JP2009171842A - Power conversion apparatus - Google Patents

Power conversion apparatus Download PDF

Info

Publication number
JP2009171842A
JP2009171842A JP2009106712A JP2009106712A JP2009171842A JP 2009171842 A JP2009171842 A JP 2009171842A JP 2009106712 A JP2009106712 A JP 2009106712A JP 2009106712 A JP2009106712 A JP 2009106712A JP 2009171842 A JP2009171842 A JP 2009171842A
Authority
JP
Japan
Prior art keywords
power semiconductor
semiconductor element
temperature detection
power
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009106712A
Other languages
Japanese (ja)
Other versions
JP4892032B2 (en
Inventor
Tomoya Kamezawa
友哉 亀澤
Naoki Takada
直樹 高田
Masayuki Hirota
雅之 広田
Masahiro Hiraga
正宏 平賀
Satoshi Ibori
敏 井堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Hitachi KE Systems Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Hitachi KE Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004062568A priority Critical patent/JP2005252090A/en
Application filed by Hitachi Industrial Equipment Systems Co Ltd, Hitachi KE Systems Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2009106712A priority patent/JP4892032B2/en
Publication of JP2009171842A publication Critical patent/JP2009171842A/en
Application granted granted Critical
Publication of JP4892032B2 publication Critical patent/JP4892032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature detection method of a miniaturized and inexpensive semiconductor device, and to provide a compact and inexpensive power conversion apparatus. <P>SOLUTION: A temperature detection element 22 arranged near a component 8 with a power semiconductor device packaged therein and also near one of an emitter terminal and a collector terminal of the power semiconductor device, carries out the temperature detection for protecting the power semiconductor device. The temperature detection element 22 can be attached to a circuit board 13, so that electric insulation between a cooling fin 15 on which the power semiconductor device is arranged and the temperature detection element 22 is unnecessary, and a lead wire and man-hour for wiring the lead wire is unnecessary. Accordingly, protection of the power semiconductor device in a power conversion apparatus can be inexpensively achieved and compactification of the power conversion apparatus and shortening of assemble hour can be achieved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体素子の温度検出技術に係り、特に電力変換装置に使用される半導体素子の保護に必要な温度検出技法に関する。   The present invention relates to a temperature detection technique for a semiconductor element, and more particularly to a temperature detection technique necessary for protecting a semiconductor element used in a power conversion device.

一般に、半導体素子にはスイッチング損失があり、このため、特にインバータなどの電力変換装置に用いられているパワー半導体素子(電力用半導体素子)ではかなりの発熱を伴ない、従って、過大な電流が流れ、冷却能力が追いつかなくなると、発熱により温度が上昇し、そのまま放置すると許容温度を越え、熱によって破壊されてしまう虞れがある。   In general, a semiconductor element has a switching loss. For this reason, a power semiconductor element (power semiconductor element) used in a power conversion device such as an inverter does not generate a considerable amount of heat. Therefore, an excessive current flows. If the cooling capacity cannot keep up, the temperature rises due to heat generation, and if it is left as it is, the allowable temperature may be exceeded and it may be destroyed by heat.

そこで、電力変換装置では、半導体素子が過熱により破壊されるのを防止するため、熱保護機能を設けて対応するのが通例であるが、このためには、半導体素子の温度を検出する必要がある。   Therefore, in order to prevent the semiconductor element from being destroyed by overheating in the power conversion device, it is usual to provide a thermal protection function, but for this purpose, it is necessary to detect the temperature of the semiconductor element. is there.

ここで、図5は、電力変換装置の代表例であるインバータ装置の一般的な構成を示したもので、この場合、装置の全体は、コンバータと呼ばれている順変換部100と平滑部200、インバータと呼ばれている逆変換部300、制御部400、それに操作部500の各ブロックを主要部として備えている。   Here, FIG. 5 shows a general configuration of an inverter device that is a typical example of a power conversion device. In this case, the entire device includes a forward conversion unit 100 and a smoothing unit 200 called a converter. Each block of an inverse conversion unit 300, a control unit 400, and an operation unit 500 called an inverter is provided as a main part.

そして、商用電源などの電源600から供給される3相の交流電力を、例えば三相ブリッジ・ダイオード回路からなる順変換部100で直流電力に変換し、例えば電解コンデンサからなる平滑部200により平滑化し、逆変換部300で所望の周波数の3相交流電力U、V、Wに変換して誘導電動機IMなどの負荷700に供給するようになっている。   Then, the three-phase AC power supplied from the power source 600 such as a commercial power source is converted into DC power by the forward conversion unit 100 including, for example, a three-phase bridge diode circuit, and smoothed by the smoothing unit 200 including, for example, an electrolytic capacitor. The inverse conversion unit 300 converts the three-phase AC power U, V, and W having a desired frequency into a load 700 such as an induction motor IM.

次に、図6は、パワー半導体素子として、例えばIGBT(絶縁ゲート・バイポーラ・トランジスタ)を用いた場合の逆変換部300の詳細図で、図において、1〜6(1、2、3、4、5、6)がIGBTからなるパワー半導体素子で、図示のように、これらはIGBTと、これに逆並列接続したダイオード(フライホイール・ダイオード)で構成されている。   Next, FIG. 6 is a detailed view of the inverse conversion unit 300 when, for example, an IGBT (insulated gate bipolar transistor) is used as the power semiconductor element. 5, 6) are power semiconductor elements made of IGBT, and as shown in the figure, these are composed of an IGBT and a diode (flywheel diode) connected in reverse parallel thereto.

このとき、逆変換部300では、直流の+端子P側が上アームで、−端子N側は下アームと呼ばれるが、ここで、各アームのパワー半導体素子4〜6は、制御部400から供給されるゲート駆動信号により、上アームと下アームが交互にスイッチング制御され、逆変換動作が得られることになる。   At this time, in the inverse conversion unit 300, the DC + terminal P side is called the upper arm and the − terminal N side is called the lower arm. Here, the power semiconductor elements 4 to 6 of each arm are supplied from the control unit 400. By switching the gate drive signal, the upper arm and the lower arm are alternately switched and an inverse conversion operation is obtained.

そして、このとき+端子Pから流入した電流は、上アームの各パワー半導体素子1〜3のコレクタからエミッタを通って負荷700に流れ(NPN型の場合)、下アームでは各パワー半導体素子4〜6のコレクタからエミッタを通って、負荷700から直流−端子Nに至る。   At this time, the current flowing in from the + terminal P flows from the collector of each power semiconductor element 1 to 3 of the upper arm through the emitter to the load 700 (in the case of the NPN type), and in the lower arm, each power semiconductor element 4 to 6 through the emitter and from the load 700 to the DC terminal N.

この電流の通流により、各パワー半導体素子1〜6では、主としてコレクタとエミッタの接合部(ジャンクション)で熱が発生し、従って、例えば過負荷状態になったなど、何らかの理由により、パワー半導体素子1〜6のコレクタとエミッタの間に流れる電流が過大になれば、パワー半導体素子の温度が上昇し、限度を越えた場合は素子が破壊され、場合によっては電力変換装置そのものが破壊されてしまう虞れが生じてしまう。   Due to this current flow, in each of the power semiconductor elements 1 to 6, heat is generated mainly at the junction (junction) between the collector and the emitter. Therefore, for example, the power semiconductor element is overloaded. If the current flowing between the collector and the emitter of 1 to 6 becomes excessive, the temperature of the power semiconductor element rises, and if the limit is exceeded, the element is destroyed, and in some cases, the power converter itself is destroyed. A fear arises.

そこで、制御部400は、上記したように、パワー半導体素子の温度を検出し、検出した温度が予め定めてある所定の温度、例えば80℃に達したときは、パワー半導体素子の通電を遮断(OFF)し、パワー半導体素子の発熱を止めて温度の上昇を抑え、これによりパワー半導体素子の保護と、電力変換装置の保護が与えられるようにするのである。   Therefore, as described above, the control unit 400 detects the temperature of the power semiconductor element, and when the detected temperature reaches a predetermined temperature, for example, 80 ° C., the power semiconductor element is turned off ( OFF) to stop the heat generation of the power semiconductor element and suppress the temperature rise, thereby providing protection of the power semiconductor element and protection of the power conversion device.

このとき、従来技術では、パワー半導体素子が配置されている冷却フィンに温度検出素子を設け、冷却フィンの温度を検出して半導体素子の温度の検出値とする方法について開示している(例えば、特許文献1参照。)。   At this time, the prior art discloses a method of providing a temperature detection element in the cooling fin in which the power semiconductor element is arranged, and detecting the temperature of the cooling fin to obtain a detected value of the temperature of the semiconductor element (for example, (See Patent Document 1).

ここで、図7は、従来技術におけるパワー半導体素子の配置の一例で、ここで部品7〜12(7、8、9、10、11、12)が各々パワー半導体素子1〜6(図6)のパッケージに相当し、これらが、図示のように、冷却フィン15の素子取付面に所望の配置形式で取付けられていて、各部品7〜12に対する接続は、回路基板13に形成してある回路パターンにより与えられ、これにより逆変換部300が構成されるようになっている。   Here, FIG. 7 shows an example of the arrangement of the power semiconductor elements in the prior art, where the components 7 to 12 (7, 8, 9, 10, 11, 12) are the power semiconductor elements 1 to 6 (FIG. 6). As shown in the figure, these are mounted on the element mounting surface of the cooling fin 15 in a desired arrangement form, and connections to the components 7 to 12 are circuits formed on the circuit board 13. The inverse transformation unit 300 is configured by the pattern.

なお、この図7では、回路基板13が冷却フィン15から離された状態で示されているが、実際には、回路基板13が各部品7〜12にかぶせられ、冷却フィン15の素子取付面を覆うようにして、冷却フィン15に回路基板13が取付けられる。   In FIG. 7, the circuit board 13 is shown separated from the cooling fins 15, but actually, the circuit board 13 is placed on the components 7 to 12 and the element mounting surface of the cooling fins 15 is mounted. The circuit board 13 is attached to the cooling fin 15 so as to cover.

そして、この図7の従来技術では、図示のように、冷却フィン15の素子取付面において、各パワー半導体素子1〜6のパッケージからなる部品7〜12の近傍に、各々温度検出素子16〜21を配置し、各々からリード線16a〜21aを引出して回路基板13に接続している。   In the prior art of FIG. 7, as shown in the drawing, on the element mounting surface of the cooling fin 15, in the vicinity of the parts 7 to 12 formed of the packages of the power semiconductor elements 1 to 6, the temperature detection elements 16 to 21 are respectively provided. The lead wires 16a to 21a are drawn out from each of them and connected to the circuit board 13.

このとき、上記した冷却フィン15の素子取付面における所望の配置形式としては、図6の回路構成におけるパワー半導体素子1〜6の配置状況に合わせて、上側に上アームのパワー半導体素子1、2、3の部品7、8、9を横に並べて配置し、下側に下アームのパワー半導体素子4、5、6の部品10、11、12を横に並べて配置するのが一般的である。   At this time, as a desired arrangement form on the element mounting surface of the cooling fin 15 described above, the upper power semiconductor elements 1 and 2 are arranged in accordance with the arrangement state of the power semiconductor elements 1 to 6 in the circuit configuration of FIG. In general, the three parts 7, 8, 9 are arranged side by side, and the parts 10, 11, 12 of the power semiconductor elements 4, 5, 6 of the lower arm are arranged side by side on the lower side.

そして、このとき、冷却フィン15は、電力変換装置が使用状態にされたとき、その素子取付面がほぼ垂直になるようにして、当該電力変換装置の本体に組み付けられるのが一般的な使用態様である。   At this time, when the power conversion device is put into use, the cooling fin 15 is generally assembled to the main body of the power conversion device so that its element mounting surface is substantially vertical. It is.

一方、他の従来技術では、半導体素子が封入されたモジュールを用いた電力変換装置において、当該モジュール内に温度検出素子も一緒に封入させ、これにより温度を検出する方法について開示している(例えば、特許文献1参照。)。   On the other hand, in another conventional technique, in a power conversion device using a module in which a semiconductor element is enclosed, a method for detecting a temperature by enclosing a temperature detection element in the module together is disclosed (for example, , See Patent Document 1).

特開2002−101668号公報JP 2002-101668 A 特開平11−142254号公報JP-A-11-142254

上記従来技術は、温度検出素子の配置に配慮がされておらず、熱保護機能を備えた電力変換装置の小型化や、低価格化に問題があった。   The above prior art does not give consideration to the arrangement of the temperature detection elements, and has a problem in reducing the size and cost of the power conversion device having a thermal protection function.

上記したように、図7で説明した従来技術では、パワー半導体素子のパッケージの近くの冷却フィン上に温度検出素子を配置しているが、この場合、冷却フィン上に温度検出素子を配置するだけの面積が当該冷却フィンに余分に必要になる。   As described above, in the prior art described in FIG. 7, the temperature detection element is arranged on the cooling fin near the package of the power semiconductor element. In this case, only the temperature detection element is arranged on the cooling fin. Is required for the cooling fin.

しかも、このとき、温度検出素子による検出結果を取り出すためのリード線を接続したり、温度検出素子を冷却フィンから電気的に絶縁したりする工程が必要になるので、このため電力変換装置の小型化や、低価格化が困難になってしまうのである。   In addition, at this time, it is necessary to connect a lead wire for taking out the detection result by the temperature detection element, or to electrically insulate the temperature detection element from the cooling fin. It will be difficult to reduce the price.

また、上記した他の従来技術では、内部に温度検出素子が封入された結果、その分、モジュールが大型化する上、モジュールに余分な端子が必要になるので、この点でもモジュールが大型化し、従って、やはり小型化や、低価格化が困難になってしまうのである。   In addition, in the other prior art described above, as a result of enclosing the temperature detection element inside, the module is increased in size, and an extra terminal is required for the module. Therefore, downsizing and cost reduction become difficult.

本発明は、小型化や、低価格化について好適な半導体素子の温度検出方法及び電力変換装置を提供することにある。   An object of the present invention is to provide a temperature detection method and a power conversion device for a semiconductor element suitable for downsizing and cost reduction.

上記目的は、逆変換部に半導体素子を用いる電力変換装置であって、
前記電力変換装置の使用されている状態において横方向に並べられて配置されている半導体素子の段が複数段あり、前記複数段のうちの最も上側の段の半導体素子のうちの中央部に配置される半導体素子のエミッタ端子が接続される回路基板上の回路パターンに接しているとともに、前記中央に配置される半導体素子の接合部の温度変化を検出可能な距離に配置された温度検出素子によって温度検出を行なうことにより達成される。
The above object is a power conversion device using a semiconductor element for an inverse conversion unit,
There are a plurality of stages of semiconductor elements arranged side by side in a state where the power conversion device is used, and the semiconductor elements are arranged in the center of the uppermost stage of the plurality of stages. A temperature detecting element disposed at a distance capable of detecting a temperature change of a junction portion of the semiconductor element disposed at the center and in contact with a circuit pattern on a circuit board to which an emitter terminal of the semiconductor element is coupled This is achieved by performing temperature detection.

このとき、前記温度検出素子はN側の直流電流が流れる半導体素子の接合部に対するエミッタ端子が接続されるか接続される回路基板に配置されているようにしても上記目的が達成され、同じく、前記温度検出素子は、前記回路基板の回路パターンに接して配置されることによっても上記目的が達成される。   At this time, even if the temperature detection element is arranged on the circuit board to which the emitter terminal is connected or connected to the junction of the semiconductor element through which the direct current on the N side flows, the above object is achieved. The above-described object can also be achieved by arranging the temperature detection element in contact with the circuit pattern of the circuit board.

上記手段によれば、半導体素子の破壊を防ぐための温度検出のための温度検出素子を、例えばパワー半導体素子のエミッタ端子かコレクタ端子の近くに配置する。このとき、前記温度検出素子はパワー半導体素子が実装される回路基板に直接配置できるので、パワー半導体素子が配置された冷却フィンから電気的な絶縁をする必要が無く、配線する為の工数も低減が可能となる。   According to the above means, the temperature detecting element for detecting the temperature for preventing the destruction of the semiconductor element is disposed, for example, near the emitter terminal or the collector terminal of the power semiconductor element. At this time, since the temperature detecting element can be directly arranged on the circuit board on which the power semiconductor element is mounted, it is not necessary to electrically insulate from the cooling fin on which the power semiconductor element is arranged, and the man-hour for wiring is also reduced. Is possible.

本発明によれば、温度検出素子が回路基板に取付けられるので、冷却フィンの面積や、冷却フィンから電気的に絶縁してパワー半導体素子の温度を検出し、検出結果を他の基板へ伝達する為の部品が不要になり、且つ配線のための工数も不要になる。   According to the present invention, since the temperature detection element is attached to the circuit board, the area of the cooling fin and the temperature of the power semiconductor element are detected by being electrically insulated from the cooling fin, and the detection result is transmitted to another board. This eliminates the need for parts and wiring man-hours.

従って、本発明によれば、半導体素子に対する熱保護機能の付与が安価に実現でき、電力変換装置の小型化や、組立時間の短縮も実現することができる。   Therefore, according to the present invention, the provision of the thermal protection function to the semiconductor element can be realized at low cost, and the power conversion device can be downsized and the assembly time can be shortened.

本発明による半導体素子の温度検出方法及び温度検出機能を備えた電力変換装置の一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the power converter device provided with the temperature detection method and temperature detection function of the semiconductor element by this invention. 本発明の一実施形態を示す分解図である。It is an exploded view showing one embodiment of the present invention. 本発明の一実施形態におけるパワー半導体素子に対する温度検出素子の配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning of the temperature detection element with respect to the power semiconductor element in one Embodiment of this invention. 本発明の一実施形態におけるパワー半導体素子に対する温度検出素子の他の配置例を示す説明図である。It is explanatory drawing which shows the other example of arrangement | positioning of the temperature detection element with respect to the power semiconductor element in one Embodiment of this invention. 電力変換装置の一例を示すブロック構成図である。It is a block block diagram which shows an example of a power converter device. 電力変換装置における逆変換部の一例を示す回路図である。It is a circuit diagram which shows an example of the reverse conversion part in a power converter device. 従来技術による電力変換装置の一例を示す構成図である。It is a block diagram which shows an example of the power converter device by a prior art.

以下、本発明による半導体素子の温度検出方法及び温度検出機能を備えた電力変換装置について、図示の実施の形態により詳細に説明する。   Hereinafter, a semiconductor device temperature detection method and a power conversion device having a temperature detection function according to the present invention will be described in detail with reference to embodiments shown in the drawings.

図1は、本発明の一実施形態で、図において、22は温度検出素子であり、その他の構成要素は、図7で説明した従来技術と同じで、パワー半導体素子1〜6をパッケージした部品7〜12が冷却フィン15に配置され、これに回路基板13が取付けられているものである。   FIG. 1 shows an embodiment of the present invention. In the figure, reference numeral 22 denotes a temperature detection element, and other components are the same as those of the prior art described with reference to FIG. 7-12 are arrange | positioned at the cooling fin 15, and the circuit board 13 is attached to this.

このとき、温度検出素子22には、一例としてサーミスタ(登録商標)が用いられているが、これも、特に説明しなかったが、従来技術の場合と同じであり、その他、全体構成は図5に示された従来技術と同じで、このとき逆変換部300の回路構成も図6に示した従来技術の場合と同じである。   At this time, a thermistor (registered trademark) is used as the temperature detection element 22 as an example, but this is not particularly described, but is the same as the case of the prior art. In this case, the circuit configuration of the inverse conversion unit 300 is the same as that of the prior art shown in FIG.

しかし、この図1の実施形態では、図2に示すように、この温度検出素子22が冷却フィン15ではなく、回路基板13に取付けてあり、従って、この点で、冷却フィン15に取付けてある従来技術とは異なっていることになる。ここで、この図2は、従来技術の説明に使用した図7と同じく、回路基板13を冷却フィン15から離した状態を示したものである。   However, in the embodiment of FIG. 1, as shown in FIG. 2, the temperature detecting element 22 is attached to the circuit board 13 instead of the cooling fin 15, and thus is attached to the cooling fin 15 at this point. This is different from the prior art. Here, FIG. 2 shows a state in which the circuit board 13 is separated from the cooling fins 15 as in FIG. 7 used in the description of the prior art.

しかも、この実施形態では、温度検出素子がこの温度検出素子22だけ、つまり、これ1個だけであり、従って、この点でも、各パワー半導体素子1〜6毎に計6個設けてある従来技術とは異なっている。   Moreover, in this embodiment, the temperature detection element is only the temperature detection element 22, that is, only one temperature detection element. Therefore, in this respect, a total of six temperature detection elements are provided for each of the power semiconductor elements 1 to 6. Is different.

ここで、この1個の温度検出素子22は、図1に示されているように、冷却フィン15に回路基板13を組合わせたとき、図で上側の真中にある部品8にパッケージされているパワー半導体素子2(図6参照)のコレクタ端子、又はエミッタ端子の近傍で、且つ、これらの端子が接続される回路パターンの近傍に位置するようにして、回路基板13の回路パターンが形成されている方の面に取付けてある。   Here, as shown in FIG. 1, this one temperature detecting element 22 is packaged in the component 8 in the upper middle in the figure when the circuit board 13 is combined with the cooling fin 15. The circuit pattern of the circuit board 13 is formed in the vicinity of the collector terminal or emitter terminal of the power semiconductor element 2 (see FIG. 6) and in the vicinity of the circuit pattern to which these terminals are connected. It is attached to the surface that is on.

そこで、制御部400は、この温度検出素子22から取込んだ信号により、当該温度結果素子22の温度を検出し、検出した温度が予め定めてある所定の判定温度、例えば80℃の判定温度に達したとき、全てのパワー半導体素子1〜6のゲートをOFFにし、各体素子のコレクタ−エミッタ間の通電を遮断させる。   Therefore, the control unit 400 detects the temperature of the temperature result element 22 based on the signal acquired from the temperature detection element 22, and the detected temperature is set to a predetermined determination temperature, for example, a determination temperature of 80 ° C. When the power reaches, the gates of all the power semiconductor elements 1 to 6 are turned off to cut off the energization between the collector and the emitter of each body element.

この結果、各パワー半導体素子1〜6の発熱が止められるので、以後、パワー半導体素子1〜6の温度上昇は抑えられ、これによりパワー半導体素子と電力変換装置全体の熱保護が得られることになるのであるが、ここで、次に、この実施形態によれば、温度検出素子22を冷却フィン15に取付けることなく、しかも、この1個の温度検出素子22だけで、全てのパワー半導体素子1〜6と電力変換装置全体の熱保護が得られる理由について説明する。   As a result, since the heat generation of each of the power semiconductor elements 1 to 6 is stopped, thereafter, the temperature rise of the power semiconductor elements 1 to 6 is suppressed, and thereby the thermal protection of the power semiconductor elements and the entire power conversion device can be obtained. Here, next, according to this embodiment, all the power semiconductor elements 1 can be obtained without attaching the temperature detecting element 22 to the cooling fin 15 and by using only one temperature detecting element 22. The reason why the thermal protection of the entire power converter is obtained will be described.

まず、パワー半導体素子をパッケージした場合、そのコレクタとエミッタの端子は、その素子の電流値の大きさに応じてかなりの断面積を有し、このため、それによる熱伝導もかなり大きく、従って、接合部(ジャンクション)で発生した熱は端子により効率的にパッケージ外に伝達される。   First, when a power semiconductor device is packaged, its collector and emitter terminals have a considerable cross-sectional area depending on the magnitude of the current value of the device, and therefore the heat conduction thereby is also quite large. Heat generated at the junction (junction) is efficiently transferred out of the package by the terminals.

そして、このように端子により効率的に外部に導き出されてくる熱は、それが回路基板13の回路パターンに接続されていることから、当該回路パターンに伝達され、回路基板13の温度を局部的に上昇させることになる。   The heat efficiently led to the outside by the terminal in this way is transmitted to the circuit pattern because it is connected to the circuit pattern of the circuit board 13, and the temperature of the circuit board 13 is locally determined. Will be raised.

そこで、回路基板13に温度検出素子22を取付けたとしても、それをパワー半導体素子2(図6参照)のコレクタ端子、又はエミッタ端子の近傍で、且つ、これらの端子が接続される回路パターンの近傍に位置するようにしてやれば、温度検出素子22を冷却フィン15に取付けた場合と同等の温度検出が得られることになる。   Therefore, even if the temperature detecting element 22 is attached to the circuit board 13, it is disposed in the vicinity of the collector terminal or emitter terminal of the power semiconductor element 2 (see FIG. 6) and the circuit pattern to which these terminals are connected. If it is positioned in the vicinity, temperature detection equivalent to the case where the temperature detection element 22 is attached to the cooling fin 15 can be obtained.

次に、この実施形態では、冷却フィン15は、電力変換装置が使用状態にされたとき、その素子取付面がほぼ垂直になるようにして、当該電力変換装置の本体に組み付けられている。   Next, in this embodiment, the cooling fin 15 is assembled to the main body of the power conversion device such that when the power conversion device is put into use, its element mounting surface is substantially vertical.

そうすると、この実施形態のように、上側に上アームのパワー半導体素子1、2、3の部品7、8、9を横に並べて配置し、下側に下アームのパワー半導体素子4、5、6の部品10、11、12を横に並べて冷却フィン15の素子取付面に配置した場合、各素子の発熱による冷却フィン15の温度は、矢印Aで示すように、上側に向かって、より高くなる。   Then, as in this embodiment, the upper arm power semiconductor elements 1, 2, and 3 are arranged side by side on the upper side, and the lower arm power semiconductor elements 4, 5, 6 are arranged on the lower side. When the parts 10, 11 and 12 are arranged side by side on the element mounting surface of the cooling fin 15, the temperature of the cooling fin 15 due to heat generated by each element becomes higher toward the upper side as shown by the arrow A. .

また、このとき、各パワー半導体素子1〜6は何れも同じように発熱するので、冷却フィン15の中央では熱が集中し、温度上昇が大きくなるので、冷却フィン15の中央の上側にあるパワー半導体素子2、つまり部品8の温度が一番高くなる。   At this time, since each of the power semiconductor elements 1 to 6 generates heat in the same manner, the heat concentrates in the center of the cooling fin 15 and the temperature rises so that the power on the upper side of the center of the cooling fin 15 increases. The temperature of the semiconductor element 2, that is, the component 8 is the highest.

そして、この実施形態では、このパワー半導体素子2、すなわち部品8の近傍に温度検出素子22を配置したので、この温度検出素子22は、6個のパワー半導体素子1〜6の中で温度が一番高くなるパワー半導体素子2の温度を検出していることになる。   In this embodiment, since the temperature detection element 22 is disposed in the vicinity of the power semiconductor element 2, that is, the component 8, the temperature detection element 22 has a temperature of one of the six power semiconductor elements 1 to 6. This means that the temperature of the power semiconductor element 2 that is the highest is detected.

ここで、熱保護のためには、同一冷却フィンに取付けてある複数個のパワー半導体素子の中で、最も温度が高い素子の温度が熱保護を要する温度に達したとき、保護機能が作動するようにしてやれば良いことはいうまでもない。   Here, in order to protect the heat, the protection function is activated when the temperature of the element having the highest temperature among the plurality of power semiconductor elements attached to the same cooling fin reaches the temperature requiring the heat protection. It goes without saying that this is what you should do.

従って、この実施形態によれば、温度検出素子22を冷却フィン15に取付けることなく、しかも、この1個の温度検出素子22だけで、全てのパワー半導体素子1〜6と電力変換装置全体の熱保護が得られるのである。   Therefore, according to this embodiment, the temperature detection elements 22 are not attached to the cooling fins 15, and the heat of all the power semiconductor elements 1 to 6 and the entire power conversion device can be obtained with only one temperature detection element 22. Protection is gained.

そして、この結果、この実施形態によれば、図7で説明した従来技術のように、冷却フィン15に温度検出素子16〜21の6個もの温度検出素子を配置する必要がないので、これらの設置に要する工数と、温度検出素子の配線に要する工数が低減でき、且つ、前記配線に必要な電線などの部品も削除することができる。   As a result, according to this embodiment, it is not necessary to arrange as many as six temperature detection elements 16 to 21 on the cooling fin 15 as in the prior art described in FIG. The number of steps required for installation and the number of steps required for wiring of the temperature detection element can be reduced, and parts such as electric wires necessary for the wiring can also be deleted.

次に、この実施形態における温度検出素子22の配置について、更に具体的に説明すると、これは、上記したように、他のパワー半導体素子の温度上昇の影響を最も多く受けるパワー半導体素子2がパッケージされた部品8の近傍になるようにして回路基板13に配置する。   Next, the arrangement of the temperature detection element 22 in this embodiment will be described more specifically. As described above, the power semiconductor element 2 that is most affected by the temperature rise of other power semiconductor elements is packaged as described above. The circuit board 13 is arranged so as to be in the vicinity of the component 8 formed.

ここで、この実施形態で、温度検出素子22が温度検出対象となるパワー半導体素子の近傍に設けてある理由は、当該素子の接合部の温度を検出したいがためであり、このためパワー半導体素子の近傍とはいうものの、できればコレクタ端子、又はエミッタ端子の近傍であるのが望ましい。   Here, in this embodiment, the reason why the temperature detecting element 22 is provided in the vicinity of the power semiconductor element to be temperature detected is because it is desired to detect the temperature of the junction of the element. However, it is desirable that the vicinity of the collector terminal or the emitter terminal if possible.

ここで、まず、図3は、温度検出素子22をパワー半導体素子1〜6(部品7〜12)のエミッタ端子27の近傍に配置した場合の一例で、次に、図4は、温度検出素子22をパワー半導体素子1〜6(部品7〜12)のコレクタ端子28の近傍に配置した場合の一例である。   Here, FIG. 3 is an example in the case where the temperature detection element 22 is disposed in the vicinity of the emitter terminal 27 of the power semiconductor elements 1 to 6 (components 7 to 12). Next, FIG. 4 illustrates the temperature detection element. This is an example in which 22 is arranged in the vicinity of the collector terminal 28 of the power semiconductor elements 1 to 6 (components 7 to 12).

一方、この温度検出素子22は、その検出信号が制御部400に取り込まれ、ここで、上記したように、熱保護動作に使用されるが、このとき、制御部400は、逆変換部300と同じ電位を基準にしているので、温度検出素子22による検出結果も、制御部400と同電位を基準とした信号として、この制御部400に入力される必要がある。   On the other hand, the temperature detection element 22 receives the detection signal in the control unit 400, and is used for the thermal protection operation as described above. At this time, the control unit 400 is connected to the inverse conversion unit 300. Since the same potential is used as a reference, the detection result by the temperature detection element 22 also needs to be input to the control unit 400 as a signal based on the same potential as the control unit 400.

このとき、逆変換部300は、制御部400から供給されるスイッチング信号により制御されるので、逆変換部300と制御部400で基準となる電位は、等しく図1における直流−端子Nの電位となるようにしてあり、従って、この場合、パワー半導体素子4、パワー半導体素子5、パワー半導体素子6のエミッタ端子の電位となる。   At this time, since the inverse conversion unit 300 is controlled by the switching signal supplied from the control unit 400, the reference potential in the inverse conversion unit 300 and the control unit 400 is equal to the potential of the DC-terminal N in FIG. Therefore, in this case, the potential of the emitter terminals of the power semiconductor element 4, the power semiconductor element 5, and the power semiconductor element 6 is obtained.

そこで、いま、図3に示すように、温度検出素子22をエミッタ端子27の近傍に配置し、且つ、この場合、パワー半導体素子が、図1におけるパワー半導体素子4、又はパワー半導体素子5、或いはパワー半導体素子6の何れかであったとすれば、そのエミッタ端子27の電位は、制御部400が基準とする電位と同じになり、従って、温度検出素子22による検出結果を直接、制御部400に入力することができる。   Therefore, as shown in FIG. 3, the temperature detecting element 22 is disposed in the vicinity of the emitter terminal 27, and in this case, the power semiconductor element is the power semiconductor element 4 or the power semiconductor element 5 in FIG. If it is one of the power semiconductor elements 6, the potential of the emitter terminal 27 becomes the same as the reference potential of the control unit 400. Therefore, the detection result by the temperature detection element 22 is directly transmitted to the control unit 400. Can be entered.

一方、ここで、図3に示したパワー半導体素子が図1におけるパワー半導体素子1又はパワー半導体素子2、或いはパワー半導体素子3の何れかであったとすれば、そのエミッタ端子27の電位は、3相交流出力のU、V、Wの何れかの相の電位と同じ変化を示し、この場合、制御部400で基準としている電位に比べ高電圧になってしまう。   On the other hand, if the power semiconductor element shown in FIG. 3 is any one of the power semiconductor element 1, the power semiconductor element 2, or the power semiconductor element 3 in FIG. 1, the potential of the emitter terminal 27 is 3 The same change as the potential of any one of the U, V, and W phases of the phase AC output is shown. In this case, the voltage becomes higher than the potential that is the reference in the control unit 400.

従って、この場合は、温度検出素子22とエミッタ端子27の間に、当該電力変換装置に要求されている仕様規格に定められた絶縁距離をとる必要があり、この場合、温度検出素子22はパワー半導体素子1、パワー半導体素子2、パワー半導体素子3のエミッタ端子27の近傍に配置するのが困難になる。   Therefore, in this case, it is necessary to take an insulation distance defined in the specification standard required for the power conversion device between the temperature detection element 22 and the emitter terminal 27. In this case, the temperature detection element 22 has a power It becomes difficult to arrange in the vicinity of the emitter terminal 27 of the semiconductor element 1, the power semiconductor element 2, and the power semiconductor element 3.

そこで、この場合は、パワー半導体素子1又はパワー半導体素子2、或いはパワー半導体素子3のエミッタ端子27の近傍に温度検出素子22を配置して温度がより正確に検出できるようにした上で、温度検出素子22の検出出力は、フォトカプラなどの素子を用いて電気的に隔離した状態で制御部400に入力させる必要がある。   Therefore, in this case, the temperature detection element 22 is disposed in the vicinity of the emitter terminal 27 of the power semiconductor element 1, the power semiconductor element 2, or the power semiconductor element 3 so that the temperature can be detected more accurately. The detection output of the detection element 22 needs to be input to the control unit 400 in an electrically isolated state using an element such as a photocoupler.

しかも、この場合、パワー半導体素子1、パワー半導体素子2、パワー半導体素子3のエミッタ端子27の電位は、電力変換装置運転中は電位が激しく変動しているため、温度検出素子22の出力はノイズの影響を受けやすくなることにも注意が必要となる。   In addition, in this case, since the potentials of the emitter terminals 27 of the power semiconductor element 1, the power semiconductor element 2, and the power semiconductor element 3 fluctuate drastically during operation of the power converter, the output of the temperature detection element 22 is noise. It is necessary to pay attention to the fact that it is easily affected by

次に、図4に示したように、温度検出素子22をコレクタ端子28の近傍に配置した場合は、図1におけるパワー半導体素子1、パワー半導体素子2、パワー半導体素子3のコレクタ端子27の電位は直流+端子Pと同じ高電圧になる。   Next, as shown in FIG. 4, when the temperature detection element 22 is arranged in the vicinity of the collector terminal 28, the potential of the collector terminal 27 of the power semiconductor element 1, the power semiconductor element 2, and the power semiconductor element 3 in FIG. Becomes the same high voltage as the DC + terminal P.

そこで、このようにパワー半導体素子1、パワー半導体素子2、パワー半導体素子3、のコレクタ端子28の近傍に温度検出素子22を配置した場合は、温度検出素子22とコレクタ端子28の間に電力変換装置が取得する必要のある仕様規格に定められた絶縁距離をとる必要がある。   Therefore, when the temperature detection element 22 is arranged in the vicinity of the collector terminal 28 of the power semiconductor element 1, the power semiconductor element 2, and the power semiconductor element 3 as described above, power conversion is performed between the temperature detection element 22 and the collector terminal 28. It is necessary to take the insulation distance defined in the specification standard that the device needs to acquire.

そして、このように絶縁距離をとった場合、温度検出素子22をパワー半導体素子1、パワー半導体素子2、パワー半導体素子3のコレクタ端子28の近傍に配置するのが困難になる。   When the insulation distance is taken in this way, it is difficult to arrange the temperature detecting element 22 in the vicinity of the power semiconductor element 1, the power semiconductor element 2, and the collector terminal 28 of the power semiconductor element 3.

そこで、この場合も、パワー半導体素子1又はパワー半導体素子2、或いはパワー半導体素子3のコレクタ端子28の近傍に温度検出素子22を配置して温度がより正確に検出できるようにした上で、温度検出素子22の検出出力は、フォトカプラなどの素子を用いて電気的に隔離した状態で制御部400に入力させる必要がある。   Therefore, in this case as well, the temperature detection element 22 is arranged in the vicinity of the collector terminal 28 of the power semiconductor element 1 or the power semiconductor element 2 or the power semiconductor element 3 so that the temperature can be detected more accurately. The detection output of the detection element 22 needs to be input to the control unit 400 in an electrically isolated state using an element such as a photocoupler.

また、この図4に示されたパワー半導体素子が、図1におけるパワー半導体素子4、パワー半導体素子5、パワー半導体素子6の何れかであったとすれば、これらのコレクタ端子28は3相交流出力のU、V、Wの何れかの相の電位と同じ変化を示し、この場合、制御部400で基準としている電位に比べ高電圧になってしまう。   Further, if the power semiconductor element shown in FIG. 4 is any one of the power semiconductor element 4, the power semiconductor element 5 and the power semiconductor element 6 in FIG. 1, these collector terminals 28 have a three-phase AC output. This shows the same change as the potential of any of U, V, and W. In this case, the voltage becomes higher than the reference potential in the control unit 400.

従って、この場合は、温度検出素子22とコレクタ端子28の間に、当該電力変換装置に要求されている仕様規格に定められた絶縁距離をとる必要があり、この場合、温度検出素子22はパワー半導体素子4、パワー半導体素子5、パワー半導体素子6のコレクタ端子28の近傍に配置するのが困難になる。   Therefore, in this case, it is necessary to take an insulation distance defined in the specification standard required for the power conversion device between the temperature detection element 22 and the collector terminal 28. In this case, the temperature detection element 22 It becomes difficult to arrange in the vicinity of the collector terminal 28 of the semiconductor element 4, the power semiconductor element 5, and the power semiconductor element 6.

そこで、この場合は、パワー半導体素子4又はパワー半導体素子5、或いはパワー半導体素子6のコレクタ端子28の近傍に温度検出素子22を配置して温度がより正確に検出できるようにした上で、温度検出素子22の検出出力は、フォトカプラなどの素子を用いて電気的に隔離した状態で制御部400に入力させる必要がある。   Therefore, in this case, the temperature detection element 22 is disposed in the vicinity of the collector terminal 28 of the power semiconductor element 4 or the power semiconductor element 5 or the power semiconductor element 6 so that the temperature can be detected more accurately. The detection output of the detection element 22 needs to be input to the control unit 400 in an electrically isolated state using an element such as a photocoupler.

しかも、この場合、パワー半導体素子4、パワー半導体素子5、パワー半導体素子6のコレクタ端子28の電位は、電力変換装置運転中は電位が激しく変動しているため、温度検出素子22の出力はノイズの影響を受けやすくなることにも注意が必要となる。   In addition, in this case, since the potential of the collector terminal 28 of the power semiconductor element 4, the power semiconductor element 5, and the power semiconductor element 6 fluctuates drastically during operation of the power converter, the output of the temperature detection element 22 is noise. It is necessary to pay attention to the fact that it is easily affected by

従って、本発明の実施形態としては、図3に示したように、温度検出素子22をパワー半導体素子1〜6のエミッタ端子27の近傍に配置した上で、当該温度検出素子22がエミッタ端子27の近傍に配置されたパワー半導体素子が、図1に示したパワー半導体素子2、つまり部品8となるように構成するのが好ましい。   Therefore, as an embodiment of the present invention, as shown in FIG. 3, the temperature detecting element 22 is arranged in the vicinity of the emitter terminal 27 of the power semiconductor elements 1 to 6, and then the temperature detecting element 22 is connected to the emitter terminal 27. It is preferable that the power semiconductor element arranged in the vicinity of is the power semiconductor element 2 shown in FIG.

なお、上記の実施形態では、パワー半導体素子として、コレクタ端子とエミッタ端子を備えたものがもちいられているが、その他の端子名を持つ半導体素子であっても、そのパワー半導体素子のジャンクションに近い端子の近傍に温度検出素子を配置することによりパワー半導体素子の温度検出ができるようにした本発明の利点は変らない。   In the above embodiment, a power semiconductor element having a collector terminal and an emitter terminal is used. However, even a semiconductor element having another terminal name is close to the junction of the power semiconductor element. The advantage of the present invention in which the temperature of the power semiconductor element can be detected by arranging the temperature detection element in the vicinity of the terminal remains unchanged.

また、上記実施形態では、温度検出素子が1個の場合について説明したが、パワー半導体素子の各々の近傍に個別に複数個、配置されていてもよい。   Moreover, although the said embodiment demonstrated the case where the temperature detection element was one, multiple pieces may be arrange | positioned separately in the vicinity of each of the power semiconductor element.

更に、上記の実施形態では、交流電動機に可変電圧可変周波数の交流電力を供給できるようにした電力変換装置について記載しているが、交流電動機に可変電圧可変周波数の交流電力を供給できるようにした電力変換装置ではなくても、パワー半導体素子を用いる電力変換回路であれば、本発明によるパワー半導体素子の温度検出の利点は変らない。   Furthermore, in the above-described embodiment, the power conversion device that can supply AC power of variable voltage variable frequency to the AC motor is described. However, AC power of variable voltage variable frequency can be supplied to the AC motor. Even if it is not a power conversion device, as long as it is a power conversion circuit using a power semiconductor element, the advantage of temperature detection of the power semiconductor element according to the present invention does not change.

1〜6 パワー半導体素子
7〜12 部品(パワー半導体素子1〜6がパッケージされた部品)
13 電力変換装置の回路基板
(制御部400などが搭載された回路基板)
22 温度検出素子
(回路基板13の回路パターン面に配置された温度検出素子)
27 パワー半導体素子のエミッタ端子
28 パワー半導体素子のコレクタ端子
100 順変換部(コンバータ)
200 平滑部(コンデンサ)
300 逆変換部(インバータ)
400 制御部
500 操作部
600 電源(商用電源)
700 負荷(IM(誘導電動機))
1-6 Power semiconductor elements 7-12 Parts (parts in which power semiconductor elements 1-6 are packaged)
13 Circuit board of power converter
(Circuit board on which the control unit 400 and the like are mounted)
22 Temperature sensing element
(Temperature detection element arranged on the circuit pattern surface of the circuit board 13)
27 Emitter terminal of power semiconductor element 28 Collector terminal of power semiconductor element 100 Forward conversion unit (converter)
200 Smoothing part (capacitor)
300 Inverse converter (inverter)
400 Control unit 500 Operation unit 600 Power supply (commercial power supply)
700 load (IM (induction motor))

Claims (3)

逆変換部に半導体素子を用いる電力変換装置であって、
前記電力変換装置の使用されている状態において横方向に並べられて配置されている半導体素子の段が複数段あり、前記複数段のうちの最も上側の段の半導体素子のうちの中央部に配置される半導体素子のエミッタ端子が接続される回路基板上の回路パターンに接しているとともに、前記中央に配置される半導体素子の接合部の温度変化を検出可能な距離に配置された温度検出素子によって温度検出を行なうことを特徴とする電力変換装置。
A power conversion device using a semiconductor element for an inverse conversion unit,
There are a plurality of stages of semiconductor elements arranged side by side in a state where the power conversion device is used, and the semiconductor elements are arranged in the center of the uppermost stage of the plurality of stages. A temperature detecting element disposed at a distance capable of detecting a temperature change of a junction portion of the semiconductor element disposed at the center and in contact with a circuit pattern on a circuit board to which an emitter terminal of the semiconductor element is coupled A power converter that performs temperature detection.
前記温度検出素子はN側の直流電流が流れる半導体素子の接合部に対するエミッタ端子が接続されるか接続される回路基板に配置されていることを特徴とする請求項1に記載の電力変換装置。   2. The power conversion device according to claim 1, wherein the temperature detection element is arranged on a circuit board to which an emitter terminal is connected or connected to a junction of a semiconductor element in which a direct current on the N side flows. 前記温度検出素子は、前記回路基板の回路パターンに接して配置されることを特徴とする請求項2記載の電力変換装置。   The power conversion device according to claim 2, wherein the temperature detection element is disposed in contact with a circuit pattern of the circuit board.
JP2009106712A 2004-03-05 2009-04-24 Power converter Expired - Fee Related JP4892032B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004062568A JP2005252090A (en) 2004-03-05 2004-03-05 Method for detecting temperature of semiconductor element and semiconductor power converter
JP2009106712A JP4892032B2 (en) 2009-04-24 2009-04-24 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009106712A JP4892032B2 (en) 2009-04-24 2009-04-24 Power converter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004062568A Division JP2005252090A (en) 2004-03-05 2004-03-05 Method for detecting temperature of semiconductor element and semiconductor power converter

Publications (2)

Publication Number Publication Date
JP2009171842A true JP2009171842A (en) 2009-07-30
JP4892032B2 JP4892032B2 (en) 2012-03-07

Family

ID=40972367

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2004062568A Pending JP2005252090A (en) 2004-03-05 2004-03-05 Method for detecting temperature of semiconductor element and semiconductor power converter
JP2009106712A Expired - Fee Related JP4892032B2 (en) 2004-03-05 2009-04-24 Power converter

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2004062568A Pending JP2005252090A (en) 2004-03-05 2004-03-05 Method for detecting temperature of semiconductor element and semiconductor power converter

Country Status (1)

Country Link
JP (2) JP2005252090A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010707A1 (en) 2009-07-23 2011-01-27 日本電気株式会社 Marker judgment device, marker judgment detection system, marker judgment detection device, marker, marker judgment method, and program therefor
JP2013106489A (en) * 2011-11-16 2013-05-30 Nissan Motor Co Ltd Abnormality detection device
JP2013149818A (en) * 2012-01-20 2013-08-01 Hitachi Ltd Cooler of power conversion apparatus for railroad vehicle
JP2020040427A (en) * 2018-09-06 2020-03-19 富士電機株式会社 Electric power conversion system for railway vehicle
JP7313413B2 (en) 2021-11-02 2023-07-24 三菱電機株式会社 semiconductor equipment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5016967B2 (en) 2007-04-20 2012-09-05 株式会社日立産機システム Power converter and power cycle life prediction method
JP5381480B2 (en) * 2009-08-10 2014-01-08 日本電気株式会社 Electronic device and method for manufacturing electronic device
JP6339022B2 (en) 2012-12-28 2018-06-06 三菱電機株式会社 Semiconductor devices, automobiles
JP6634926B2 (en) * 2016-03-29 2020-01-22 株式会社大真空 Piezoelectric oscillator
JP6645362B2 (en) * 2016-05-31 2020-02-14 日産自動車株式会社 Semiconductor device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106883A (en) * 1989-09-08 1991-05-07 Monsanto Co Bicyclic tetrahydroxylated pyrrolidine
JPH0476943A (en) * 1990-07-18 1992-03-11 Nec Corp Semiconductor element
JPH0568331A (en) * 1991-09-06 1993-03-19 Yaskawa Electric Corp Method of protecting power semiconductor element
JPH05102352A (en) * 1991-10-11 1993-04-23 Mitsubishi Electric Corp Cooler for semiconductor power module
JPH05102358A (en) * 1991-10-09 1993-04-23 Nec Corp Cooling structure of integrated circuit
JPH0714948A (en) * 1993-06-15 1995-01-17 Hitachi Ltd Power semiconductor module
JPH07194094A (en) * 1993-12-28 1995-07-28 Toyota Motor Corp Temperature malfunction detector for switching element and switching element protector
JPH11341884A (en) * 1998-05-27 1999-12-10 Kansai Electric Power Co Inc:The Inverter device
JP2002262580A (en) * 2001-03-02 2002-09-13 Sanken Electric Co Ltd Inverter circuit
JP2004040922A (en) * 2002-07-04 2004-02-05 Sanyo Electric Co Ltd Inverter circuit device with temperature detection circuit
JP2005184977A (en) * 2003-12-19 2005-07-07 Hitachi Ltd Inverter device and vehicle using it

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106883A (en) * 1989-09-08 1991-05-07 Monsanto Co Bicyclic tetrahydroxylated pyrrolidine
JPH0476943A (en) * 1990-07-18 1992-03-11 Nec Corp Semiconductor element
JPH0568331A (en) * 1991-09-06 1993-03-19 Yaskawa Electric Corp Method of protecting power semiconductor element
JPH05102358A (en) * 1991-10-09 1993-04-23 Nec Corp Cooling structure of integrated circuit
JPH05102352A (en) * 1991-10-11 1993-04-23 Mitsubishi Electric Corp Cooler for semiconductor power module
JPH0714948A (en) * 1993-06-15 1995-01-17 Hitachi Ltd Power semiconductor module
JPH07194094A (en) * 1993-12-28 1995-07-28 Toyota Motor Corp Temperature malfunction detector for switching element and switching element protector
JPH11341884A (en) * 1998-05-27 1999-12-10 Kansai Electric Power Co Inc:The Inverter device
JP2002262580A (en) * 2001-03-02 2002-09-13 Sanken Electric Co Ltd Inverter circuit
JP2004040922A (en) * 2002-07-04 2004-02-05 Sanyo Electric Co Ltd Inverter circuit device with temperature detection circuit
JP2005184977A (en) * 2003-12-19 2005-07-07 Hitachi Ltd Inverter device and vehicle using it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010707A1 (en) 2009-07-23 2011-01-27 日本電気株式会社 Marker judgment device, marker judgment detection system, marker judgment detection device, marker, marker judgment method, and program therefor
JP2013106489A (en) * 2011-11-16 2013-05-30 Nissan Motor Co Ltd Abnormality detection device
JP2013149818A (en) * 2012-01-20 2013-08-01 Hitachi Ltd Cooler of power conversion apparatus for railroad vehicle
JP2020040427A (en) * 2018-09-06 2020-03-19 富士電機株式会社 Electric power conversion system for railway vehicle
JP7167566B2 (en) 2018-09-06 2022-11-09 富士電機株式会社 Power converter for railway vehicles
JP7313413B2 (en) 2021-11-02 2023-07-24 三菱電機株式会社 semiconductor equipment

Also Published As

Publication number Publication date
JP4892032B2 (en) 2012-03-07
JP2005252090A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4892032B2 (en) Power converter
CN101231196B (en) Temperature detection method of semiconductor device and power conversion apparatus
JP5029900B2 (en) Motor control device
US20160172995A1 (en) Power semiconductor module and power conversion device
JP5312386B2 (en) Power converter
US20120063187A1 (en) Inverter device
JP2008042950A (en) Power transformer
US10763729B2 (en) Electronic control unit, and electric power steering device using the same
US10134718B2 (en) Power semiconductor module
JP5586671B2 (en) Power module and driving device using the same
JP4985810B2 (en) Semiconductor device
JPWO2017168951A1 (en) Overheat protection control device and in-vehicle power circuit device
KR101444082B1 (en) Semiconductor device
Otsuki et al. Trends and opportunities in intelligent power modules (IPM)
WO2014064822A1 (en) Power semiconductor module, and power conversion device provided with same
JP2006140217A (en) Semiconductor module
JP2009165285A (en) Semiconductor device
JP4366269B2 (en) Semiconductor element temperature detection method and power conversion device
WO2016039342A1 (en) Semiconductor module
JP2008306872A (en) Semiconductor device
JPWO2020017169A1 (en) Power module with built-in drive circuit
JP2007089256A (en) Dc-dc converter, semiconductor module and temperature detector of the same
JP4975387B2 (en) Power semiconductor device
JP5414326B2 (en) Charging power generator for vehicles
KR101366588B1 (en) High integrated power module package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111216

R150 Certificate of patent or registration of utility model

Ref document number: 4892032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees