JP2009178753A - Manufacturing method of thick steel plate - Google Patents

Manufacturing method of thick steel plate Download PDF

Info

Publication number
JP2009178753A
JP2009178753A JP2008020618A JP2008020618A JP2009178753A JP 2009178753 A JP2009178753 A JP 2009178753A JP 2008020618 A JP2008020618 A JP 2008020618A JP 2008020618 A JP2008020618 A JP 2008020618A JP 2009178753 A JP2009178753 A JP 2009178753A
Authority
JP
Japan
Prior art keywords
amount
rolling
width reduction
steel plate
reduction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008020618A
Other languages
Japanese (ja)
Other versions
JP4935697B2 (en
Inventor
Sho Kusunoki
奨 楠木
Takeo Yazawa
武男 矢澤
Yasunori Sumiya
泰則 角谷
Atsushi Ozekawa
淳 小瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008020618A priority Critical patent/JP4935697B2/en
Publication of JP2009178753A publication Critical patent/JP2009178753A/en
Application granted granted Critical
Publication of JP4935697B2 publication Critical patent/JP4935697B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a thick steel plate capable of enhancing the yield while suppressing generation of any flaw. <P>SOLUTION: The manufacturing method of the thick steel plate includes: a growth increment calculating step of calculating the growth increment of the minimum fish-tail by using the elongation ratio; a total edging amount calculating step of calculating the total edging amount during the edge-rolling in which the growth increment of the fish tail of the thick steel plate when ending the finish rolling is set to be larger than the minimum value; an edging amount specifying step of specifying the edging amount of the outgoing path and that of the incoming path by distributing the calculated total edging amount into the edging amount of the outgoing path in the edge-rolling and that of the incoming path in the edge-rolling so that the edge drops at front and rear ends in the longitudinal direction of the thick steel plate when ending the finish rolling are substantially same; and an edge-rolling step of performing the edge-rolling with the edging amount of the outgoing path and that of the incoming path. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、厚鋼板を製造する方法に関し、特に、竪ロールを有する圧延機(以下において「エッジャ圧延機」という。)を用いた板幅方向へのエッジング圧延(以下において「エッジャ圧延」ということがある。)と、水平ロールを有する圧延機(以下において「水平圧延機」又は「圧延機」ということがある。)を用いた板厚方向への水平圧延(以下において単に「圧延」ということがある。)とを組み合わせて、平面形状を制御する厚鋼板の製造方法に関する。   The present invention relates to a method of manufacturing a thick steel plate, and in particular, edging rolling in a sheet width direction (hereinafter referred to as “edger rolling”) using a rolling mill having a roll (hereinafter referred to as “edger rolling mill”). And horizontal rolling in the thickness direction using a rolling mill having a horizontal roll (hereinafter sometimes referred to as “horizontal rolling mill” or “rolling mill”) (hereinafter simply referred to as “rolling”). And a method of manufacturing a thick steel plate for controlling the planar shape.

厚鋼板は、加熱炉で所定温度に加熱されたスラブに対して、粗圧延機及び/又は仕上圧延機を用いた複数パスの成形圧延を行った後に、幅出圧延や仕上圧延を行うことにより、所定の板厚へと仕上げられる(以下、この時点の厚鋼板を「圧延終了厚鋼板」という。)。かかる工程を経て製造される圧延終了厚鋼板は、圧延条件等の影響により、様々な平面形状(例えば、太鼓形や鼓形等)になる。そして、圧延終了厚鋼板の端部の形状不良部分を切断することにより、所定の寸法を有する厚鋼板とされる。   A thick steel plate is obtained by performing tenth rolling or finish rolling on a slab heated to a predetermined temperature in a heating furnace, after performing multiple-pass forming and rolling using a roughing mill and / or a finish rolling mill. The steel sheet is finished to a predetermined thickness (hereinafter, the thick steel plate at this point is referred to as “rolled finished thick steel plate”). The rolled steel plate finished through this process has various planar shapes (for example, a drum shape and a drum shape) due to the influence of rolling conditions and the like. And it is set as the thick steel plate which has a predetermined dimension by cut | disconnecting the shape-defective part of the edge part of a rolling finished thick steel plate.

厚鋼板の製造時には、幅出圧延の途中、幅出圧延を経た被圧延材を90°転回した後の仕上圧延前、及び/又は、仕上圧延の途中に、エッジャ圧延機を用いたエッジャ圧延が行われることがある。このエッジャ圧延は、端部の形状不良部分を低減する等の目的で行われ、エッジャ圧延を通じて厚鋼板の平面形状を制御することにより、歩留りを向上させることが可能になる。   During the production of thick steel plates, edger rolling using an edger rolling mill is performed during the tenth rolling, before the finish rolling after rolling the rolled material 90 ° through 90 °, and / or during the final rolling. Sometimes done. This edger rolling is performed for the purpose of reducing the shape defect portion at the end, and the yield can be improved by controlling the planar shape of the thick steel plate through the edger rolling.

厚鋼板の平面形状の制御等を目的とした技術は、これまでにいくつか開示されてきている。例えば、特許文献1には、エッジャによるエッジングを1往復パス以上にわたって連続的に行い、その後、水平圧延を行う厚鋼板の圧延方法であって、必要なエッジング量、エッジング時における鋼板の寸法およびエッジング後の1パス目の水平圧延条件に基づいて、水平圧延後の厚鋼板のフィッシュテール長さが、圧延方向の先後端および両側で同一となるように、必要なエッジング量を各パスに配分することを特徴とする厚鋼板の圧延方法が開示されている。また、特許文献2には、厚鋼板の裏面に発生するヘゲ疵の位置をコントロールして、ヘゲ疵がクロップ切断後の厚鋼板に入り込むのを防止し、精整工程での作業負荷の低減と歩留り向上を図る厚板ヘゲ疵防止圧延方法に関する技術が開示されている。   Several techniques aimed at controlling the planar shape of a thick steel plate have been disclosed so far. For example, Patent Document 1 discloses a thick steel plate rolling method in which edging by an edger is continuously performed for one or more reciprocating passes, and then horizontal rolling is performed, and the required edging amount, the size of the steel plate during edging, and edging Based on the horizontal rolling conditions of the subsequent first pass, the necessary edging amount is distributed to each pass so that the fishtail length of the steel plate after horizontal rolling is the same at the front and rear ends and both sides in the rolling direction. A method of rolling a thick steel plate is disclosed. In addition, Patent Document 2 controls the position of the bevel that occurs on the back surface of the thick steel plate, prevents the beard from entering the thick steel plate after the crop cutting, and reduces the work load in the refining process. A technique relating to a thick plate anti-scaling rolling method for reducing and improving yield is disclosed.

特開平9−47803号公報JP-A-9-47803 特開平9−38701号公報JP-A-9-38701

特許文献1に開示されている技術によれば、フィッシュテールの長さを先後端で略同一とすることができるため、平面形状をより矩形に近づけることができる。それゆえ、製品化の際の切り捨てロスを低減することができ、大変有効な方法であると考えられる。しかし、特許文献1に開示されている技術を用いても、製造条件によっては、スラブの長手方向定常部の幅よりも長手方向先後端の幅が狭くなる、いわゆる「幅落ち」(以下において「幅落ち量」ということがある。)の先後端差が大きくなる虞がある(図9参照)。幅落ちの先後端差が大きくなると、製品幅を確保できずに格落ちになるほか、格落ちを防ぐ目的でスラブ設計時に余幅を大きく付与すると、歩留りが悪化しやすい。それゆえ、特許文献1に開示されている技術では、格落ちを防止しつつ歩留りを向上させることが困難であるという問題があった。   According to the technique disclosed in Patent Document 1, since the length of the fishtail can be made substantially the same at the front and rear ends, the planar shape can be made closer to a rectangle. Therefore, it is possible to reduce the truncation loss at the time of commercialization, which is considered to be a very effective method. However, even using the technique disclosed in Patent Document 1, depending on the manufacturing conditions, the width of the front and rear ends in the longitudinal direction is narrower than the width of the longitudinal direction stationary part of the slab, so-called “width drop” (hereinafter referred to as “ There is a possibility that the difference between the front and rear ends of the “width reduction amount” is increased (see FIG. 9). If the difference between the leading and trailing edges of the width drop becomes large, the product width cannot be secured, and the product falls, and if a large margin is given at the time of slab design for the purpose of preventing the drop, the yield tends to deteriorate. Therefore, the technique disclosed in Patent Document 1 has a problem that it is difficult to improve the yield while preventing degradation.

一方、特許文献2に開示されている技術によれば、厚鋼板の先後端コーナー近傍に発生する「ヘゲ疵」を切り捨て部分に逃がすことができ、クロップ切断後の製品に疵が存在する事態を回避できる、としている。しかし、圧延条件によっては、クロップ差を100mm以上確保しなくても疵の発生を抑制可能であるため、特許文献2に開示されている技術では、生産性の低下や歩留りの悪化等の悪影響を招きやすいという問題があった。逆にクロップ差が100mmでは疵の発生を回避することが困難な条件もあることが分かった。   On the other hand, according to the technique disclosed in Patent Document 2, it is possible to escape the “hege wrinkles” generated in the vicinity of the front and rear end corners of the thick steel plate to the cut-off portion, and there is a situation in which wrinkles exist in the product after the crop cutting Can be avoided. However, depending on the rolling conditions, the generation of wrinkles can be suppressed without securing a crop difference of 100 mm or more. Therefore, the technique disclosed in Patent Document 2 has adverse effects such as a decrease in productivity and a decrease in yield. There was a problem that it was easy to invite. Conversely, it was found that there are some conditions where it is difficult to avoid wrinkles when the crop difference is 100 mm.

そこで、本発明は、製品内に入り込む疵の発生を抑制しつつ歩留りを向上させることが可能な厚鋼板の製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the manufacturing method of the thick steel plate which can improve a yield, suppressing generation | occurrence | production of the wrinkles which enter into a product.

以下、本発明について説明する。なお、本発明の理解を容易にするため、添付図面の参照符号を括弧書きにて適宜付記するが、それにより本発明が図示の形態に限定されるものではない。   The present invention will be described below. In order to facilitate understanding of the present invention, reference numerals in the accompanying drawings are appropriately added in parentheses, but the present invention is not limited to the illustrated embodiments.

第1の本発明は、幅出圧延、往復パスによるエッジング圧延、及び、仕上圧延を経て厚鋼板を製造する、厚鋼板の製造方法であって、伸ばし長さ比を用いて最低フィッシュテール成長量を算出する、成長量算出工程と、仕上圧延の終了時における厚鋼板のフィッシュテール成長量を上記最低フィッシュテール成長量以上にする、エッジング圧延における総幅圧下量、を算出する、総幅圧下量算出工程と、仕上圧延の終了時における厚鋼板の長手方向先端の幅落ち量と、仕上圧延の終了時における厚鋼板の長手方向後端の幅落ち量とが、略同一となるように、算出された上記総幅圧下量を、エッジング圧延における往パスの幅圧下量と、エッジング圧延における復パスの幅圧下量とに配分して、往パスの幅圧下量と復パスの幅圧下量とを特定する、幅圧下量特定工程と、上記往パスの幅圧下量、及び、上記復パスの幅圧下量の下でエッジング圧延を行う、エッジング圧延工程と、を備えることを特徴とする、厚鋼板の製造方法である。   1st this invention is a manufacturing method of a thick steel plate which manufactures a thick steel plate through tentering rolling, edging rolling by a reciprocating pass, and finish rolling, Comprising: The minimum fishtail growth amount using elongation length ratio Calculating the growth amount calculation step, and calculating the total width reduction amount in the edging rolling so that the fishtail growth amount of the thick steel plate at the end of finish rolling is equal to or greater than the minimum fishtail growth amount. The calculation step is calculated so that the width drop at the front end in the longitudinal direction of the thick steel plate at the end of finish rolling is substantially the same as the width drop at the rear end in the longitudinal direction of the thick steel plate at the end of finish rolling. The above-mentioned total width reduction amount is allocated to the width reduction amount of the forward pass in edging rolling and the width reduction amount of the return pass in edging rolling, and the width reduction amount of the forward pass and the width reduction amount of the return pass are obtained. Identify A width reduction amount specifying step, and an edging rolling step of performing edging rolling under the width reduction amount of the forward pass and the width reduction amount of the return pass, and manufacturing a thick steel plate Is the method.

ここに、第1の本発明、及び、以下に示す本発明(以下、これらをまとめて単に「本発明」ということがある。)において、「成長量算出工程」とは、圧延終了時(切断前)の厚鋼板の長さをA、スラブの長さをB、とするとき、X=A/Bにより特定される伸ばし長さ比Xを用いて、厚鋼板が有するべき最低フィッシュテール成長量を算出する工程、を意味する。さらに、第1の本発明において、「総幅圧下量算出工程」とは、仕上圧延終了時における厚鋼板のフィッシュテール成長量をC、成長量算出工程で算出された最低フィッシュテール成長量をY、とするとき、C≧Yとなるような、エッジング圧延における総幅圧下量、を算出する工程、を意味する。さらに、本発明において、「総幅圧下量」とは、往復パスによるエッジング圧延における幅圧下量の総和を意味する。さらに、第1の本発明において、「幅圧下量特定工程」とは、算出された総幅圧下量をD、エッジング圧延における往パスの幅圧下量をD1、エッジング圧延における復パスの幅圧下量をD2とするとき、仕上圧延の終了時における厚鋼板の長手方向先後端の幅落ち量が略同一となるように、且つ、D=D1+D2、0≦D1≦D、及び、0≦D2≦Dとなるように、DをD1及びD2へ配分して、D1及びD2を特定する工程、を意味する。なお、本発明において、「往パス」とは、一方から他方へと向かうエッジング圧延のパスを意味し、「復パス」とは、他方から一方へと戻るエッジング圧延のパスを意味する。   Here, in the first present invention and the present invention shown below (hereinafter, these may be collectively referred to as “the present invention”), the “growth amount calculating step” means at the end of rolling (cutting When the length of the previous steel plate is A and the length of the slab is B, the minimum fishtail growth amount that the steel plate should have using the stretch length ratio X specified by X = A / B Is a step of calculating. Furthermore, in the first aspect of the present invention, the “total width reduction amount calculating step” means C as the fishtail growth amount of the thick steel plate at the end of finish rolling, and Y as the minimum fishtail growth amount calculated in the growth amount calculation step. , It means a step of calculating a total width reduction amount in edging rolling such that C ≧ Y. Furthermore, in the present invention, the “total width reduction amount” means the sum of width reduction amounts in edging rolling by reciprocating passes. Furthermore, in the first aspect of the present invention, the “width reduction amount specifying step” means that the calculated total width reduction amount is D, the width reduction amount of the forward pass in edging rolling is D1, and the width reduction amount of the reverse pass in edging rolling Is D2 so that the width drop amount at the front and rear ends in the longitudinal direction of the thick steel plate at the end of finish rolling is substantially the same, and D = D1 + D2, 0 ≦ D1 ≦ D, and 0 ≦ D2 ≦ D The process of allocating D to D1 and D2 and specifying D1 and D2 is as follows. In the present invention, the “outward path” means an edging rolling path from one side to the other, and the “return path” means an edging rolling path from the other side to one side.

第2の本発明は、幅出圧延、複数回の往復パスによるエッジング圧延、及び、仕上圧延を経て厚鋼板を製造する、厚鋼板の製造方法であって、伸ばし長さ比を用いて最低フィッシュテール成長量を算出する、成長量算出工程と、仕上圧延の終了時における厚鋼板のフィッシュテール成長量を上記最低フィッシュテール成長量以上にする、エッジング圧延における全総幅圧下量、を算出する、全総幅圧下量算出工程と、複数回の往復パス各々における、総幅圧下量を決定する、総幅圧下量決定工程と、各々の往復パスの終了時における厚鋼板の長手方向先端の幅落ち量と、各々の往復パスの終了時における厚鋼板の長手方向後端の幅落ち量とが、略同一となるように、上記総幅圧下量を、各々の往復パスにおける往パスの幅圧下量と、各々の往復パスにおける復パスの幅圧下量とに配分して、往パスの幅圧下量と復パスの幅圧下量とを特定する、幅圧下量特定工程と、当該往パスの幅圧下量、及び、当該復パスの幅圧下量の下で前記エッジング圧延を行う、エッジング圧延工程と、を備えることを特徴とする、厚鋼板の製造方法である。   2nd this invention is a manufacturing method of a thick steel plate which manufactures a thick steel plate through tentering rolling, edging rolling by multiple reciprocating passes, and finish rolling, Comprising: The minimum fish is used using a stretch length ratio. Calculating a tail growth amount, calculating a growth amount calculation step, and making the fish tail growth amount of the thick steel plate at the end of finish rolling equal to or greater than the minimum fish tail growth amount, and calculating the total total width reduction amount in edging rolling, Total width reduction amount calculation step, total width reduction amount determination step for determining the total width reduction amount in each of a plurality of reciprocating passes, and width drop at the front end in the longitudinal direction of the thick steel plate at the end of each reciprocating pass The total width reduction amount is the same as the width reduction amount of the forward path in each reciprocating path, so that the amount and the width drop amount at the rear end in the longitudinal direction of the thick steel plate at the end of each reciprocating path are substantially the same. And each The width reduction amount of the forward path, the width reduction amount of the forward path, and the width reduction amount of the backward path, the width reduction amount of the forward path, and the An edging rolling step of performing the edging rolling under a width reduction amount of a reverse pass.

ここに、第2の本発明において、「全総幅圧下量算出工程」とは、仕上圧延終了時における厚鋼板のフィッシュテール成長量をE、成長量算出工程で算出された最低フィッシュテール成長量をY、とするとき、E≧Yとなるような、エッジング圧延における全総幅圧下量、を算出する工程、を意味する。さらに、第2の本発明において、「全総幅圧下量」とは、複数回の往復パスによるエッジング圧延における幅圧下量の総和を意味する。さらに、第2の本発明において、「幅圧下量特定工程」とは、決定された各回の往復パスによるエッジング圧延の総幅圧下量をGn(nは自然数。以下同じ。)、各々の往復パスによるエッジング圧延における往パスの幅圧下量をIn、各々の往復パスによるエッジング圧延における復パスの幅圧下量をJnとするとき、各回の往復パスによるエッジング圧延の終了時(往復パスによるエッジング圧延がn回備えられる場合には、n回目の往復パスによるエッジング圧延が終了した時。以下同じ。)における厚鋼板の長手方向先後端の幅落ち量が略同一となるように、且つ、Gn=In+Jn、0≦In≦Gn、0≦Jn≦Gn(G、I、Jの添え字nは同一。以下同じ。)、となるように、GnをIn及びJnへ配分して、各々の往復パスによるエッジング圧延の幅圧下量In及びJnを特定する工程、を意味する。   Here, in the second aspect of the present invention, the “total total width reduction amount calculation step” means E as the fishtail growth amount of the thick steel plate at the end of finish rolling, and the minimum fishtail growth amount calculated in the growth amount calculation step. When Y is Y, it means a step of calculating the total total width reduction amount in edging rolling such that E ≧ Y. Furthermore, in the second aspect of the present invention, the “total total width reduction amount” means the sum of width reduction amounts in edging rolling by a plurality of reciprocating passes. Furthermore, in the second aspect of the present invention, the “width reduction amount specifying step” refers to the determined total width reduction amount of edging rolling by each reciprocating pass Gn (n is a natural number; the same applies hereinafter), and each reciprocating pass. When the width reduction amount of the forward pass in edging rolling by In is set to In and the width reduction amount of the return pass in edging rolling by each reciprocating pass is Jn, at the end of edging rolling by each reciprocating pass (the edging rolling by the reciprocating pass is When n times are provided, when the edging rolling by the n-th reciprocating pass is completed, the same applies hereinafter), the width drop amount at the front and rear ends in the longitudinal direction of the thick steel plate is substantially the same, and Gn = In + Jn , 0 ≦ In ≦ Gn, 0 ≦ Jn ≦ Gn (G, I, J subscripts n are the same, the same applies hereinafter), and Gn is distributed to In and Jn, and each round trip path Identifying a width reduction amount In and Jn edging rolling by means.

第1の本発明によれば、一定量以上のフィッシュテール成長量を確保し、かつ、厚鋼板の長手方向先後端における幅落ち量が略同一となるように制御しながら行うエッジング圧延工程が備えられるので、製品内に入り込む疵の発生を抑制しつつ歩留りを向上させることが可能な、厚鋼板の製造方法を提供することができる。   According to the first aspect of the present invention, there is provided an edging rolling process that is performed while ensuring a fishtail growth amount of a certain amount or more and controlling the width drop amount at the front and rear ends in the longitudinal direction of the thick steel plate to be substantially the same. Therefore, it is possible to provide a method for producing a thick steel plate capable of improving the yield while suppressing the generation of wrinkles that enter the product.

第2の本発明によれば、複数回の往復パスによるエッジング圧延が備えられる場合であっても、一定量以上のフィッシュテール成長量を確保し、かつ、厚鋼板の長手方向先後端における幅落ち量が略同一となるように制御しながら行うエッジング圧延工程が備えられるので、製品内に入り込む疵の発生を抑制しつつ歩留りを向上させることが可能な、厚鋼板の製造方法を提供することができる。   According to the second aspect of the present invention, even when edging rolling is performed by a plurality of reciprocating passes, a fishtail growth amount of a certain amount or more is ensured, and the width drop at the front and rear ends in the longitudinal direction of the thick steel plate Since an edging rolling process is performed while controlling the amounts so as to be substantially the same, it is possible to provide a method of manufacturing a thick steel plate capable of improving yield while suppressing generation of wrinkles entering the product. it can.

本発明者らは、鋭意検討の結果、圧延条件によっては、100mm以上のクロップ差を確保しなくても疵の発生を抑制可能であることを知見した。さらに、疵を抑制しつつ歩留りを向上させるためには、図1に示すような一定量のフィッシュテール形状を得た上で、幅落ちを極力小さくすることが重要であることを知見した。加えて、伸ばし長さ比及びフィッシュテール成長量と、疵の発生との関係を調査したところ、伸ばし長さ比が大きい条件ほど疵の発生位置が先端から離れるため、フィッシュテール成長量(図1参照)を一定値以上確保することで、製品内の疵の発生を防止することが可能であることを知見した(図2参照)。以上より、伸ばし長さ比の値に応じて、一定値以上のフィッシュテール成長量を確保することによって、疵の抑制及び歩留りの向上が可能になることを知見して、本発明を完成させた。   As a result of intensive studies, the present inventors have found that the occurrence of wrinkles can be suppressed depending on rolling conditions without securing a crop difference of 100 mm or more. Furthermore, in order to improve the yield while suppressing wrinkles, it has been found that it is important to obtain a certain amount of fishtail shape as shown in FIG. In addition, when the relationship between the stretch length ratio and fishtail growth amount and the occurrence of wrinkles was investigated, the fishtail growth amount (Fig. 1 It was found that it is possible to prevent the occurrence of wrinkles in the product by ensuring a reference value or more (see FIG. 2). As described above, the present invention has been completed by discovering that it is possible to suppress wrinkles and improve yield by securing a fishtail growth amount of a certain value or more according to the value of the stretch length ratio. .

本発明者らは、適切なクロップ形状を確保しつつ、幅落ちを最小限にするエッジャ条件を検討するため、先後端の非対称性を考慮可能な厚鋼板の平面形状予測モデルを新たに作成した。従来から、厚鋼板の平面形状を予測するモデルは数多く報告されており、特にエッジャ圧延機が水平圧延機から離れているデタッチドエッジャを有する厚板圧延機によって、往復パスにてエッジャ圧延を行う場合の平面形状の予測方法に関しては、往復パスにおける往パス及び復パスのエッジャ圧延を区別しないで予測する方法が主流であった。しかし、このような方法で厚鋼板の平面形状を予測すると、厚鋼板の先端及び後端の平面形状を高精度に予測することが困難であり、特に、幅落ち量の変化量(以下「幅落ち変化量」ということがある。)を先後端独立に精度良く予測することが困難であった。そこで、本発明者らは、新たに熱間の圧延実験を実施することにより、厚鋼板の先端及び後端の平面形状を高精度に予測することが可能であり、特に、幅落ち変化量を先後端独立に精度良く予測することが可能な、厚鋼板の平面形状予測モデルを構築した。構築したモデルの要点を、以下に示す。   The inventors of the present invention newly created a planar shape prediction model of a thick steel plate capable of considering the asymmetry of the front and rear ends in order to examine edger conditions that minimize width drop while ensuring an appropriate crop shape. . Conventionally, many models for predicting the planar shape of thick steel plates have been reported, especially edger rolling in a reciprocating pass by a thick plate rolling mill having a detached edger where the edger rolling mill is separated from the horizontal rolling mill. As a method for predicting the planar shape in the case of performing, the mainstream method is to predict without distinguishing the forward pass and the reverse pass edger rolling in the reciprocating pass. However, if the planar shape of the thick steel plate is predicted by such a method, it is difficult to predict the planar shape of the front and rear ends of the thick steel plate with high accuracy. It was difficult to accurately predict the amount of change in the amount of the drop. Therefore, the present inventors can predict the planar shape of the leading end and the trailing end of the thick steel plate with high accuracy by newly performing a hot rolling experiment. A model for predicting the planar shape of thick steel plates that can be accurately predicted independently at the front and rear ends was constructed. The main points of the constructed model are shown below.

1−a.往パスのエッジャ圧延での幅落ち変化量を先後端独立に計算する。加えて、往パスのエッジャ圧延後におけるクロップ形状の成長量(以下において「クロップ形状の成長量」を「クロップ成長量」ということがある。)を先後端独立に計算する。
1−b.復パスのエッジャ圧延での幅落ち変化量を先後端独立に計算するとともに、復パスのエッジャ圧延後におけるクロップ成長量を先後端独立に計算し、計算した幅落ち変化量及びクロップ成長量を上記1−a.の結果に線形加算する。
2.エッジャ圧延で発生した幅端部近傍の盛上り部(以下において「ドッグボーン部」という。)のみを圧延する仮想圧延による幅落ち変化量を計算するとともに、当該仮想圧延後のクロップ量をx、当該仮想圧延前に行うエッジャ圧延後のクロップ量をyとするときにx−yで表されるクロップ成長量を計算し、上記1−b.の結果に線形加算する。
3.水平圧延での幅落ち変化量とクロップ成長量を計算し、上記2.の結果に線形加算する。
1-a. The width drop change amount in the forward pass edger rolling is calculated independently at the front and rear ends. In addition, the crop-shaped growth amount after the forward pass edger rolling (hereinafter, “crop-shaped growth amount” may be referred to as “crop growth amount”) is calculated independently at the leading and trailing edges.
1-b. The width drop change amount in the rear pass edger rolling is calculated independently for the leading and trailing edges, and the crop growth amount after the backward pass edger rolling is calculated independently for the leading and trailing edges, and the calculated width drop change amount and the crop growth amount are calculated as above. 1-a. Is linearly added to the result of.
2. While calculating the width drop change amount by virtual rolling which rolls only the rising part (henceforth a "dogbone part") near the width | variety edge part which generate | occur | produced by edger rolling, the crop amount after the said virtual rolling is set to x, When the crop amount after edger rolling performed before the virtual rolling is y, the crop growth amount represented by xy is calculated, and the 1-b. Is linearly added to the result of.
3. 1. Calculate the width drop change amount and crop growth amount in horizontal rolling. Is linearly added to the result of.

以下、構築したモデル(エッジャ圧延後に水平圧延を行った場合の平面形状を予測するモデル)の詳細について説明する。   Hereinafter, details of the constructed model (a model for predicting a planar shape when horizontal rolling is performed after edger rolling) will be described.

1.要点1−a及び要点1−b
エッジャ圧延での幅落ち変化量ΔWEは、下記式1及び式2で計算することができる。
先端側:ΔWE=f1(W、ΔV、H、RE、ΔW0) (式1)
後端側:ΔWE=f2(ΔV、ΔW0) (式2)
ここで、Wは板幅、ΔVは幅圧下量(板幅方向への圧下量)、Hは板厚、REはエッジャ圧延機のロール径、ΔW0は初期幅落ち変化量、f1及びf2は関数である。
1. Point 1-a and Point 1-b
The width drop change amount ΔWE in edger rolling can be calculated by the following formulas 1 and 2.
Tip side: ΔWE = f1 (W, ΔV, H, RE, ΔW0) (Formula 1)
Rear end side: ΔWE = f2 (ΔV, ΔW0) (Formula 2)
Here, W is a sheet width, ΔV is a width reduction amount (a reduction amount in the sheet width direction), H is a sheet thickness, RE is a roll diameter of an edger rolling mill, ΔW0 is an initial width drop change amount, and f1 and f2 are functions. It is.

エッジャ圧延後のクロップ成長量ΔLEは、下記式3及び式4で計算することができる。
先端側:ΔLE=f3(ΔWE) (式3)
後端側:ΔLE=f4(ΔV) (式4)
ここで、f3及びf4は関数である。
The crop growth amount ΔLE after edger rolling can be calculated by the following formulas 3 and 4.
Tip side: ΔLE = f3 (ΔWE) (Formula 3)
Rear end side: ΔLE = f4 (ΔV) (Formula 4)
Here, f3 and f4 are functions.

また、2パス目以降(エッジング圧延が1回の往復パスによるものである場合には復パス、エッジング圧延が連続複数回の往復パスによるものである場合には1回目の往復パスの復パス以降のパス。以下同じ。)のエッジャ圧延時には、各パスのエッジャ圧延後の幅落ち変化量及びクロップ成長量から得られた平面形状を線形加算して、エッジャ圧延終了後の幅落ち量及びクロップ量を求める。なお、2パス目以降の幅落ち変化量の計算においては、前パスまでの計算で得られた幅落ち形状を初期形状(ΔW0)として計算する。   In addition, after the second pass (when the edging rolling is performed by one round-trip pass, the return pass, and when the edging rolling is performed by a plurality of continuous round-trip passes, after the first pass of the round-trip pass) In the case of edger rolling in the following cases, the width reduction amount and the crop amount after completion of edger rolling are linearly added to the planar shape obtained from the width drop change amount and crop growth amount after edger rolling in each pass. Ask for. In the calculation of the width drop change amount after the second pass, the width drop shape obtained by the calculation up to the previous pass is calculated as the initial shape (ΔW0).

続いて、エッジャ圧延後の幅落ちプロフィルの変化量ΔWE(xL)は、下記式5で計算することができる。
ΔWE(xL)=f5(ΔWE、xL、RE) (式5)
ここで、xLは材料先端からの距離、f5は関数である。
Subsequently, the change amount ΔWE (xL) of the width reduction profile after the edger rolling can be calculated by the following equation 5.
ΔWE (xL) = f5 (ΔWE, xL, RE) (Formula 5)
Here, xL is the distance from the material tip, and f5 is a function.

また、エッジャ圧延後のクロッププロフィルの変化量ΔLE(xW)は、下記式6で計算することができる。
ΔLE(xW)=f6(ΔLE、xW、H、ΔV) (式6)
ここで、xWは板幅中心からの距離、f6は関数である。
Further, the change amount ΔLE (xW) of the crop profile after the edger rolling can be calculated by the following formula 6.
ΔLE (xW) = f6 (ΔLE, xW, H, ΔV) (Expression 6)
Here, xW is a distance from the center of the plate width, and f6 is a function.

2.要点2
エッジャ圧延後の平面形状変化は、エッジャ圧延で発生したドッグボーン部だけを圧延(以下において「HD圧延」ということがある。)した場合の平面形状変化(要点2)と、ドッグボーン部がない状態の鋼板を圧延した場合の平面形状変化(要点3)とを加算して計算する。
2. Key point 2
The planar shape change after the edger rolling is the planar shape change (main point 2) when only the dog bone portion generated by the edger rolling is rolled (hereinafter sometimes referred to as “HD rolling”), and there is no dog bone portion. Calculation is performed by adding the planar shape change (main point 3) when the steel plate in a state is rolled.

HD圧延で発生する幅落ち変化量ΔWDは、下記式7で計算することができる。
ΔWD=f7(CME、ΔV、ΔW0) (式7)
ここで、f7は、エッジャ圧延の方向及びHD圧延の方向を考慮して決定される関数である。また、CMEは、HD圧延での盛上り幅広がり係数であり、下記式8で計算することができる。
CME=f8(W、H、ΔV、RE、ΔW0) (式8)
ここで、f8は関数である。
The width drop change amount ΔWD generated by HD rolling can be calculated by the following equation (7).
ΔWD = f7 (CME, ΔV, ΔW0) (Expression 7)
Here, f7 is a function determined in consideration of the edger rolling direction and the HD rolling direction. CME is a rising width spread coefficient in HD rolling, and can be calculated by the following formula 8.
CME = f8 (W, H, ΔV, RE, ΔW0) (Formula 8)
Here, f8 is a function.

HD圧延でのクロップ成長量ΔLDは、HD圧延での上記幅落ち変化量ΔWDを用いて、下記式9で計算することができる。
ΔLD=f9(ΔWD) (式9)
ここで、f9は関数である。
The crop growth amount ΔLD in HD rolling can be calculated by the following formula 9 using the width drop change amount ΔWD in HD rolling.
ΔLD = f9 (ΔWD) (Formula 9)
Here, f9 is a function.

また、HD圧延での幅落ちプロフィル変化量ΔWD(xL)は、下記式10で計算することができ、HD圧延でのクロッププロフィル変化量ΔLD(xW)は、下記式11で計算することができる。
ΔWD(xL)=f10(ΔWD、xL、RE) (式10)
ΔLD(xW)=f11(ΔLD、xW、H、ΔV) (式11)
ここで、f10及びf11は関数である。
Further, the width drop profile change amount ΔWD (xL) in HD rolling can be calculated by the following formula 10, and the crop profile change amount ΔLD (xW) in HD rolling can be calculated by the following formula 11. .
ΔWD (xL) = f10 (ΔWD, xL, RE) (Equation 10)
ΔLD (xW) = f11 (ΔLD, xW, H, ΔV) (Formula 11)
Here, f10 and f11 are functions.

3.要点3
ドッグボーン部がない状態の被圧延材(鋼板)を水平圧延した場合における、平面形状変化量の予測式について、以下に説明する。
水平圧延時の被圧延材の先後端近傍の幅端部は、エッジャ圧延と異なり、板幅中心から外側へ向けて張り出す形態の変形が発生する。この外側へ向けて張り出す量ΔWRは、下記式12で計算することができる。
ΔWR=f12(R、ΔH、H) (式12)
ここで、Rは水平圧延機のロール径、ΔHは圧下量(板厚方向への圧下量)、f12は関数である。
3. Key point 3
The prediction formula of the planar shape change amount when the rolled material (steel plate) without the dogbone portion is horizontally rolled will be described below.
Unlike edger rolling, the width end near the front and rear ends of the material to be rolled during horizontal rolling is deformed so as to project outward from the sheet width center. The amount ΔWR projecting outward can be calculated by the following equation 12.
ΔWR = f12 (R, ΔH, H) (Formula 12)
Here, R is the roll diameter of the horizontal rolling mill, ΔH is the amount of reduction (the amount of reduction in the sheet thickness direction), and f12 is a function.

一方、水平圧延では、幅方向中央部が前方へ張り出す形態の変形が生じ、クロップ形状は当該変形に対応した形状となる。上記前方へ張り出す形態の変形における、前方への張り出し量ΔLRは、下記式13で計算することができる。
ΔLR=f13(R、ΔH、H) (式13)
ここで、f13は関数である。
On the other hand, in horizontal rolling, deformation in a form in which the central portion in the width direction projects forward occurs, and the crop shape becomes a shape corresponding to the deformation. The forward protrusion amount ΔLR in the modification of the above-described forward protrusion form can be calculated by the following equation (13).
ΔLR = f13 (R, ΔH, H) (Formula 13)
Here, f13 is a function.

また、水平圧延における幅落ちプロフィル変化量ΔWR(xL)は、下記式14で計算することができ、水平圧延におけるクロッププロフィル変化量ΔLR(xW)は、下記式15で計算することができる。
ΔWR(xL)=f14(ΔWR、xL、R) (式14)
ΔLR(xW)=f15(ΔLR、xW) (式15)
ここで、f14及びf15は関数である。
Further, the width drop profile change amount ΔWR (xL) in horizontal rolling can be calculated by the following formula 14, and the crop profile change amount ΔLR (xW) in horizontal rolling can be calculated by the following formula 15.
ΔWR (xL) = f14 (ΔWR, xL, R) (Formula 14)
ΔLR (xW) = f15 (ΔLR, xW) (Formula 15)
Here, f14 and f15 are functions.

水平圧延を行うと、被圧延材は長手方向へ延伸するため、その前パスまでに発生したクロップ形状も変化する。本モデルでは、前パスまでに成長したクロップ形状は圧下した分だけ成長すると仮定し、nパス後のクロップ成長量ΔL(xW)を下記式16で計算する。
ΔL(xW)=ΔLR(xW)+Ln−1(xW)×H/Hn−1 (式16)
ここで、ΔLR(xW)は、nパスの水平圧延で発生するクロッププロフィル変化量、Ln−1(xW)は、n−1パス完了後のクロッププロフィル、Hはnパスの水平圧延後の板厚、Hn−1はn−1パスの水平圧延後の板厚である。
When horizontal rolling is performed, the material to be rolled is stretched in the longitudinal direction, so that the shape of the crop generated up to the previous pass also changes. In this model, it is assumed that the crop shape grown up to the previous pass grows as much as the reduction, and the crop growth amount ΔL n (xW) after n passes is calculated by the following equation (16).
ΔL n (xW) = ΔLR n (xW) + L n−1 (xW) × H n / H n−1 (Expression 16)
Here, ΔLR n (xW) is the crop profile change amount generated in horizontal rolling of n passes, L n-1 (xW) is the crop profile after completion of n-1 passes, and H n is horizontal rolling of n passes. The subsequent plate thickness, H n−1, is the plate thickness after n−1 passes of horizontal rolling.

以上説明したモデルを用いることで、エッジャ圧延を含む厚板圧延プロセスの全工程を対象とした厚鋼板の平面形状を、先後端独立に計算した結果に基づいて予測することができる。   By using the model described above, it is possible to predict the planar shape of the thick steel plate for all the steps of the thick plate rolling process including edger rolling based on the result calculated independently at the front and rear ends.

次に、構築した上記モデルを用いてエッジャ圧延の条件とフィッシュテール成長量及び幅落ち変化量との関係を調査した結果について説明しつつ、本発明の実施形態について説明する。   Next, the embodiment of the present invention will be described while explaining the results of investigating the relationship between the edger rolling conditions, the fishtail growth amount, and the width drop change amount using the constructed model.

図3及び図4は、幅出圧延中に行うエッジャ圧延(以下において「幅出エッジング」ということがある。)の往パスにおける幅圧下量を20mm、復パスにおける幅圧下量を20mmに固定して、幅出圧延完了後のターン直後に往パス及び復パスの幅圧下量が等しい条件下で幅出圧延完了後のエッジャ圧延(以下において「仕上エッジング」ということがある。)を行った場合における、仕上エッジングの総幅圧下量と幅落ち量との関係(図3)、及び、仕上エッジングの総幅圧下量とフィッシュテール成長量との関係(図4)の結果を示している。図3以降の図において、「Top」とは先端側の結果であることを意味し、「Bot」とは後端側の結果であることを意味する。また、表1に、幅圧下量以外のエッジャ圧延条件を示す。   3 and 4 show that the width reduction amount in the forward pass of edger rolling (hereinafter referred to as “deepening edging”) performed during the tenth rolling is fixed to 20 mm, and the width reduction amount in the reverse pass is fixed to 20 mm. In the case where edger rolling after completion of tentering rolling (hereinafter sometimes referred to as “finishing edging”) is performed immediately after the turn after completion of tentering rolling, under conditions where the width reduction amount of the forward pass and the reverse pass is equal. FIG. 3 shows the results of the relationship between the total width reduction amount of finishing edging and the width drop amount (FIG. 3) and the relationship between the total width reduction amount of finishing edging and the fishtail growth amount (FIG. 4). In FIG. 3 and subsequent figures, “Top” means a result on the front end side, and “Bot” means a result on the rear end side. Table 1 shows edger rolling conditions other than the width reduction amount.

Figure 2009178753
Figure 2009178753

表1及び以下に示す表において、「ターン」は、厚鋼板を90°転回したことを意味し、「→」は、その後に表の右欄に記載の板厚まで圧延する工程を意味する。すなわち、表1は、板厚250mmのスラブに対して、幅出圧延及び仕上圧延を施す際の条件を示している。表1に記載の幅出圧延は、板厚250mmのスラブを90°転回した後、板厚が170mmとなるまで圧延を行い、次いで、幅出エッジングを行い、その後、板厚が150mmとなるまで圧延を行うことをその内容とし、表1に記載の仕上圧延は、上記工程による幅出圧延終了後の被圧延材を90°転回した後、仕上エッジングを行い、その後、板厚が130mmとなるまで圧延を行うことをその内容とする。   In Table 1 and the table shown below, “turn” means that the thick steel plate was turned 90 °, and “→” means the step of rolling to the plate thickness described in the right column of the table thereafter. That is, Table 1 shows the conditions when performing the tenter rolling and finish rolling on the slab having a thickness of 250 mm. The tenter rolling shown in Table 1 is performed by rolling a slab having a thickness of 250 mm by 90 °, then rolling until the plate thickness becomes 170 mm, then performing depressing edging, and thereafter until the plate thickness becomes 150 mm. The finish rolling described in Table 1 is performed by rolling, and after rolling the rolled material by 90 ° by the above-mentioned process, finishing edging is performed, and then the plate thickness becomes 130 mm. The content is to carry out rolling until.

図3及び図4を見ると、往パス及び復パスの幅圧下量の和、すなわち、総幅圧下量の増加に伴って、幅落ち量が増加し、フィッシュテール成長量は単調に増加している。また、当該結果から、往パス及び復パスの幅圧下量が等しい条件下でエッジャ圧延を行うと、幅落ち量及びフィッシュテール成長量が先後端で非対称になることも分かる(図3及び図4中、Top、Botがそれぞれ先端、後端を意味する。)。   3 and 4, the sum of the width reduction amounts of the forward pass and the return pass, that is, as the total width reduction amount increases, the width drop amount increases, and the fishtail growth amount increases monotonously. Yes. Further, it can be seen from the results that when edger rolling is performed under the condition that the width reduction amount of the forward pass and the backward pass are equal, the width drop amount and the fish tail growth amount become asymmetric at the front and rear ends (FIGS. 3 and 4). Middle, Top, and Bot mean the front end and the rear end, respectively.)

そこで、仕上エッジングの総幅圧下量を40mmに固定して、往パス及び復パスの幅圧下量の配分を変更したシミュレーションを行った。この結果を図5及び図6に示す。図5及び図6は、幅出エッジングの往パスにおける幅圧下量を20mm、復パスにおける幅圧下量を20mmに固定して、仕上エッジングの総幅圧下量を40mmに固定して、往パス及び復パスの幅圧下量の配分を種々変更した条件下で仕上エッジングを行った場合における、往パスの幅圧下量/総幅圧下量(以下において「往き幅圧下配分比」という。)と幅落ち量との関係(図5)、及び、往き幅圧下配分比とフィッシュテール成長量との関係(図6)の結果を示している。   Therefore, a simulation was performed in which the total width reduction amount of finishing edging was fixed to 40 mm, and the distribution of width reduction amounts of the forward pass and the return pass was changed. The results are shown in FIGS. 5 and 6 show that the width reduction amount in the forward pass of the widening edging is fixed to 20 mm, the width reduction amount in the return pass is fixed to 20 mm, and the total width reduction amount of the finishing edging is fixed to 40 mm. When finishing edging is performed under conditions in which the distribution of the width reduction amount of the return pass is variously changed, the width reduction amount of the forward pass / the total width reduction amount (hereinafter referred to as “forward width reduction distribution ratio”) and the width drop. FIG. 5 shows the results of the relationship with the amount (FIG. 5) and the relationship between the forward width reduction distribution ratio and the fishtail growth amount (FIG. 6).

図5より、幅落ち量の先後端差は、往き幅圧下配分比によって大きく変動し、図5によれば、往き幅圧下配分比が0.4弱の時に、先後端の幅落ち量が等しくなることが分かる。一方、図6より、フィッシュテール成長量も、幅落ち量と同様に、往き幅圧下配分比によって変動した。ただし、フィッシュテール成長量の小さい先端側では、往き幅圧下配分比が変わっても大きく変化することがなく、フィッシュテール成長量が大きい後端側では、往き幅圧下配分比が増大するにつれてフィッシュテール成長量が増加した。上述のように、製品内に入り込む疵を防止するには、先後端ともに所定量以上のフィッシュテール成長量を確保する必要がある。その点、フィッシュテール成長量の小さい先端側が問題になり得るが、図6より、先端側のフィッシュテール成長量は往き幅圧下配分比の影響をほとんど受けない。そのため、往き幅圧下配分比は、先後端側の幅落ち量の差を最小にするように決定すればよいと考えられる。   From FIG. 5, the difference between the leading and trailing edges of the width drop amount greatly varies depending on the forward width reduction distribution ratio. According to FIG. 5, when the forward width reduction distribution ratio is less than 0.4, the width drop amount at the front and rear ends is equal. I understand that On the other hand, as shown in FIG. 6, the amount of fishtail growth also fluctuated depending on the forward width reduction distribution ratio, similar to the amount of decline. However, on the tip side where the fishtail growth amount is small, there is no significant change even if the forward width reduction distribution ratio changes. On the rear end side where the fishtail growth amount is large, the fishtail grows as the forward width reduction distribution ratio increases. The amount of growth has increased. As described above, in order to prevent wrinkles entering the product, it is necessary to secure a fishtail growth amount of a predetermined amount or more at both the front and rear ends. In this respect, the tip side with a small fish tail growth amount may be a problem, but from FIG. 6, the fish tail growth amount on the tip side is hardly affected by the forward width reduction distribution ratio. Therefore, it is considered that the forward width reduction distribution ratio may be determined so as to minimize the difference in the width drop amount on the front and rear end sides.

本発明の実施形態に関する上記説明では、主に、仕上エッジングの条件について言及してきたが、幅落ち量をより小さくするためには、幅出圧延中に行われる幅出エッジングの影響も考慮しておくとなお好ましい。   In the above description regarding the embodiment of the present invention, the finish edging conditions have been mainly mentioned. However, in order to reduce the width drop amount, the influence of the width edging performed during the width rolling is also considered. It is still more preferable.

以上のシミュレーション結果に基づき、厚鋼板製品に侵入する疵を効果的に防止し、歩留りも向上させるための、最適なエッジャ条件の決定方法を具体化した。以下、本発明について、さらに具体的に説明する。   Based on the above simulation results, we have devised an optimal edger condition determination method for effectively preventing wrinkles entering a steel plate product and improving yield. Hereinafter, the present invention will be described more specifically.

1.厚鋼板の製造方法
1.1.第1実施形態
図7は、第1実施形態にかかる本発明の厚鋼板の製造方法(以下において「第1の製造方法」ということがある。)に備えられる工程を示すフローチャートである。図7に示すように、第1の製造方法は、成長量算出工程(工程S11)と、総幅圧下量算出工程(工程S12)と、幅圧下量特定工程(工程S13)と、エッジング圧延工程(工程S14)と、を備え、工程S11乃至工程S14を経て、厚鋼板が製造される。
1. Manufacturing method of thick steel plate 1.1. First Embodiment FIG. 7 is a flowchart showing steps provided in a method for manufacturing a thick steel plate according to the first embodiment of the present invention (hereinafter sometimes referred to as “first manufacturing method”). As shown in FIG. 7, the first manufacturing method includes a growth amount calculation step (step S11), a total width reduction amount calculation step (step S12), a width reduction amount identification step (step S13), and an edging rolling step. (Step S14), and a thick steel plate is manufactured through Steps S11 to S14.

<工程S11>
工程S11は、圧延終了時(切断前)の厚鋼板の長さをA、スラブの長さをBとするとき、X=A/Bにより特定される伸ばし長さ比Xを用いて、厚鋼板が有するべき最低フィッシュテール成長量を算出する工程である。工程S11で算出される最低フィッシュテール成長量Yは、例えば、下記式17により、求めることができる。
Y=40×X0.4 (式17)
<Step S11>
Step S11 uses a stretched length ratio X specified by X = A / B, where A is the length of the thick steel plate at the end of rolling (before cutting) and B is the length of the slab. Is a step of calculating the minimum fishtail growth amount that should be possessed. The minimum fishtail growth amount Y calculated in step S11 can be obtained by the following equation 17, for example.
Y = 40 × X 0.4 (Formula 17)

<工程S12>
工程S12は、仕上圧延終了時における厚鋼板のフィッシュテール成長量をC、成長量算出工程で算出された最低フィッシュテール成長量をY、とするとき、C≧Yとなるような、エッジング圧延における総幅圧下量、を算出する工程である。工程S12は、例えば、往復パスの幅圧下量が等しい設定で、式1〜式16に圧延条件を代入して平面形状を算出し、必要なフィッシュテール成長量が得られるエッジング圧延における総幅圧下量を算出する工程とすることができる。なお、ここで言うエッジング圧延における総幅圧下量は、仕上エッジングにおける総幅圧下量を意味する。
<Step S12>
Step S12 is an edging rolling in which C ≧ Y, where C is the fishtail growth amount of the thick steel plate at the end of finish rolling, and Y is the minimum fishtail growth amount calculated in the growth amount calculation step. This is a step of calculating the total width reduction amount. In step S12, for example, the width reduction amount of the reciprocating path is set to be equal, and the planar shape is calculated by substituting the rolling conditions into Equations 1 to 16, and the total width reduction in the edging rolling in which the necessary fishtail growth amount is obtained. It can be set as the process of calculating quantity. Here, the total width reduction amount in edging rolling means the total width reduction amount in finish edging.

<工程S13>
工程S13は、上記工程S12で算出された総幅圧下量をD、エッジング圧延における往パスの幅圧下量をD1、エッジング圧延における復パスの幅圧下量をD2とするとき、仕上圧延の終了時における厚鋼板の長手方向先後端の幅落ち量が略同一となるように、且つ、D=D1+D2、0≦D1≦D、及び、0≦D2≦Dとなるように、DをD1及びD2へ配分して、D1及びD2を特定する工程である。工程S13は、例えば、式1〜式16に圧延条件を代入して、図5に示すような往き幅圧下配分比と幅落ち量の関係図を作成し、厚鋼板の長手方向先端における幅落ち量が厚鋼板の長手方向後端における幅落ち量と略同一となる往き幅圧下配分比を特定し、当該往き幅圧下配分比に基づいて、DをD1及びD2へ配分することにより、D1及びD2を特定する工程とすることができる。なお、D1=0あるいはD2=0となった場合は、往きあるいは復りの仕上エッジングを省略する。
<Step S13>
In step S13, when the total width reduction amount calculated in step S12 is D, the width reduction amount of the forward pass in edging rolling is D1, and the width reduction amount of the reverse pass in edging rolling is D2, when finishing rolling is finished. To D1 and D2 so that the width drop amounts at the front and rear ends in the longitudinal direction of the thick steel plate are substantially the same, and D = D1 + D2, 0 ≦ D1 ≦ D, and 0 ≦ D2 ≦ D. This is a step of assigning and specifying D1 and D2. Step S13, for example, assigns rolling conditions to Equations 1 to 16 to create a relationship diagram between the forward width reduction distribution ratio and the amount of width reduction as shown in FIG. By identifying the forward width reduction distribution ratio whose amount is substantially the same as the width drop amount at the rear end in the longitudinal direction of the thick steel plate, and distributing D to D1 and D2 based on the forward width reduction distribution ratio, D1 and It can be set as the process of specifying D2. When D1 = 0 or D2 = 0, the forward or backward finish edging is omitted.

<工程S14>
工程S14は、上記工程S13で特定された、往パスの幅圧下量D1及び復パスの幅圧下量D2の条件下で、エッジング圧延を行う工程である。
<Step S14>
Step S14 is a step of performing edging rolling under the conditions of the width reduction amount D1 of the forward pass and the width reduction amount D2 of the backward pass specified in the step S13.

このように、工程S11乃至工程S14を経て厚鋼板を製造する第1の製造方法によれば、工程S11で最低フィッシュテール成長量Yが特定され、特定された最低フィッシュテール成長量Yを用いて特定された、往パスの幅圧下量をD1、復パスの幅圧下量をD2とする条件下でエッジング圧延が行われるので、疵の発生を抑制しつつ歩留りを向上させることが可能な厚鋼板を製造することができる。   Thus, according to the 1st manufacturing method which manufactures a thick steel plate through process S11 thru | or process S14, minimum fishtail growth amount Y is specified by process S11, and the specified minimum fishtail growth amount Y is used. Since the edging rolling is performed under the specified conditions that the width reduction amount of the forward pass is D1 and the width reduction amount of the return pass is D2, the thick steel plate capable of improving the yield while suppressing the occurrence of wrinkles Can be manufactured.

次に、第2実施形態にかかる本発明の厚鋼板の製造方法について、具体的に説明する。   Next, the manufacturing method of the thick steel plate of this invention concerning 2nd Embodiment is demonstrated concretely.

1.2.第2実施形態
図8は、第2実施形態にかかる本発明の厚鋼板の製造方法(以下において「第2の製造方法」ということがある。)に備えられる工程を示すフローチャートである。図8に示すように、第2の製造方法は、成長量算出工程(工程S21)と、全総幅圧下量算出工程(工程S22)と、総幅圧下量決定工程(工程S23)と、幅圧下量特定工程(工程S24)と、エッジング圧延工程(工程S25)と、を備え、工程S21乃至工程S25を経て、厚鋼板が製造される。
1.2. Second Embodiment FIG. 8 is a flowchart showing steps provided in a method for manufacturing a thick steel plate according to a second embodiment of the present invention (hereinafter, also referred to as “second manufacturing method”). As shown in FIG. 8, the second manufacturing method includes a growth amount calculation step (step S21), a total total width reduction amount calculation step (step S22), a total width reduction amount determination step (step S23), a width A reduction steel amount specifying step (step S24) and an edging rolling step (step S25) are provided, and a thick steel plate is manufactured through steps S21 to S25.

<工程S21>
工程S21は、圧延終了時(切断前)の厚鋼板の長さをA、スラブの長さをB、とするとき、X=A/Bにより特定される伸ばし長さ比Xを用いて、厚鋼板が有するべき最低フィッシュテール成長量を算出する工程である。最低フィッシュテール成長量Yは、例えば、下記式17により求めることができる。
Y=40×X0.4 (式17)
<Step S21>
In step S21, when the length of the thick steel plate at the end of rolling (before cutting) is A and the length of the slab is B, the thickness is determined using the stretch length ratio X specified by X = A / B. This is a step of calculating the minimum fishtail growth amount that the steel sheet should have. The minimum fishtail growth amount Y can be obtained by the following equation 17, for example.
Y = 40 × X 0.4 (Formula 17)

<工程S22>
工程S22は、仕上圧延終了時における厚鋼板のフィッシュテール成長量をE、成長量算出工程で算出された最低フィッシュテール成長量をY、とするとき、E≧Yとなるような、エッジング圧延における全総幅圧下量、を算出する工程である。工程S22は、例えば、各仕上エッジングの総幅圧下量ΔWが等しい設定で、式1〜式16に圧延条件を代入して平面形状を算出し、E≧Yになる全総幅圧下量を決定する工程とすることができる。なお、ここで言うエッジング圧延における全総幅圧下量とは、複数回の往復パスによる仕上エッジングにおける全総幅圧下量を意味する。なお、エッジングパス回数は多すぎると生産性を阻害するため、仕上エッジングは、通常2回にとどめることが望ましい。
<Step S22>
Step S22 is an edging rolling process in which E ≧ Y, where E is the fishtail growth amount of the thick steel plate at the end of finish rolling, and Y is the minimum fishtail growth amount calculated in the growth amount calculation step. This is a step of calculating the total total width reduction amount. In step S22, for example, the total width reduction amount ΔW of each finishing edging is set equal, and the planar shape is calculated by substituting the rolling conditions into Equations 1 to 16, and the total total width reduction amount satisfying E ≧ Y is determined. It can be set as the process to do. Here, the total total width reduction amount in edging rolling means the total total width reduction amount in finish edging by a plurality of reciprocating passes. Note that, if the number of edging passes is too large, productivity is hindered, so it is desirable that the finishing edging is usually limited to two times.

<工程S23>
工程S23は、上記工程S22で算出した全総幅圧下量を、複数回の往復パスによるエッジング圧延を構成する、往復パスによる各エッジング圧延の総幅圧下量へと配分することにより、複数回の往復パスによるエッジング圧延を構成する各エッジング圧延の総幅圧下量を決定する工程である。複数回の往復パスによるエッジング圧延が、2回の往復パスによるエッジング圧延により構成される場合、工程S23は、往パスにおける幅圧下量と復パスにおける幅圧下量とを等分に設定した上で、上記工程S22で算出した全総幅圧下量を、1回目及び2回目の往復パスによるエッジング圧延の総幅圧下量へと配分して、1回目及び2回目の往復パスによるエッジング圧延の総幅圧下量を決定する工程とすることができる。
<Step S23>
In step S23, the total total width reduction amount calculated in step S22 is distributed to the total width reduction amount of each edging rolling by the reciprocating pass, which constitutes the edging rolling by the reciprocating pass, thereby making a plurality of times. It is a step of determining the total width reduction amount of each edging rolling constituting the edging rolling by the reciprocating pass. When edging rolling by a plurality of reciprocating passes is constituted by edging rolling by two reciprocating passes, the step S23 sets the width reduction amount in the forward pass and the width reduction amount in the return pass equally. The total width reduction amount calculated in step S22 is distributed to the total width reduction amount of the edging rolling by the first and second reciprocating passes, and the total width of the edging rolling by the first and second reciprocating passes. It can be a step of determining the amount of reduction.

<工程S24>
工程S24は、上記工程S23で決定された各回の往復パスによるエッジング圧延の総幅圧下量をGn、各々の往復パスによるエッジング圧延における往パスの幅圧下量をIn、各々の往復パスによるエッジング圧延における復パスの幅圧下量をJnとするとき、各回の往復パスによるエッジング圧延の終了時における厚鋼板の長手方向先後端の幅落ち量が略同一となるように、且つ、Gn=In+Jn、0≦In≦Gn、0≦Jn≦Gn、となるように、GnをIn及びJnへ配分して、各々の往復パスによるエッジング圧延の幅圧下量In及びJnを特定する工程である。工程S23は、例えば、図5を用いて、厚鋼板の長手方向先端における幅落ち量が厚鋼板の長手方向後端における幅落ち量と略同一となる往き幅圧下配分比を特定し、当該往き幅圧下配分比に基づいて、GnをIn及びJnへ配分することにより、In及びJnを特定する工程とすることができる。
<Step S24>
In step S24, the total width reduction amount of edging rolling by each round-trip pass determined in step S23 is Gn, the width reduction amount of the forward pass in edging rolling by each round-trip pass is In, and edging rolling by each round-trip pass When the width reduction amount of the return pass at Jn is Jn, the width drop amount at the front and rear ends in the longitudinal direction of the thick steel plate at the end of edging rolling by each reciprocating pass is substantially the same, and Gn = In + Jn, 0 In this step, Gn is distributed to In and Jn so that ≦ In ≦ Gn and 0 ≦ Jn ≦ Gn, and the width reduction amounts In and Jn of edging rolling by each reciprocating pass are specified. Step S23 uses, for example, FIG. 5 to identify the forward width reduction distribution ratio in which the width drop amount at the longitudinal direction front end of the thick steel plate is substantially the same as the width drop amount at the longitudinal direction rear end of the thick steel plate. By distributing Gn to In and Jn based on the width reduction distribution ratio, the process of specifying In and Jn can be performed.

<工程S25>
工程S25は、上記工程S24で特定された、往パスの幅圧下量In及び復パスの幅圧下量Jnの条件下で、複数回の往復パスによるエッジング圧延を行う工程である。
<Step S25>
Step S25 is a step of performing edging rolling by a plurality of reciprocating passes under the conditions of the width reduction amount In of the forward pass and the width reduction amount Jn of the backward pass specified in Step S24.

このように、工程S21乃至工程S25を経て厚鋼板を製造する第2の製造方法によれば、工程S21で最低フィッシュテール成長量Yが特定され、特定された最低フィッシュテール成長量Yを用いて特定された、往パスの幅圧下量をIn及び復パスの幅圧下量をJnとする条件下でエッジング圧延が行われるので、疵の発生を抑制しつつ歩留りを向上させることが可能な厚鋼板を製造することができる。   Thus, according to the 2nd manufacturing method which manufactures a thick steel plate through process S21 thru | or process S25, the minimum fishtail growth amount Y is specified by process S21, and the specified minimum fishtail growth amount Y is used. Since the edging rolling is performed under the specified conditions where the width reduction amount of the forward pass is In and the width reduction amount of the return pass is Jn, the thick steel plate capable of improving the yield while suppressing the occurrence of wrinkles Can be manufactured.

1.平面形状に及ぼすエッジャ条件の影響評価試験
上述した平面形状予測モデルを用いて、下記表2に示すMark:F01乃至F03の条件の下、エッジャ条件を変更したシミュレーションを行い、平面形状の変化を調査した。下記表2において、「E1」とは幅出エッジングを意味し、「E2」とは仕上エッジングを意味する。
1. Evaluation test of influence of edger condition on planar shape Using the above-mentioned planar shape prediction model, a simulation was performed by changing the edger condition under the conditions of Mark: F01 to F03 shown in Table 2 below, and the change of the planar shape was investigated. did. In Table 2 below, “E1” means widening edging and “E2” means finish edging.

Figure 2009178753
Figure 2009178753

表2に示す条件、及び、上記第1の製造方法に従って決定したエッジャ条件を適用した場合の、幅圧下量、フィッシュテール成長量、及び、幅落ち量の結果を、下記表3に本発明例1としてまとめた。一方、表2に示す条件、及び、上記第2の製造方法に従って決定したエッジャ条件を適用した場合の、幅圧下量、フィッシュテール成長量、及び、幅落ち量の結果を、下記表3に本発明例2としてまとめた。他方、比較例1として、伸ばし長さ比によらず最低フィッシュテール成長量を100mmに固定して、仕上エッジングの往パス及び復パスの幅圧下量を等しく設定した条件についても計算し、比較例2として、伸ばし長さ比によらず最低フィッシュテール成長量を100mmに固定して先後端のフィッシュテール成長量が同一となるように幅圧下量の配分を決定した条件についても計算した。表2に示すMark:F01乃至F03のそれぞれに対して行った、本発明例1、本発明例2、比較例1、及び、比較例2の圧延条件並びにエッジャ条件を表3に、結果を表4に、併せて示す。なお、表4の「FT成長量」とは「フィッシュテール成長量」を意味し、「最低FT成長量」とは「最低フィッシュテール成長量」を意味する。また、本発明例1、2における最低フィッシュテール成長量は、伸ばし長さ比Xを用いて、下記式17で計算した。
Y=40×X0.4 (式17)
Table 3 below shows the results of the width reduction amount, the fishtail growth amount, and the width drop amount when the edger conditions determined according to the conditions shown in Table 2 and the first manufacturing method are applied. Summarized as 1. On the other hand, Table 3 below shows the results of the width reduction amount, the fishtail growth amount, and the width drop amount when the conditions shown in Table 2 and the edger conditions determined according to the second manufacturing method are applied. It was summarized as Invention Example 2. On the other hand, as Comparative Example 1, the minimum fishtail growth amount was fixed to 100 mm regardless of the stretch length ratio, and the conditions under which the width reduction amount of the finishing edging forward pass and the return pass were equally set were also calculated. 2, the calculation was also performed for the conditions in which the distribution of the width reduction amount was determined so that the minimum fishtail growth amount was fixed to 100 mm and the front and rear end fishtail growth amounts were the same regardless of the stretch length ratio. The rolling conditions and edger conditions of Example 1, Invention Example 2, Comparative Example 1, and Comparative Example 2 performed for each of Mark: F01 to F03 shown in Table 2 are shown in Table 3, and the results are shown in Table 3. 4 also shows. In Table 4, “FT growth amount” means “fishtail growth amount”, and “minimum FT growth amount” means “minimum fishtail growth amount”. Further, the minimum fishtail growth amount in Invention Examples 1 and 2 was calculated by the following formula 17 using the stretch length ratio X.
Y = 40 × X 0.4 (Formula 17)

Figure 2009178753
Figure 2009178753

Figure 2009178753
Figure 2009178753

2.結果
2.1.F01
F01は、厚鋼板の仕上厚が15.8mmで、幅出比及び伸ばし長さ比がともに比較的大きいエッジャ条件である。F01の場合、上記式17のXに8.86を代入して算出される最低フィッシュテール成長量Yは96mmであり、このフィッシュテール成長量を確保しつつ第1の製造方法に基づいてエッジャ条件を決定した本発明例1では、幅落ち量が先後端ともに8mmとなった。また、96mmのフィッシュテール成長量を確保しつつ第2の製造方法に基づいてエッジャ条件を決定した本発明例2では、幅落ち量が格段に小さくなり、先後端ともに3mmとなった。
2. Results 2.1. F01
F01 is an edger condition in which the finished thickness of the thick steel plate is 15.8 mm and both the width ratio and the stretched length ratio are relatively large. In the case of F01, the minimum fishtail growth amount Y calculated by substituting 8.86 for X in the above equation 17 is 96 mm, and the edger condition is determined based on the first manufacturing method while ensuring the fishtail growth amount. In Example 1 of the present invention that determined the above, the width drop amount was 8 mm at both the front and rear ends. In addition, in Example 2 of the present invention in which the edger condition was determined based on the second manufacturing method while securing a fishtail growth amount of 96 mm, the width drop amount was significantly reduced, and both the front and rear ends were 3 mm.

これに対し、仕上エッジングの幅圧下量の配分を往パス及び復パスで等しくした比較例1では、後端の幅落ち量が11mmと大きくなった。また、先後端のフィッシュテール成長量が等しくなるように往パス及び復パスの幅圧下量の配分を決定した比較例2では、先端の幅落ち量が10mmと大きくなった。すなわち、本発明によらない比較例1及び比較例2では歩留りの悪化が予想され、本発明(本発明例1及び本発明例2)によれば、歩留りを向上させることが可能な結果となった。   On the other hand, in Comparative Example 1 in which the distribution of the width reduction amount of the finishing edging is equal between the forward pass and the return pass, the width drop amount at the rear end is as large as 11 mm. Further, in Comparative Example 2 in which the distribution of the width reduction amount of the forward pass and the backward pass was determined so that the fishtail growth amounts at the front and rear ends were equal, the width drop amount at the tip was as large as 10 mm. That is, in Comparative Examples 1 and 2 that do not depend on the present invention, the yield is expected to deteriorate, and according to the present invention (Inventive Example 1 and Inventive Example 2), the yield can be improved. It was.

2.2.F02
F02は、仕上厚が76mmの厚物材で、伸ばし長さ比が小さいエッジャ条件である。F02の場合、上記式17のXに2.17を代入して算出される最低フィッシュテール成長量Yは55mmであり、このフィッシュテール成長量を確保しつつ第1の製造方法に基づいてエッジャ条件を決定した本発明例1では、幅落ち量が先後端ともに8mmとなった。また、55mmのフィッシュテール成長量を確保しつつ第2の製造方法に基づいてエッジャ条件を決定した本発明例2では、幅落ち量が格段に小さくなり、先後端ともに5mmとなった。
2.2. F02
F02 is an edger condition in which the finish thickness is 76 mm and the stretch length ratio is small. In the case of F02, the minimum fishtail growth amount Y calculated by substituting 2.17 for X in the above equation 17 is 55 mm, and the edger condition is based on the first manufacturing method while ensuring this fishtail growth amount. In Example 1 of the present invention that determined the above, the width drop amount was 8 mm at both the front and rear ends. Further, in Example 2 of the present invention in which the edger condition was determined based on the second manufacturing method while securing a fishtail growth amount of 55 mm, the width drop amount was remarkably reduced, and both the front and rear ends were 5 mm.

これに対し、仕上エッジングの幅圧下量の配分を往パス及び復パスで等しくした比較例1では、後端の幅落ち量が15mmと大きくなった。また、フィッシュテール成長量も100mm以上と過大になった。また、先後端のフィッシュテール成長量が等しくなるように往パス及び復パスの幅圧下量の配分を決定した比較例2では、先端の幅落ち量が18mmと大きくなった。すなわち、本発明によらない比較例1及び比較例2では歩留りの悪化が予想され、本発明(本発明例1及び本発明例2)によれば、歩留りを向上させることが可能な結果となった。   On the other hand, in Comparative Example 1 in which the distribution of the width reduction amount of the finishing edging is equal between the forward pass and the return pass, the width drop amount at the rear end is as large as 15 mm. In addition, the fishtail growth amount was over 100 mm. Further, in Comparative Example 2 in which the distribution of the width reduction amount of the forward pass and the backward pass was determined so that the fish tail growth amounts at the front and rear ends were equal, the width drop amount at the tip was as large as 18 mm. That is, in Comparative Examples 1 and 2 that do not depend on the present invention, the yield is expected to deteriorate, and according to the present invention (Inventive Example 1 and Inventive Example 2), the yield can be improved. It was.

2.3.F03
F03は、仕上厚が8mmの薄物材で、伸ばし長さ比が大きいエッジャ条件である。F03の場合、上記式17のXに18.75を代入して算出される最低フィッシュテール成長量Yは129mmであり、このフィッシュテール成長量を確保しつつ第1の製造方法に基づいてエッジャ条件を決定した本発明例1では、幅落ち量が先後端ともに8mmとなった。また、129mmのフィッシュテール成長量を確保しつつ第2の製造方法に基づいてエッジャ条件を決定した本発明例2では、幅落ち量が格段に小さくなり、先後端ともに3mmとなった。
2.3. F03
F03 is an edger condition that is a thin material having a finish thickness of 8 mm and a large stretch length ratio. In the case of F03, the minimum fishtail growth amount Y calculated by substituting 18.75 for X in the equation 17 is 129 mm, and the edger condition is based on the first manufacturing method while ensuring this fishtail growth amount. In Example 1 of the present invention that determined the above, the width drop amount was 8 mm at both the front and rear ends. Further, in Example 2 of the present invention in which the edger conditions were determined based on the second manufacturing method while securing a fish tail growth amount of 129 mm, the width drop amount was remarkably reduced, and both the front and rear ends were 3 mm.

これに対し、仕上エッジングの幅圧下量の配分を往パス及び復パスで等しくした比較例1では、本発明例1とほぼ同等の先端側8mm、後端側7mmとなった。しかし、フィッシュテール成長量は先端側100mmと、本発明の必要フィッシュテール成長量129mmに比べて小さくなっており、製品内への疵の発生が懸念される結果となった。また、先後端のフィッシュテール成長量が等しくなるように往パス及び復パスの幅圧下量の配分を決定した比較例2では、先端の幅落ち量が9mmとなり、歩留りの若干の悪化が予想され、また、フィッシュテール成長量も110mmのため製品内への疵の発生が懸念される結果となった。   On the other hand, in Comparative Example 1 in which the distribution of the width reduction amount of the finishing edging is the same in the forward pass and the backward pass, the leading end side is 8 mm and the trailing end side is 7 mm, which are substantially the same as those of the inventive example 1. However, the fish tail growth amount is 100 mm at the tip side, which is smaller than the necessary fish tail growth amount of 129 mm of the present invention. Further, in Comparative Example 2 in which the distribution of the width reduction amount of the forward pass and the backward pass was determined so that the amount of fishtail growth at the front and rear ends was equal, the width drop at the tip was 9 mm, and a slight deterioration in the yield was expected. In addition, since the fish tail growth amount was 110 mm, the occurrence of wrinkles in the product was a concern.

フィッシュテール成長量(クロップ差)の定義を示す図である。It is a figure which shows the definition of a fish tail growth amount (crop difference). 伸ばし長さ比及びフィッシュテール成長量と疵発生との関係を示す図である。It is a figure which shows the relationship between stretch length ratio and the amount of fishtail growth, and wrinkle generation | occurrence | production. 総幅圧下量と幅落ち量との関係を示す図である。It is a figure which shows the relationship between the total width reduction amount and width reduction amount. 総幅圧下量とフィッシュテール成長量との関係を示す図である。It is a figure which shows the relationship between the total width reduction amount and the fishtail growth amount. 往き幅圧下配分比と幅落ち量との関係を示す図である。It is a figure which shows the relationship between the forward width reduction distribution ratio and the width drop amount. 往き幅圧下配分比とフィッシュテール成長量との関係を示す図である。It is a figure which shows the relationship between the forward width reduction distribution ratio and the amount of fishtail growth. 第1の製造方法の形態例を示すフローチャートである。It is a flowchart which shows the form example of a 1st manufacturing method. 第2の製造方法の形態例を示すフローチャートである。It is a flowchart which shows the example of a form of a 2nd manufacturing method. 幅落ち量の定義を示す図である。It is a figure which shows the definition of width reduction amount.

Claims (2)

幅出圧延、往復パスによるエッジング圧延、及び、仕上圧延を経て厚鋼板を製造する、厚鋼板の製造方法であって、
伸ばし長さ比を用いて最低フィッシュテール成長量を算出する、成長量算出工程と、
前記仕上圧延の終了時における前記厚鋼板のフィッシュテール成長量を前記最低フィッシュテール成長量以上にする、前記エッジング圧延における総幅圧下量、を算出する、総幅圧下量算出工程と、
前記仕上圧延の終了時における前記厚鋼板の長手方向先端の幅落ち量と、前記仕上圧延の終了時における前記厚鋼板の長手方向後端の幅落ち量とが、略同一となるように、算出された前記総幅圧下量を、前記エッジング圧延における往パスの幅圧下量と、前記エッジング圧延における復パスの幅圧下量とに配分して、前記往パスの幅圧下量と前記復パスの幅圧下量とを特定する、幅圧下量特定工程と、
前記往パスの幅圧下量、及び、前記復パスの幅圧下量の下で前記エッジング圧延を行う、エッジング圧延工程と、
を備えることを特徴とする、厚鋼板の製造方法。
It is a manufacturing method of a thick steel plate that manufactures a thick steel plate through tentering rolling, edging rolling by a reciprocating pass, and finish rolling,
A growth amount calculating step for calculating a minimum fishtail growth amount using the stretch length ratio;
A total width reduction amount calculation step of calculating a total width reduction amount in the edging rolling, wherein the fishtail growth amount of the thick steel plate at the end of the finish rolling is equal to or greater than the minimum fishtail growth amount;
Calculation is performed so that the width drop amount at the front end in the longitudinal direction of the thick steel plate at the end of the finish rolling is substantially the same as the width drop amount at the rear end in the longitudinal direction of the thick steel plate at the end of the finish rolling. The total width reduction amount is allocated to the width reduction amount of the forward pass in the edging rolling and the width reduction amount of the return pass in the edging rolling, and the width reduction amount of the forward pass and the width of the return pass A width reduction amount specifying step for specifying a reduction amount;
An edging rolling step of performing the edging rolling under the width reduction amount of the forward pass and the width reduction amount of the return pass;
A method for producing a thick steel plate, comprising:
幅出圧延、複数回の往復パスによるエッジング圧延、及び、仕上圧延を経て厚鋼板を製造する、厚鋼板の製造方法であって、
伸ばし長さ比を用いて最低フィッシュテール成長量を算出する、成長量算出工程と、
前記仕上圧延の終了時における前記厚鋼板のフィッシュテール成長量を前記最低フィッシュテール成長量以上にする、前記エッジング圧延における全総幅圧下量、を算出する、全総幅圧下量算出工程と、
複数回の前記往復パス各々における、総幅圧下量を決定する、総幅圧下量決定工程と、
各々の前記往復パスの終了時における前記厚鋼板の長手方向先端の幅落ち量と、各々の前記往復パスの終了時における前記厚鋼板の長手方向後端の幅落ち量とが、略同一となるように、前記総幅圧下量を、各々の前記往復パスにおける往パスの幅圧下量と、各々の前記往復パスにおける復パスの幅圧下量とに配分して、前記往パスの幅圧下量と前記復パスの幅圧下量とを特定する、幅圧下量特定工程と、
前記往パスの幅圧下量、及び、前記復パスの幅圧下量の下で前記エッジング圧延を行う、エッジング圧延工程と、
を備えることを特徴とする、厚鋼板の製造方法。
It is a manufacturing method of a thick steel plate that manufactures a thick steel plate through tentering rolling, edging rolling by a plurality of reciprocating passes, and finish rolling,
A growth amount calculating step for calculating a minimum fishtail growth amount using the stretch length ratio;
A total total width reduction amount calculating step of calculating a total total width reduction amount in the edging rolling, wherein the fishtail growth amount of the thick steel plate at the end of the finish rolling is equal to or greater than the minimum fishtail growth amount,
A total width reduction amount determining step for determining a total width reduction amount in each of the plurality of round-trip passes;
The width drop amount at the front end in the longitudinal direction of the thick steel plate at the end of each reciprocating pass is substantially the same as the width drop amount at the rear end in the longitudinal direction of the thick steel plate at the end of each reciprocating pass. As described above, the total width reduction amount is allocated to the width reduction amount of the forward path in each of the reciprocating paths and the width reduction amount of the return path in each of the reciprocating paths, A width reduction amount specifying step for specifying a width reduction amount of the return path;
An edging rolling step of performing the edging rolling under the width reduction amount of the forward pass and the width reduction amount of the return pass;
A method for producing a thick steel plate, comprising:
JP2008020618A 2008-01-31 2008-01-31 Thick steel plate manufacturing method Expired - Fee Related JP4935697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008020618A JP4935697B2 (en) 2008-01-31 2008-01-31 Thick steel plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008020618A JP4935697B2 (en) 2008-01-31 2008-01-31 Thick steel plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2009178753A true JP2009178753A (en) 2009-08-13
JP4935697B2 JP4935697B2 (en) 2012-05-23

Family

ID=41033130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008020618A Expired - Fee Related JP4935697B2 (en) 2008-01-31 2008-01-31 Thick steel plate manufacturing method

Country Status (1)

Country Link
JP (1) JP4935697B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206833A (en) * 2010-03-30 2011-10-20 Jfe Steel Corp Method of rolling thick plate
CN103341501A (en) * 2013-07-12 2013-10-09 鞍钢股份有限公司 Method for reducing transverse edge crack of high-strength low-alloy steel plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126004A (en) * 1980-03-07 1981-10-02 Nippon Steel Corp Rolling method for slab
JPS61226101A (en) * 1985-03-29 1986-10-08 Kawasaki Steel Corp Method for suppressing width decrease at front end of rolling material in hot rolling
JPH0938701A (en) * 1995-07-28 1997-02-10 Nippon Steel Corp Rolling method for preventing scab on thick plate
JPH0947803A (en) * 1995-08-03 1997-02-18 Sumitomo Metal Ind Ltd Method for rolling thick steel plate
JPH09262612A (en) * 1996-03-28 1997-10-07 Mitsubishi Heavy Ind Ltd Plane shape controlling method and device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126004A (en) * 1980-03-07 1981-10-02 Nippon Steel Corp Rolling method for slab
JPS61226101A (en) * 1985-03-29 1986-10-08 Kawasaki Steel Corp Method for suppressing width decrease at front end of rolling material in hot rolling
JPH0938701A (en) * 1995-07-28 1997-02-10 Nippon Steel Corp Rolling method for preventing scab on thick plate
JPH0947803A (en) * 1995-08-03 1997-02-18 Sumitomo Metal Ind Ltd Method for rolling thick steel plate
JPH09262612A (en) * 1996-03-28 1997-10-07 Mitsubishi Heavy Ind Ltd Plane shape controlling method and device therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206833A (en) * 2010-03-30 2011-10-20 Jfe Steel Corp Method of rolling thick plate
CN103341501A (en) * 2013-07-12 2013-10-09 鞍钢股份有限公司 Method for reducing transverse edge crack of high-strength low-alloy steel plate
CN103341501B (en) * 2013-07-12 2016-06-29 鞍钢股份有限公司 Method for reducing transverse edge crack of high-strength low-alloy steel plate

Also Published As

Publication number Publication date
JP4935697B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4935697B2 (en) Thick steel plate manufacturing method
CN103079719A (en) Method for producing steel strips by continuous rolling or semi-continuous rolling
JP4701762B2 (en) Hot rolled steel sheet rolling method
JP5347912B2 (en) Thick steel plate manufacturing method
JP6558060B2 (en) Thick steel plate cooling control method, cooling control device, manufacturing method, and manufacturing device
CN106311760B (en) Pass through the method for the residual stress minimizing of transverse temperature difference after reduction Rolling for Hot Rolled Strip
JP2007260729A (en) Method and device for controlling edge drop
JP5182148B2 (en) Thick steel plate manufacturing method
JP2009066629A (en) Slab designing method and device
JP2019063811A (en) Rolling schedule preparation device, rolling schedule preparation method and program
CN104209345B (en) Pass design method of continuous rolling machine
JP6658457B2 (en) Thick steel plate manufacturing method and rolling pass schedule setting method
JP2006239727A (en) Method for rolling hot-rolled steel sheet
JP3156568B2 (en) Cold rolling method
CN111046508B (en) Plate-shaped load distribution weight calculation method based on shortest path
KR20130034974A (en) Method for setting reduction ratio of finishing mill
JP5742652B2 (en) Rolling method for section steel with flange
JP2005319492A (en) Method for controlling shape in cold rolling
JPS6268608A (en) Rolling method for thick plate
JPS58122106A (en) Method for rolling thick plate
JP2006272380A (en) Method for setting shift position of work roll in tandem mill
KR101586952B1 (en) Continuous cold rolling equipment and continuous cold rolling method using the same
TW201603904A (en) Method for rolling metal strip
JPS58215201A (en) Hot broadside rolling method
JP2011079026A (en) Method for manufacturing thick plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4935697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees