber web is partially thermocompression bonded with a pair of embossing rolls / flat rolls at a temperature of 230 ° C. and a linear pressure of 500 N / cm, and further with a pair of metal flat rolls / metal flat rolls at a temperature of 235 ° C. and a linear pressure of 1000 N / cm. Were subjected to calendering (Examples 1 to 7) shown in Table 1 to obtain an apparent density nonwoven fabric for surface material.

なお、実施例8の表面材用不織布は、公知のスパンボンド法で、ポリエチレンテレフタレート樹脂(融点256℃、固有粘度0.71)を押出し機温度300℃で、偏平率2.5(繊維断面の短軸の長さAと、長軸の長さBの比B/A)の偏平形状の異型断面紡糸口金を用いてフィラメントを紡出し、高速気流牽引装置のエアーサッカーで延伸(紡糸速度4500m/min)、冷却、開繊、捕集工程により、表1に示す繊維径18μm、目付70g/m2 の長繊維ウエブを得た。該長繊維ウエブを、一対のエンボスロール/フラットロール温度220℃、線圧300N/cmで部分熱圧着し、さらに一対の金属フラットロール/金属フラットロールで、温度230℃、線圧500N/cmでカレンダー加工して表1に示す(実施例8)みかけ密度の表面材用不織布を得た。 In addition, the nonwoven fabric for surface material of Example 8 was obtained by a known spunbond method using a polyethylene terephthalate resin (melting point: 256 ° C., intrinsic viscosity: 0.71) at an extruder temperature of 300 ° C. and a flatness ratio of 2.5 (fiber cross section). A filament is spun using a flat-shaped atypical cross-section spinneret with a short axis length A and a long axis length B ratio B / A), and is drawn with an air soccer ball at a high-speed airflow traction device (spinning speed 4500 m / s). min), cooling, fiber opening, and collecting steps, a long fiber web having a fiber diameter of 18 μm and a basis weight of 70 g / m 2 shown in Table 1 was obtained. The long fiber web is partially thermocompression bonded at a pair of embossing roll / flat roll temperature of 220 ° C. and a linear pressure of 300 N / cm, and further at a temperature of 230 ° C. and a linear pressure of 500 N / cm with a pair of metal flat roll / metal flat roll. The nonwoven fabric for surface materials having an apparent density shown in Table 1 was obtained by calendering (Example 8).

また実施例9の表面材用不織布は、公知のスパンボンド法で、芯がポリエチレンテレフタレート樹脂(融点256℃、固有粘度0.71)、鞘がポリエチレン樹脂(融点130℃)の2成分紡糸方式で溶融紡糸して繊維径15μm、目付100g/m2 の長繊維ウエブを得た。該長繊維ウエブを、一対のエンボスロール/フラットロール温度110℃、線圧300N/cmで部分熱圧着し、さらに一対の金属フラットロール/金属フラットロールで、温度115℃、線圧500N/cmでカレンダー加工して表1に示す(実施例9)みかけ密度の表面材用不織布を得た。 Further, the nonwoven fabric for surface material of Example 9 is a known spunbond method, which is a two-component spinning method in which the core is a polyethylene terephthalate resin (melting point 256 ° C., intrinsic viscosity 0.71) and the sheath is a polyethylene resin (melting point 130 ° C.). By melt spinning, a long fiber web having a fiber diameter of 15 μm and a basis weight of 100 g / m 2 was obtained. The long fiber web is partially thermocompression bonded at a pair of embossing roll / flat roll temperature of 110 ° C. and a linear pressure of 300 N / cm, and further at a temperature of 115 ° C. and a linear pressure of 500 N / cm with a pair of metal flat roll / metal flat roll. The nonwoven fabric for surface material with an apparent density shown in Table 1 was obtained by calendering (Example 9).

