JP2011079026A - Method for manufacturing thick plate - Google Patents

Method for manufacturing thick plate Download PDF

Info

Publication number
JP2011079026A
JP2011079026A JP2009234122A JP2009234122A JP2011079026A JP 2011079026 A JP2011079026 A JP 2011079026A JP 2009234122 A JP2009234122 A JP 2009234122A JP 2009234122 A JP2009234122 A JP 2009234122A JP 2011079026 A JP2011079026 A JP 2011079026A
Authority
JP
Japan
Prior art keywords
amount
slab
heating
rolling
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009234122A
Other languages
Japanese (ja)
Other versions
JP5707687B2 (en
Inventor
Kazuaki Kita
和昭 北
Shigemasa Nakagawa
繁政 中川
Jiro Kojima
次郎 児嶋
Hironori Wakamatsu
弘宜 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2009234122A priority Critical patent/JP5707687B2/en
Publication of JP2011079026A publication Critical patent/JP2011079026A/en
Application granted granted Critical
Publication of JP5707687B2 publication Critical patent/JP5707687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thick plate capable of reducing the ride-up amount without adding any apparatus. <P>SOLUTION: In a hot rolling process of a thick plate for manufacturing the thick plate by the hot-rolling after heating a slab in a heating furnace, a shape of an end face of a preceding material to be rolled having its end face of a double-bulge shape along its rolling direction is measured. When the ride-up amount d1 on the surface side of the preceding material to be rolled is larger than the ride-up amount d2 on the back side of the preceding material, the heating amount on the back side of the slab in the heating furnace is increased. When the ride-up amount d1 on the surface side of the preceding material is smaller than the ride-up amount d2 on the back side of the preceding material, the heating amount on the back side of the slab in the heating furnace is decreased, and the succeeding slab is heated and then rolled. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、厚鋼板等の金属板の製造にあたり、熱間圧延する際に金属板の端部に生じるまくれ込み(まくれ込み量、まくれ込み差)を小さくする厚板の製造方法に関する。   TECHNICAL FIELD The present invention relates to a method for manufacturing a thick plate that reduces a turn-up (a turn-up amount, a turn-up difference) generated at an end of the metal plate during hot rolling in manufacturing a metal plate such as a thick steel plate.

厚板の製造では、素材を一定温度に加熱後、圧延して所定の厚みの金属板とする。とりわけ厚鋼板の製造では、素材となるスラブに、(1)長手方向に数パス圧延する成形圧延工程、(2)被圧延材を90°転回して所定の幅(=成品幅+耳代)に圧延する幅出し圧延工程、及び、(3)被圧延材を90°転回して長手方向に圧延し所定の厚さ及び長さにする仕上圧延工程、の3工程を加えることにより、所定の厚みとする。その後、被圧延材は冷却・熱処理工程を経て切断工程で切断され、最終製品としての厚鋼板となる。   In the manufacture of thick plates, the material is heated to a certain temperature and then rolled to obtain a metal plate having a predetermined thickness. In particular, in the manufacture of thick steel plates, (1) a forming and rolling process in which several passes are rolled in the longitudinal direction on a slab as a raw material, (2) a predetermined width (= product width + ear margin) by turning the material to be rolled by 90 ° By adding three steps: a tenter rolling step for rolling into a rolling step, and (3) a finish rolling step for rolling the material to be rolled 90 ° in the longitudinal direction to a predetermined thickness and length. Thickness. Thereafter, the material to be rolled is cut by a cutting process through a cooling and heat treatment process, and becomes a thick steel plate as a final product.

歩留まりを考慮すれば、切断工程において切り落とされる素材は少ないことが望ましい。切断は圧延工程で被圧延材の端部に形成される形状欠陥を無くすために行われる。被圧延材の端部は自由端であるため、被圧延材を圧延すると、被圧延材の端部は独特な形状となる。具体的には、圧延により、被圧延材の端部には、板厚中央部に凸部を有するシングルバルジ形状、あるいは板厚中央部に凹部を有するダブルバルジ形状が形成される。   Considering the yield, it is desirable that the material cut off in the cutting process is small. Cutting is performed in order to eliminate shape defects formed at the end of the material to be rolled in the rolling process. Since the end of the material to be rolled is a free end, when the material to be rolled is rolled, the end of the material to be rolled has a unique shape. Specifically, by rolling, a single bulge shape having a convex portion at the central portion of the plate thickness or a double bulge shape having a concave portion at the central portion of the thickness is formed at the end of the material to be rolled.

ここで、最終製品である厚鋼板の品質上特に問題となるのは、ダブルバルジ形状である。ダブルバルジ形状は一般的に「まくれ込み」と呼称されている。このまくれ込みの量(以下において、「まくれ込み量」という。)が過大であると、圧延終了後の厚鋼板の板幅方向の両端部を所定幅だけ切断しても、最終製品の板幅方向の両端面に凹部が残存してしまい、形状不良品であるとして「格落ち」とせざるを得なくなることもある。   Here, the double bulge shape is particularly problematic in terms of the quality of the thick steel plate as the final product. The double bulge shape is generally referred to as “folding”. If this amount of curling up (hereinafter referred to as “the amount of curling up”) is excessive, even if both ends in the width direction of the thick steel plate after rolling are cut by a predetermined width, the width of the final product Concave portions remain on both end surfaces in the direction, and it may be forced to be “degraded” as a defective product.

従来、このようなまくれ込みの問題に対し、まくれ込み量を減少させて、歩留まり向上、ひいては厚鋼板の疵の発生を防止する以下のような方法が提案されている。例えば特許文献1には、鋼板の熱間圧延工程の途中において、被圧延材の圧延方向に沿う端面の形状を測定し、その形状に応じて、鋼片加熱炉における鋼片表面側又は鋼片裏面側の加熱量を変更して、後続鋼片を加熱した後、圧延する、鋼板の四周疵防止熱間圧延方法が開示されている。また、特許文献2には、すべての圧延パスもしくは少なくとも幅出し圧延での1回を含む複数回の圧延パスにおいて、圧延パス毎に、圧延前に、厚鋼板の幅方向端部に相当する部位の表裏面及び側端面、もしくは該部位の表裏面のみを加熱し圧延するシーム疵のない厚鋼板の製造方法が開示されている。また、特許文献3には、熱間圧延工程の途中において、被圧延材の圧延方向に沿う端面の形状を測定し、その形状に応じて、被圧延材の表面又は裏面を冷却し、冷却後、圧延を再開する四周疵防止熱間圧延方法が開示されている。   Conventionally, the following method has been proposed to reduce the amount of curling up to improve the yield and to prevent the occurrence of wrinkles in the thick steel plate. For example, in Patent Document 1, the shape of the end face along the rolling direction of the material to be rolled is measured in the middle of the hot rolling process of the steel sheet, and the steel slab surface side or the steel slab in the slab heating furnace is measured according to the shape. A method of hot rolling a steel sheet is disclosed, in which the amount of heating on the back surface side is changed and the subsequent steel slab is heated and then rolled. Further, in Patent Document 2, in all rolling passes or a plurality of rolling passes including at least one of the tenth rolling, a portion corresponding to the end in the width direction of the thick steel plate before rolling for each rolling pass. The manufacturing method of the thick steel plate without a seam flaw which heats and rolls only the front and back and side end surface of this, or the front and back of the site | part is disclosed. Moreover, in patent document 3, in the middle of a hot rolling process, the shape of the end surface along the rolling direction of a to-be-rolled material is measured, and according to the shape, the surface or back surface of a to-be-rolled material is cooled, and after cooling A hot rolling method that prevents rolling around a four-sided wrinkle is disclosed.

特開平8−112611号公報JP-A-8-112611 特開平7−284811号公報Japanese Patent Laid-Open No. 7-284811 特開平1−210113号公報JP-A-1-210113

厚板の製造ではまくれ込みの発生は避けられない。最終製品の形状不良をなくすためには、まくれ込み量を少なくすることが必要となる一方、歩留まりの観点からもまくれ込み量を減少させることが重要となる。   The production of thick plates is inevitable. In order to eliminate the shape defect of the final product, it is necessary to reduce the amount of curling up. On the other hand, it is important to reduce the amount of curling up from the viewpoint of yield.

上述のように、まくれ込み量を減少させることを目的とした技術が既に開示されているが、これらの方法でも以下のような問題点がある。
特許文献1に記載の発明では、先行被圧延材の端面形状を測定し、端面形状がダブルバルジの場合にはオーバーラップ位置に応じて、端面形状がシングルバルジの場合には変曲点の位置に応じて、鋼片加熱炉における鋼片表面側又は鋼片裏面側の加熱量を変更し、後続鋼片を加熱した後、圧延する。このような方法だと、通常、加熱量の変更量とそれに必要な炉温変更量には完全な相関がないため、炉温が不安定になりやすい。
特許文献2及び特許文献3に記載の発明では、圧延ラインで被圧延材を被圧延材を加熱又は冷却するため、現在の圧延ラインへ設備を増強する必要がある。加えて、これらの発明では、被圧延材の一部を加熱又は冷却するので、被圧延材に温度ムラが生じ、被圧延材全体の均一温度分布を考慮した設計とはならなくなる。
As described above, techniques aimed at reducing the amount of curling up have already been disclosed, but these methods also have the following problems.
In the invention described in Patent Document 1, the end surface shape of the preceding material to be rolled is measured. When the end surface shape is a double bulge, the position of the inflection point is determined when the end surface shape is a single bulge. Depending on the above, the amount of heating on the steel slab surface side or the steel slab back side in the steel slab heating furnace is changed, and the subsequent steel slab is heated and then rolled. In such a method, since there is usually no complete correlation between the amount of change in heating amount and the amount of change in furnace temperature required for it, the furnace temperature tends to become unstable.
In the inventions described in Patent Document 2 and Patent Document 3, in order to heat or cool the material to be rolled in the rolling line, it is necessary to increase the equipment to the current rolling line. In addition, in these inventions, a part of the material to be rolled is heated or cooled, so that temperature unevenness occurs in the material to be rolled, and the design considering the uniform temperature distribution of the whole material to be rolled is not achieved.

以上の問題点を鑑み、本発明は、新たな設備増強をすることなく、まくれ込み量を減少させることが可能な、厚板の製造方法を提供することを課題とする。   In view of the above problems, it is an object of the present invention to provide a method for manufacturing a thick plate that can reduce the amount of curling up without increasing new equipment.

以下、本発明について説明する。
本発明は、加熱炉にてスラブを加熱した後、熱間圧延して製造する厚板の熱間圧延工程において、端面がダブルバルジ形状である先行被圧延材の圧延方向に沿う端面の形状を測定し、先行被圧延材の表面側のまくれ込み量d1が先行被圧延材の裏面側のまくれ込み量d2よりも大きい場合には、加熱炉におけるスラブの裏面側の加熱量を上げて、先行被圧延材の表面側のまくれ込み量d1が先行被圧延材の裏面側のまくれ込み量d2よりも小さい場合には、加熱炉におけるスラブの裏面側の加熱量を下げて、後続のスラブを加熱した後、圧延することを特徴とする、厚板の製造方法である。
The present invention will be described below.
In the hot rolling process of the thick plate manufactured by hot rolling after heating the slab in a heating furnace, the present invention has the shape of the end face along the rolling direction of the preceding rolled material whose end face has a double bulge shape. Measured, if the amount of turn up d1 on the front side of the preceding rolled material is larger than the amount of turn up d2 on the back side of the preceding rolled material, increase the amount of heating on the back side of the slab in the heating furnace, When the amount d1 of turning up on the front side of the material to be rolled is smaller than the amount of turning up d2 on the back side of the preceding material to be rolled, the amount of heating on the back side of the slab in the heating furnace is lowered and the subsequent slab is heated. And then rolling the thick plate.

本発明において、「厚板」とは、厚鋼板のほか、端面がダブルバルジ形状になり得る厚さの金属板(鋼以外の金属を素材とする板)をも含む概念である。また、「先行被圧延材の表面側のまくれ込み量d1」とは、図1に示すように、先行被圧延材の板厚方向の中心よりも表面側に位置している、先行被圧延材端面の凸部のまくれ込み量d1をいう。また、「先行被圧延材の裏面側のまくれ込み量d2」とは、図1に示すように、先行被圧延材の板厚方向の中心よりも裏面側に位置している、先行被圧延材端面の凸部のまくれ込み量d2をいう。また、本発明において、「加熱炉におけるスラブの裏面側」は、先行被圧延材の裏面側に相当する。   In the present invention, the “thick plate” is a concept that includes a thick steel plate as well as a metal plate (a plate made of a metal other than steel) having a thickness that allows the end surface to have a double bulge shape. Moreover, as shown in FIG. 1, the “bending amount d1 on the surface side of the preceding rolled material” means that the preceding rolled material is located on the surface side of the center in the plate thickness direction of the preceding rolled material. It refers to the amount d1 of curling up of the convex portion on the end face. Moreover, as shown in FIG. 1, “the amount of rolling d2 on the back side of the preceding rolled material” is the preceding rolled material that is located on the back side from the center in the plate thickness direction of the preceding rolled material. This refers to the amount d2 of curling up of the convex portion on the end face. In the present invention, “the back side of the slab in the heating furnace” corresponds to the back side of the preceding material to be rolled.

また、上記本発明において、加熱炉におけるスラブの裏面側の加熱量は、先行被圧延材の断面における温度分布計算の結果に基づいて決定されることが好ましい。   Moreover, in the said invention, it is preferable that the heating amount by the side of the back surface of the slab in a heating furnace is determined based on the result of the temperature distribution calculation in the cross section of a preceding to-be-rolled material.

ここに、「先行被圧延材の断面における温度分布計算」とは、先行被圧延材の断面をメッシュ切りして形成されたすべてのメッシュについて行われる伝熱計算の結果をいう。本発明では、加熱炉におけるスラブの裏面側に存在するスキッド(移動スキッド及び固定スキッドを含む)からの伝熱を考慮して、温度分布計算を行うことが好ましい。   Here, “calculation of temperature distribution in the cross section of the preceding rolled material” means a result of heat transfer calculation performed on all meshes formed by cutting the cross section of the preceding rolled material. In the present invention, it is preferable to perform temperature distribution calculation in consideration of heat transfer from skids (including moving skids and fixed skids) existing on the back side of the slab in the heating furnace.

本発明では、先行被圧延材の表面側のまくれ込み量d1、裏面側のまくれ込み量d2の何れが大きい場合であっても、加熱炉におけるスラブの裏面側の加熱量を制御することにより、まくれ込み量の最大値を減少させる。それゆえ、本発明によれば、新たな設備増強をせずにまくれ込み量を減少させることが可能な、厚板の製造方法を提供することができる。   In the present invention, by controlling the amount of heating on the back side of the slab in the heating furnace, regardless of whether the amount of turning d1 on the front side of the preceding rolled material or the amount of turning d2 on the back side is large, Decrease the maximum amount of curling up. Therefore, according to the present invention, it is possible to provide a method of manufacturing a thick plate that can reduce the amount of rolling up without newly increasing equipment.

まくれ込み量を説明する図である。It is a figure explaining the amount of turning up. 本発明の厚板の製造方法が適用される厚板の製造ラインを示す図である。It is a figure which shows the production line of the thick board with which the manufacturing method of the thick board of this invention is applied. 本発明にかかる厚板の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the thick board concerning this invention. 設定炉温の決定方法のフローチャートである。It is a flowchart of the determination method of setting furnace temperature.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明は、厚板の熱間圧延工程において、先行被圧延材の圧延方向に沿った端面の形状から、後続の厚板製造にフィードバックをかけてスラブの加熱条件を変更し、まくれ込み量を減少させる厚板の製造方法に関するものである。   In the hot rolling process of the thick plate, the present invention changes the heating condition of the slab by changing the shape of the end face along the rolling direction of the preceding material to be rolled back to the subsequent thick plate production, and the amount of rolling up The present invention relates to a method of manufacturing a plank to be reduced.

厚板の製造におけるまくれ込みの発生は、加熱したスラブの位置による温度のばらつき(温度ムラ)に起因する。スラブの表面(以下において、「上面」ということがある。)・裏面(以下において、「下面」ということがある。)で温度に差がある場合、温度の高い面の方が圧延による延びが大きく、結果として圧延後の上下面に形状の差、すなわち大きなまくれ込み量の差(以下において、「まくれ込み差」ということがある。)が生じる。   The occurrence of curling in the production of thick plates is caused by temperature variation (temperature unevenness) depending on the position of the heated slab. When there is a difference in temperature between the surface of the slab (hereinafter sometimes referred to as the “upper surface”) and the rear surface (hereinafter sometimes referred to as the “lower surface”), the surface with the higher temperature is stretched by rolling. As a result, there is a difference in shape between the upper and lower surfaces after rolling, that is, a large difference in turning amount (hereinafter, referred to as “turning difference” in some cases).

図1にまくれ込みの一例を示す。図1は、端面形状を測定される先行被圧延材Xの断面図であり、先行被圧延材Xの板幅方向一端側のみを抽出している。図1の上下方向が板厚方向、左右方向が板幅方向、図1の上側が上面側、下側が下面側である。図1に示す例では、相対的にスラブの上面側の温度が高いため、先行被圧延材Xの板厚方向の中心よりも上面側に位置している凸部のまくれ込み量d1(表面側のまくれ込み量d1)が、先行被圧延材Xの板厚方向の中心よりも下面側に位置している凸部のまくれ込み量d2(裏面側のまくれ込み量d2)よりも大きい。図1の例では、d1−d2がまくれ込み差である。   FIG. 1 shows an example of turning up. FIG. 1 is a cross-sectional view of the preceding rolled material X whose end face shape is measured, and only the one end side in the plate width direction of the preceding rolled material X is extracted. The vertical direction in FIG. 1 is the plate thickness direction, the horizontal direction is the plate width direction, the upper side in FIG. 1 is the upper surface side, and the lower side is the lower surface side. In the example shown in FIG. 1, since the temperature on the upper surface side of the slab is relatively high, the amount of curling up d1 (surface side) of the convex portion positioned on the upper surface side from the center in the thickness direction of the preceding rolled material X The amount of curling up d1) is larger than the amount of curling up d2 (the amount of curling up on the back side d2) of the convex part located on the lower surface side of the center of the preceding rolled material X in the plate thickness direction. In the example of FIG. 1, d1-d2 is a turn-up difference.

大きい方のまくれ込み量(図1の例ではd1)を小さくすることによってまくれ込み差を小さくすれば、歩留りの向上が期待できる。まくれ込み差を小さくするためには、単純にはスラブ上下面の温度差を小さくすれば良い。しかし、空気と接する上面側と製造ラインと接する下面側とでは伝熱度が異なるので、必然的に温度差が生じる。これを避けるためには、例えば特許文献1のように、加熱炉の上方又は下方にあるバーナーの加熱量を調整して、予め加熱炉内でスラブの上下面に温度差をつけてスラブを加熱すれば良い。   If the larger turn-up amount (d1 in the example of FIG. 1) is reduced to reduce the turn-up difference, an improvement in yield can be expected. In order to reduce the turn-up difference, the temperature difference between the upper and lower surfaces of the slab is simply reduced. However, since the degree of heat transfer is different between the upper surface side in contact with air and the lower surface side in contact with the production line, a temperature difference inevitably occurs. In order to avoid this, as in Patent Document 1, for example, the heating amount of the burner above or below the heating furnace is adjusted, and the slab is heated in advance by making a temperature difference between the upper and lower surfaces of the slab in the heating furnace. Just do it.

一方、加熱炉内のスラブには、スキッド(スラブの移動装置)からの抜熱がある。すなわち、スキッドと接触するスラブ下面部位におけるスラブの温度は、他の部位(スキッドと接触しないスラブ下面部位及びスラブ上面)におけるスラブの温度より低くなる。このため、均一的に上下面の温度差をつけることは難しい。   On the other hand, the slab in the heating furnace has heat removal from the skid (slab moving device). That is, the temperature of the slab in the lower surface portion of the slab that comes into contact with the skid is lower than the temperature of the slab in other portions (the lower surface portion of the slab that does not come into contact with the skid and the upper surface of the slab). For this reason, it is difficult to make a temperature difference between the upper and lower surfaces uniformly.

そこで、本願発明では、スラブ加熱炉のスラブ下面側のバーナーを適切に制御し、特に先行被圧延材の温度分布に基づいて後続スラブの上下面へ適切な温度差を付与することで、まくれ込み量及びまくれ込み差の小さい厚板を製造することが可能な厚板の製造方法を提供する。   Therefore, in the present invention, the burner on the slab lower surface side of the slab heating furnace is appropriately controlled, and in particular by applying an appropriate temperature difference to the upper and lower surfaces of the subsequent slab based on the temperature distribution of the preceding rolled material, Provided is a method for producing a thick plate capable of producing a thick plate having a small amount and a small difference in turning up.

以下では、特に厚鋼板を製造する場合を例にとり、本発明について詳述する。   In the following, the present invention will be described in detail by taking as an example the case of producing a thick steel plate.

前述のように、厚鋼板の製造は、スラブに(1)成形圧延工程、(2)幅出し圧延工程、及び、(3)仕上圧延工程を加えることにより最終製品である厚鋼板とする。スラブは、例えば、長さ5000mm、幅2500mm、厚み250mm程度のものが用いられる。このとき、一連の圧延は、製造能率及び圧延能力の観点から、粗圧延機及び通常の仕上圧延機で行われ、上記(1)(2)及び上記(3)の一部を粗圧延機で、上記(3)の残りを仕上圧延機で行うことが多い。   As described above, the production of the thick steel plate is performed by adding (1) a forming and rolling step, (2) a tenter rolling step, and (3) a finish rolling step to the slab to obtain a thick steel plate as a final product. For example, a slab having a length of about 5000 mm, a width of 2500 mm, and a thickness of about 250 mm is used. At this time, a series of rolling is performed by a rough rolling mill and a normal finish rolling mill from the viewpoint of production efficiency and rolling capacity, and a part of the above (1), (2) and (3) is performed by a rough rolling mill. In many cases, the rest of the above (3) is performed by a finishing mill.

本発明では、厚板の熱間圧延工程の途中において、先行被圧延材の圧延方向に沿う端面の形状を測定する。この際、端面形状の測定は、上記(2)若しくは(3)の途中又は終了後に行えば良い。圧延途中・終了後の何れの測定でも良いのは、圧延によるまくれ込みの成長傾向は、上下面とも、圧延途中で常に変わらないためである。   In the present invention, the shape of the end face along the rolling direction of the preceding rolled material is measured during the hot rolling process of the thick plate. At this time, the measurement of the end face shape may be performed during or after the above (2) or (3). The reason why the measurement may be performed during or after rolling is that the growth tendency of rolling up due to rolling does not always change during the rolling on both the upper and lower surfaces.

本発明において、端面形状の測定はレーザー距離計等の端面形状測定器(端面形状測定手段)により行えばよい。端面形状測定器は、公知のものを適宜用いることができる。例えば、端面がダブルバルジ形状である先行被圧延材の端面に対しレーザーを走査すれば、端面形状のプロフィールを出力することができる。   In the present invention, the end face shape may be measured by an end face shape measuring instrument (end face shape measuring means) such as a laser distance meter. A well-known thing can be used suitably for an end surface shape measuring device. For example, if a laser is scanned with respect to the end face of the preceding rolled material whose end face has a double bulge shape, a profile having an end face shape can be output.

図2に、本発明の厚板の製造方法が適用される厚板の製造ライン10を簡略化して示す。図2に示すように、厚板の製造ライン10は、加熱炉1、粗圧延機列2、及び、仕上圧延機列3を備え、粗圧延機列2と仕上圧延機列3との間に端面形状測定手段4が配置されている。この端面形状測定手段4は、レーザーを走査することにより被圧延材の端面形状を測定する機器であり、端面形状測定手段4による測定結果は、制御装置5へと送られる。制御装置5は、端面形状を測定された先行被圧延材の、表面側のまくれ込み量d1と裏面側のまくれ込み量d2との大小関係を判断し、その判断結果に基づいて、後続スラブを加熱する加熱炉1の動作を制御する機器である。具体的に、d1>d2である場合、加熱炉1の動作は、制御装置5によって、加熱炉1におけるスラブの裏面側の加熱量を増大させるように制御される。これに対し、d1<d2である場合には、加熱炉1の動作が、制御装置5によって、加熱炉1におけるスラブの裏面側の加熱量を低減させるように制御され、d1=d2である場合には、制御装置5によって、先行被圧延材を加熱したときの加熱炉1の動作条件を維持するように、加熱炉1の動作が制御される。   FIG. 2 shows a simplified plank production line 10 to which the plank production method of the present invention is applied. As shown in FIG. 2, the thick plate production line 10 includes a heating furnace 1, a rough rolling mill row 2, and a finishing rolling mill row 3, and is provided between the rough rolling mill row 2 and the finishing rolling mill row 3. End face shape measuring means 4 is arranged. The end face shape measuring means 4 is a device that measures the end face shape of the material to be rolled by scanning a laser, and the measurement result by the end face shape measuring means 4 is sent to the control device 5. The control device 5 determines the magnitude relationship between the front side roll-up amount d1 and the back side turn-up amount d2 of the preceding rolled material whose end face shape has been measured, and the subsequent slab is determined based on the determination result. It is an apparatus for controlling the operation of the heating furnace 1 for heating. Specifically, when d1> d2, the operation of the heating furnace 1 is controlled by the control device 5 so as to increase the heating amount on the back surface side of the slab in the heating furnace 1. On the other hand, when d1 <d2, the operation of the heating furnace 1 is controlled by the control device 5 so as to reduce the heating amount on the back side of the slab in the heating furnace 1, and d1 = d2. First, the operation of the heating furnace 1 is controlled by the control device 5 so as to maintain the operating conditions of the heating furnace 1 when the preceding material to be rolled is heated.

図3に、本発明にかかる厚板の製造方法のフローチャートを示す。以下、図1〜図3を参照しつつ、本発明について説明を続ける。   FIG. 3 shows a flowchart of a method for manufacturing a thick plate according to the present invention. Hereinafter, the present invention will be described with reference to FIGS.

図3に示すように、本発明にかかる厚板の製造方法は、先行被圧延材の端面形状を測定する端面形状測定工程(S1)と、先行被圧延材の表面側のまくれ込み量d1が先行被圧延材の裏面側のまくれ込み量d2よりも大きいか否かを判断する第1判断工程(S2)と、先行被圧延材の表面側のまくれ込み量d1が先行被圧延材の裏面側のまくれ込み量d2よりも小さいか否かを判断する第2判断工程(S3)と、を有している。本発明の厚板の製造方法において、工程S2で肯定判断がなされた場合には、加熱炉1におけるスラブの裏面側の加熱量を上げる裏面側加熱量増大工程(S4)が行われ、後続スラブは当該工程S4で制御された加熱炉1で加熱された後、圧延される。これに対し、工程S2で否定判断がなされた場合には、工程S3が行われる。工程S3で肯定判断がなされた場合には、加熱炉1におけるスラブの裏面側の加熱量を下げる裏面側加熱量低減工程(S5)が行われ、後続スラブは当該工程S5で制御された加熱炉1で加熱された後、圧延される。これに対し、工程S3で否定判断がなされた場合は、d1=d2であることを意味する。この場合には、先行被圧延材を加熱したときの加熱炉1の動作条件(加熱量)を維持する裏面側加熱量維持工程(S6)が行われ、後続スラブは当該工程S6で裏面側の加熱量が維持された加熱炉1で加熱された後、圧延される。   As shown in FIG. 3, the manufacturing method of the thick plate according to the present invention includes an end face shape measuring step (S1) for measuring the end face shape of the preceding rolled material, and a turn-up amount d1 on the surface side of the preceding rolled material. A first determination step (S2) for determining whether or not the amount d2 of turning on the back side of the preceding rolled material is larger, and the amount of turning d1 on the surface side of the preceding rolled material is the back side of the preceding rolled material A second determination step (S3) for determining whether or not the amount of curling up is smaller than d2. In the thick plate manufacturing method of the present invention, when an affirmative determination is made in step S2, a back surface side heating amount increasing step (S4) for increasing the heating amount on the back surface side of the slab in the heating furnace 1 is performed, and the subsequent slab Is heated in the heating furnace 1 controlled in the step S4 and then rolled. On the other hand, if a negative determination is made in step S2, step S3 is performed. When an affirmative determination is made in step S3, a back surface side heating amount reduction step (S5) for reducing the heating amount on the back surface side of the slab in the heating furnace 1 is performed, and the subsequent slab is a heating furnace controlled in the step S5. After being heated at 1, it is rolled. On the other hand, if a negative determination is made in step S3, it means that d1 = d2. In this case, a back surface side heating amount maintaining step (S6) for maintaining the operating condition (heating amount) of the heating furnace 1 when the preceding material to be rolled is heated is performed, and the subsequent slab is formed on the back surface side in the step S6. After being heated in the heating furnace 1 in which the heating amount is maintained, it is rolled.

すなわち、本発明では、まくれ込みの傾向が表面側で大きい場合であっても、裏面側で大きい場合であっても、スラブ下面側に配されたバーナーの加熱量制御を行う。このような制御を行うことで、スラブ加熱炉下方に配置されているスキッドを含めてスラブの温度調整を行うことができるので、特にスラブの下面の温度の均一性を高めることができる。そして、先行被圧延材の端面形状からのフィードバックによって後続のスラブを加熱するバーナーの加熱量を制御することで、後続被圧延材のまくれ込み量を減少することが可能となる。   That is, in the present invention, the heating amount control of the burner disposed on the lower surface side of the slab is performed regardless of whether the tendency to curl up is large on the front surface side or on the back surface side. By performing such control, it is possible to adjust the temperature of the slab including the skid disposed below the slab heating furnace, so that the uniformity of the temperature on the lower surface of the slab can be particularly improved. Then, by controlling the heating amount of the burner that heats the subsequent slab by feedback from the end face shape of the preceding rolled material, it is possible to reduce the amount of rolling up of the subsequent rolled material.

図4に設定炉温の決定方法の一例についてのフローチャートを示す。通常、加熱炉は、予熱帯、第1加熱帯、第2加熱帯、及び、均熱帯を有し、各帯からの抽出温度を考慮して各帯の上下面のバーナーの加熱量を同じく設定するのが一般的である。これに対し、本願発明では、図4に示すように、各帯の上面側のバーナーの加熱量Cu(i)は各帯の抽出温度を考慮して決定する一方、各帯の下面側のバーナーの加熱量Cd(i)は、先行被圧延材の端面形状の結果をフィードバックした上で、上面側のバーナーの加熱量Cu(i)を補正することにより決定する。   FIG. 4 shows a flowchart of an example of a method for determining the set furnace temperature. Usually, the heating furnace has a pre-tropical zone, a first heating zone, a second heating zone, and a soaking zone, and the heating amount of the burners on the upper and lower surfaces of each zone is set in consideration of the extraction temperature from each zone. It is common to do. In contrast, in the present invention, as shown in FIG. 4, the heating amount Cu (i) of the burner on the upper surface side of each band is determined in consideration of the extraction temperature of each band, while the burner on the lower surface side of each band. The heating amount Cd (i) is determined by correcting the heating amount Cu (i) of the burner on the upper surface side after feeding back the result of the end face shape of the preceding rolled material.

本発明において、補正量(図4におけるΔC)は、加熱量を補正する前のスラブについて温度計算を行い、その結果から決定すれば良い。具体的には、スラブ断面をメッシュ切りし、各メッシュにおける伝熱計算を行った結果から決定すれば良い。   In the present invention, the correction amount (ΔC in FIG. 4) may be determined from the result of performing temperature calculation on the slab before correcting the heating amount. Specifically, the slab cross section may be cut from a mesh and determined from the result of heat transfer calculation in each mesh.

実際のスラブ加熱では、スキッドから多くの抜熱がある。特に、固定スキッドは移動スキッドに比べスラブとの接触時間が長く、抜熱量が多くなる傾向にある。そのため、固定スキッドからの抜熱量は、スラブ下面の温度の均一性を悪化させる大きな一因となる。したがって、本発明では、スキッド、とりわけ固定スキッドからの伝熱(抜熱)を考慮した上で、補正量を決めることが好ましい。   In actual slab heating, there is a lot of heat removal from the skid. In particular, the fixed skid has a longer contact time with the slab than the moving skid, and the amount of heat removal tends to increase. Therefore, the amount of heat removed from the fixed skid is a major factor that deteriorates the temperature uniformity on the lower surface of the slab. Therefore, in the present invention, it is preferable to determine the correction amount in consideration of heat transfer (heat removal) from the skid, particularly the fixed skid.

スラブ断面全体について伝熱計算を行うことで、より正確なスラブの温度分布を計算できる。なお、スラブとスキッドとの接触位置が左右対称であれば、スラブ断面の半分について伝熱計算を行えば十分である。   A more accurate slab temperature distribution can be calculated by performing heat transfer calculations for the entire slab cross section. If the contact position between the slab and the skid is symmetrical, it is sufficient to perform heat transfer calculation for half of the slab cross section.

まくれ込みには、特にスラブ端部におけるスラブ上下面の温度分布が大きく関係する。そのため、スラブ端部の温度分布結果に基づいて、補正量、すなわちスラブ下面側における加熱量を決定すると良い。本発明では、例えば、スラブ端面の温度勾配や、スラブ端部における上面温度と下面温度との差に基づいてまくれ込みが最小になるように、補正量を決定することができる。本発明において、補正量は、スラブ下面側の加熱量を仮定したシミュレーション計算の結果から決定しても良いし、すでに得ている経験値から決定しても良い。本発明では、以上のように、補正量を決定し、スラブ下面側の加熱量を決定すれば良い。   In particular, the temperature distribution of the upper and lower surfaces of the slab at the end of the slab is greatly related to turning up. Therefore, the correction amount, that is, the heating amount on the lower surface side of the slab may be determined based on the temperature distribution result at the slab end. In the present invention, for example, the correction amount can be determined based on the temperature gradient of the slab end surface or the difference between the upper surface temperature and the lower surface temperature at the slab end portion so that the turn-up is minimized. In the present invention, the correction amount may be determined from the result of simulation calculation assuming the heating amount on the lower surface side of the slab, or may be determined from the empirical value already obtained. In the present invention, as described above, the correction amount is determined, and the heating amount on the slab lower surface side may be determined.

本発明に関する上記説明では、粗圧延機列2と仕上圧延機列3との間に端面形状測定手段4が配置される形態を例示したが、本発明は当該形態に限定されるものではない。先行被圧延材の端面形状を測定する端面形状測定手段は、粗圧延機列の中や仕上圧延機列の中に配置されていても良い。   In the above description related to the present invention, the form in which the end face shape measuring means 4 is arranged between the rough rolling mill row 2 and the finishing rolling mill row 3 is exemplified, but the present invention is not limited to this form. The end face shape measuring means for measuring the end face shape of the preceding material to be rolled may be arranged in the rough rolling mill row or the finish rolling mill row.

長さ4900mm、幅2400mm、厚み240mmのスラブを加熱炉にて狙い温度1100℃としてスラブ加熱し、デスケーラでスラブ表面に生成したスケールを除去した後、成形圧延工程及び幅出し圧延工程を行った。幅出し圧延工程後の被圧延材の狙いの厚みは142mmとした。幅出し圧延工程後、レーザー距離計にて先行被圧延材の端面形状を測定した(端面形状測定工程)。その結果、先行被圧延材は、上面側のまくれ込み量d1が20mm、下面側のまくれ込み量d2が6mm、まくれ込み差が14mmであり、上面側のまくれ込み量d1が下面側のまくれ込み量d2に比べて大きいプロフィールとなった(第1判断工程)。   A slab having a length of 4900 mm, a width of 2400 mm, and a thickness of 240 mm was slab-heated at a target temperature of 1100 ° C. in a heating furnace, the scale formed on the slab surface was removed by a descaler, and then a forming and rolling step and a tense rolling step were performed. The target thickness of the material to be rolled after the tentering rolling step was 142 mm. After the tentering rolling step, the end face shape of the preceding rolled material was measured with a laser distance meter (end face shape measuring step). As a result, the pre-rolled material has an upper surface side turn-up amount d1 of 20 mm, a lower face side turn-up amount d2 of 6 mm, and a turn-up difference of 14 mm. The profile was larger than the amount d2 (first determination step).

そこで、スラブ下面側に存在する加熱炉中のスキッドからの抜熱量を考慮し、メッシュ切りしたスラブ断面の温度分布の計算を行ったところ、スラブ端部の上面温度は、スラブ端部の下面温度よりも50℃高いことがわかった。そのため、伝熱計算を行い、スラブ下面側がスラブ上面側に比べて25℃高くなるようにスラブ下面側のバーナーの加熱量を修正することで、後続するスラブの加熱温度を修正した(裏面側加熱量増大工程)。   Therefore, considering the amount of heat removed from the skid in the heating furnace existing on the bottom surface of the slab, the temperature distribution of the cross section of the slab cut by mesh was calculated, and the top surface temperature of the slab end was the bottom surface temperature of the slab end. It was found to be 50 ° C higher than. Therefore, heat transfer calculation was performed, and the heating temperature of the subsequent slab was corrected by correcting the heating amount of the burner on the slab lower surface side so that the lower surface side of the slab was 25 ° C. higher than the upper surface side of the slab (backside heating) Volume increasing step).

このようにしてスラブ下面側のバーナーの加熱量を修正した結果、最終的に厚み142mmまで圧延した後続の被圧延材は、上面側のまくれ込み量が11mm、下面側のまくれ込み量が4mmであり、まくれ込み差は7mmとなった。すなわち、本発明によれば、まくれ込み量及びまくれ込み差を減少させることができた。この結果、歩留まりよく厚鋼板を製造することができた。   As a result of correcting the heating amount of the burner on the lower surface side of the slab in this way, the subsequent rolled material finally rolled to a thickness of 142 mm has an upper surface amount of 11 mm and a lower surface amount of 4 mm. There was a difference of 7 mm. That is, according to the present invention, the amount of curling up and the curling up difference can be reduced. As a result, it was possible to manufacture a thick steel plate with a high yield.

本発明は、厚鋼板の製造に利用することができる。   The present invention can be used for manufacturing thick steel plates.

d1…表面側のまくれ込み量
d2…裏面側のまくれ込み量
X…先行被圧延材
1…加熱炉
2…粗圧延機列
3…仕上圧延機列
4…端面形状測定手段
5…制御装置
10…厚板の製造ライン
d1 ... the amount of turn up on the front side d2 ... the amount of turn up on the back side X ... preceding rolled material 1 ... heating furnace 2 ... rough rolling mill row 3 ... finish rolling mill row 4 ... end face shape measuring means 5 ... control device 10 ... Thick plate production line

Claims (2)

加熱炉にてスラブを加熱した後、熱間圧延して製造する厚板の熱間圧延工程において、端面がダブルバルジ形状である先行被圧延材の圧延方向に沿う前記端面の形状を測定し、前記先行被圧延材の表面側のまくれ込み量d1が前記先行被圧延材の裏面側のまくれ込み量d2よりも大きい場合には、前記加熱炉における前記スラブの裏面側の加熱量を上げて、前記先行被圧延材の表面側のまくれ込み量d1が前記先行被圧延材の裏面側のまくれ込み量d2よりも小さい場合には、前記加熱炉における前記スラブの裏面側の加熱量を下げて、後続の前記スラブを加熱した後、圧延することを特徴とする、厚板の製造方法。 After heating the slab in a heating furnace, in the hot rolling step of the thick plate manufactured by hot rolling, the shape of the end surface along the rolling direction of the preceding rolled material whose end surface is a double bulge shape is measured, When the amount d1 of turning up on the front side of the preceding rolled material is larger than the amount of turning up d2 on the back side of the preceding rolled material, increasing the amount of heating on the back side of the slab in the heating furnace, When the amount of curling up d1 on the front side of the preceding rolled material is smaller than the amount of curling up d2 on the back side of the preceding rolled material, the heating amount on the back side of the slab in the heating furnace is decreased, A method for producing a thick plate, comprising heating the subsequent slab and then rolling the slab. 前記加熱炉における前記スラブの裏面側の加熱量は、前記先行被圧延材の断面における温度分布計算の結果に基づいて決定されることを特徴とする、請求項1に記載の厚板の製造方法。 The method for manufacturing a thick plate according to claim 1, wherein the amount of heating on the back side of the slab in the heating furnace is determined based on a result of temperature distribution calculation in a cross section of the preceding rolled material. .
JP2009234122A 2009-10-08 2009-10-08 Thick plate manufacturing method Expired - Fee Related JP5707687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009234122A JP5707687B2 (en) 2009-10-08 2009-10-08 Thick plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234122A JP5707687B2 (en) 2009-10-08 2009-10-08 Thick plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2011079026A true JP2011079026A (en) 2011-04-21
JP5707687B2 JP5707687B2 (en) 2015-04-30

Family

ID=44073643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234122A Expired - Fee Related JP5707687B2 (en) 2009-10-08 2009-10-08 Thick plate manufacturing method

Country Status (1)

Country Link
JP (1) JP5707687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114643288A (en) * 2022-03-25 2022-06-21 安阳钢铁股份有限公司 Method for improving rolling warping of low-temperature non-oriented silicon steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210113A (en) * 1988-02-16 1989-08-23 Sumitomo Metal Ind Ltd Hot rolling method preventing whole perripheral flaws
JPH08112611A (en) * 1994-10-13 1996-05-07 Sumitomo Metal Ind Ltd Hot rolling method for preventing peripheral flaw of steel sheet
JP2004291013A (en) * 2003-03-26 2004-10-21 Sumitomo Metal Ind Ltd Method for producing thick steel plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210113A (en) * 1988-02-16 1989-08-23 Sumitomo Metal Ind Ltd Hot rolling method preventing whole perripheral flaws
JPH08112611A (en) * 1994-10-13 1996-05-07 Sumitomo Metal Ind Ltd Hot rolling method for preventing peripheral flaw of steel sheet
JP2004291013A (en) * 2003-03-26 2004-10-21 Sumitomo Metal Ind Ltd Method for producing thick steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114643288A (en) * 2022-03-25 2022-06-21 安阳钢铁股份有限公司 Method for improving rolling warping of low-temperature non-oriented silicon steel

Also Published As

Publication number Publication date
JP5707687B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
CN104511484B (en) The micro-middle wave board-shape control method of a kind of hot-strip
JP2015511533A (en) Method for producing hot rolled silicon steel
US9566625B2 (en) Apparatus for cooling hot-rolled steel sheet
JP3892834B2 (en) Thick steel plate cooling method
EP2929949B1 (en) Device for cooling hot-rolled steel sheet
JP2019038035A (en) Hat-shaped steel sheet pile, manufacturing method of hat-shaped steel sheet pile, and manufacturing facility therefor
JP5707687B2 (en) Thick plate manufacturing method
JP6897609B2 (en) Hot rolling equipment and hot-rolled steel sheet manufacturing method
KR101462399B1 (en) Hot Plate Shape Controller
JP5310964B1 (en) Steel plate manufacturing method
JP2013180335A (en) Method of straightening steel sheet with roller leveler and roller leveler straightener
KR101076199B1 (en) Method for Manufacturing Thick Steel Plate
KR101197999B1 (en) Method of apparatus for fabricating steel plate
JP5673370B2 (en) Method for cooling hot-rolled steel sheet
JP2002172411A (en) Method and apparatus for heat-treating thick steel plate
JP2006272439A (en) Production method of thick steel strip and its manufacturing apparatus
JP2003293030A (en) Method for cooling steel plate
TWI516317B (en) Steel sheet manufacturing method
KR101460284B1 (en) Device and method for levelling strip
JP4609596B2 (en) Thick steel plate manufacturing method and thick steel plate reverse rolling mill
KR20100074714A (en) Hot rolling apparatus and method for leveling hot strip with high speed
JP2022107997A (en) Manufacturing method of steel sheet pile and steel sheet pile
JP4998731B2 (en) Rolling roll grinding method
KR20190011390A (en) Hot rolling method for steel plate
KR101485663B1 (en) Control method of continuous casting slab width

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R151 Written notification of patent or utility model registration

Ref document number: 5707687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees