JP2009177078A - Mounting structure - Google Patents

Mounting structure Download PDF

Info

Publication number
JP2009177078A
JP2009177078A JP2008016526A JP2008016526A JP2009177078A JP 2009177078 A JP2009177078 A JP 2009177078A JP 2008016526 A JP2008016526 A JP 2008016526A JP 2008016526 A JP2008016526 A JP 2008016526A JP 2009177078 A JP2009177078 A JP 2009177078A
Authority
JP
Japan
Prior art keywords
bump electrode
bump
mountain
mounting structure
mems chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008016526A
Other languages
Japanese (ja)
Inventor
Satoshi Ohara
聡 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008016526A priority Critical patent/JP2009177078A/en
Publication of JP2009177078A publication Critical patent/JP2009177078A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounting structure in which bump electrodes of two electronic components are joined to each other by a small load and sufficient mechanical strength. <P>SOLUTION: A mounting structure 100 has an MEMS (Micro Electro Mechanical System) chip 110 and a wiring substrate 130. The MEMS chip 110 has a bump electrode 150A, and the wiring substrate 130 has a bump electrode 150B. The bump electrodes 150A and 150B are arranged at mutually corresponding positions. The bump electrodes 150A and 150B have saw-tooth shaped projections 152A and 152B, respectively. The MEMS chip 110 and the wiring substrate 130 are compressed to each other while being that the bump electrodes 150A and 150B are located to face each other. This causes the saw-tooth shaped projections 152A and 152B to contact with each other and plastically deformed, whereby the bump electrodes 150A and 150B are joined to each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、実装構造に関する。   The present invention relates to a mounting structure.

電子部品の実装構造および実装方法に関して、例えば、特開平8−70019号公報に示されるように、二つの電子部品にそれぞれバンプ電極を設け、少なくとも一方の電子部品のバンプ電極にエッチングによって微細な凹凸を形成し、二つの電子部品のバンプ電極同士が互いに対向するように二つの電子部品を配置し、二つの電子部品を加圧して接続する技術がある。   Regarding the mounting structure and mounting method of an electronic component, for example, as shown in JP-A-8-70019, bump electrodes are provided on two electronic components, and fine bumps are formed on the bump electrode of at least one electronic component by etching. Is formed, two electronic components are arranged so that the bump electrodes of the two electronic components face each other, and the two electronic components are pressurized and connected.

この技術によれば、一方の電子部品のバンプ電極に他方の電子部品のバンプ電極の凸部が食い込むので、アンカーリング効果(投錨効果)によって両バンプ電極が接続される。したがって、低温での実装が可能であり、電子部品を破壊することなく接続することができる。また、バンプ電極で接合されるため、ハンダを使った実装方法と比較して、バンプ電極をファインピッチ化することができる。
特開平8−70019号公報
According to this technique, since the bumps of the bump electrode of the other electronic component bite into the bump electrode of one electronic component, both bump electrodes are connected by the anchoring effect (throwing effect). Therefore, it can be mounted at a low temperature and can be connected without destroying the electronic component. Moreover, since it joins by a bump electrode, compared with the mounting method using solder, a bump electrode can be made into fine pitch.
JP-A-8-70019

上記先行技術では、バンプ電極に形成された微細な凹凸形状が制御されていないため、互いに対向するバンプ電極に形成された凸部同士が接触し押圧されて変形することにより接合される面積は、バンプ電極の接合面の面積に比べて非常に小さくなってしまう。接合時の荷重を大きくすることによって、凸部同士の接触・押圧でなくとも十分な接合強度を得る手法が考えられるが、この手法では、大きな荷重をかけることにより電子部品にダメージを与えてしまうおそれがある。   In the above prior art, since the fine uneven shape formed on the bump electrode is not controlled, the areas joined by pressing and deforming the convex portions formed on the bump electrodes facing each other, The area of the bonding surface of the bump electrode is very small. By increasing the load during bonding, a method to obtain sufficient bonding strength even if it is not contact / press between convex parts can be considered, but this method damages electronic components by applying a large load There is a fear.

本発明は、このような実状を考慮して成されたものであり、その目的は、二つの電子部品のバンプ電極同士が小さい荷重によって十分な機械的強度をもって接合された実装構造を提供することである。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a mounting structure in which bump electrodes of two electronic components are joined with a sufficient mechanical strength by a small load. It is.

本発明による実装構造は、少なくとも一つの第一のバンプ電極を有する半導体チップと、少なくとも一つの第二のバンプ電極を有する基板とを有している。前記第一のバンプ電極と前記第二のバンプ電極が互いに機械的かつ電気的に接合されており、これにより、前記半導体チップと前記基板とが互いに機械的かつ電気的に接合されている。前記第一と第二のバンプ電極のおのおのは、互いに接合される前に、一方向に延びている少なくとも一本の山型突起を有している。前記第一と第二のバンプ電極は、それらの前記山型突起が少なくとも部分的に互いに対向するように配置されて互いに押圧されたことによりそれらの前記山型突起が互いに塑性変形したことによって互いに機械的かつ電気的に接合されている。   The mounting structure according to the present invention includes a semiconductor chip having at least one first bump electrode and a substrate having at least one second bump electrode. The first bump electrode and the second bump electrode are mechanically and electrically bonded to each other, whereby the semiconductor chip and the substrate are mechanically and electrically bonded to each other. Each of the first and second bump electrodes has at least one mountain-shaped protrusion extending in one direction before being bonded to each other. The first and second bump electrodes are arranged such that their chevron projections are arranged at least partially opposite each other and pressed against each other, so that the chevron projections are plastically deformed with each other. It is mechanically and electrically joined.

本発明によれば、二つの電子部品のバンプ電極同士が小さい荷重によって十分な機械的強度をもって接合された実装構造が提供される。   According to the present invention, a mounting structure is provided in which bump electrodes of two electronic components are joined with a sufficient mechanical strength by a small load.

以下、図面を参照しながら本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態による実装構造を示す側面図であり、図2は本発明の一実施形態による実装構造を示す斜視図である。図1と図2のいずれも、半導体チップと基板とが互いに接合される前の状態を示している。   FIG. 1 is a side view showing a mounting structure according to an embodiment of the present invention, and FIG. 2 is a perspective view showing the mounting structure according to an embodiment of the present invention. 1 and 2 both show a state before the semiconductor chip and the substrate are bonded to each other.

図1と図2に示すように、実装構造100は、半導体チップとしてのMEMSチップ110と、基板としての配線基板130とを有している。MEMSチップ110は例えばSiから作製され、配線基板130は例えばSiOもしくは石英から作製される。MEMSチップ110は半導体チップの一例であり、半導体チップはMEMSチップに限定されない。配線基板130は基板の一例であり、基板は配線基板に限定されない。配線基板130は例えばMEMS基板であってよい。 As shown in FIGS. 1 and 2, the mounting structure 100 includes a MEMS chip 110 as a semiconductor chip and a wiring board 130 as a substrate. The MEMS chip 110 is made of, for example, Si, and the wiring board 130 is made of, for example, SiO 2 or quartz. The MEMS chip 110 is an example of a semiconductor chip, and the semiconductor chip is not limited to a MEMS chip. The wiring board 130 is an example of a board, and the board is not limited to the wiring board. The wiring board 130 may be a MEMS board, for example.

MEMSチップ110は、中心部付近にMEMSチップ側機能部112を有している。MEMSチップ110は、少なくとも一つのバンプ電極150Aを有している。例えば、MEMSチップ110は、複数のバンプ電極150Aを有している。MEMSチップ110は、これに限らないが、例えば四つバンプ電極150Aを有している。バンプ電極150Aは、MEMSチップ側機能部112の周辺に設けられている。   The MEMS chip 110 has a MEMS chip side functional unit 112 in the vicinity of the center. The MEMS chip 110 has at least one bump electrode 150A. For example, the MEMS chip 110 has a plurality of bump electrodes 150A. The MEMS chip 110 includes, for example, four bump electrodes 150A, although not limited thereto. The bump electrode 150A is provided around the MEMS chip side functional unit 112.

配線基板130は、MEMSチップ側機能部112に対応する位置に配線基板側機能部132を有している。配線基板130は、少なくとも一つのバンプ電極150Bを有している。例えば、配線基板130は、複数のバンプ電極150Bを有している。配線基板130は、これに限らないが、例えば四つのバンプ電極150Bを有している。バンプ電極150Bは、MEMSチップ側機能部112の周辺に設けられている。   The wiring board 130 has a wiring board side functional unit 132 at a position corresponding to the MEMS chip side functional unit 112. The wiring board 130 has at least one bump electrode 150B. For example, the wiring board 130 has a plurality of bump electrodes 150B. For example, the wiring board 130 includes four bump electrodes 150B. The bump electrode 150B is provided around the MEMS chip-side functional unit 112.

バンプ電極150Aとバンプ電極150Bは互いに対応する位置に設けられている。具体的には、バンプ電極150Aとバンプ電極150Bは、MEMSチップ110と配線基板130とが適切に対向して配置された状態において、少なくとも部分的に対向するように、好ましくは全体的に対向するように設けられている。   The bump electrode 150A and the bump electrode 150B are provided at positions corresponding to each other. Specifically, the bump electrode 150A and the bump electrode 150B are preferably opposed to each other at least partially so that the MEMS chip 110 and the wiring board 130 are appropriately opposed to each other. It is provided as follows.

バンプ電極150Aとバンプ電極150Bは同じ構造体であり、同様の形状をしている。続く説明では、バンプ電極150Aとバンプ電極150Bを区別する必要がないときは、両者を代表的に単にバンプ電極150と呼ぶ。バンプ電極150の詳細形状を図3に示す。図3に示すように、バンプ電極150は、MEMSチップ110や配線基板130に固定された面の反対側に、少なくとも一つの山型突起152を有している。例えば、バンプ電極150は、複数の山型突起152を有している。バンプ電極150は、これに限らないが、例えば五つの山型突起152を有している。山型突起152は、これに限らないが、例えば三角形の断面を有している。これに限らないが、一例では、バンプ電極150は、全体の外形が100μm程度、高さが50μm程度であり、五つの山型突起152が20μmピッチで配置され、山型突起152の高さはいずれも20μmである。   The bump electrode 150A and the bump electrode 150B are the same structure and have the same shape. In the following description, when it is not necessary to distinguish between the bump electrode 150A and the bump electrode 150B, both are typically referred to simply as the bump electrode 150. The detailed shape of the bump electrode 150 is shown in FIG. As shown in FIG. 3, the bump electrode 150 has at least one mountain-shaped protrusion 152 on the opposite side of the surface fixed to the MEMS chip 110 or the wiring substrate 130. For example, the bump electrode 150 has a plurality of mountain-shaped protrusions 152. The bump electrode 150 has, for example, five mountain-shaped protrusions 152, although not limited to this. Although not limited to this, the chevron protrusion 152 has, for example, a triangular cross section. For example, the bump electrode 150 has an overall outer shape of about 100 μm and a height of about 50 μm, and five mountain-shaped protrusions 152 are arranged at a pitch of 20 μm, and the height of the mountain-shaped protrusions 152 is not limited to this. Both are 20 μm.

前述したように、バンプ電極150Aとバンプ電極150Bは互いに対応する位置に設けられている。このため、MEMSチップ110と配線基板130とが適切に対向して配置された状態では、バンプ電極150Aの山型突起152Aとバンプ電極150Bの山型突起152Bは、少なくとも部分的に互いに対向し、好ましくは全体的に互いに対向する。   As described above, the bump electrode 150A and the bump electrode 150B are provided at positions corresponding to each other. For this reason, in a state where the MEMS chip 110 and the wiring board 130 are appropriately opposed to each other, the mountain-shaped protrusion 152A of the bump electrode 150A and the mountain-shaped protrusion 152B of the bump electrode 150B are at least partially opposed to each other, Preferably they generally oppose each other.

バンプ電極150の作製方法について以下に説明する。まず、MEMSチップ110や配線基板130の所定の位置に一般的なAuスタッドバンプを形成する。このスタッドバンプの上部を十分に平面度が小さい部材により押圧してレベリングする。形成する山型突起152に対応した凹凸を有する冶具を用意し、その凹凸でレベリング済みのスタッドバンプの表面を押圧して変形させることにより、冶具表面の凹凸を転写して山型突起152を形成する。このようにして、山型突起152を有するバンプ電極150をMEMSチップ110と配線基板130に作製しておく。   A method for manufacturing the bump electrode 150 will be described below. First, general Au stud bumps are formed at predetermined positions on the MEMS chip 110 and the wiring board 130. The upper part of the stud bump is leveled by being pressed by a member having sufficiently small flatness. Prepare a jig with irregularities corresponding to the chevron 152 to be formed, and press and deform the surface of the stud bump that has been leveled with the irregularities to transfer the irregularities on the jig surface to form the chevron 152 To do. In this way, the bump electrode 150 having the mountain-shaped protrusion 152 is formed on the MEMS chip 110 and the wiring board 130.

図4に示すように、バンプ電極150Aとバンプ電極150Bは、MEMSチップ110と配線基板130とが適切な位置関係で対向して配置された状態において、バンプ電極150Aの山型突起152Aが延びている方向とバンプ電極150Bの山型突起152Bが延びている方向とが、MEMSチップ110と配線基板130の間に広がる平面への投影において、互いに交差するように、例えば互いに直交するように、MEMSチップ110と配線基板130にそれぞれ設けられている。   As shown in FIG. 4, the bump electrode 150A and the bump electrode 150B are formed by extending the mountain-shaped protrusion 152A of the bump electrode 150A in a state where the MEMS chip 110 and the wiring board 130 are arranged to face each other in an appropriate positional relationship. The MEMS direction and the direction in which the projections 152B of the bump electrode 150B extend intersect with each other, for example, perpendicular to each other, in a projection onto a plane extending between the MEMS chip 110 and the wiring substrate 130. They are provided on the chip 110 and the wiring board 130, respectively.

上記のようにMEMSチップ110と配線基板130にそれぞれバンプ電極150Aとバンプ電極150Bを形成し、図1と図2に示すように、MEMSチップ110と配線基板130をアライメントしてバンプ電極150Aとバンプ電極150Bが互いに対向するように配置した後、MEMSチップ110と配線基板130を加圧・加熱してバンプ電極150Aとバンプ電極150Bを互いに接合する。例えば、接合工程に用いる装置は一般的なフリップチップボンダであり、印加圧力は一つのバンプ電極当たり約200gf以下、印加温度は常温〜100℃程度である。   As described above, the bump electrode 150A and the bump electrode 150B are formed on the MEMS chip 110 and the wiring board 130, respectively, and the MEMS chip 110 and the wiring board 130 are aligned as shown in FIGS. After the electrodes 150B are arranged so as to face each other, the MEMS chip 110 and the wiring board 130 are pressurized and heated to join the bump electrodes 150A and the bump electrodes 150B to each other. For example, the apparatus used for the bonding process is a general flip chip bonder, the applied pressure is about 200 gf or less per bump electrode, and the applied temperature is about room temperature to 100 ° C.

次に、実装時にバンプ電極が互いに接合されるメカニズムについて説明する。アライメント後、MEMSチップ110と配線基板130とを互いに近づけていくと、バンプ電極150Aとバンプ電極150Bは図4の位置関係から互いに近づけられ、バンプ電極150Aの山型突起152Aとバンプ電極150Bの山型突起152Bが互いに接触する。この状態から適切な荷重でMEMSチップ110と配線基板130とを互いに押圧することにより、バンプ電極150A,150Bの全体形状は変形することなく、バンプ電極150Aの山型突起152Aとバンプ電極150Bの山型突起152Bが塑性変形する。   Next, a mechanism for bonding the bump electrodes to each other during mounting will be described. After the alignment, when the MEMS chip 110 and the wiring substrate 130 are brought closer to each other, the bump electrode 150A and the bump electrode 150B are brought closer to each other from the positional relationship of FIG. 4, and the mountain-shaped protrusion 152A of the bump electrode 150A and the mountain of the bump electrode 150B The mold protrusions 152B are in contact with each other. By pressing the MEMS chip 110 and the wiring substrate 130 together with an appropriate load from this state, the overall shape of the bump electrodes 150A and 150B is not deformed, and the mountain-shaped protrusion 152A of the bump electrode 150A and the mountain of the bump electrode 150B are not deformed. The mold protrusion 152B is plastically deformed.

MEMSチップ110と配線基板130は、バンプ電極150Aとバンプ電極150Bが互いに機械的かつ電気的に接合されていることにより、互いに機械的かつ電気的に接合されており、バンプ電極150Aとバンプ電極150Bは、バンプ電極150Aの山型突起152Aとバンプ電極150Bの山型突起152Bとが少なくとも部分的に互いに対向するように配置されて互いに押圧されたことにより、バンプ電極150Aの山型突起152Aとバンプ電極150Bの山型突起152Bとが互いに塑性変形したことによって、互いに機械的かつ電気的に接合されている。 The MEMS chip 110 and the wiring board 130 are mechanically and electrically joined to each other by mechanically and electrically joining the bump electrode 150A and the bump electrode 150B, and the bump electrode 150A and the bump electrode 150B. The bump-shaped protrusion 152A of the bump electrode 150A and the bump-shaped protrusion 152A of the bump electrode 150B and the bump-shaped protrusion 152B of the bump electrode 150B are disposed so as to face each other and pressed against each other. The mountain-shaped protrusion 152B of the electrode 150B is mechanically and electrically joined to each other by plastic deformation.

図5は、山型突起152Aが塑性変形したバンプ電極150Aを示している。また図6は、山型突起152Bが塑性変形したバンプ電極150Bを示している。図5と図6において、網掛け部は、互いに押圧されたことにより塑性変形した山型突起152A,152Bの接触界面を示している。また図7は、バンプ電極150A,150Bが図4の位置関係から互いに接触され互いに押圧されたことにより、山型突起152A,152Bが塑性変形する様子を断面で示している。   FIG. 5 shows a bump electrode 150A in which the mountain-shaped protrusion 152A is plastically deformed. FIG. 6 shows a bump electrode 150B in which the mountain-shaped protrusion 152B is plastically deformed. 5 and 6, the shaded portions indicate the contact interfaces of the mountain-shaped protrusions 152A and 152B that are plastically deformed by being pressed against each other. FIG. 7 is a cross-sectional view showing the state where the bumps 150A and 150B are plastically deformed when the bump electrodes 150A and 150B are brought into contact with each other and pressed together from the positional relationship of FIG.

このようにバンプ電極150A,150Bの山型突起152A,152Bが塑性変形することにより、山型突起152A,152Bの接触界面では、金属表面の接合阻害層が破壊され、金属表面が互いに密着して金属接合する。当然、塑性変形を伴わないバンプ電極同士の接触では、バンプ電極の表面に存在する接合阻害層の影響により、金属接合は起こらない。   As described above, the bumps 150A and 150B of the bumps 150A and 152B are plastically deformed, so that at the contact interface between the bumps 152A and 152B, the bonding inhibition layer on the metal surface is destroyed, and the metal surfaces adhere to each other. Join metal. Naturally, in the contact between the bump electrodes without plastic deformation, metal bonding does not occur due to the influence of the bonding inhibition layer existing on the surface of the bump electrode.

このように、山型突起152A,152Bの接触界面が金属接合することにより、バンプ電極150A,150Bは互いに機械的かつ電気的に接合される。その結果、MEMSチップ110と配線基板130とが互いに機械的かつ電気的に接合される。   As described above, the contact surfaces of the chevron projections 152A and 152B are metal-bonded, whereby the bump electrodes 150A and 150B are mechanically and electrically bonded to each other. As a result, the MEMS chip 110 and the wiring board 130 are mechanically and electrically joined to each other.

実装後(すなわちMEMSチップ110と配線基板130の接合後)の実装構造100では、MEMSチップ110と配線基板130は、バンプ電極150Aとバンプ電極150Bが互いに機械的かつ電気的に接合されていることにより、互いに機械的かつ電気的に接合されている。また、バンプ電極150Aとバンプ電極150Bは、バンプ電極150Aの山型突起152Aとバンプ電極150Bの山型突起152Bとが少なくとも部分的に互いに対向するように配置されて互いに押圧されたことにより、バンプ電極150Aの山型突起152Aとバンプ電極150Bの山型突起152Bとが互いに塑性変形したことによって、互いに機械的かつ電気的に接合されている。   In the mounting structure 100 after mounting (that is, after bonding the MEMS chip 110 and the wiring substrate 130), the bump electrode 150A and the bump electrode 150B are mechanically and electrically bonded to each other in the MEMS chip 110 and the wiring substrate 130. Thus, they are mechanically and electrically joined to each other. Further, the bump electrode 150A and the bump electrode 150B are arranged so that the mountain-shaped protrusion 152A of the bump electrode 150A and the mountain-shaped protrusion 152B of the bump electrode 150B are at least partially opposed to each other and pressed against each other. The mountain-shaped protrusion 152A of the electrode 150A and the mountain-shaped protrusion 152B of the bump electrode 150B are mechanically and electrically joined to each other by plastic deformation.

本実施形態では、バンプ電極150A,150Bに山型突起152A,152Bを形成し、バンプ電極150A,150Bの山型突起152A,152Bを互いに接触させて互いに押圧して塑性変形させることによって、MEMSチップ110と配線基板130とが互いに機械的かつ電気的に接合される。山型突起152A,152Bは比較的容易に塑性変形するので、MEMSチップ110と配線基板130を互いに押圧する荷重が比較的小さいながらも、バンプ電極150A,150Bの相互間に比較的大きい塑性変形量・金属接合面積が得られるため、MEMSチップ110と配線基板130が効果的な接合強度をもって接合される。   In the present embodiment, the projections 152A and 152B are formed on the bump electrodes 150A and 150B, and the projections 152A and 152B of the bump electrodes 150A and 150B are brought into contact with each other and pressed against each other to be plastically deformed. 110 and the wiring board 130 are mechanically and electrically joined to each other. Since the mountain-shaped protrusions 152A and 152B are relatively easily plastically deformed, the amount of plastic deformation between the bump electrodes 150A and 150B is relatively large while the load pressing the MEMS chip 110 and the wiring substrate 130 is relatively small. Since the metal bonding area is obtained, the MEMS chip 110 and the wiring board 130 are bonded with effective bonding strength.

一方、図8に示される通常のバンプ電極170で十分な塑性変形量・金属接合面積つまり十分な接合強度を得るためには、バンプ電極170の全体を塑性変形させる必要があり、大きな荷重が必要となる。その結果、MEMSチップにダメージを与えてしまうおそれがある。また、本実施形態と同様の効果を期待して、バンプ電極170の表面にランダムに凹凸を形成して比較的低い荷重で実装を行う手法も考えられるが、この手法では、凸部同士が接触・変形する部分もあるが、多くの部分では凸部と凹部が互いに接触すると予想され、十分な塑性変形量・金属接合面積つまり十分な接合強度を得ることは難しい。   On the other hand, in order to obtain a sufficient amount of plastic deformation and a metal bonding area, that is, a sufficient bonding strength with the normal bump electrode 170 shown in FIG. 8, the entire bump electrode 170 needs to be plastically deformed and a large load is required. It becomes. As a result, the MEMS chip may be damaged. In addition, with the expectation of the same effect as the present embodiment, a method of forming irregularities randomly on the surface of the bump electrode 170 and mounting with a relatively low load is conceivable. Although there are parts that deform, it is expected that the convex part and the concave part come into contact with each other in many parts, and it is difficult to obtain a sufficient amount of plastic deformation / metal joint area, that is, a sufficient joint strength.

本実施形態では、図3に示すような山型突起をバンプ電極150に設けているが、ほかの形状として、例えばアレイ状の微小な凸部をバンプ電極150に設ける手法も考えられる。しかし、このようなアレイ状の凸部をバンプ電極150に設けた場合、確実に凸部同士を接触させるためには、接合時に非常に高精度な位置あわせが必要となってしまう。これに対して、本実施形態では、図4に示すように山型突起152A,152Bが角度的に90度ずらして対向することにより、MEMSチップ110と配線基板130のアライメントが多少ずれしたとしても、山型突起同士の接触が確実に得られる。   In the present embodiment, the mountain-shaped projections as shown in FIG. 3 are provided on the bump electrode 150. However, as another shape, for example, a method of providing minute bumps in an array shape on the bump electrode 150 is also conceivable. However, when such an array of convex portions is provided on the bump electrode 150, in order to bring the convex portions into contact with each other with certainty, alignment with very high accuracy is required during bonding. In contrast, in this embodiment, as shown in FIG. 4, even if the projections 152A and 152B are opposed to each other with an angular shift of 90 degrees, the alignment between the MEMS chip 110 and the wiring board 130 is slightly shifted. The contact between the chevron projections can be reliably obtained.

これまで、図面を参照しながら本発明の実施形態を述べたが、本発明は、これらの実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が施されてもよい。   The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to these embodiments, and various modifications and changes can be made without departing from the scope of the present invention. Also good.

例えば、山型突起152を塑性変形させる際に加熱して金属接合の形成の促進を図っているが、加熱することなく常温で接合することも可能である。また、実装工程前にバンプ電極150の表面をプラズマ照射等の手段で洗浄して接合強度の向上を図ってもよい。   For example, although the chevron protrusion 152 is heated when plastically deformed to promote the formation of metal bonding, it is possible to bond at room temperature without heating. Further, the bonding strength may be improved by cleaning the surface of the bump electrode 150 by means such as plasma irradiation before the mounting process.

また、バンプ電極150に高さ20μm程度の五つの山型突起152を設けているが、山型突起152の高さや個数もこれに限定されるものではない。ただし、高アスペクト比であることが望ましい。また、バンプ電極150の材質や作製方法に関しても、いろいろな変形例が考えられる。例えば、バンプ電極150の材質に関しては、Cuや各種ハンダ材料であってもよく、作製方法に関しては、スタッドバンプに冶具形状を転写する以外に、メッキ法によってバンプと山型突起の形成を行なってもよい。   In addition, although the five chevron protrusions 152 having a height of about 20 μm are provided on the bump electrode 150, the height and the number of the chevron protrusions 152 are not limited thereto. However, a high aspect ratio is desirable. Also, various modifications can be considered regarding the material and manufacturing method of the bump electrode 150. For example, regarding the material of the bump electrode 150, Cu or various solder materials may be used. Regarding the manufacturing method, in addition to transferring the jig shape to the stud bump, the bump and the chevron are formed by plating. Also good.

本発明の一実施形態による実装構造を示す側面図である。It is a side view which shows the mounting structure by one Embodiment of this invention. 本発明の一実施形態による実装構造を示す斜視図である。It is a perspective view which shows the mounting structure by one Embodiment of this invention. 図1と図2に描かれたバンプ電極の斜視図である。FIG. 3 is a perspective view of a bump electrode depicted in FIGS. 1 and 2. 図1と図2に描かれたチップ側バンプ電極と基板側バンプ電極の相対的位置関係を示す斜視図である。FIG. 3 is a perspective view showing a relative positional relationship between a chip-side bump electrode and a substrate-side bump electrode depicted in FIGS. 1 and 2. 山型突起が塑性変形したチップ側バンプ電極の斜視図である。It is a perspective view of the chip side bump electrode in which the chevron-shaped protrusion was plastically deformed. 山型突起が塑性変形した基板側バンプ電極の斜視図である。It is a perspective view of the board | substrate side bump electrode which the mountain-shaped protrusion deform | transformed plastically. チップ側バンプ電極と基板側バンプ電極が互いに押圧されることにより山型突起が塑性変形する様子を示している。It shows a state where the chevron projections are plastically deformed when the chip side bump electrode and the substrate side bump electrode are pressed against each other. 通常のバンプ電極の斜視図である。It is a perspective view of a normal bump electrode.

符号の説明Explanation of symbols

100…実装構造、110…MEMSチップ、112…MEMSチップ側機能部、130…配線基板、132…配線基板側機能部、150…バンプ電極、150A…バンプ電極、150B…バンプ電極、152…山型突起、152A…山型突起、152B…山型突起。 DESCRIPTION OF SYMBOLS 100 ... Mounting structure, 110 ... MEMS chip, 112 ... MEMS chip side functional part, 130 ... Wiring board, 132 ... Wiring board side functional part, 150 ... Bump electrode, 150A ... Bump electrode, 150B ... Bump electrode, 152 ... Mountain type Projection, 152A ... chevron projection, 152B ... chevron projection.

Claims (6)

少なくとも一つの第一のバンプ電極を有する半導体チップと、
少なくとも一つの第二のバンプ電極を有する基板とを有し、
前記半導体チップと前記基板は、前記第一のバンプ電極と前記第二のバンプ電極が互いに機械的かつ電気的に接合されていることにより、互いに機械的かつ電気的に接合されており、
前記第一と第二のバンプ電極のおのおのは、互いに接合される前に、一方向に延びている少なくとも一本の山型突起を有しており、前記第一と第二のバンプ電極は、それらの前記山型突起が少なくとも部分的に互いに対向するように配置されて互いに押圧されたことによりそれらの前記山型突起が互いに塑性変形したことによって互いに機械的かつ電気的に接合されている、実装構造。
A semiconductor chip having at least one first bump electrode;
A substrate having at least one second bump electrode;
The semiconductor chip and the substrate are mechanically and electrically joined to each other by mechanically and electrically joining the first bump electrode and the second bump electrode to each other;
Each of the first and second bump electrodes has at least one mountain-shaped protrusion extending in one direction before being bonded to each other, and the first and second bump electrodes are The chevron projections are mechanically and electrically joined to each other by being plastically deformed with each other because the chevron projections are arranged at least partially opposite each other and pressed against each other. Mounting structure.
前記山型突起が三角形の断面を有している、請求項1に記載の実装構造。   The mounting structure according to claim 1, wherein the mountain-shaped protrusion has a triangular cross section. 前記第一のバンプ電極の前記山型突起が延びている前記一方向と前記第二のバンプ電極の前記山型突起が延びている前記一方向とが、前記半導体チップと前記基板の間に広がる平面への投影において、互いに交差している、請求項1に記載の実装構造。   The one direction in which the mountain-shaped protrusion of the first bump electrode extends and the one direction in which the mountain-shaped protrusion of the second bump electrode extend extend between the semiconductor chip and the substrate. The mounting structure according to claim 1, wherein the mounting structures intersect each other in a projection onto a plane. 前記第一のバンプ電極の前記山型突起が延びている前記一方向と前記第二のバンプ電極の前記山型突起が延びている前記一方向とが互いに直交している、請求項3に記載の実装構造。   4. The one direction in which the chevron-shaped projections of the first bump electrode extend and the one direction in which the chevron-shaped projections of the second bump electrode extend are orthogonal to each other. Implementation structure. 前記半導体チップがMEMSチップである、請求項1に記載の実装構造。   The mounting structure according to claim 1, wherein the semiconductor chip is a MEMS chip. 前記基板がMEMS基板である、請求項1または請求項5に記載の実装構造。   The mounting structure according to claim 1, wherein the substrate is a MEMS substrate.
JP2008016526A 2008-01-28 2008-01-28 Mounting structure Withdrawn JP2009177078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008016526A JP2009177078A (en) 2008-01-28 2008-01-28 Mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008016526A JP2009177078A (en) 2008-01-28 2008-01-28 Mounting structure

Publications (1)

Publication Number Publication Date
JP2009177078A true JP2009177078A (en) 2009-08-06

Family

ID=41031845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016526A Withdrawn JP2009177078A (en) 2008-01-28 2008-01-28 Mounting structure

Country Status (1)

Country Link
JP (1) JP2009177078A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192894A (en) * 2010-03-16 2011-09-29 Zycube:Kk Method for mounting semiconductor device
JP2011192895A (en) * 2010-03-16 2011-09-29 Zycube:Kk Method for mounting semiconductor chip
JP2014017454A (en) * 2012-07-11 2014-01-30 Fujitsu Semiconductor Ltd Semiconductor device, semiconductor package manufacturing method and semiconductor package
JP2014239131A (en) * 2013-06-07 2014-12-18 日本電信電話株式会社 Junction structure and method for manufacturing the same
JP2015228518A (en) * 2010-03-31 2015-12-17 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method for permanently connecting two metal surfaces
WO2018180737A1 (en) * 2017-03-27 2018-10-04 株式会社NejiLaw Relative rotation prevention structure for screw, relative movement prevention structure, and relative movement prevention body
JP2018189224A (en) * 2017-03-27 2018-11-29 株式会社NejiLaw Relative rotation suppression structure, relative movement suppression structure and relative movement suppression body of screw body
CN116944759A (en) * 2023-09-20 2023-10-27 武汉高芯科技有限公司 Flip-chip bonding processing method with low contact resistance and flip-chip interconnection structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192894A (en) * 2010-03-16 2011-09-29 Zycube:Kk Method for mounting semiconductor device
JP2011192895A (en) * 2010-03-16 2011-09-29 Zycube:Kk Method for mounting semiconductor chip
CN105489513B (en) * 2010-03-31 2020-10-27 Ev 集团 E·索尔纳有限责任公司 Method for permanently connecting two metal surfaces
JP2015228518A (en) * 2010-03-31 2015-12-17 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method for permanently connecting two metal surfaces
CN105489513A (en) * 2010-03-31 2016-04-13 Ev集团E·索尔纳有限责任公司 Method for permanently connecting two metal surfaces
CN105513981A (en) * 2010-03-31 2016-04-20 Ev集团E·索尔纳有限责任公司 Method for permanent connection of two metal surfaces
US11282801B2 (en) 2010-03-31 2022-03-22 Ev Group E. Thallner Gmbh Method for permanent connection of two metal surfaces
JP2014017454A (en) * 2012-07-11 2014-01-30 Fujitsu Semiconductor Ltd Semiconductor device, semiconductor package manufacturing method and semiconductor package
JP2014239131A (en) * 2013-06-07 2014-12-18 日本電信電話株式会社 Junction structure and method for manufacturing the same
WO2018180737A1 (en) * 2017-03-27 2018-10-04 株式会社NejiLaw Relative rotation prevention structure for screw, relative movement prevention structure, and relative movement prevention body
JP2018189224A (en) * 2017-03-27 2018-11-29 株式会社NejiLaw Relative rotation suppression structure, relative movement suppression structure and relative movement suppression body of screw body
JP7014395B2 (en) 2017-03-27 2022-02-15 株式会社NejiLaw Relative rotation suppression structure, relative movement suppression structure, relative movement suppression body of screw body
TWI759452B (en) * 2017-03-27 2022-04-01 日商螺法股份有限公司 Relative rotation suppression structure of screw, relative movement suppression structure and relative movement suppression body
CN116944759A (en) * 2023-09-20 2023-10-27 武汉高芯科技有限公司 Flip-chip bonding processing method with low contact resistance and flip-chip interconnection structure

Similar Documents

Publication Publication Date Title
JP2009177078A (en) Mounting structure
JP4885956B2 (en) Packaging and wiring of microelectromechanical systems
JP4768343B2 (en) Mounting method of semiconductor element
JP2002016101A (en) Semiconductor device and its manufacturing method
JP2007266555A (en) Manufacturing method for bump bonding laminate
JP2009521818A (en) Microelectronic device having a compliant terminal fixture and method of making the microelectronic device
JP3303849B2 (en) Method for manufacturing bump transfer substrate, method for manufacturing semiconductor device, and semiconductor device
TW201628100A (en) Method for manufacturing three-dimensional integrated circuit
JP2007067175A (en) Method of manufacturing semiconductor device
JP2005079070A (en) Board-to-board electrode jointing method and structure
JP2006324635A (en) Semiconductor device and method for producing the same
JP2010040884A (en) Semiconductor device and method of bonding semiconductor chip
JP4248441B2 (en) Ultrasonic flip chip mounting method
JP4386012B2 (en) Bump bonded body manufacturing method
JPH11111761A (en) Packaged semiconductor chip parts
JP4385878B2 (en) Implementation method
JPH09172021A (en) Semiconductor device and manufacturing method and packaging method thereof
TWI757977B (en) Methods of preparing a substrate for substrate bonding and bonding a first substrate to a second substrate
JP6133140B2 (en) Junction structure and manufacturing method thereof
JP2007324211A (en) Method of forming bump-shaped connecting member
JP2007311637A (en) Method of forming bump-like connecting member
JP4215685B2 (en) Method for manufacturing electronic circuit element
JP6496100B2 (en) Manufacturing method of semiconductor device
JP2005026630A (en) Semiconductor device and its manufacturing method
JP4289912B2 (en) Inter-substrate wiring electrode bonding method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405