裏面材用不織布としては、実施例1〜3、8〜では、繊維径25目、繊維長51mm、目付け180g/m2 のポリエステル短繊維カードウエブをニードルパンチ加工し、さらに芳香族リン酸エステル系水分散難燃剤を30%含有させた水溶性アクリル樹脂をスプレー方式で20g/m2 付着させた表1に示す裏面材用不織布を用いた。
また実施例4〜7では、繊維径25μm、繊維長51mmのポリエステル短繊維70%と、繊維径18μm、繊維長51mm、融点135℃の共重合ポリエステル短繊維30%のカードウエブをニードルパンチ加工し、さらに芳香族リン酸エステル系水分散難燃剤を30%含有させた水溶性アクリル樹脂をスプレー方式で20g/m2 付着させた表1に示す裏面材用不織布を用いた。
次いで、表面材と裏面材をホットメルト接着剤を用いて接着して本発明の吸音材を得た。具体的には、表面材に共重合ポリエステル系樹脂(融点130℃)のホットメルト粉末を20g/m2 で均等に載置した後、加熱処理機で加熱・溶融してから表面材を重ね合わせて接着した。
As the nonwoven fabric for the back material, in Examples 1 to 3 and 8 to 9 , a polyester short fiber card web having a fiber diameter of 25, a fiber length of 51 mm, and a basis weight of 180 g / m 2 is needle punched, and further an aromatic phosphate ester The nonwoven fabric for back materials shown in Table 1 was used, in which a water-soluble acrylic resin containing 30% of a water-based flame retardant was attached by spraying at a rate of 20 g / m 2 .
In Examples 4 to 7, a card web of 70% polyester short fibers having a fiber diameter of 25 μm and a fiber length of 51 mm, and 30% copolymer polyester short fibers having a fiber diameter of 18 μm, a fiber length of 51 mm, and a melting point of 135 ° C. is needle punched. Furthermore, the nonwoven fabric for back materials shown in Table 1 in which a water-soluble acrylic resin containing 30% of an aromatic phosphate ester water-dispersed flame retardant was attached by spraying at 20 g / m 2 was used.
Next, the surface material and the back material were bonded using a hot melt adhesive to obtain the sound absorbing material of the present invention. Specifically, a hot melt powder of a copolyester resin (melting point 130 ° C.) is uniformly placed at 20 g / m 2 on the surface material, and then heated and melted with a heat treatment machine, and then the surface material is overlaid. And glued.

また、比較例1では厚みの薄い表面材のみを吸音材とし、比較例2では粗な構造の裏面材のみを吸音材とし、比較例3では、嵩密度の小さい、通気性の大きい表面材と、裏面材を実施例1と同様にしてホットメルトパウダー方式で接合して吸音材とした。
得られた吸音材の特性を表1に示したが、本発明の吸音材は、優れた吸音性を有することがわかった。またこれらの吸音材は厚み変化率が少なく取扱性に優れていた。これに対し、比較例1〜3の吸音材では吸音性の低いものであった。
In Comparative Example 1, only the thin surface material is used as the sound absorbing material, in Comparative Example 2, only the back material having a rough structure is used as the sound absorbing material, and in Comparative Example 3, the surface material is low in bulk density and has high air permeability. The back material was joined by the hot melt powder method in the same manner as in Example 1 to obtain a sound absorbing material.
The properties of the obtained sound absorbing material are shown in Table 1. It was found that the sound absorbing material of the present invention has excellent sound absorbing properties. Further, these sound absorbing materials had a low rate of change in thickness and excellent handleability. On the other hand, the sound absorbing materials of Comparative Examples 1 to 3 had a low sound absorbing property.

Figure 0004540417
Figure 0004540417

本発明の吸音材は、中程度の領域周波長の吸音性が高く、薄くて軽量で、形態安定性に優れるため、自動車内装用などに好適に用いられる。
The sound-absorbing material of the present invention has a high sound-absorbing property at a medium peripheral wavelength, is thin and lightweight, and has excellent shape stability.

Claims (9)

部分熱圧着後、更にカレンダー加工されたスパンボンド法による熱可塑性合成繊維不織布からなる表面材と合成繊維不織布からなる裏面材との接合不織布であって、該表面材の繊維の平均繊維径が10〜30μm、厚みが0.03〜1mm、平均みかけ密度が0.3g/cm3 以上および目付けが20〜250g/m2 であり、該裏面材の厚みが5〜45mmおよび平均みかけ密度が0.1g/cm3 以下であり、さらに前記接合不織布の厚みが5〜50mm、目付けが100〜1000g/m2 および周波数4000Hzの吸音率が50%以上であることを特徴とする吸音材。 After partial thermocompression bonding, a non-woven fabric bonded with a surface material made of a thermoplastic synthetic long- fiber non-woven fabric and a back material made of a synthetic fiber non-woven fabric by a calendered spunbond method, and the average fiber diameter of the fibers of the surface material is 10 to 30 μm, thickness is 0.03 to 1 mm, average apparent density is 0.3 g / cm 3 or more and basis weight is 20 to 250 g / m 2 , the thickness of the back material is 5 to 45 mm and average apparent density is 0 .1g / cm 3 or less, sound absorbing material further thickness of the bonding nonwoven 5 to 50 mm, a basis weight of 100 to 1000 g / m 2 and the frequency 4000Hz sound absorption coefficient is equal to or less than 50%. 前記表面材および裏面材を構成する繊維の平均繊維径が10〜30μmであることを特徴とする請求項1に記載の吸音材。   The sound absorbing material according to claim 1, wherein an average fiber diameter of fibers constituting the surface material and the back material is 10 to 30 µm. 前記表面材および裏面材が、ポリエステル系繊維またはポリエステル系共重合繊維を主体とする繊維で構成されていることを特徴とする請求項1または2に記載の吸音材。   The sound absorbing material according to claim 1 or 2, wherein the front surface material and the back surface material are composed of fibers mainly composed of polyester fibers or polyester copolymer fibers. 前記表面材の構成繊維が異形断面繊維であることを特徴とする請求項1〜3のいずれかに記載の吸音材。   The sound absorbing material according to any one of claims 1 to 3, wherein the constituent material of the surface material is a modified cross-section fiber. 前記表面材の構成繊維が複合繊維であることを特徴とする請求項1〜4のいずれかに記載の吸音材。   The sound absorbing material according to any one of claims 1 to 4, wherein the constituent fiber of the surface material is a composite fiber. 前記表面材が、長繊維不織布であり、部分熱圧着率3〜35%で熱圧着されていることを特徴とする請求項1〜5のいずれかに記載の吸音材。   The sound absorbing material according to any one of claims 1 to 5, wherein the surface material is a long-fiber non-woven fabric and is thermocompression bonded at a partial thermocompression bonding rate of 3 to 35%. 前記裏面材が、短繊維不織布であり、かつ熱融着繊維および/または難燃性繊維を5〜50重量%含有していることを特徴とする請求項1〜6のいずれかに記載の吸音材。   The sound absorbing material according to any one of claims 1 to 6, wherein the back material is a short fiber nonwoven fabric and contains 5 to 50% by weight of heat-fusible fiber and / or flame retardant fiber. Wood. 前記裏面材を構成する不織布に5〜50重量%の合成樹脂が塗布されていることを特徴とする請求項1〜7のいずれかに記載の吸音材。   The sound absorbing material according to any one of claims 1 to 7, wherein 5 to 50% by weight of a synthetic resin is applied to the nonwoven fabric constituting the back material. 厚み0.03〜1mm、平均みかけ密度0.3g/cm3 以上、目付け20〜250g/m2 および繊維の平均繊維径が10〜30μmである部分熱圧着されたスパンボンド法による熱可塑性合成繊維不織布からなる表面材と、厚み5〜45mmおよび平均みかけ密度0.1g/cm3 以下である合成繊維不織布からなる裏面材とを接合して吸音材を製造するに際し、該表面材と裏面材の間に接着剤または熱融着繊維を介在させて熱処理することを特徴とする吸音材の製造法。 Thickness 0.03~1Mm, average apparent density of 0.3 g / cm 3 or more, thermoplastic synthetic long by partial thermal crimped spunbond an average fiber diameter of 10~30μm having a basis weight of 20 to 250 g / m 2 and fibers When manufacturing a sound-absorbing material by joining a surface material made of a fiber nonwoven fabric and a back material made of a synthetic fiber nonwoven fabric having a thickness of 5 to 45 mm and an average apparent density of 0.1 g / cm 3 or less, the surface material and the back material A method for producing a sound-absorbing material, characterized in that a heat treatment is performed with an adhesive or a heat-sealing fiber interposed therebetween.
JP2004212768A 2004-07-21 2004-07-21 Sound absorbing material and manufacturing method thereof Expired - Fee Related JP4540417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212768A JP4540417B2 (en) 2004-07-21 2004-07-21 Sound absorbing material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212768A JP4540417B2 (en) 2004-07-21 2004-07-21 Sound absorbing material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006028709A JP2006028709A (en) 2006-02-02
JP4540417B2 true JP4540417B2 (en) 2010-09-08

Family

ID=35895405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212768A Expired - Fee Related JP4540417B2 (en) 2004-07-21 2004-07-21 Sound absorbing material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4540417B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272315B2 (en) * 2006-03-22 2013-08-28 東レ株式会社 Nonwoven fabric and underlay material comprising the nonwoven fabric
JP4908084B2 (en) * 2006-07-06 2012-04-04 名古屋油化株式会社 Sound absorbing surface material and molded article using the same
JP4919881B2 (en) * 2007-06-20 2012-04-18 旭化成せんい株式会社 Composite sound-absorbing material
JP5143110B2 (en) * 2009-11-25 2013-02-13 株式会社Kosuge Sound absorbing material
JP7450538B2 (en) 2018-08-02 2024-03-15 マクセル株式会社 soundproofing material
WO2023149388A1 (en) * 2022-02-04 2023-08-10 東レ株式会社 Non-woven fabric, production method for same, and construction material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223356A (en) * 1986-03-20 1987-10-01 三菱油化バーディッシェ株式会社 Production of carpet material
JPH09317047A (en) * 1996-05-28 1997-12-09 Kanebo Ltd Sound insulation panel
JP2002069823A (en) * 2000-09-05 2002-03-08 Kuraray Co Ltd Sound absorbing material containing melt-blown nonwoven fabric
JP2004019062A (en) * 2002-06-18 2004-01-22 Toyobo Co Ltd Acoustic material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223356A (en) * 1986-03-20 1987-10-01 三菱油化バーディッシェ株式会社 Production of carpet material
JPH09317047A (en) * 1996-05-28 1997-12-09 Kanebo Ltd Sound insulation panel
JP2002069823A (en) * 2000-09-05 2002-03-08 Kuraray Co Ltd Sound absorbing material containing melt-blown nonwoven fabric
JP2004019062A (en) * 2002-06-18 2004-01-22 Toyobo Co Ltd Acoustic material

Also Published As

Publication number Publication date
JP2006028709A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP4574262B2 (en) SOUND ABSORBING LAMINATE AND METHOD FOR PRODUCING THE SAME
JP4919881B2 (en) Composite sound-absorbing material
JP3613727B2 (en) Sound absorbing material with excellent moldability
JP2011521130A (en) Sound absorbing material and method for producing sound absorbing material
JP6826213B2 (en) Non-woven fabric and composite sound absorbing material using this as a skin material
WO2006013810A1 (en) Acoustic insulation
JP2010128005A (en) Composite sound absorbing material
JP6362400B2 (en) Nonwoven web
JP2003049351A (en) High-performance acoustic material
JP4540417B2 (en) Sound absorbing material and manufacturing method thereof
JP2000229369A (en) Nonwoven fabric laminate and interior finish material for automobile
JP6498454B2 (en) Sheet for multilayer molding and sheet molded body
JP4626969B2 (en) Vehicle interior material with excellent sound absorption performance
JP3968648B2 (en) Sound absorbing material
JP2019045636A (en) Composite sound absorbing material
JP2006285086A (en) Sound absorbing heat insulating material
JP5538232B2 (en) Sound absorbing material fixing plate
JP6929167B2 (en) Composite sound absorbing material
JP3972296B2 (en) Sound absorbing material and vehicle interior material
JP2008290642A (en) Sound absorbing material and its manufacturing method
JP4180433B2 (en) Interior material for automobile and manufacturing method thereof
JP3786250B2 (en) Ceiling material for vehicle and method for manufacturing the same
JP2005028864A (en) Laminated surface material and laminate for interior triming material using same
JP7145231B2 (en) Nonwoven fabrics, laminated nonwoven fabrics of said nonwoven fabrics, and composite sound absorbing materials using these as surface materials
JP3705412B2 (en) Sound absorbing material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R150 Certificate of patent or registration of utility model

Ref document number: 4540417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees