JP6929167B2 - Composite sound absorbing material - Google Patents

Composite sound absorbing material Download PDF

Info

Publication number
JP6929167B2
JP6929167B2 JP2017167670A JP2017167670A JP6929167B2 JP 6929167 B2 JP6929167 B2 JP 6929167B2 JP 2017167670 A JP2017167670 A JP 2017167670A JP 2017167670 A JP2017167670 A JP 2017167670A JP 6929167 B2 JP6929167 B2 JP 6929167B2
Authority
JP
Japan
Prior art keywords
woven fabric
sound absorbing
absorbing material
layer
composite sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017167670A
Other languages
Japanese (ja)
Other versions
JP2019043014A (en
Inventor
信也 山室
信也 山室
智也 田中
智也 田中
康志 磯野
康志 磯野
純輝 斉藤
純輝 斉藤
留美名 小尾
留美名 小尾
一史 加藤
一史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2017167670A priority Critical patent/JP6929167B2/en
Publication of JP2019043014A publication Critical patent/JP2019043014A/en
Application granted granted Critical
Publication of JP6929167B2 publication Critical patent/JP6929167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、複合吸音材に関する。より詳しくは、本発明は、不織布面材と連続気泡樹脂発泡体層とを接合させた複合吸音材であって、低周波数〜中周波数、特に周波数1000Hz、1600Hz、2000Hz、2500Hz、3150Hz、及び4000Hzの吸音性に優れ、薄く、軽量であり、形態安定性にも優れる、特に自動車、住宅、家電製品、建設機械等における吸音材として好適な複合吸音材に関する。 The present invention relates to a composite sound absorbing material. More specifically, the present invention is a composite sound absorbing material in which a non-woven face material and an open cell resin foam layer are bonded, and low frequency to medium frequency, particularly frequencies 1000 Hz, 1600 Hz, 2000 Hz, 2500 Hz, 3150 Hz, and 4000 Hz. The present invention relates to a composite sound absorbing material which is excellent in sound absorbing property, thin, lightweight, and excellent in morphological stability, and is particularly suitable as a sound absorbing material in automobiles, houses, home appliances, construction machinery, and the like.

車両等が走行する際には、車両に搭載されるエンジン及び駆動系からの騒音、走行中のロードノイズ、風切り音などの、種々の騒音が発生する。これらの騒音が搭乗員に不快感を与えないように、エンジンフード、ダッシュパネル、天井材、ドアトリム、キャブフロア等の壁面には、騒音対策として吸音材が使用されている。 When a vehicle or the like travels, various noises such as noise from the engine and drive system mounted on the vehicle, road noise during traveling, and wind noise are generated. Sound absorbing materials are used as noise countermeasures on the walls of engine hoods, dash panels, ceiling materials, door trims, cab floors, etc. so that these noises do not cause discomfort to the crew.

吸音材としては、不織布、樹脂発泡体などの多孔質材からなる吸音材、かかる吸音材と、通気性のある不織布、樹脂膜などの表皮層とを積層一体化した積層構造体が知られている。 As the sound absorbing material, a sound absorbing material made of a porous material such as a non-woven fabric or a resin foam, or a laminated structure in which such a sound absorbing material and a skin layer such as a breathable non-woven fabric or a resin film are laminated and integrated is known. There is.

以下の特許文献1には、嵩密度0.013〜0.05g/cmのメルトブロー極細繊維不織布を用いた防音シート材料が開示されている。しかしながら、この防音シート材料には、厚みの変形が生じ易く、取扱性に劣り、耐熱性が不足するなどの問題がある。 The following Patent Document 1 discloses a soundproof sheet material using a melt-blown ultrafine fiber non-woven fabric having a bulk density of 0.013 to 0.05 g / cm 3. However, this soundproof sheet material has problems that the thickness is easily deformed, the handleability is poor, and the heat resistance is insufficient.

以下の特許文献2には、メルトブロー極細繊維層と合繊繊維層との積層不織布からなる表面材と、嵩密度0.005〜0.15g/cmの粗な構造をもつ合繊繊維不織布裏面材とからなる吸音材が開示されているが、裏面材の合繊繊維不織布を粗にすべく繊維径10〜30μmの繊維を使用しているため、低周波数領域の吸音性が悪い。 The following Patent Document 2 describes a surface material made of a laminated non-woven fabric of a melt-blown ultrafine fiber layer and a synthetic fiber layer, and a back material of a synthetic fiber non-woven fabric having a coarse structure with a bulk density of 0.005 to 0.15 g / cm 3. Although a sound absorbing material made of the above is disclosed, since fibers having a fiber diameter of 10 to 30 μm are used to roughen the synthetic fiber non-woven fabric as the backing material, the sound absorbing property in the low frequency region is poor.

以下の特許文献3には、特許文献2と同様にメルトブロー極細繊維層と合繊繊維層との積層不織布からなる表面材と、嵩密度0.4〜0.8g/cmの比較的密な構造をもつ合繊繊維不織布裏面材とからなる吸音材が開示されているが、合繊繊維不織布裏面材が密な構造を有するため、通気性が悪化し、中周波数より高い領域の吸音性が悪い。 Similar to Patent Document 2, the following Patent Document 3 includes a surface material made of a laminated non-woven fabric of a melt-blown ultrafine fiber layer and a synthetic fiber layer, and a relatively dense structure having a bulk density of 0.4 to 0.8 g / cm 3. Although a sound absorbing material made of a synthetic fiber non-woven fabric backing material is disclosed, since the synthetic fiber non-woven fabric backing material has a dense structure, the air permeability is deteriorated and the sound absorbing property in a region higher than the medium frequency is poor.

以下の特許文献4には、特許文献2、3と同様にメルトブロー極細繊維層と合繊繊維層との積層不織布からなる表面材と、嵩密度0.05〜0.5g/cmの合繊繊維不織布裏面材とからなる周波数の比較的広い範囲の音に対して高い吸音効果が得られる吸音材が開示されている。しかしながら、特許文献4に記載の吸音材では、周波数1000〜4000Hz音の吸音率を向上させようとすると吸音材の目付を475g/m以上、厚みを30mm以上とする必要がある。
このように、不織布の多孔質材やその積層構造体だけでは、車両用途で求められる取り扱い性、広い周波数範囲での吸音性、及び軽量化を両立することは実現できていない。
Similar to Patent Documents 2 and 3, the following Patent Document 4 includes a surface material made of a laminated non-woven fabric of a melt-blown ultrafine fiber layer and a synthetic fiber layer, and a synthetic fiber non-woven fabric having a bulk density of 0.05 to 0.5 g / cm 3. A sound absorbing material capable of obtaining a high sound absorbing effect for a sound in a relatively wide range of frequencies composed of a backing material is disclosed. However, in the sound absorbing material described in Patent Document 4, in order to improve the sound absorbing rate of a sound having a frequency of 1000 to 4000 Hz, the basis weight of the sound absorbing material needs to be 475 g / m 2 or more and the thickness must be 30 mm or more.
As described above, it has not been possible to achieve both the handleability required for vehicle applications, the sound absorption in a wide frequency range, and the weight reduction only with the porous non-woven fabric material and its laminated structure.

以下の特許文献5には、連続気泡樹脂発泡樹脂体としての軟質ウレタンフォームと、表皮に微細孔を有する合成樹脂層とからなる吸音材が開示されている。しかしながら、表皮の樹脂層は、吸音に寄与せず、極細繊維層ほどの緻密性は確保できていない。 The following Patent Document 5 discloses a sound absorbing material composed of a soft urethane foam as an open-cell resin foamed resin body and a synthetic resin layer having fine pores in the epidermis. However, the resin layer of the epidermis does not contribute to sound absorption, and the denseness of the ultrafine fiber layer cannot be ensured.

以下の特許文献6には、連続気泡樹脂発泡樹脂体としてのメラミン系樹脂発泡体と、微細孔を有するフィルム層とからなる吸音材が開示されている。しかしながら、特許文献5と同様に、かかるフィルム層は吸音に寄与せず、極細繊維層ほどの緻密性は確保できていない。 The following Patent Document 6 discloses a sound absorbing material composed of a melamine-based resin foam as an open-cell resin foam resin and a film layer having fine pores. However, as in Patent Document 5, such a film layer does not contribute to sound absorption, and the fineness of the ultrafine fiber layer cannot be ensured.

特開平06−212546号公報Japanese Patent Application Laid-Open No. 06-212546 特許第4574262号公報Japanese Patent No. 4574262 特開2010−128005号公報JP-A-2010-128005 特許第4919881号公報Japanese Patent No. 4919881 特開2008−146001号公報Japanese Unexamined Patent Publication No. 2008-146001 特開2010−196421号公報JP-A-2010-196421

前記した従来技術の問題点に鑑み、本発明が解決しようとする課題は、低周波数〜中周波数の広い領域、具体的には、1000〜4000Hzの周波数領域において、高い吸音性を有し、低目付でも吸音効果が高く、薄く、軽量であり、さらに形態安定性に優れる吸音材を提供することである。 In view of the above-mentioned problems of the prior art, the problem to be solved by the present invention is to have high sound absorption and low frequency in a wide range of low to medium frequencies, specifically, a frequency range of 1000 to 4000 Hz. It is an object of the present invention to provide a sound absorbing material having a high sound absorbing effect even with a texture, being thin and lightweight, and having excellent morphological stability.

本発明者らは、上記課題を解決すべく、鋭意検討し実験を重ねた結果、特定の不織布面材と特定の連続気泡樹脂発泡層とを組み合わせた複合吸音材とすれば、低周波数〜中周波数の広い領域において、高い吸音性が得られることを見出し、本発明を完成するに至ったものである。 As a result of diligent studies and experiments in order to solve the above problems, the present inventors have obtained a composite sound absorbing material in which a specific non-woven face material and a specific open cell resin foam layer are combined, and the frequency is low to medium. We have found that high sound absorption can be obtained in a wide frequency range, and have completed the present invention.

すなわち、本発明は以下のとおりのものである。
[1]平均繊維径0.3〜7μm、目付け1〜40g/mのメルトブロー極細繊維層を少なくとも1層含む不織布面材と、連続気泡樹脂発泡体層とを接合してなる複合吸音材であって、該複合吸音材の厚みが5〜50mm、目付けが50〜475g/m未満であり、かつ、JIS−1405に準拠する垂直入射の測定法において該不織布面材側から入射する音の周波数1000Hz、1600Hz、2000Hz、2500Hz、3150Hz、及び4000Hzにおける該複合吸音材の吸音率がいずれも40%以上であることを特徴とする前記複合吸音材。
[2]前記不織布面材が、平均繊維径0.3〜7μm、目付け1〜40g/mのメルトブロー極細繊維層(M)と平均繊維径10〜30μmの連続長繊維層(S)とが熱圧着により一体化されたSM型又はSMS型の積層構造を有する積層不織布であり、該積層不織布の目付けが20〜250g/m、通気度が100cc/cm/sec以下である、前記[1]に記載の複合吸音材。
[3]前記不織布面材を構成する不織布層が2層以上ある場合、前記連続気泡樹脂発泡体層と接する前記不織布面材の層が、該不織布面材の他層を構成する繊維の融点よりも30℃以上低い融点を有する繊維を含む、前記[1]又は[2]に記載の複合吸音材。
[4]前記連続気泡樹脂発泡体層の厚みが5〜50mm未満であり、嵩密度が0.01〜0.1g/cmである、前記[1]〜[3]のいずれかに記載の複合吸音材。
That is, the present invention is as follows.
[1] A composite sound absorbing material obtained by joining a non-woven fabric surface material containing at least one melt-blown ultrafine fiber layer having an average fiber diameter of 0.3 to 7 μm and a grain size of 1 to 40 g / m 2 and an open cell resin foam layer. Therefore, the thickness of the composite sound absorbing material is 5 to 50 mm, the texture is less than 50 to 475 g / m 2 , and the sound incident from the non-woven fabric surface material side in the vertical incident measurement method conforming to JIS-1405. The composite sound absorbing material is characterized in that the sound absorbing coefficient of the composite sound absorbing material at frequencies of 1000 Hz, 1600 Hz, 2000 Hz, 2500 Hz, 3150 Hz, and 4000 Hz is 40% or more.
[2] The non-woven fabric facing material has a melt-blown ultrafine fiber layer (M) having an average fiber diameter of 0.3 to 7 μm and a grain size of 1 to 40 g / m 2 and a continuous long fiber layer (S) having an average fiber diameter of 10 to 30 μm. A laminated non-woven fabric having an SM-type or SMS-type laminated structure integrated by thermal pressure bonding, the laminated non-woven fabric having a texture of 20 to 250 g / m 2 and an air permeability of 100 cc / cm 2 / sec or less. 1] The composite sound absorbing material according to.
[3] When there are two or more non-woven fabric layers constituting the non-woven fabric face material, the layer of the non-woven fabric face material in contact with the open cell resin foam layer is from the melting point of the fibers constituting the other layer of the non-woven fabric face material. The composite sound absorbing material according to the above [1] or [2], which also contains a fiber having a melting point as low as 30 ° C. or higher.
[4] The above-mentioned [1] to [3], wherein the open cell resin foam layer has a thickness of less than 5 to 50 mm and a bulk density of 0.01 to 0.1 g / cm 3. Composite sound absorbing material.

本発明に係る複合吸音材は、1000Hz、1600Hz、2000Hz、2500Hz、3150Hz、及び4000Hzの低周波数〜中周波数領域において、高い吸音性を有しながらも、薄く、軽量であり、さらに形態安定性に優れるため、特に自動車、住宅、家電製品、建設機械等の吸音材として好適である。 The composite sound absorbing material according to the present invention is thin, lightweight, and morphologically stable in the low to medium frequency range of 1000 Hz, 1600 Hz, 2000 Hz, 2500 Hz, 3150 Hz, and 4000 Hz, while having high sound absorbing properties. Since it is excellent, it is particularly suitable as a sound absorbing material for automobiles, houses, home appliances, construction machinery, and the like.

以下、本発明の実施形態を詳細に説明する。
本実施形態の複合吸音材は、平均繊維径0.3〜7μm、目付け1〜40g/mのメルトブロー極細繊維層を少なくとも1層含む不織布面材と、連続気泡樹脂発泡体層とを接合してなる複合吸音材であって、該複合吸音材の厚みが5〜50mm、目付けが50〜475g/m未満であり、かつ、JIS−1405に準拠する垂直入射の測定法において該不織布面材側から入射する音の周波数1000Hz、1600Hz、2000Hz、2500Hz、3150Hz、及び4000Hzにおける該複合吸音材の吸音率がいずれも40%以上であることを特徴とする。
好ましい不織布面材は、平均繊維径0.3〜7μm、目付け1〜40g/mのメルトブロー極細繊維層(M)と平均繊維径10〜30μmの連続長繊維層(S)とが熱圧着により一体化されたSM型又はSMS型の積層構造を有する積層不織布であり、該積層不織布の目付けが20〜250g/m、通気度が100cc/cm/sec以下である。
Hereinafter, embodiments of the present invention will be described in detail.
In the composite sound absorbing material of the present embodiment, a non-woven fabric surface material containing at least one melt-blown ultrafine fiber layer having an average fiber diameter of 0.3 to 7 μm and a grain size of 1 to 40 g / m 2 is bonded to a continuous cell resin foam layer. The composite sound absorbing material, the thickness of the composite sound absorbing material is 5 to 50 mm, the texture is less than 50 to 475 g / m 2 , and the non-woven fabric facing material is measured by a vertical incident measurement method based on JIS-1405. The composite sound absorbing material is characterized in that the sound absorption coefficient of the composite sound absorbing material is 40% or more at frequencies of 1000 Hz, 1600 Hz, 2000 Hz, 2500 Hz, 3150 Hz, and 4000 Hz of sound incident from the side.
A preferred non-woven fabric facing material is a melt-blown ultrafine fiber layer (M) having an average fiber diameter of 0.3 to 7 μm and a grain size of 1 to 40 g / m 2 and a continuous long fiber layer (S) having an average fiber diameter of 10 to 30 μm by thermal bonding. It is a laminated non-woven fabric having an integrated SM type or SMS type laminated structure, and the weight of the laminated non-woven fabric is 20 to 250 g / m 2 , and the air permeability is 100 cc / cm 2 / sec or less.

本実施形態の複合吸音材の第一の特徴は、不織布面材が、極少量の通気性を有し、繊維構造的には小さな繊維空隙を有する緻密な構造であり、進入する音の波長が細孔中の摩擦抵抗で小さくなり、音が繊維空隙に進入するため、吸音特性が低周波領域にスライドし、低周波領域の吸音性が向上することである。つまり、本実施形態の不織布面材は、極細繊維層を少なくとも1層含むため、音の振動エネルギーを熱エネルギーに変換し、吸音適性領域が低周波領域にスライドする効果を有する。 The first feature of the composite sound absorbing material of the present embodiment is that the non-woven surface material has a very small amount of air permeability and has a dense structure having small fiber voids in terms of fiber structure, and the wavelength of the incoming sound is high. The frictional resistance in the pores reduces the sound and the sound enters the fiber voids, so that the sound absorption characteristics slide into the low frequency region and the sound absorption in the low frequency region is improved. That is, since the non-woven fabric face material of the present embodiment contains at least one ultrafine fiber layer, it has the effect of converting the vibration energy of sound into heat energy and sliding the sound absorption suitability region to the low frequency region.

本実施形態の複合吸音材の第二の特徴は、特定の嵩密度とした微細な骨格を持つ連続気泡樹脂発泡体を上記不織布面材とともに用いることで、不織布面材を透過した音が反射せずに、連続気泡樹脂発泡体内に容易に侵入すること、そして音が侵入する際、連続気泡樹脂発泡体の微細な骨格との摩擦や骨格の振動により、音が熱エネルギーに効率的に変換されることである。本実施形態の連続気泡樹脂発泡樹脂体の嵩密度は、好ましくは0.01〜0.1g/cmである。 The second feature of the composite sound absorbing material of the present embodiment is that the sound transmitted through the non-woven surface material is reflected by using the open cell resin foam having a fine skeleton with a specific bulk density together with the non-woven surface material. The sound is efficiently converted into heat energy by easily invading the open cell resin foam without having to enter the body, and when the sound invades, the sound is efficiently converted into heat energy by the friction of the open cell resin foam with the fine skeleton and the vibration of the skeleton. Is Rukoto. The bulk density of the open-cell resin foamed resin body of the present embodiment is preferably 0.01 to 0.1 g / cm 3 .

不織布面材に少なくとも1層含まれるメルトブロー極細繊維層(M)を構成する繊維の平均繊維径は0.3〜7μm、好ましくは0.4〜5μm、さらに好ましくは、0.6〜2μmである。メルトブロー法で0.3μm未満の繊維径に紡糸するためには過酷な条件が必要となるため安定した繊維が得られない。他方、繊維径が7μmを超えると平均繊維径10〜30μmの連続長繊維層(S)を構成する繊維の平均繊維径に近くなり、連続長繊維層の隙間に微細繊維として入り込んで該隙間を埋める作用が奏されないため、緻密な構造が得られない。 The average fiber diameter of the fibers constituting the melt blow ultrafine fiber layer (M) contained in at least one layer in the non-woven fabric facing material is 0.3 to 7 μm, preferably 0.4 to 5 μm, and more preferably 0.6 to 2 μm. .. Stable fibers cannot be obtained because harsh conditions are required for spinning to a fiber diameter of less than 0.3 μm by the melt blow method. On the other hand, when the fiber diameter exceeds 7 μm, it becomes close to the average fiber diameter of the fibers constituting the continuous long fiber layer (S) having an average fiber diameter of 10 to 30 μm, and enters the gap of the continuous long fiber layer as fine fibers to fill the gap. Since the filling action is not played, a precise structure cannot be obtained.

不織布面材と、比較的密度が小さく、空隙の多い連続気泡樹脂発泡体層との複合においては、音源側に配置される不織布面材は、連続気泡樹脂発泡体層よりも緻密であることが要求されるが、過剰な全面熱圧着等で密度を高めることで緻密にする方法では、熱融着により繊維の表面積が低下し、音と繊維との間の摩擦による熱エネルギーへの変換効率が低下してしまう。それゆえ、不織布面材の緻密化は、より細い繊維により構成されるものとすることが望ましい。 In the composite of the non-woven fabric face material and the open-cell resin foam layer having a relatively small density and many voids, the non-woven fabric face material arranged on the sound source side may be denser than the open-cell resin foam layer. Although required, in the method of making the fibers denser by increasing the density by excessive heat bonding on the entire surface, the surface area of the fibers is reduced by heat fusion, and the conversion efficiency into heat energy due to the friction between the sound and the fibers is increased. It will drop. Therefore, it is desirable that the densification of the non-woven fabric facing material is composed of finer fibers.

不織布面材に少なくとも1層含まれるメルトブロー極細繊維層の目付は、低目付で充分な吸音性を得る観点から、1〜40g/mであり、好ましくは2〜25g/m、より好ましくは3〜20g/mである。 Basis weight of the meltblown microfiber layer contained at least one layer to the nonwoven surface material, in order to obtain adequate sound absorption in the low basis weight is 1 to 40 g / m 2, preferably 2~25g / m 2, more preferably It is 3 to 20 g / m 2 .

メルトブロー極細繊維層(M)及び連続長繊維層(S)の繊維素材としては、溶融紡糸法で繊維化できる熱可塑性合成樹脂が用いられる。熱可塑性合成樹脂としては、例えば、ポリプロピレン、共重合ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンテレフタレートにフタル酸、イソフタル酸、セバシン酸、アジピン酸、ジエチレングリコール、1,4−ブタンジオールの1種又は2種以上の化合物を共重合した芳香族ポリエステル共重合体、ポリD−乳酸、ポリL−乳酸、D−乳酸とL−乳酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、D−乳酸とL−乳酸とヒドロキシカルボン酸との共重合体、これらのブレンド体から成る生分解性の脂肪族ポリエステルなどのポリエステル、共重合ポリアミド、ポリフェニレンサルファイドなどが挙げられる。熱可塑性合成樹脂としては、特に耐熱性、耐水性などに優れるポリエステル、ポリフェニレンサルファイドが好ましい。 As the fiber material of the melt blow ultrafine fiber layer (M) and the continuous long fiber layer (S), a thermoplastic synthetic resin that can be fibrized by the melt spinning method is used. Examples of the thermoplastic synthetic resin include polypropylene, copolymerized polypropylene, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene terephthalate, phthalic acid, isophthalic acid, sebacic acid, adipic acid, diethylene glycol, and 1,4-butanediol. Aromatic polyester copolymer copolymerized with seeds or two or more compounds, poly D-lactic acid, poly L-lactic acid, copolymer of D-lactic acid and L-lactic acid, D-lactic acid and hydroxycarboxylic acid Polyesters such as copolymers, copolymers of L-lactic acid and hydroxycarboxylic acid, copolymers of D-lactic acid, L-lactic acid and hydroxycarboxylic acid, and biodegradable aliphatic polyesters composed of blends thereof. , Copolymerized polyamide, polyphenylene sulfide and the like. As the thermoplastic synthetic resin, polyester and polyphenylene sulfide having excellent heat resistance and water resistance are particularly preferable.

PET又はその共重合体の場合には、メルトブロー極細繊維の溶液粘度(ηsp/c)は0.2〜0.8であることが好ましく、より好ましくは0.2〜0.6である。また、PETのメルトブロー微細繊維は、他の合繊に比較して結晶化が遅く、低結晶の流動性のある状態で連続長繊維層の隙間に侵入できるため、連続長繊維層の繊維間隙を埋めて緻密な構造を形成することができる。 In the case of PET or a copolymer thereof, the solution viscosity (ηsp / c) of the melt-blown ultrafine fibers is preferably 0.2 to 0.8, more preferably 0.2 to 0.6. Further, the melt-blown fine fibers of PET are slower to crystallize than other synthetic fibers and can penetrate into the gaps of the continuous long fiber layer in a state of low crystal fluidity, so that the fiber gaps of the continuous long fiber layer are filled. It is possible to form a dense structure.

本実施形態の複合吸音材を構成する不織布面材の連続長繊維層の調製においては、延伸により充分な強力を発現させるため、紡糸速度等を適切な設定することが好ましい。例えば、PETの場合には、紡糸速度3000m/min以上で延伸紡糸することが好ましい。連続長繊維層(ウェブ)は、スパンボンド法により、摩擦帯電やコロナ帯電などにより糸条を均一に分散させて調製することが好ましい。このような方法によれば、未結合状態のウェブを形成しやすく、かつ、経済性に優れるものとなる。また、連続長繊維ウェブは単層でも複数を重ねた層でもよい。
連続長繊維層を構成する繊維の平均繊維径は、カバーリング性、強度、紡糸安定性等の点から、10〜30μmが好ましく、より好ましくは12〜25μmである。
In the preparation of the continuous long fiber layer of the non-woven fabric facing material constituting the composite sound absorbing material of the present embodiment, it is preferable to appropriately set the spinning speed and the like in order to develop sufficient strength by stretching. For example, in the case of PET, it is preferable to perform draw spinning at a spinning speed of 3000 m / min or more. The continuous long fiber layer (web) is preferably prepared by uniformly dispersing the threads by triboelectric charging, corona charging, or the like by the spunbond method. According to such a method, it is easy to form an unbonded web, and it is economically advantageous. Further, the continuous long fiber web may be a single layer or a plurality of layers.
The average fiber diameter of the fibers constituting the continuous long fiber layer is preferably 10 to 30 μm, more preferably 12 to 25 μm, from the viewpoint of covering property, strength, spinning stability and the like.

連続長繊維層とメルトブロー極細繊維層の繊維断面の形状は、特に限定はないが、強度の観点からは、丸断面が好ましく、繊維の表面積の増加、微細空隙の形成の観点からは、偏平糸などの異型断面糸が好ましい。 The shape of the fiber cross section of the continuous long fiber layer and the melt blow ultrafine fiber layer is not particularly limited, but a round cross section is preferable from the viewpoint of strength, and a flat yarn is preferable from the viewpoint of increasing the surface area of the fiber and forming fine voids. Atypical cross-section yarns such as are preferred.

不織布面材における連続気泡樹脂発泡体層と接する層は、不織布面材の他層を構成する繊維の融点よりも30℃以上低い融点を有する繊維を含むことが好ましい。
例えば、不織布面材と連続気泡樹脂発泡体層との間の接着性を良好に保つために、連続気泡樹脂発泡体層と接触する不織布面材の層を、低融点の繊維構成にすることもできる。低融点の繊維としては、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、共重合ポリエチレン、共重合ポリプロピレンなどのポリオレフイン繊維、ポリエチレンテレフタレートにフタル酸、イソフタル酸、セバシン酸、アジピン酸、ジエチレングリコール、1,4-ブタンジオールの1種又は2種以上の化合物を共重合した芳香族ポリエステル共重合体、脂肪族エステルなどのポリエステル系繊維、共重合ポリアミドなどの合成繊維が挙げられる。これらの繊維は、単独でもよく、2種以上複合混繊してもよく、また、低融点と高融点繊維とを複合混繊してもよい。低融点の繊維としては、好ましくは、低融点成分を鞘部に有する、鞘芯構造の複合繊維が挙げられ、例えば、芯が高融点成分であるポリエチレンテレフタレート、ポリブチレンテレフタレート、共重合ポリエステル、ナイロン6、ナイロン66、共重合ポリアミドなどであり、鞘が低融点成分である低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、共重合ポリエチレン、共重合ポリプロピレン、共重合ポリエステル、脂肪族エステルなどであるものである。
The layer in contact with the open cell resin foam layer in the nonwoven fabric facing material preferably contains fibers having a melting point of 30 ° C. or more lower than the melting point of the fibers constituting the other layer of the nonwoven fabric facing material.
For example, in order to maintain good adhesion between the non-woven fabric face material and the open cell resin foam layer, the layer of the non-woven fabric face material in contact with the open cell resin foam layer may have a low melting point fiber composition. can. Examples of low melting point fibers include polyolefin fibers such as low density polyethylene, high density polyethylene, polypropylene, copolymerized polypropylene, and copolymerized polypropylene, phthalic acid, isophthalic acid, sebacic acid, adipic acid, diethylene glycol, and 1, Examples thereof include aromatic polyester copolymers obtained by copolymerizing one or more compounds of 4-butanediol, polyester fibers such as aliphatic esters, and synthetic fibers such as copolymerized polyamides. These fibers may be used alone, may be a composite blend of two or more kinds, or may be a composite blend of a low melting point fiber and a high melting point fiber. The low melting point fiber preferably includes a composite fiber having a sheath core structure having a low melting point component in the sheath portion, and examples thereof include polyethylene terephthalate, polypropylene terephthalate, copolymerized polyester, and nylon having a high melting point component in the core. 6. Nylon 66, copolymerized polyamide, etc., such as low-density polyethylene, high-density polyethylene, polypropylene, copolymerized polyethylene, copolymerized polypropylene, copolymerized polyester, aliphatic ester, etc., whose sheath is a low melting point component. ..

不織布面材の構成としては、メルトブロー極細繊維層(M)を少なくとも1層含むことが必要である。メルトブロー極細繊維層がないと、小さな繊維空隙を有する緻密な構造とすることができず、進入する音の波長が細孔中の摩擦抵抗で小さくなることでの吸音特性のコントロールができなくなる。不織布面材の構成としては、メルトブロー極細繊維層(M)1層でもよく、MM型、MMM型のように2層以上重ねてもよい。また、連続長繊維層(S)とともにSM型又はSMS型の積層構造としてもよい。目付低減の観点からは、M層又はMM層のようにメルトブロー極細繊維層のみで構成されている方がよく、強度、取り扱い性の観点からは、SM型又はSMS型のように連続長繊維層と積層されている構成がよい。 The non-woven fabric facing material needs to include at least one melt-blown ultrafine fiber layer (M). Without the melt-blown ultrafine fiber layer, it is not possible to form a dense structure with small fiber voids, and the wavelength of the incoming sound becomes smaller due to the frictional resistance in the pores, making it impossible to control the sound absorption characteristics. The non-woven fabric facing material may be composed of one melt blow ultrafine fiber layer (M), or two or more layers such as MM type and MMM type. Further, the SM type or SMS type laminated structure may be formed together with the continuous long fiber layer (S). From the viewpoint of reducing basis weight, it is better to be composed of only melt-blown ultrafine fiber layers such as M layer or MM layer, and from the viewpoint of strength and handleability, continuous long fiber layers such as SM type or SMS type. It is good to have a structure that is laminated with.

不織布面材を構成する各不織布層は、熱圧着で一体化されることが好ましく、例えば、公知のエンボスロールと平滑ロール間、又は平滑ロールと平滑ロール間で加熱、圧着して接合することが好ましい。加熱温度としては、例えば、熱圧着面に存在する繊維の融点より20〜150℃低い温度が好ましく、更に繊維の劣化やロール融着などの影響を緩和するために、上下ロール間の加熱温度に差を設けることもできる。熱圧着時の圧力は10〜1000kPa/cmが好ましく、より好ましくは50〜700kPa/cmである。熱圧着することにより、比較的緻密な積層不織布にすることができる。 Each non-woven fabric layer constituting the non-woven fabric face material is preferably integrated by heat crimping, and for example, it is possible to heat and crimp between a known embossed roll and a smoothing roll, or between a smoothing roll and a smoothing roll to join them. preferable. The heating temperature is preferably, for example, 20 to 150 ° C. lower than the melting point of the fibers existing on the heat-bonded surface, and is set to the heating temperature between the upper and lower rolls in order to further mitigate the effects of fiber deterioration and roll fusion. Differences can also be made. The pressure at the time of thermal pressure bonding is preferably 10 to 1000 kPa / cm, more preferably 50 to 700 kPa / cm. By heat-bonding, a relatively dense laminated non-woven fabric can be obtained.

不織布面材の目付けは、20〜250g/mであることが好ましく、より好ましくは50〜200g/mである。目付けが20g/m未満であると、不織布の均一性及び緻密性が低下し、小さな空隙が得られない。他方、目付けが250g/mを超えると、小さな空隙の緻密構造が得られるが、剛性が高くなり、裁断性、取扱性が低下し、さらにコスト高となる。 Woven cloth surface material is preferably 20 to 250 g / m 2, more preferably from 50 to 200 g / m 2. If the basis weight is less than 20 g / m 2 , the uniformity and denseness of the non-woven fabric are lowered, and small voids cannot be obtained. On the other hand, when the basis weight exceeds 250 g / m 2 , a dense structure with small voids is obtained, but the rigidity is increased, the cutability and handleability are lowered, and the cost is further increased.

また、不織布面材の嵩密度は、0.1〜0.7g/cmであることが好ましく、より好ましくは0.15〜0.6g/cm、さらに好ましくは0.2〜0.55g/cmである。嵩密度が大きいと、繊維の充填密度が高くなり、小さな空隙の緻密構造となる。従って、嵩密度が0.1g/cm未満では、不織布の緻密性が低下し、音の減少する効果が低下する。他方、嵩密度が0.7g/cmを超えると、不織布の緻密性が高過ぎ、空隙が少なくなり、音の侵入が不十分となり、特に中周波数4000Hz付近の吸音率が低下し、また、加工性も低下する。 The bulk density of the nonwoven surface material is preferably 0.1~0.7g / cm 3, more preferably 0.15~0.6g / cm 3, more preferably 0.2~0.55g / Cm 3 . When the bulk density is high, the filling density of the fibers is high, resulting in a dense structure of small voids. Therefore, if the bulk density is less than 0.1 g / cm 3 , the denseness of the non-woven fabric is lowered, and the effect of reducing sound is lowered. On the other hand, when the bulk density exceeds 0.7 g / cm 3 , the non-woven fabric is too dense, the voids are reduced, the sound penetration is insufficient, and the sound absorption coefficient especially around the medium frequency of 4000 Hz is lowered. Workability is also reduced.

さらに、不織布面材の通気度は、100cc/cm/sec以下が好ましく、より好ましくは1〜50cc/cm/sec以下、さらに好ましくは0.5〜30cc/cm/secである。通気度が100cc/cm/secを超えると、進入する音の波長を小さくすることができず、音エネルギーの減少効果が得られない。 Furthermore, air permeability of the nonwoven surface material, preferably 100cc / cm 2 / sec or less, more preferably 1~50cc / cm 2 / sec or less, more preferably from 0.5~30cc / cm 2 / sec. If the air permeability exceeds 100 cc / cm 2 / sec, the wavelength of the incoming sound cannot be reduced, and the effect of reducing the sound energy cannot be obtained.

本実施形態の不織布面材は、吸音材の補強材として有効であると共に、これに、黒色などの印刷性、撥水性、難燃性などの表面機能を付与する加工を施すことができる。具体的には、染色、印刷などの着色加工、フッソ樹脂による撥水加工、燐系などの難燃剤による難燃加工が挙げられる。 The non-woven fabric face material of the present embodiment is effective as a reinforcing material for a sound absorbing material, and can be subjected to a process for imparting surface functions such as printability such as black color, water repellency, and flame retardancy. Specific examples thereof include coloring processing such as dyeing and printing, water repellent processing using a fluorine resin, and flame retardant processing using a flame retardant such as phosphorus.

連続気泡樹脂発泡体層の嵩密度は、0.01〜0.1g/cmが好ましく、より好ましくは0.02〜0.08g/cm、さらに好ましくは0.03〜0.05g/cmである。嵩密度が0.01g/cm未満であると吸音性が低下するため必要以上に厚みを厚くする必要がある。嵩密度が0.1g/cmを超えると、不織布面材を透過した音が連続気泡樹脂発泡体内に侵入しずらく、特に4000Hz以降の周波数の吸音率が低下し、また、耐摩耗性、加工性も低下する。
このように、連続気泡樹脂発泡体層と不織布面材とを組み合わせて、高い吸音性を有しながらも、薄く、軽量で、形態安定性に優れた吸音材とするためには、連続気泡樹脂発泡体層を特定の嵩密度とすることが望ましい。連続気泡樹脂発泡体の嵩密度は、不織布面材との組み合わせ前に公知の熱プレス機などで圧縮調整されていてもよく、自動車部材等に熱成型加工する際に不織布面材と一体成型することで圧縮調整されていてもよい。
The bulk density of the open cell resin foam layer is preferably 0.01 to 0.1 g / cm 3 , more preferably 0.02 to 0.08 g / cm 3 , and even more preferably 0.03 to 0.05 g / cm. It is 3. If the bulk density is less than 0.01 g / cm 3 , the sound absorption property is lowered, so that it is necessary to make the thickness more than necessary. When the bulk density exceeds 0.1 g / cm 3 , it is difficult for the sound transmitted through the non-woven fabric facing material to enter the open cell resin foam, and the sound absorption coefficient at frequencies after 4000 Hz is particularly lowered, and the wear resistance is increased. Workability is also reduced.
In this way, in order to combine the open cell resin foam layer and the non-woven fabric facing material to obtain a sound absorbing material that is thin, lightweight, and has excellent morphological stability while having high sound absorbing properties, the open cell resin is used. It is desirable that the foam layer has a specific bulk density. The bulk density of the open cell resin foam may be compression-adjusted by a known heat press or the like before being combined with the non-woven fabric face material, and is integrally molded with the non-woven fabric face material when thermoforming into an automobile member or the like. The compression may be adjusted accordingly.

連続気泡樹脂発泡体層の厚みは、5〜50mmが好ましく、より好ましくは10〜40mmである。連続気泡樹脂発泡体層の目付けは、10〜400g/mが好ましく、より好ましくは20〜300g/mである。厚みが5mm未満であり、かつ、目付けが10g/m未満であると、吸音性が不十分であり特に吸音低周波数の吸音率が低下する。他方、厚みが50mmを超え、目付けが400g/mを超えると、低周波数の吸音性は良くなるものの、吸音材のスペースが大きくなり、貼り合わせ加工性、取り扱い性、製品輸送性などが低下する。 The thickness of the open cell resin foam layer is preferably 5 to 50 mm, more preferably 10 to 40 mm. The basis weight of the open cell resin foam layer is preferably 10 to 400 g / m 2 , and more preferably 20 to 300 g / m 2 . If the thickness is less than 5 mm and the basis weight is less than 10 g / m 2 , the sound absorption property is insufficient, and the sound absorption rate of particularly low frequency sound absorption is lowered. On the other hand, when the thickness exceeds 50 mm and the basis weight exceeds 400 g / m 2 , the sound absorption of low frequencies is improved, but the space of the sound absorbing material is increased, and the laminating workability, handleability, product transportability, etc. are deteriorated. do.

連続気泡樹脂発泡体の素材としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、ポリエステル樹脂、アクリル樹脂、ポリスチレン樹脂、メラミン樹脂などが挙げられ、吸音性、柔軟性、軽量性等の観点から、軟質ウレタンフォームが好ましい。 Examples of the material of the open cell resin foam include polyethylene resin, polypropylene resin, polyurethane resin, polyester resin, acrylic resin, polystyrene resin, melamine resin, etc., from the viewpoint of sound absorption, flexibility, light weight, and the like. Soft urethane foam is preferred.

本実施形態の複合吸音材は、前記した不織布面材(表面材)と粗な構造の連続気泡樹脂発泡体層(裏面材)とを接合一体化して得られる。表面材と裏面材の接合は、例えば、熱融着繊維を接合面に介在させ、熱処理する方法、ホットメルト系樹脂や接着剤を塗布した後、熱処理する方法、ホットメルト系樹脂をカーテンスプレー方式で塗布する方法などにより行うことができる。 The composite sound absorbing material of the present embodiment is obtained by joining and integrating the above-mentioned non-woven fabric face material (surface material) and the open cell resin foam layer (back surface material) having a coarse structure. For joining the front surface material and the back surface material, for example, a method of interposing a heat-sealing fiber on the joint surface and heat-treating, a method of applying a hot-melt resin or an adhesive and then heat-treating, and a curtain spray method of hot-melt resin. It can be done by the method of applying with.

接着剤を用いた接着方法においては、カーテンスプレー方式、ドット方式、スクリーン方式などにより、不織布面材にホットメルト系接着剤を2〜30g/mの割合で塗布し、不織布面材側から加熱して、塗布した接着剤を軟化、融解させて接着することができる。 In the bonding method using an adhesive, a hot melt adhesive is applied to the non-woven fabric surface material at a ratio of 2 to 30 g / m 2 by a curtain spray method, a dot method, a screen method, etc., and heated from the non-woven fabric surface material side. Then, the applied adhesive can be softened, melted and adhered.

不織布面材と連続気泡樹脂発泡体のとの間の接着力としては、0.1N/10mm以上が好ましく、より好ましくは0.2N/10mm〜5N/10mmである。接着力が0.1N/10mm未満であると、吸音材の裁断、輸送などの間に剥離するなどの問題が生じる。高い接着力を得るためには、不織布面材の接着面に低融点成分層を設けることが好ましく、更に、連続気泡樹脂発泡体にホットメルト系の接着剤を塗布することも好ましい。 The adhesive force between the non-woven fabric face material and the open cell resin foam is preferably 0.1 N / 10 mm or more, and more preferably 0.2 N / 10 mm to 5 N / 10 mm. If the adhesive strength is less than 0.1 N / 10 mm, problems such as peeling during cutting and transportation of the sound absorbing material occur. In order to obtain high adhesive strength, it is preferable to provide a low melting point component layer on the adhesive surface of the non-woven fabric facing material, and it is also preferable to apply a hot melt adhesive to the open cell resin foam.

本実施形態の複合吸音材の厚みは、5〜50mm、目付けは、50〜475g/m未満であり、好ましくは、厚みが7〜45mm、目付け60〜400g/mである。 The composite sound absorbing material of the present embodiment has a thickness of 5 to 50 mm and a basis weight of less than 50 to 475 g / m 2 , preferably a thickness of 7 to 45 mm and a basis weight of 60 to 400 g / m 2 .

本実施形態の複合吸音材の、JIS−1405に準拠する垂直入射の測定法において該不織布面材側から入射する音の周波数1000Hz、1600Hz、2000Hz、2500Hz、3150Hz、及び4000Hzにおける吸音率は、いずれも40%以上であり、好ましくは50〜95%、より好ましくは60〜100%である。 In the method for measuring vertical incidence of the composite sound absorbing material of the present embodiment in accordance with JIS-1405, the sound absorbing coefficient at frequencies of 1000 Hz, 1600 Hz, 2000 Hz, 2500 Hz, 3150 Hz, and 4000 Hz of the sound incident from the non-woven fabric surface material side is any. Is also 40% or more, preferably 50 to 95%, and more preferably 60 to 100%.

以下、本発明を実施例、比較例により具体的に説明するが、本発明はこれらに限定されると解釈させるべきではない。尚、各特性値は、下記の方法により測定した。
(1)目付け(g/m
JIS−1913に準拠した。
(2)平均繊維径(μm)
顕微鏡で500倍の拡大写真を取り、繊維10本の平均値で求めた。
(3)嵩密度(g/cm
(目付け)/(厚み)から算出し、単位容積あたりの重量を求めた。
(4)厚み(mm)
JIS−L−1913−B法に準拠した。荷重0.02kPaの圧力の厚みを3カ所以上測定し、その平均値を求めた。但し、不織布面材の厚みは、荷重20kPaで測定した。
(5)吸音率(%)
JIS−1405に準拠し、垂直の入射法の測定機を用いて周波数1000〜4000HZに亘りを測定した。
(6)通気性
JIS−L−1906に準拠したフラジュール法で測定した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention should not be construed as being limited to these. Each characteristic value was measured by the following method.
(1) Metsuke (g / m 2 )
Compliant with JIS-1913.
(2) Average fiber diameter (μm)
A 500-fold magnified photograph was taken with a microscope, and the average value of 10 fibers was calculated.
(3) Bulk density (g / cm 3 )
It was calculated from (Metsuke) / (Thickness), and the weight per unit volume was calculated.
(4) Thickness (mm)
It conformed to the JIS-L-1913-B method. The thickness of the pressure with a load of 0.02 kPa was measured at three or more places, and the average value was calculated. However, the thickness of the non-woven fabric facing material was measured under a load of 20 kPa.
(5) Sound absorption coefficient (%)
In accordance with JIS-1405, measurements were made over frequencies of 1000 to 4000 Hz using a vertical incident measuring instrument.
(6) Breathability The measurement was performed by the Frajour method based on JIS-L-1906.

[実施例1]
ポリエチレンテレフタレート(オルソクロロフェノールを用いた1%、25℃法の溶液粘度ηsp/c 0.77、融点263℃)を紡糸口金から紡糸し、スパンボンド法により、紡糸温度300℃で繊維ウェブ(S1)を捕集ネット上に形成した。得られた連続長繊維ウェブ(目付け20.8g/m2、平均繊維径13μm)上に、ポリエチレンテレフタレート(同じく溶液粘度ηsp/c 0.50、融点260℃)をメルトブローノズルで、紡糸温度300℃、加熱空気320℃1000Nm3/hr条件下で直接噴出させ、極細繊維ウェブ(M)(目付け8.4g/m2、平均繊維径1.7μm)を形成した。得られた極細繊維ウェブ上に、繊維ウェブ(S1)と同様にポリエチレンテレフタレートの連続長繊維ウェブ(S2)を形成した。次いで、得られた積層ウェブを、一対のエンボスロール/フラットロール温度230℃、線圧30N/mmで部分熱圧着し、目付け50g/m2、嵩密度0.22g/cm3、部分熱圧着面積率11%の不織布面材を得た。
連続気泡樹脂発泡体層として、厚さ30mm、目付け69g/m2、嵩密度0.023g/cm3の軟質ウレタンフォーム(アキレス株式会社製、品種:低通気フォーム 品番:PPK)を用い、前記不織布面材と接合した。接合は、不織布面材と連続気泡樹脂発泡体層とを共重合ポリエステル系ホットメルトパウダー(融点130℃)を20g/mの割合で塗布し、加熱処理して行った。得られた複合吸音材の各種物性を以下の表1に示す。
[Example 1]
Polyethylene terephthalate (1% using orthochlorophenol, solution viscosity ηsp / c 0.77 by 25 ° C method, melting point 263 ° C) is spun from the spinneret, and the fiber web (S1) is spun at a spinning temperature of 300 ° C by the spunbond method. Formed on the collection net. On the obtained continuous long fiber web (meshing 20.8 g / m 2 , average fiber diameter 13 μm), polyethylene terephthalate (also solution viscosity ηsp / c 0.50, melting point 260 ° C) was spun with a melt blow nozzle at a spinning temperature of 300 ° C and heated air. Direct ejection under the conditions of 320 ° C. and 1000 Nm 3 / hr formed ultrafine fiber webs (M) (meshing 8.4 g / m 2 , average fiber diameter 1.7 μm). On the obtained ultrafine fiber web, a continuous long fiber web (S2) of polyethylene terephthalate was formed in the same manner as the fiber web (S1). Next, the obtained laminated web was partially heat-bonded at a pair of embossed roll / flat roll temperature of 230 ° C. and a linear pressure of 30 N / mm, and the texture was 50 g / m 2 , the bulk density was 0.22 g / cm 3 , and the partial heat-bonded area ratio. An 11% non-woven fabric facing material was obtained.
As the open cell resin foam layer, a soft urethane foam (manufactured by Achilles Corporation, product type: low ventilation foam, product number: PPK) with a thickness of 30 mm, a grain size of 69 g / m 2 , and a bulk density of 0.023 g / cm 3 is used, and the non-woven fabric surface is used. Joined with wood. The bonding was carried out by applying a copolymerized polyester hot melt powder (melting point 130 ° C.) at a ratio of 20 g / m 2 to the non-woven fabric facing material and the open cell resin foam layer, and heat-treating. Table 1 below shows various physical characteristics of the obtained composite sound absorbing material.

[実施例2]
不織布面材の部分熱圧着面積率を15%、嵩密度0.28g/cm3に代えた以外は、実施例1と同様に複合吸音材を得た。得られた複合吸音材の各種物性を以下の表1に示す。
[Example 2]
A composite sound absorbing material was obtained in the same manner as in Example 1 except that the partial thermal pressure bonding area ratio of the non-woven fabric facing material was changed to 15% and the bulk density was 0.28 g / cm 3. Table 1 below shows various physical characteristics of the obtained composite sound absorbing material.

[実施例3]
ポリエチレンテレフタレート(オルソクロロフェノールを用いた1%、25℃法の溶液粘度ηsp/c 0.77、融点263℃)を紡糸口金から紡糸し、スパンボンド法により、紡糸温度300℃で繊維ウェブ(S1)を捕集ネット上に形成した。得られた連続長繊維ウェブ(目付け20.0g/m2、平均繊維径13μm)上に、ポリエチレンテレフタレート(同じく溶液粘度ηsp/c 0.50、融点260℃)をメルトブローノズルで、紡糸温度330℃、加熱空気370℃1300Nm3/hr条件下で直接噴出させ、極細繊維ウェブ(M)(目付け40g.0/m2、平均繊維径0.8μm)を形成した。得られた極細繊維ウェブ上に、繊維ウェブ(S1)と同様にポリエチレンテレフタレートの連続長繊維ウェブ(S2)を形成した。得られた積層ウェブを、一対のエンボスロール/フラットロール温度230℃、線圧30N/mmで部分熱圧着し、目付け80g/m2、嵩密度0.29g/cm3、熱圧着面積率15%の不織布面材を得た。
連続気泡樹脂発泡体層として、厚さ30mm、目付け69g/m2、嵩密度0.023g/cm3の軟質ウレタンフォーム(アキレス株式会社製、品種:低通気フォーム 品番:PPK)を130℃の熱プレスによって、厚み15mm、嵩密度:0.46g/cm3に圧縮した物を用い、前記不織布面材と接合した。接合は、不織布面材と連続気泡樹脂発泡体層とを共重合ポリエステル系ホットメルトパウダー(融点130℃)を20g/mの割合で塗布し。加熱処理して行った。得られた複合吸音材の各種物性を以下の表1に示す。
[Example 3]
Polyethylene terephthalate (1% using orthochlorophenol, solution viscosity ηsp / c 0.77 by 25 ° C method, melting point 263 ° C) is spun from the spinneret, and the fiber web (S1) is spun at a spinning temperature of 300 ° C by the spunbond method. Formed on the collection net. On the obtained continuous long fiber web (meshing 20.0 g / m 2 , average fiber diameter 13 μm), polyethylene terephthalate (also solution viscosity ηsp / c 0.50, melting point 260 ° C) was spun with a melt blow nozzle at a spinning temperature of 330 ° C and heated air. Direct ejection under 370 ° C. 1300 Nm 3 / hr conditions formed ultrafine fiber webs (M) (mesh 40 g.0 / m 2 , average fiber diameter 0.8 μm). On the obtained ultrafine fiber web, a continuous long fiber web (S2) of polyethylene terephthalate was formed in the same manner as the fiber web (S1). The resulting laminated web, the pair of embossing rolls / flat roll temperature of 230 ° C., partially thermocompression bonding at a linear pressure of 30 N / mm, basis weight 80 g / m 2, bulk density 0.29 g / cm 3, a thermal compression bonding area ratio of 15% A non-woven fabric face material was obtained.
As an open cell resin foam layer, a soft urethane foam (manufactured by Achilles Co., Ltd., product type: low ventilation foam, product number: PPK) with a thickness of 30 mm, a grain size of 69 g / m 2 , and a bulk density of 0.023 g / cm 3 is hot pressed at 130 ° C. A material compressed to a thickness of 15 mm and a bulk density of 0.46 g / cm 3 was used and bonded to the non-woven face material. For joining, a copolymerized polyester hot melt powder (melting point 130 ° C.) was applied at a ratio of 20 g / m 2 to the non-woven fabric facing material and the open cell resin foam layer. It was heat-treated. Table 1 below shows various physical characteristics of the obtained composite sound absorbing material.

[実施例4]
ポリエチレンテレフタレート(オルソクロロフェノールを用いた1%、25℃法の溶液粘度ηsp/c 0.77、融点263℃)を紡糸口金から紡糸し、スパンボンド法により、紡糸温度300℃で繊維ウェブ(S1)を捕集ネット上に形成した。得られた連続長繊維ウェブ(目付け15.3g/m2、平均繊維径13μm)上に、ポリエチレンテレフタレート(同じく溶液粘度ηsp/c 0.50、融点260℃)をメルトブローノズルで、紡糸温度300℃、加熱空気320℃1000Nm3/hr条件下で直接噴出させ、極細繊維ウェブ(M)(目付け9.4g/m2、平均繊維径1.7μm)を形成した。次いで、2成分紡糸口金を用いて、鞘成分が共重合ポリエステル樹脂(融点160℃)であり、芯成分がポリエチレンテレフタレート(融点263℃)である糸条を紡糸し、連続長繊維ウェブ(S2)(目付け15.3g/m2、平均繊維径13μm)を形成した。得られた積層ウェブを、一対のエンボスロール/フラットロール温度230/145℃、線圧30N/mmで部分熱圧着し、目付け40g/m2、嵩密度0.22g/cm3、熱圧着面積率11%の不織布面材を得た。
連続気泡樹脂発泡体として、厚さ30mm、目付け69g/m2、嵩密度:0.023g/cm3の軟質ウレタンフォーム(アキレス株式会社製、品種:低通気フォーム 品番:PPK)を用い、前記積層不織布面材と熱プレスにより接合した。接合の際、連続気泡樹脂発泡体層が、厚さ20mm、嵩密度0.046g/cm3となるように、150℃で熱プレスした。得られた複合吸音材の各種物性を以下の表1に示す。
[Example 4]
Polyethylene terephthalate (1% using orthochlorophenol, solution viscosity ηsp / c 0.77 by 25 ° C method, melting point 263 ° C) is spun from the spinneret, and the fiber web (S1) is spun at a spinning temperature of 300 ° C by the spunbond method. Formed on the collection net. Polyethylene terephthalate (also solution viscosity ηsp / c 0.50, melting point 260 ° C) was spun on the obtained continuous long fiber web ( mesh 15.3 g / m 2 , average fiber diameter 13 μm) with a melt blow nozzle at a spinning temperature of 300 ° C and heated air. Direct ejection under the conditions of 320 ° C. and 1000 Nm 3 / hr formed ultrafine fiber webs (M) (mesh size 9.4 g / m 2 , average fiber diameter 1.7 μm). Next, using a two-component spinneret, a yarn having a sheath component of a copolymerized polyester resin (melting point 160 ° C.) and a core component of polyethylene terephthalate (melting point 263 ° C.) is spun into a continuous long fiber web (S2). (Grasping 15.3 g / m 2 , average fiber diameter 13 μm) was formed. The resulting laminated web, the pair of embossing rolls / flat roll temperature 230/145 ° C., partially thermocompression bonding at a linear pressure of 30 N / mm, basis weight 40 g / m 2, bulk density 0.22 g / cm 3, a thermal compression bonding area ratio 11 % Non-woven fabric face material was obtained.
As the open cell resin foam, a soft urethane foam (manufactured by Achilles Corporation, product type: low ventilation foam, product number: PPK) with a thickness of 30 mm, a grain size of 69 g / m 2 , and a bulk density of 0.023 g / cm 3 is used, and the laminated non-woven fabric is used. It was joined to the face material by hot pressing. At the time of joining, the open cell resin foam layer was heat-pressed at 150 ° C. so that the thickness was 20 mm and the bulk density was 0.046 g / cm 3. Table 1 below shows various physical characteristics of the obtained composite sound absorbing material.

[比較例1]
実施例1、2で用いた厚さ30mm、目付け69g/m2、嵩密度0.023g/cm3の軟質ウレタンフォーム(アキレス株式会社製、品種:低通気フォーム 品番:PPK)単体での各種物性を以下の表1に示す。軟質ウレタンフォーム単体では、特に周波数1600Hz以下の吸音率が低かった。
[Comparative Example 1]
Various physical properties of the soft urethane foam (manufactured by Achilles Corporation, product type: low-ventilation foam, product number: PPK) with a thickness of 30 mm, a grain size of 69 g / m 2 , and a bulk density of 0.023 g / cm 3 used in Examples 1 and 2. It is shown in Table 1 below. The soft urethane foam alone had a particularly low sound absorption coefficient at frequencies of 1600 Hz or less.

[比較例2]
ポリエチレンテレフタレート(オルソクロロフェノールを用いた1%、25℃法の溶液粘度ηsp/c 0.77、融点263℃)を紡糸口金から紡糸し、スパンボンド法により、紡糸温度300℃で繊維ウェブ(S1)を捕集ネット上に形成した。得られた連続長繊維ウェブ(目付け27.0g/m2、平均繊維径14μm)上に、ポリエチレンテレフタレート(同じく溶液粘度ηsp/c 0.50、融点260℃)をメルトブローノズルで、紡糸温度300℃、加熱空気320℃1000Nm3/hrの条件下で直接噴出させ、極細繊維ウェブ(M)(目付け16g/m2、平均繊維径2μm)を形成した。得られた極細繊維ウェブ上に、繊維ウェブ(S1)と同様にポリエチレンテレフタレートの連続長繊維ウエブ(S2)を形成した。得られた積層ウェブを、一対のエンボスロール/フラットロール温度230℃、線圧30N/mmで部分熱圧着し、目付け70g/m2、嵩密度0.20g/cm3、熱圧着面積率12%の不織布面材を得た。
ポリエステル短繊維(繊維径25μm、繊維長51mm)70%と、共重合ポリエステル繊維(融点135℃、繊維径18μm、繊維長51mm)30%とを用い、公知のカード法でウェブを形成し、ニードルパンチ(NP)加工で交絡し、目付け150g/m2、嵩密度0.012g/cm3、厚み13mmとしたものを得た。これを、不織布面材に、共重合ポリエステル系ホットメルトパウダー(融点130℃)を20g/mの割合で塗布し、加熱処理で接合した。得られた複合吸音材の各種物性を、以下の表1に示す。比較例2の複合吸音材は、連続気泡樹脂発泡体に代えて短繊維NP加工不織布を用いたものであったため、特に周波数2000Hz以下の吸音率が低かった。
[Comparative Example 2]
Polyethylene terephthalate (1% using orthochlorophenol, solution viscosity ηsp / c 0.77 by 25 ° C method, melting point 263 ° C) is spun from the spinneret, and the fiber web (S1) is spun at a spinning temperature of 300 ° C by the spunbond method. Formed on the collection net. On the obtained continuous long fiber web (meshing 27.0 g / m 2 , average fiber diameter 14 μm), polyethylene terephthalate (also solution viscosity ηsp / c 0.50, melting point 260 ° C) was spun with a melt blow nozzle at a spinning temperature of 300 ° C and heated air. Direct ejection under the conditions of 320 ° C. and 1000 Nm 3 / hr formed ultrafine fiber webs (M) (meshing 16 g / m 2 , average fiber diameter 2 μm). On the obtained ultrafine fiber web, a continuous long fiber web (S2) of polyethylene terephthalate was formed in the same manner as the fiber web (S1). The resulting laminated web, the pair of embossing rolls / flat roll temperature of 230 ° C., partially thermocompression bonding at a linear pressure of 30 N / mm, basis weight 70 g / m 2, a bulk density of 0.20 g / cm 3, a thermal compression bonding area ratio of 12% A non-woven fabric face material was obtained.
Using 70% of polyester short fibers (fiber diameter 25 μm, fiber length 51 mm) and 30% of copolymerized polyester fibers (melting point 135 ° C., fiber diameter 18 μm, fiber length 51 mm), a web is formed by a known card method, and a needle is formed. It was entangled by punching (NP) processing to obtain a fiber with a grain size of 150 g / m 2 , a bulk density of 0.012 g / cm 3, and a thickness of 13 mm. This was applied to a non-woven fabric facing material at a ratio of 20 g / m 2 of a copolymerized polyester hot melt powder (melting point 130 ° C.), and bonded by heat treatment. The various physical characteristics of the obtained composite sound absorbing material are shown in Table 1 below. Since the composite sound absorbing material of Comparative Example 2 used a short fiber NP-processed non-woven fabric instead of the open cell resin foam, the sound absorbing coefficient having a frequency of 2000 Hz or less was particularly low.

[比較例3]
不織布面材の連続長繊維ウェブ(S1、S2)の目付けを、それぞれ、21g/m2、極細繊維ウエブ(M)の目付けを8g/m2とし、部分熱圧着面積率を25%とし、短繊維NP加工不織布の目付けを450g/m2、嵩密度を0.018g/cm3、厚みを25mmとしたこと以外は、比較例2と同様に複合吸音材を得た。得られた複合吸音材の各種物性を以下の表1に示す。比較例3の複合吸音材は、比較例2に比較して、短繊維NP加工不織布の目付け、厚みが増加しているため吸音性は向上したものの、複合吸音体の重量が重く(目付けが大きく)軽量性に劣っていた。
[Comparative Example 3]
The continuous length fiber webs (S1 and S2) of the non-woven fabric facing material are 21 g / m 2 respectively, the ultrafine fiber web (M) is 8 g / m 2 , and the partial thermal pressure bonding area ratio is 25%, which is short. A composite sound absorbing material was obtained in the same manner as in Comparative Example 2, except that the texture of the fiber NP-processed non-woven fabric was 450 g / m 2 , the bulk density was 0.018 g / cm 3, and the thickness was 25 mm. Table 1 below shows various physical characteristics of the obtained composite sound absorbing material. Compared with Comparative Example 2, the composite sound absorbing material of Comparative Example 3 has improved sound absorption due to the increase in the basis weight and thickness of the short fiber NP-processed non-woven fabric, but the weight of the composite sound absorber is heavy (the basis weight is large). ) It was inferior in lightness.

[比較例4]
ポリエチレンテレフタレート(オルソクロロフェノールを用いた1%、25℃法の溶液粘度ηsp/c 0.77、融点263℃)を紡糸口金から紡糸し、スパンボンド法により、紡糸温度300℃で繊維ウェブ(S1)を捕集ネット上に形成した。得られた連続長繊維ウェブ(目付け20g/m2、平均繊維径13μm)上に、ポリエチレンテレフタレート(同じく溶液粘度ηsp/c 0.50、融点260℃)をメルトブローノズルで、紡糸温度300℃、加熱空気320℃1000Nm3/hr条件下で直接噴出させ、極細繊維ウェブ(M)(目付け15g/m、平均繊維径2μm)を形成した。得られた極細繊維ウェブ上に、繊維ウェブ(S1)と同様にポリエチレンテレフタレートの連続長繊維ウェブ(S2)を形成した。得られた積層ウェブを、一対のエンボスロール/フラットロール、温度225℃/215℃、圧力300N/cm部分熱圧着し、目付け55g/m、嵩密度0.25g/cm、部分熱圧着面積率25%の不織布面材を得た。
ポリエステル短繊維(繊維径17μm、繊維長51mm)60%と共重合ポリエステル短繊維(融点135℃、繊維径20μm、繊維長38mm)40%とを用いて、公知のカード法でウェブを形成し、ニードルパンチ加工で交絡し、目付け1000g/m、嵩密度0.04g/cm、厚み25mmの短繊維NP加工不織布を得た。不織布面材にポリアミド系ホットメルト接着剤(融点130℃)を20g/mの割合で塗布した後、20mmスペーサーを用いた熱板プレス機で、不織布面材側から温度160℃に加熱して、不織布面材と得られた短繊維NP加工不織布とを接着し、目付け1075g/m、嵩密度0.538g/cm、厚みが20mmの複合吸音材を得た。得られた複合吸音材の各種物性を以下の表1に示す。比較例4の複合吸音材は、比較例2、3に比較して、基材である短繊維NP加工不織布の目付又は厚みが増加しているため、1000Hz付近の低周波の吸音性は向上したものの、周波数2500Hz以上での吸音率が低かった。
[Comparative Example 4]
Polyethylene terephthalate (1% using orthochlorophenol, solution viscosity ηsp / c 0.77 by 25 ° C method, melting point 263 ° C) is spun from the spinneret, and the fiber web (S1) is spun at a spinning temperature of 300 ° C by the spunbond method. Formed on the collection net. On the obtained continuous long fiber web (meshing 20 g / m 2 , average fiber diameter 13 μm), polyethylene terephthalate (also solution viscosity ηsp / c 0.50, melting point 260 ° C) was spun with a melt blow nozzle at a spinning temperature of 300 ° C and heated air 320. Direct ejection under the conditions of ° C. 1000 Nm 3 / hr formed ultrafine fiber webs (M) (meshing 15 g / m 2 , average fiber diameter 2 μm). On the obtained ultrafine fiber web, a continuous long fiber web (S2) of polyethylene terephthalate was formed in the same manner as the fiber web (S1). The resulting laminated web, the pair of embossing rolls / flat roll temperature 225 ° C. / 215 ° C., and pressed pressure 300N / cm partial thermal, basis weight 55 g / m 2, bulk density 0.25 g / cm 3, partial thermocompression bonding area A non-woven fabric face material having a rate of 25% was obtained.
A web was formed by a known card method using 60% of short polyester fibers (fiber diameter 17 μm, fiber length 51 mm) and 40% of copolymerized polyester short fibers (melting point 135 ° C., fiber diameter 20 μm, fiber length 38 mm). The non-woven fabric was entangled by needle punching to obtain a short fiber NP-processed non-woven fabric having a grain size of 1000 g / m 2 , a bulk density of 0.04 g / cm 3, and a thickness of 25 mm. A polyamide hot melt adhesive (melting point 130 ° C.) is applied to the non-woven fabric face material at a ratio of 20 g / m 2 , and then heated to a temperature of 160 ° C. from the non-woven fabric face material side with a hot plate press using a 20 mm spacer. The non-woven fabric facing material and the obtained short fiber NP-processed non-woven fabric were adhered to obtain a composite sound absorbing material having a grain size of 1075 g / m 2 , a bulk density of 0.538 g / cm 3, and a thickness of 20 mm. Table 1 below shows various physical characteristics of the obtained composite sound absorbing material. In the composite sound absorbing material of Comparative Example 4, the basis weight or thickness of the short fiber NP-processed non-woven fabric as the base material was increased as compared with Comparative Examples 2 and 3, so that the sound absorbing property of low frequencies around 1000 Hz was improved. However, the sound absorption coefficient was low at frequencies of 2500 Hz and above.

[比較例5]
ポリエチレンテレフタレート(オルソクロロフェノールを用いた1%、25℃法の溶液粘度ηsp/c 0.77、融点263℃)を紡糸口金から紡糸し、スパンボンド法により、紡糸温度300℃で繊維ウェブ(S1)を捕集ネット上に形成した。得られた連続長繊維ウェブ(目付け40g/m2、平均繊維径12μm)上に、ポリエチレンテレフタレート(同じく溶液粘度ηsp/c 0.50、融点260℃)をメルトブローノズルで、紡糸温度300℃、加熱空気320℃1000Nm3/hr条件下で直接噴出させ、極細繊維ウェブ(M)(目付け20g/m2、平均繊維径2μm)を形成した。次いで、2成分紡糸口金を用いて、鞘成分が共重合ポリエステル樹脂(融点160℃)であり、芯成分がポリエチレンテレフタレート(融点263℃)である糸条を紡糸し、連続長繊維ウェブ(S2)(目付け40g/m2、平均繊維径16μm)を形成した。得られた積層ウェブを、一対のエンボスロール/フラットロール温度230/145℃、線圧30N/mmで部分熱圧着し、目付け100g/m2、嵩密度0.25g/cm3、部分熱圧着面積率20%の不織布面材を得た。
ポリエステル短繊維(繊維径25μm、繊維長51mm)70%と、共重合ポリエステル繊維(融点135℃、繊維径15μm、繊維長51mm)30%を用いて公知のカード法によりウェブを形成し、ニードルパンチ加工で交絡し、目付け375g/m2、嵩密度0.013g/cm3、厚み30mmの短繊維NP加工不織布を得た。メッシュ状のコンベアベルトに挟み、温度150℃の雰囲気下で加熱、加圧の熱処理で接合し、目付け475g/m2、嵩密度が0.158g/cm3、厚みが30mmの複合吸音材を得た。得られた複合吸音材の各種物性を以下の表1に示す。比較例5の複合吸音材は、広い吸音性能を示すものの、吸音材としての重量は重かった(目付けが高かった)。
[Comparative Example 5]
Polyethylene terephthalate (1% using orthochlorophenol, solution viscosity ηsp / c 0.77 by 25 ° C method, melting point 263 ° C) is spun from the spinneret, and the fiber web (S1) is spun at a spinning temperature of 300 ° C by the spunbond method. Formed on the collection net. On the obtained continuous long fiber web (mesh 40 g / m 2 , average fiber diameter 12 μm), polyethylene terephthalate (also solution viscosity ηsp / c 0.50, melting point 260 ° C) was spun with a melt blow nozzle at a spinning temperature of 300 ° C and heated air 320. Direct ejection under the conditions of ° C. 1000 Nm 3 / hr formed ultrafine fiber webs (M) (meshing 20 g / m 2 , average fiber diameter 2 μm). Next, using a two-component spinneret, a yarn having a sheath component of a copolymerized polyester resin (melting point 160 ° C.) and a core component of polyethylene terephthalate (melting point 263 ° C.) is spun into a continuous long fiber web (S2). (Grasping point 40 g / m 2 , average fiber diameter 16 μm) was formed. The resulting laminated web, the pair of embossing rolls / flat roll temperature 230/145 ° C., partially thermocompression bonding at a linear pressure of 30 N / mm, basis weight 100 g / m 2, bulk density 0.25 g / cm 3, partial thermocompression bonding area ratio A 20% non-woven fabric facing material was obtained.
A web is formed by a known card method using 70% of short polyester fibers (fiber diameter 25 μm, fiber length 51 mm) and 30% of copolymerized polyester fibers (melting point 135 ° C., fiber diameter 15 μm, fiber length 51 mm), and needle punching. By entanglement by processing, a short fiber NP-processed non-woven fabric having a grain size of 375 g / m 2 and a bulk density of 0.013 g / cm 3 and a thickness of 30 mm was obtained. It was sandwiched between mesh conveyor belts and joined by heat treatment under heating and pressure in an atmosphere of 150 ° C. to obtain a composite sound absorbing material with a grain size of 475 g / m 2 , a bulk density of 0.158 g / cm 3, and a thickness of 30 mm. .. Table 1 below shows various physical characteristics of the obtained composite sound absorbing material. Although the composite sound absorbing material of Comparative Example 5 exhibited a wide sound absorbing performance, the weight as the sound absorbing material was heavy (the basis weight was high).

Figure 0006929167
Figure 0006929167

本発明に係る複合吸音材は、1000Hz、1600Hz、2000Hz、2500Hz、3150Hz、及び4000Hzの低周波数〜中周波数領域において、高い吸音性を有しながらも、薄く、軽量で、形態安定性に優れているため、特に自動車部材、建築材料、家電製品、建設機械等の吸音材として好適に利用可能である。 The composite sound absorbing material according to the present invention is thin, lightweight, and excellent in morphological stability in the low to medium frequency range of 1000 Hz, 1600 Hz, 2000 Hz, 2500 Hz, 3150 Hz, and 4000 Hz, while having high sound absorbing properties. Therefore, it can be suitably used as a sound absorbing material for automobile parts, building materials, home appliances, construction machinery, and the like.

Claims (4)

平均繊維径0.3〜7μm、目付け1〜40g/mのメルトブロー極細繊維層を少なくとも1層含む不織布面材と、連続気泡樹脂発泡体層とを接合してなる複合吸音材であって、該複合吸音材の厚みが5〜50mm、目付けが50〜475g/m未満であり、かつ、JIS−1405に準拠する垂直入射の測定法において該不織布面材側から入射する音の周波数1000Hz、1600Hz、2000Hz、2500Hz、3150Hz、及び4000Hzにおける該複合吸音材の吸音率がいずれも40%以上であることを特徴とする前記複合吸音材。 A composite sound absorbing material obtained by joining a non-woven fabric surface material containing at least one melt-blown ultrafine fiber layer having an average fiber diameter of 0.3 to 7 μm and a grain size of 1 to 40 g / m 2 and an open cell resin foam layer. The thickness of the composite sound absorbing material is 5 to 50 mm, the texture is less than 50 to 475 g / m 2 , and the frequency of the sound incident from the non-woven fabric surface material side is 1000 Hz in the vertical incident measurement method conforming to JIS-1405. The composite sound absorbing material is characterized in that the sound absorbing coefficient of the composite sound absorbing material at 1600 Hz, 2000 Hz, 2500 Hz, 3150 Hz, and 4000 Hz is 40% or more. 前記不織布面材が、平均繊維径0.3〜7μm、目付け1〜40g/mのメルトブロー極細繊維層(M)と平均繊維径10〜30μmの連続長繊維層(S)とが熱圧着により一体化されたSM型又はSMS型の積層構造を有する積層不織布であり、該積層不織布の目付けが20〜250g/m、通気度が100cc/cm/sec以下である、請求項1に記載の複合吸音材。 In the non-woven fabric facing material, a melt-blown ultrafine fiber layer (M) having an average fiber diameter of 0.3 to 7 μm and a grain size of 1 to 40 g / m 2 and a continuous long fiber layer (S) having an average fiber diameter of 10 to 30 μm are thermally pressure-bonded. The first aspect of claim 1, wherein the laminated non-woven fabric has an integrated SM type or SMS type laminated structure, the texture of the laminated nonwoven fabric is 20 to 250 g / m 2 , and the air permeability is 100 cc / cm 2 / sec or less. Composite sound absorbing material. 前記不織布面材を構成する不織布層が2層以上ある場合、前記連続気泡樹脂発泡体層と接する前記不織布面材の層が、該不織布面材の他層を構成する繊維の融点よりも30℃以上低い融点を有する繊維を含む、請求項1又は2に記載の複合吸音材。 When there are two or more non-woven fabric layers constituting the non-woven fabric face material, the layer of the non-woven fabric face material in contact with the open cell resin foam layer is 30 ° C. higher than the melting point of the fibers constituting the other layer of the non-woven fabric face material. The composite sound absorbing material according to claim 1 or 2, which comprises a fiber having a lower melting point. 前記連続気泡樹脂発泡体層の厚みが5〜50mm未満であり、嵩密度が0.01〜0.1g/cmである、請求項1〜3のいずれか1項に記載の複合吸音材。 The composite sound absorbing material according to any one of claims 1 to 3 , wherein the open cell resin foam layer has a thickness of less than 5 to 50 mm and a bulk density of 0.01 to 0.1 g / cm 3.
JP2017167670A 2017-08-31 2017-08-31 Composite sound absorbing material Active JP6929167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017167670A JP6929167B2 (en) 2017-08-31 2017-08-31 Composite sound absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017167670A JP6929167B2 (en) 2017-08-31 2017-08-31 Composite sound absorbing material

Publications (2)

Publication Number Publication Date
JP2019043014A JP2019043014A (en) 2019-03-22
JP6929167B2 true JP6929167B2 (en) 2021-09-01

Family

ID=65813422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017167670A Active JP6929167B2 (en) 2017-08-31 2017-08-31 Composite sound absorbing material

Country Status (1)

Country Link
JP (1) JP6929167B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7333189B2 (en) * 2019-04-03 2023-08-24 Eneos株式会社 sound absorbing material
JP2021043388A (en) * 2019-09-13 2021-03-18 Jnc株式会社 Sound absorbing and insulating material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2215375T3 (en) * 1998-03-03 2004-10-01 Rieter Automotive (International) Ag THIN LAYER OF ACOUSTIC ABSORPTION LAYER.
JP2005212204A (en) * 2004-01-28 2005-08-11 Daiwabo Co Ltd Reinforcing material for molded foam
JP4919881B2 (en) * 2007-06-20 2012-04-18 旭化成せんい株式会社 Composite sound-absorbing material
JP2009018745A (en) * 2007-07-13 2009-01-29 Kasai Kogyo Co Ltd Sound insulation material for vehicle
JP5486243B2 (en) * 2009-08-31 2014-05-07 旭化成せんい株式会社 Polyolefin-based crimped long fiber nonwoven fabric and nonwoven fabric laminate
JP5486283B2 (en) * 2009-12-08 2014-05-07 旭化成せんい株式会社 Base material for foamed resin laminate sheet
US9314995B2 (en) * 2013-03-15 2016-04-19 National Nonwovens Inc. Composites comprising nonwoven structures and foam
JP6498454B2 (en) * 2015-01-28 2019-04-10 日本バイリーン株式会社 Sheet for multilayer molding and sheet molded body

Also Published As

Publication number Publication date
JP2019043014A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP4919881B2 (en) Composite sound-absorbing material
EP2297412B1 (en) Sound absorption material and method of manufacturing sound absorption material
KR102059557B1 (en) Lightweight felts
JP4574262B2 (en) SOUND ABSORBING LAMINATE AND METHOD FOR PRODUCING THE SAME
KR100802677B1 (en) Vertical type sound-absorbing materials and method for manufacturing the same
EP3730684B1 (en) Nonwoven fabric and composite sound-absorbing material using same as skin material
JP2006047628A (en) Sound absorption heat insulating material
JP6329405B2 (en) Composite nonwoven fabric for sound absorbing material
JP2010128005A (en) Composite sound absorbing material
JP6929167B2 (en) Composite sound absorbing material
JP2019045636A (en) Composite sound absorbing material
JP2019111714A (en) Laminate sound absorber
JP3968648B2 (en) Sound absorbing material
JP6906989B2 (en) Interior surface material and its manufacturing method
JP2006285086A (en) Sound absorbing heat insulating material
WO2019026798A1 (en) Laminated acoustic absorption member
JP4540417B2 (en) Sound absorbing material and manufacturing method thereof
KR102388493B1 (en) Electric vehicle engine room sound-absorbing panel and its manufacturing method
JP2010064361A (en) Sound absorbing material component, sound absorbing material and manufacturing method of sound absorbing material
JP2007302212A (en) Internal trim base material for automobile
JP7462748B2 (en) Composite sound absorbing material
KR102604135B1 (en) Nonwoven fabric, laminated nonwoven fabric of this nonwoven fabric, and composite sound-absorbing material using them as a skin material
JP7142189B1 (en) SOUND ABSORBING MATERIAL AND METHOD FOR MANUFACTURING SOUND ABSORBING MATERIAL
JP2001277953A (en) Vehicular ceiling material and method of manufacturing it
JP2010188894A (en) Base material for automobile interior materials and automobile interior materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210810

R150 Certificate of patent or registration of utility model

Ref document number: 6929167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350