JP2009166175A - Eccentric center adjusting device, eccentric center adjusting method and rotary working device - Google Patents

Eccentric center adjusting device, eccentric center adjusting method and rotary working device Download PDF

Info

Publication number
JP2009166175A
JP2009166175A JP2008006806A JP2008006806A JP2009166175A JP 2009166175 A JP2009166175 A JP 2009166175A JP 2008006806 A JP2008006806 A JP 2008006806A JP 2008006806 A JP2008006806 A JP 2008006806A JP 2009166175 A JP2009166175 A JP 2009166175A
Authority
JP
Japan
Prior art keywords
eccentricity
workpiece
adjusting means
adjusting
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008006806A
Other languages
Japanese (ja)
Inventor
Harutaka Kondo
晴崇 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008006806A priority Critical patent/JP2009166175A/en
Publication of JP2009166175A publication Critical patent/JP2009166175A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2291Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the workpiece relative to the holder thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q2017/001Measurement or correction of run-out or eccentricity

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform eccentric center adjustment for a workpiece to the axis of rotation without worker's skill and long-time set-up. <P>SOLUTION: A cylindrical part 11 of a workpiece 1 sucked and held on a sucking surface 6 of a spindle to be movable in the eccentric direction is incorporated with a detecting part 8 so that a probe 8a is exposed to a working part 4 of an eccentric center adjusting device 3, and while the eccentric amount of the cylindrical part 11 is measured by the probe 8a, the cylindrical part 11 is pressed by the working part 4 to perform centering so that eccentric center of the workpiece 1 to the spindle can be eliminated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は偏芯調整装置および偏芯調整方法ならびに回転加工装置に関し、たとえば、回転加工される被加工物の偏芯調整技術に適用して有効な技術に関する。   The present invention relates to an eccentricity adjusting device, an eccentricity adjusting method, and a rotary processing device, and for example, relates to a technique that is effective when applied to an eccentricity adjustment technology for a workpiece to be rotationally processed.

回転軸対称のレンズ、プリズムなどの光学部品や当該光学部品の成形に用いられる金型は、高精度な形状はもとより、回転対称軸が上記光学部品の光軸に対して、偏芯誤差が所定の許容値以下になるように、高精度に一致している必要がある。   Optical components such as lenses and prisms that are rotationally symmetric, and molds used for molding the optical components have a highly accurate shape and a predetermined eccentricity error with respect to the optical axis of the optical component. It is necessary to match with high accuracy so that it is less than the allowable value.

このような高い精度の光学部品の回転加工においては、加工装置の回転軸の中心に対して、光軸となる被加工物の中心軸との偏芯誤差が精度規格値以下となるように、被加工物を偏芯調整して、把持させる必要がある。   In such high-precision rotation processing of optical components, so that the eccentric error of the center axis of the workpiece that is the optical axis with respect to the center of the rotation axis of the processing apparatus is below the accuracy standard value, It is necessary to adjust the eccentricity of the workpiece and grip it.

このような要求に対応する芯出し技術として、特許文献1に開示された技術が知られている。すなわち、回転駆動される主軸に取り付けたマグネットチャックに吸着されたワークに、一つの支点の回りで回動自在な支持板上に支持された二つ作用部を当接させ、支持板の支点がマグネットチャックの回転中心へ向かって移動する時に、二つの作用部がワークの外周に当接して位置偏倚したワークに対応して揺動しながらワークの位置ずれを矯正し、ワークの中心をマグネットチャックの回転中心に合わせる芯出しを行うものである。   As a centering technique corresponding to such a request, a technique disclosed in Patent Document 1 is known. That is, two working parts supported on a support plate that is rotatable around one fulcrum are brought into contact with a work adsorbed by a magnet chuck attached to a rotationally driven main shaft, and the fulcrum of the support plate is When moving toward the center of rotation of the magnet chuck, the two working parts abut the outer periphery of the workpiece and swing in response to the position-biased workpiece. Centering to match the center of rotation.

しかしながら、上述の特許文献1の芯出し方法では、ワークの偏芯量を測定する測定器の検出部が、ワークに接する作用部とは別体となるため、調整の都度、前記測定器の検出部を個別に設置する必要があり、作業の段取りの所要時間が長くなり、加工全体のリードタイムが長くなるという技術的課題があった。   However, in the above-described centering method of Patent Document 1, since the detection unit of the measuring instrument that measures the amount of eccentricity of the workpiece is separate from the action unit that contacts the workpiece, the detection of the measuring instrument is performed each time adjustment is performed. There is a technical problem that it is necessary to install the parts individually, the time required for the work setup becomes long, and the lead time of the whole processing becomes long.

また、2箇所の作用部が支持板上で揺動しながらワークを押圧するため、作用部の調整方向とワークの移動方向のベクトルが一致せず、ワークに与えるべき偏芯調整量と作用部の移動量とが異なり、この両者の値の関係に習熟させるために作業者の熟練や教育が必要となっていた。   Also, since the two action parts press the work while swinging on the support plate, the vector of the adjustment direction of the action part and the vector of the movement direction of the work do not match, and the eccentricity adjustment amount to be given to the work and the action part Unlike the amount of movement, the skill and education of the workers are necessary to familiarize the relationship between the two values.

更に、支点の回りで回動する支持板は、回転自在にするために支点軸にクリアランスを設けている。よって、支持板に搭載された二つの作用部を、このクリアランス以下の精度で移動させることは困難であり、二つの作用部のワークに対する当接による偏芯調整、特にサブマイクロメートル以下の精度での偏芯調整は困難となっていた。
特開2007−245241号公報
Further, the support plate that rotates around the fulcrum is provided with a clearance on the fulcrum shaft so as to be rotatable. Therefore, it is difficult to move the two working parts mounted on the support plate with an accuracy below this clearance, and the eccentricity adjustment by the contact of the two working parts against the workpiece, particularly with an accuracy of sub-micrometer or less. It has been difficult to adjust the eccentricity.
JP 2007-245241 A

本発明の目的は、作業者の熟練や長時間の段取りを必要とすることなく、回転軸に対する被加工物の偏芯調整を高精度に行うことが可能な技術を提供することにある。   An object of the present invention is to provide a technique capable of adjusting the eccentricity of a workpiece with respect to a rotating shaft with high accuracy without requiring skill of an operator or long-time setup.

本発明の第1の観点は、回転軸に交差する方向に可動に被加工物が吸着保持された主軸を回転させた状態で前記被加工物の外周部に調整手段を当接させて偏芯調整を行う偏芯調整装置であって、
前記調整手段の内部に、前記被加工物の前記回転軸に対する偏芯量を測定する偏芯量測定器の検出部を装着した偏芯調整装置を提供する。
According to a first aspect of the present invention, an eccentric means is brought into contact with an outer peripheral portion of the workpiece while rotating a main shaft on which the workpiece is adsorbed and held movably in a direction intersecting the rotation axis. An eccentricity adjusting device for adjusting,
Provided is an eccentricity adjusting device in which a detecting unit of an eccentricity measuring device for measuring the eccentricity of the workpiece with respect to the rotating shaft is mounted inside the adjusting means.

本発明の第2の観点は、回転軸に交差する方向に可動に被加工物が吸着保持された主軸を回転させるステップと、
前記被加工物の前記回転軸に対する偏芯量を測定する偏芯量測定器の検出部を備えた調整手段を当該被加工物に当接させるステップと、
前記調整手段と前記被加工物の外周部が接触した後に、前記検出部から得られる前記偏芯量の最大値と最小値の差の半分だけ、前記被加工物を押圧する方向に前記調整手段を移動させるステップと、
を含む偏芯調整方法を提供する。
A second aspect of the present invention is a step of rotating a spindle on which a workpiece is adsorbed and held movably in a direction intersecting the rotation axis;
Contacting the workpiece with an adjusting means including a detecting unit of an eccentricity measuring device for measuring the eccentricity of the workpiece with respect to the rotation axis;
After the adjusting means and the outer peripheral part of the workpiece are in contact with each other, the adjusting means is pressed in the direction in which the workpiece is pressed by the half of the difference between the maximum value and the minimum value of the eccentric amount obtained from the detection unit. A step of moving
An eccentricity adjustment method is provided.

本発明の第3の観点は、回転軸に交差する方向に可動に被加工物が吸着保持される主軸と、
前記主軸とともに回転する前記被加工物に当接する加工工具と、
前記主軸とともに回転する前記被加工物の外周部に当接する調整手段に当該被加工物の前記回転軸に対する偏芯量を測定する偏芯量測定器の検出部を具備した偏芯調整装置と、
を含む回転加工装置を提供する。
According to a third aspect of the present invention, there is provided a main shaft on which a work piece is adsorbed and held movably in a direction intersecting the rotation axis;
A processing tool that contacts the workpiece rotating with the main shaft;
An eccentricity adjusting device comprising a detecting unit of an eccentricity measuring device for measuring an eccentricity amount of the workpiece with respect to the rotating shaft in an adjusting means that contacts an outer peripheral portion of the workpiece rotating with the main shaft;
The rotary processing apparatus containing is provided.

本発明によれば、作業者の熟練や長時間の段取りを必要とすることなく、回転軸に対する被加工物の偏芯調整を高精度に行うことが可能な技術を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the technique which can perform the eccentric adjustment of the to-be-processed object with respect to a rotating shaft with high precision can be provided, without requiring an operator's skill and a setup for a long time.

以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
[実施の形態1]
図1は、本発明の一実施の形態である偏芯調整装置の構成および作用の一例を示す側面図であり、図2は、本実施の形態の偏芯調整装置の構成の一例を示す略断面図、図3は、本実施の形態の偏芯調整装置の構成の一例を示す正面図、図4は、本実施の形態の偏芯調整装置の作用の一例を示す線図、図5は、本実施の形態の偏芯調整装置の作用の一例を示すフローチャートである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[Embodiment 1]
FIG. 1 is a side view showing an example of the configuration and operation of an eccentricity adjusting device according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing an example of the configuration of the eccentricity adjusting device according to the present embodiment. 3 is a front view showing an example of the configuration of the eccentricity adjusting device of the present embodiment, FIG. 4 is a diagram showing an example of the operation of the eccentricity adjusting device of the present embodiment, and FIG. It is a flowchart which shows an example of an effect | action of the eccentricity adjustment apparatus of this Embodiment.

また、図6は、本実施の形態の偏芯調整装置を備えた回転加工装置の構成の一例を示す側面図である。
[構成]
まず、図6を参照して、本実施の形態の回転加工装置5の全体構成の一例を説明する。
FIG. 6 is a side view showing an example of the configuration of the rotary machining apparatus provided with the eccentricity adjusting apparatus of the present embodiment.
[Constitution]
First, with reference to FIG. 6, an example of the whole structure of the rotary processing apparatus 5 of this Embodiment is demonstrated.

図6には、一例として、回転軸対称の被加工物1を加工するための機械加工装置としての回転加工装置5が例示されている。
本実施の形態の回転加工装置5のベース5aの上には、被加工物1を把持して加工するため、ACサーボモータ等の回転装置を空気静圧軸受け、油静圧軸受けや転がり軸受けのいずれかで支持され、主軸回転軸Aに対し高精度に軸回転をする主軸スピンドル2(主軸)が備え付けられている。
FIG. 6 illustrates, as an example, a rotary processing device 5 as a machining device for processing a workpiece 1 that is rotationally symmetric.
Since the workpiece 1 is gripped and processed on the base 5a of the rotary processing device 5 according to the present embodiment, a rotary device such as an AC servo motor is used as an air static pressure bearing, an oil hydrostatic bearing, or a rolling bearing. A spindle spindle 2 (main shaft) that is supported by either of them and rotates with high accuracy with respect to the main shaft rotation axis A is provided.

回転加工装置5の主軸スピンドル2の内部は中空の吸引孔2aになっており、主軸スピンドル2の先端の吸着面6の中央には、吸引孔2aに直結する複数の吸着穴6aが設けられている。   The inside of the spindle spindle 2 of the rotary machining device 5 is a hollow suction hole 2a, and a plurality of suction holes 6a directly connected to the suction hole 2a are provided at the center of the suction surface 6 at the tip of the spindle spindle 2. Yes.

回転加工装置5の主軸スピンドル2の吸着面6の反対側から真空ポンプ2b等の真空吸引装置により真空吸引を行い、吸引孔2aを通じ吸着面6に密着した被加工物1を吸着穴6aで真空吸着可能になっている。また、真空ポンプ2bには、空圧レギュレータ2cが設けられており、この空圧レギュレータ2cの圧力調整機能によって吸着穴6aから被加工物1に作用する真空吸引力を変化させることができる。   Vacuum suction is performed by a vacuum suction device such as a vacuum pump 2b from the opposite side of the suction surface 6 of the spindle spindle 2 of the rotary processing device 5, and the workpiece 1 that is in close contact with the suction surface 6 through the suction hole 2a is vacuumed in the suction hole 6a. Adsorption is possible. The vacuum pump 2b is provided with an air pressure regulator 2c, and the vacuum suction force acting on the workpiece 1 from the suction hole 6a can be changed by the pressure adjusting function of the air pressure regulator 2c.

回転加工装置5のベース5aには、刃物台5bが載置され、この刃物台5bには、たとえば、切削工具、研削工具、研磨工具等の加工工具5cが搭載されている。
そして、主軸スピンドル2に保持されて回転する被加工物1に、加工工具5cを当接させることにより、切削、研削、研磨等の任意の回転機械加工が行われる。
A tool rest 5b is placed on the base 5a of the rotary processing apparatus 5, and a processing tool 5c such as a cutting tool, a grinding tool, or a polishing tool is mounted on the tool rest 5b.
Then, arbitrary rotational machining such as cutting, grinding, and polishing is performed by bringing the processing tool 5c into contact with the workpiece 1 that is held by the main spindle 2 and rotates.

この場合、ベース5aの上には、さらに、主軸スピンドル2に上述のように吸着保持された被加工物1の主軸回転軸Aに対する偏芯を補正する芯出しを行うための偏芯調整装置3(調整手段)が設けられている。   In this case, on the base 5a, an eccentricity adjusting device 3 for performing centering for correcting the eccentricity of the work piece 1 held by suction on the main spindle 2 as described above with respect to the main shaft rotation axis A is further provided. (Adjustment means) is provided.

偏芯調整装置3および刃物台5bは、少なくともX軸方向(押し出し方向)とZ軸方向の2軸方向に移動できる送り機構としてのスライド機構5dを介してベース5aに搭載されている。   The eccentricity adjusting device 3 and the tool rest 5b are mounted on the base 5a via a slide mechanism 5d as a feed mechanism that can move at least in the X-axis direction (extrusion direction) and the Z-axis direction.

Z軸方向は、図6の紙面の左右方向で主軸スピンドル2の主軸回転軸Aの方向である。また、X軸方向は、図6の紙面に垂直で、Z軸方向に直交する方向であり、偏芯調整装置3の主軸スピンドル2に対する相対的な変位方向(押し出し方向)である。   The Z-axis direction is the direction of the spindle rotation axis A of the spindle spindle 2 in the left-right direction of the paper surface of FIG. The X-axis direction is a direction perpendicular to the paper surface of FIG. 6 and perpendicular to the Z-axis direction, and is a relative displacement direction (extrusion direction) of the eccentricity adjusting device 3 with respect to the main spindle 2.

この場合、偏芯調整装置3の変位方向であるX軸方向は少なくとも0.1μm以下の精度で移動制御できるようにしている。
図2は、上述の偏芯調整装置3の構成例を示している。ここで、偏芯調整装置3の被加工物1の円筒部11を押して偏芯調整をする端面である作用部4(押し出し作用部)は、主軸スピンドル2の主軸回転軸Aに対し平行で、X軸およびZ軸方向を含む平面に対し垂直な方向の平面となっている。
In this case, the movement of the eccentricity adjusting device 3 in the X-axis direction, which is the displacement direction, can be controlled with an accuracy of at least 0.1 μm or less.
FIG. 2 shows a configuration example of the eccentricity adjusting device 3 described above. Here, an action part 4 (extrusion action part) which is an end face for adjusting the eccentricity by pushing the cylindrical part 11 of the workpiece 1 of the eccentricity adjusting device 3 is parallel to the spindle rotation axis A of the spindle 2. The plane is a plane perpendicular to the plane including the X-axis and Z-axis directions.

また、偏芯調整装置3は、偏芯調整時に掛かる力に対し、作用部4のたわみ量が0.1μm以下となるような剛性構造となっており、且つ剛体材料で構成されている。
また、作用部4の表面には、研磨等で面粗さを向上させるとともに、DLC(ダイヤモンドライクカーボン)コーティングなどを施すことで、すべり性と剛性を高めた表面処理が行われている。
Further, the eccentricity adjusting device 3 has a rigid structure such that the amount of deflection of the action portion 4 is 0.1 μm or less with respect to the force applied during the eccentricity adjustment, and is made of a rigid material.
Further, the surface of the action portion 4 is subjected to a surface treatment that improves the surface roughness by polishing or the like, and performs DLC (diamond-like carbon) coating or the like to improve the slipperiness and rigidity.

本実施の形態の場合、偏芯調整装置3には、偏芯量を測定する偏芯量測定器7の検出部8が内蔵されている。この検出部8としては、たとえば、電気マイクロメータ等で直動式のものを使用する。   In the case of the present embodiment, the eccentricity adjusting device 3 has a built-in detector 8 of the eccentricity measuring device 7 for measuring the eccentricity. As the detection unit 8, for example, a direct acting type such as an electric micrometer is used.

検出部8は、ケーブル7aを介して偏芯量測定器7に接続され、検出部8の先端部に設けられた測定子8aの軸方向(X軸方向)の変位量が、電気信号として偏芯量測定器7に入力され、偏芯量測定器7のメータ部7bに数値や波形として可視化して表示される。   The detector 8 is connected to the eccentricity measuring instrument 7 via the cable 7a, and the displacement in the axial direction (X-axis direction) of the probe 8a provided at the tip of the detector 8 is detected as an electric signal. It is input to the core amount measuring device 7 and is visualized and displayed as a numerical value or a waveform on the meter portion 7b of the eccentric amount measuring device 7.

すなわち、偏芯調整装置3には、主軸回転軸Aと同じ高さ、主軸回転軸Aと作用部4の平面と垂直な方向に測定できる位置にキリ穴10を設け、このキリ穴10に検出部8を挿入し、検出部8の測定子8aが作用部4におけるキリ穴10の開口部に露出する構成となっている。   In other words, the eccentricity adjusting device 3 is provided with a drill hole 10 at a position where it can be measured at the same height as the main spindle rotation axis A and in a direction perpendicular to the main spindle rotation axis A and the plane of the action part 4. The part 8 is inserted, and the probe 8 a of the detection part 8 is exposed to the opening of the drill hole 10 in the action part 4.

この検出部8の検出方向(この場合、X軸方向)におけるキリ穴10に対する装着位置は、偏芯調整装置3の作用部4の平面と検出部8の測定子8aの先端部9とが同じ突き出し高さになった時、偏芯量測定器7の測定範囲内で、且つ最も細かいレンジの表示範囲の中心となるような位置に設定されている。そして、この設定位置の状態で、キリ穴10と検出部8とを接着10aを介して接着固定する。   The mounting position of the detection unit 8 in the detection direction (in this case, the X-axis direction) with respect to the drill hole 10 is the same as the plane of the action unit 4 of the eccentricity adjusting device 3 and the tip 9 of the probe 8a of the detection unit 8. When the protrusion height is reached, the position is set within the measurement range of the eccentricity measuring device 7 and at the center of the display range of the finest range. Then, in the state of the set position, the drill hole 10 and the detection unit 8 are bonded and fixed via the bond 10a.

もしくは、偏芯調整装置3の外面からキリ穴10の側面に向けて螺子穴を設け、そのねじ穴にイモ螺子(全長に螺子山が形成され、螺子穴に埋め込み可能な螺子)を通し、イモ螺子により検出部8を固定する構成でもよい。
[作用]
以下に発明の実施の形態1の作用を具体的に説明するが、これらは本発明を限定するものではない。
Alternatively, a screw hole is provided from the outer surface of the eccentricity adjusting device 3 toward the side surface of the drill hole 10, and a screw thread (a screw thread formed on the entire length that can be embedded in the screw hole) is passed through the screw hole. The structure which fixes the detection part 8 with a screw may be sufficient.
[Action]
The operation of Embodiment 1 of the present invention will be specifically described below, but these do not limit the present invention.

本実施の形態1の作用を図1、図3、図4、図5等を参照して説明する。
図5には、被加工物1を回転加工装置5に把持させた後、加工前に偏芯調整を行う順序が例示されており、この図5に沿って説明を行う。
The operation of the first embodiment will be described with reference to FIG. 1, FIG. 3, FIG. 4, FIG.
FIG. 5 illustrates an order in which eccentricity adjustment is performed before the workpiece 1 is gripped by the rotary processing device 5 and before machining, and the description will be made along this FIG.

初めに、回転加工装置5の主軸スピンドル2の主軸回転軸Aに対し、吸着面6のシフト方向(X軸方向)の偏芯誤差が規格以下の精度になるように偏芯調整を予め行い主軸スピンドル2に固定する。   First, the eccentricity is adjusted in advance so that the eccentricity error in the shift direction (X-axis direction) of the suction surface 6 becomes less than the standard with respect to the spindle rotation axis A of the spindle spindle 2 of the rotary processing device 5. Fix to the spindle 2.

この状態で吸着面6に対して切削加工もしくは研削加工を行い、吸着面6を高い平面度と、主軸回転軸Aに対する高い垂直度を持つ状態にしておく(ステップS201)。
次に、被加工物1を吸着面6に真空吸着で保持させる。このとき、被加工物1の吸着面6に接する底面は高い平面度としておく(ステップS202)。
In this state, cutting or grinding is performed on the suction surface 6 so that the suction surface 6 has high flatness and high perpendicularity to the spindle rotation axis A (step S201).
Next, the workpiece 1 is held on the suction surface 6 by vacuum suction. At this time, the bottom surface in contact with the suction surface 6 of the workpiece 1 is set to have a high flatness (step S202).

その後、たとえば、コンプレッサーで圧縮された圧縮空気を真空ポンプ2bと吸引孔2aとの吸引経路の途中にある空圧レギュレータ2cに印加することで空気圧を下げる。これにより、真空ポンプ2bから吸引孔2aに作用する真空圧が下がり、吸着面6における被加工物1の真空吸着力が、たとえば、吸着面6の平面方向に動き得る程度に低下する。   After that, for example, the compressed air compressed by the compressor is applied to the pneumatic regulator 2c in the middle of the suction path between the vacuum pump 2b and the suction hole 2a to lower the air pressure. Thereby, the vacuum pressure which acts on the suction hole 2a from the vacuum pump 2b is lowered, and the vacuum suction force of the workpiece 1 on the suction surface 6 is reduced to such an extent that it can move in the planar direction of the suction surface 6, for example.

すなわち、被加工物1が吸着面6にて吸着中に、被加工物1の円筒部11をX軸方向に押したときに被加工物1が移動し始める力、すなわち静摩擦力が、たとえば0.01N以上で20.0N以下の間になるように、空圧レギュレータ2cを介して、吸着穴6aによる被加工物1の吸着力を設定する(低下させる)(ステップS203)。   That is, when the workpiece 1 is attracted by the suction surface 6, the force at which the workpiece 1 starts to move when the cylindrical portion 11 of the workpiece 1 is pushed in the X-axis direction, that is, the static friction force is 0, for example. The suction force of the workpiece 1 through the suction hole 6a is set (reduced) via the pneumatic regulator 2c so that it is between .01N and 20.0N (step S203).

次に、偏芯調整装置3の作用部4が被加工物1の基準となる円筒部11に当接する位置まで、スライド機構5dでZ軸方向に移動させる。その後、主軸スピンドル2を、たとえば、1〜300rpmの範囲で回転させる。X軸方向のスライドで被加工物1の円筒部11と偏芯調整装置3の作用部4とが接触する方向に移動させ、回転している被加工物1の円筒部11の最大偏芯している部と偏芯調整装置3の作用部4とが接触する位置まで移動させる。   Next, the slide mechanism 5d moves the acting portion 4 of the eccentricity adjusting device 3 in the Z-axis direction to a position where the acting portion 4 comes into contact with the cylindrical portion 11 serving as a reference of the workpiece 1. Thereafter, the main spindle 2 is rotated in the range of 1 to 300 rpm, for example. The cylindrical part 11 of the workpiece 1 and the action part 4 of the eccentricity adjusting device 3 are moved by the slide in the X-axis direction so as to come into contact with each other. And the moving part 4 is moved to a position where the acting part 4 of the eccentricity adjusting device 3 contacts.

このときの円筒部11と作用部4の接触は、検出部8の高さを主軸回転軸Aと同じ高さにさせ、検出部8の向きを押し出し方向と平行にし、更に検出部8の測定子8aの先端部9と作用部4の平面部の高さが一致したときに偏芯量測定器7の表示を中心にしているので、図4に示すように、円筒部11の主軸回転軸Aに対する偏芯量は、被加工物1の円筒部11と作用部4とが接触する前は正弦波形状の数値で表示する。   At this time, the contact between the cylindrical portion 11 and the action portion 4 causes the height of the detection portion 8 to be the same as that of the spindle rotation axis A, makes the direction of the detection portion 8 parallel to the pushing direction, and further measures the detection portion 8. Since the display of the eccentricity measuring device 7 is centered when the height of the tip portion 9 of the child 8a and the plane portion of the action portion 4 coincide with each other, as shown in FIG. The amount of eccentricity with respect to A is displayed as a numerical value in a sine wave shape before the cylindrical portion 11 of the workpiece 1 and the action portion 4 come into contact with each other.

円筒部11と作用部4とが接触した後は、円筒部11の主軸回転軸Aに対する偏芯量を表す線図は、正弦波形状からある高い部分以上は固定された数値で表示する。このある正弦波からある値以上で固定された数値は、上記円筒部11と作用部4とが接触していることを表している。このとき、偏芯量測定器7の表示した数値の最大と最小の差が主軸回転軸Aに対する被加工物1の円筒部11の偏芯量ΔCとなる(ステップS204)。   After the cylindrical part 11 and the action part 4 are in contact with each other, a diagram representing the eccentricity of the cylindrical part 11 with respect to the spindle rotation axis A is displayed with a fixed numerical value above a certain high part from the sine wave shape. A numerical value fixed above a certain value from this sine wave indicates that the cylindrical portion 11 and the action portion 4 are in contact with each other. At this time, the maximum and minimum difference between the numerical values displayed by the eccentricity measuring device 7 becomes the eccentricity ΔC of the cylindrical portion 11 of the workpiece 1 with respect to the spindle rotation axis A (step S204).

被加工物1の円筒部11と作用部4とが接触したときの偏芯量ΔCを測定し、この偏芯量ΔCの半分の量だけX軸方向に偏芯調整装置3を移動させ、被加工物1の円筒部11を偏芯調整行う。こうして偏芯調整装置3をX軸方向に移動させ、偏芯調整をした後、偏芯量測定器7で偏芯量ΔCを測定し、被加工物1の偏芯規格内に入っているかを確認する。規格内に入っていなければ、そのときの偏芯量の半分量をX軸スライドで更に移動させる(ステップS205)。   The eccentric amount ΔC when the cylindrical portion 11 of the workpiece 1 and the action portion 4 are in contact with each other is measured, and the eccentricity adjusting device 3 is moved in the X-axis direction by an amount that is half the eccentric amount ΔC. The eccentricity of the cylindrical portion 11 of the workpiece 1 is adjusted. After the eccentricity adjusting device 3 is moved in the X-axis direction and the eccentricity is adjusted in this way, the eccentricity measuring device 7 measures the eccentricity amount ΔC and determines whether the workpiece 1 is within the eccentricity standard. Check. If not within the standard, the half of the eccentricity at that time is further moved by the X-axis slide (step S205).

ステップS205で偏芯規格内であれば、偏芯調整装置3を押し出し方向と反対方向、すなわち被加工物1の円筒部11から離れる方向に移動させ、円筒部11と接触しない状態にする。このときの作用部4を円筒部11から離間させるための偏芯調整装置3の移動量は、偏芯量測定器7の表示が正弦波形状を示すまでとする。そのときの偏芯量ΔC(観察される正弦波の最大振幅)を偏芯量測定器7にて測定し、偏芯規格値に入っていることを確認する(ステップS206)。   If it is within the eccentricity standard in step S205, the eccentricity adjusting device 3 is moved in a direction opposite to the pushing direction, that is, in a direction away from the cylindrical portion 11 of the workpiece 1 so as not to contact the cylindrical portion 11. The amount of movement of the eccentricity adjusting device 3 for separating the action part 4 from the cylindrical part 11 at this time is until the display of the eccentricity measuring instrument 7 shows a sine wave shape. The eccentricity ΔC (maximum amplitude of the observed sine wave) at that time is measured by the eccentricity measuring device 7 to confirm that it is within the eccentricity standard value (step S206).

そして、偏芯規格値に入っていることを確認できなければ(ステップS207)、ステップS205に戻る。
また、ステップS207で偏芯規格値に入っていることを確認できれば、偏芯調整を終了し、この状態で、空圧レギュレータ2cを最大の圧力に戻し、真空吸着力も最大に戻るため、加工工具5cによる加工中に被加工物1が動かないようにする(ステップS208)。
If it is not confirmed that the eccentricity standard value is entered (step S207), the process returns to step S205.
If it is confirmed in step S207 that the eccentricity standard value has been reached, the eccentricity adjustment is completed, and in this state, the pneumatic regulator 2c is returned to the maximum pressure and the vacuum suction force is also returned to the maximum. The workpiece 1 is prevented from moving during the processing by 5c (step S208).

この状態で、主軸スピンドル2とともに回転する被加工物1の加工工具5cによる切削、研削、研磨等の機械加工を行う。
[効果]
上述の実施の形態1によれば、主軸スピンドル2に対する被加工物1の真空吸着力を低下させることで被加工物1がスムーズに移動できるようになり、高剛性を持った偏芯調整装置3の高精度のX軸方向の移動で被加工物1の円筒部11を押圧することで、被加工物1の円筒部11の主軸回転軸Aに対する偏芯誤差を高精度に調整できる。
In this state, machining such as cutting, grinding and polishing of the workpiece 1 rotating with the spindle 2 is performed by the processing tool 5c.
[effect]
According to the first embodiment described above, the work piece 1 can move smoothly by reducing the vacuum suction force of the work piece 1 with respect to the spindle 2, and the eccentricity adjusting device 3 having high rigidity can be obtained. By pressing the cylindrical portion 11 of the workpiece 1 with high-precision movement in the X-axis direction, the eccentric error of the cylindrical portion 11 of the workpiece 1 with respect to the spindle rotation axis A can be adjusted with high accuracy.

また、偏芯量ΔCを測定する偏芯量測定器7の検出部8が偏芯調整装置3に内蔵されているため、偏芯調整を行うたびに、偏芯量測定器7の検出部8の設置の段取りの所要時間を省くことができる。   Further, since the detecting unit 8 of the eccentricity measuring device 7 for measuring the eccentricity ΔC is built in the eccentricity adjusting device 3, the detecting unit 8 of the eccentricity measuring device 7 is provided every time eccentricity adjustment is performed. The time required for setting up the installation can be saved.

また、被加工物1の円筒部11と偏芯調整装置3の作用部4との接触と偏芯調整に必要な移動量を偏芯量測定器7の表示から簡単に把握することができ、偏芯調整も上記偏芯量ΔCの半分だけ偏芯調整装置3を移動させれば良いので、作業者の熟練や教育は不要である。   Further, the amount of movement required for contact and eccentricity adjustment between the cylindrical part 11 of the workpiece 1 and the action part 4 of the eccentricity adjusting device 3 can be easily grasped from the display of the eccentricity measuring device 7, For eccentricity adjustment, it is only necessary to move the eccentricity adjusting device 3 by half of the eccentricity ΔC, so that the operator's skill and education are unnecessary.

すなわち、作業者の熟練や長時間の段取りを必要とすることなく、主軸回転軸Aに対する被加工物1の偏芯調整を高精度に行うことが可能となる。
この結果、芯出し作業を含めた被加工物1の加工所要時間(リードタイム)の増加を防ぎ、回転加工装置5の稼働率の向上を図ることができる。
That is, it is possible to adjust the eccentricity of the workpiece 1 with respect to the spindle rotation axis A with high accuracy without requiring the operator's skill or long-time setup.
As a result, it is possible to prevent an increase in the required processing time (lead time) of the workpiece 1 including the centering operation, and to improve the operating rate of the rotary processing apparatus 5.

[実施の形態2]
[構成]
図7は、本発明の他の実施の形態である偏芯調整装置の構成例を示す断面図である。
[Embodiment 2]
[Constitution]
FIG. 7 is a cross-sectional view showing a configuration example of an eccentricity adjusting device according to another embodiment of the present invention.

この実施の形態2の場合、検出部8を偏芯調整装置3に螺着することで装置位置を可変にした点が上述の実施の形態1と異なっている。なお、上述の実施の形態1と共通な構成部分については同一符号を付してその説明を省略する。   The second embodiment is different from the first embodiment in that the position of the device is made variable by screwing the detection unit 8 to the eccentricity adjusting device 3. Note that components common to those in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.

すなわち、上述の実施の形態1では、キリ穴10に検出部8を挿して接着10aを介して所定の位置に固定する例を示したが、この実施の形態2の場合には、キリ穴10の一部に螺子穴12を設ける。そして、検出部8の外周部に前記螺子穴12と螺合する螺子リング13を接着等で固定する。これにより、検出部8は、偏芯調整装置3のキリ穴10に対して回動可能に螺着され、検出部8の回動量によって、検出部8の測定子8aの作用部4に対する突き出し量を簡便かつ可変に設定可能としている。   That is, in the above-described first embodiment, the example in which the detection unit 8 is inserted into the drill hole 10 and fixed at a predetermined position via the adhesive 10a is shown. However, in the case of the second embodiment, the drill hole 10 A screw hole 12 is provided in a part of the screw. Then, a screw ring 13 that is screwed into the screw hole 12 is fixed to the outer periphery of the detection unit 8 by bonding or the like. Thereby, the detection part 8 is screwed so that rotation with respect to the drill hole 10 of the eccentricity adjustment apparatus 3 is carried out, and the protrusion amount with respect to the action part 4 of the measuring element 8a of the detection part 8 is depended on the rotation amount of the detection part 8. Can be set easily and variably.

[作用]
本実施の形態2の作用を、図7を参照して説明する。
検出部8の計測方向(この場合、X軸方向)の位置決めをする際には、検出部8を回動させると、当該検出部8に固定された螺子リング13も回転するので、回転数と螺子ピッチの量だけキリ穴10の軸方向に動く。よって、検出部8の検出方向の突き出し位置の調整を可変に設定できる。
[Action]
The operation of the second embodiment will be described with reference to FIG.
When positioning the detection unit 8 in the measurement direction (in this case, the X-axis direction), if the detection unit 8 is rotated, the screw ring 13 fixed to the detection unit 8 also rotates. It moves in the axial direction of the drill hole 10 by the amount of the screw pitch. Therefore, the adjustment of the protruding position in the detection direction of the detection unit 8 can be variably set.

[効果]
本実施の形態2によれば、上述の実施の形態1の効果に加えて、検出部8の検出方向の突き出し位置調整が、検出部8を回動させるだけで容易にでき、段取りの所要時間をさらに短縮することができる、という効果が得られる。
[effect]
According to the second embodiment, in addition to the effects of the first embodiment described above, the adjustment of the protruding position of the detection unit 8 in the detection direction can be easily performed by simply rotating the detection unit 8, and the time required for setup Can be further shortened.

以上説明したように、上述の各実施の形態によれば、回転加工装置5の主軸スピンドル2に対して、回転軸対称形状を有する被加工物1を保持させる際に、主軸スピンドル2の主軸回転軸Aに対する偏芯誤差を高精度に調整でき、加工リードタイムの増加を防ぎ、回転加工装置5の稼働率の向上を図ることができる。   As described above, according to each of the above-described embodiments, when the workpiece 1 having the rotational axis symmetry shape is held with respect to the spindle spindle 2 of the rotary machining apparatus 5, the spindle rotation of the spindle spindle 2 is performed. The eccentric error with respect to the axis A can be adjusted with high accuracy, an increase in machining lead time can be prevented, and the operating rate of the rotary machining apparatus 5 can be improved.

なお、本発明は、上述の実施の形態に例示した構成に限らず、その趣旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
たとえば、主軸に被加工物を可動に吸着保持させる手段としては、真空吸着に限らず、磁力が可変な電磁石等を用いてもよい。
[付記1]
主軸に被加工物を吸着する機構を設け、主軸回転させた状態で上記被加工物の円筒部を調整装置にて押し出しをして偏芯調整をする被加工物の偏芯調整装置において、
上記調整装置内部に被加工物の主軸回転軸に対する偏芯量を測定する偏芯量測定器の検出部を取り付けたことを特徴とする被加工物の偏芯調整装置。
[付記2]
付記1に記載する被加工物の偏芯調整装置において、
上記調整装置の押し出し作用点は主軸回転軸と押し出し方向に対し垂直な平面であり、
上記偏芯量測定器の検出部の高さ方向の取り付け位置は主軸回転軸と同じ高さ位置に取り付けてあり、
更に上記偏芯量測定器の検出部は押し出し方向に対して平行の向きになるように検出部の位置に取り付け、
且つ上記偏芯量測定器の検出部の測定子先端部と上記調整装置の平面部とが同じ突き出し位置のとき、上記偏芯量測定器の測定範囲内になるように検出部の位置に取り付けることを特徴とする被加工物の偏芯調整装置。
[付記3]
付記2に記載する被加工物の偏芯調整装置において、
上記偏芯量測定器の検出部の外周部に雄螺子を設け、上記調整装置の上記検出部が内蔵される部分に雌螺子を設けることで、検出部を回すことで検出部の押し出し方向に突き出し位置の調整ができることを特徴とする被加工物の偏芯調整装置。
[付記4]
付記1に記載する偏芯調整装置を用いる被加工物の偏芯調整方法において、
上記調整装置を移動スライドにて押し出し移動させ、上記調整装置の作用部と被加工物の円筒部の一部が接触した後の移動量は上記偏芯量測定器の示す最大値と最小値の差の半分とし、その移動量を上記移動スライドにて押し出し移動させることで、偏芯調整が終了することを特徴とする被加工物の偏芯調整方法。
[付記5]
付記4に記載する被加工物の偏芯調整方法において、
吸着する機構は真空吸引とし、偏芯調整中は上記被加工物の押し出し方向の静摩擦力が20N以下になるように真空吸着力を下げ、偏芯調整終了後は真空吸着力を加工に適した真空吸着力の状態に戻し、被加工物の加工を行うことを特徴とする被加工物の偏芯調整方法。
[付記6]
付記4に記載する被加工物の偏芯調整方法において、
上記偏芯調整後に上記調整装置を押し出しと反対方向に逃がし、被加工物と調整装置とが離れた状態で、偏芯調整装置にて被加工物の偏芯量を測定することを特徴とする被加工物の偏芯調整方法。
Needless to say, the present invention is not limited to the configuration exemplified in the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the means for movably attracting and holding the workpiece on the main shaft is not limited to vacuum suction, and an electromagnet having a variable magnetic force may be used.
[Appendix 1]
In a work center eccentricity adjustment device that provides a mechanism for adsorbing a work piece on a main shaft, and that adjusts the eccentricity by pushing the cylindrical portion of the work piece with an adjustment device while the main shaft is rotated.
A workpiece eccentricity adjusting device, wherein a detecting portion of an eccentricity measuring device for measuring the amount of eccentricity of the workpiece with respect to the main shaft rotation axis is attached in the adjusting device.
[Appendix 2]
In the workpiece eccentricity adjusting apparatus described in appendix 1,
The pushing action point of the adjusting device is a plane perpendicular to the spindle rotation axis and the pushing direction,
The mounting position in the height direction of the detection part of the eccentricity measuring instrument is mounted at the same height position as the spindle rotation axis,
Furthermore, the detection part of the eccentricity measuring device is attached to the position of the detection part so as to be parallel to the extrusion direction,
In addition, when the tip of the probe of the detecting unit of the eccentricity measuring instrument and the flat part of the adjusting device are at the same protruding position, it is attached to the position of the detecting unit so that it is within the measuring range of the eccentricity measuring instrument. An apparatus for adjusting the eccentricity of a workpiece.
[Appendix 3]
In the workpiece eccentricity adjusting apparatus described in appendix 2,
A male screw is provided on the outer peripheral portion of the detection unit of the eccentricity measuring device, and a female screw is provided in a portion in which the detection unit of the adjustment device is incorporated. A workpiece eccentricity adjusting device characterized in that the protruding position can be adjusted.
[Appendix 4]
In the method for adjusting the eccentricity of the workpiece using the eccentricity adjusting device described in appendix 1,
The amount of movement after the adjusting device is pushed and moved by a moving slide and the working portion of the adjusting device and a part of the cylindrical portion of the workpiece are in contact is the maximum value and the minimum value indicated by the eccentricity measuring device. A method for adjusting the eccentricity of a workpiece, wherein the eccentricity adjustment is completed by setting the difference to half and moving the movement amount by the moving slide.
[Appendix 5]
In the work piece eccentricity adjusting method described in appendix 4,
The suction mechanism is vacuum suction, and during the eccentricity adjustment, the vacuum suction force is lowered so that the static friction force in the pushing direction of the workpiece is 20 N or less, and after the eccentricity adjustment is completed, the vacuum suction force is suitable for processing. A method for adjusting the eccentricity of a workpiece, wherein the workpiece is processed by returning to a vacuum suction force state.
[Appendix 6]
In the work piece eccentricity adjusting method described in appendix 4,
After the eccentricity adjustment, the adjustment device is released in the opposite direction to the extrusion, and the eccentric amount of the workpiece is measured by the eccentricity adjustment device in a state where the workpiece and the adjustment device are separated from each other. Workpiece eccentricity adjustment method.

本発明の一実施の形態である偏芯調整装置の構成および作用の一例を示す側面図である。It is a side view showing an example of composition and operation of an eccentricity adjusting device which is one embodiment of the present invention. 本発明の一実施の形態である偏芯調整装置の構成の一例を示す略断面図である。It is a schematic sectional drawing which shows an example of a structure of the eccentricity adjustment apparatus which is one embodiment of this invention. 本発明の一実施の形態である偏芯調整装置の構成の一例を示す正面図である。It is a front view which shows an example of a structure of the eccentricity adjustment apparatus which is one embodiment of this invention. 本発明の一実施の形態である偏芯調整装置の作用の一例を示す線図である。It is a diagram which shows an example of an effect | action of the eccentricity adjustment apparatus which is one embodiment of this invention. 本発明の一実施の形態である偏芯調整装置の作用の一例を示すフローチャートである。It is a flowchart which shows an example of an effect | action of the eccentricity adjustment apparatus which is one embodiment of this invention. 本発明の一実施の形態である偏芯調整装置を備えた回転加工装置の構成の一例を示す側面図である。It is a side view which shows an example of a structure of the rotary processing apparatus provided with the eccentricity adjustment apparatus which is one embodiment of this invention. 本発明の他の実施の形態である偏芯調整装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the eccentricity adjustment apparatus which is other embodiment of this invention.

符号の説明Explanation of symbols

1 被加工物
2 主軸スピンドル
2a 吸引孔
2b 真空ポンプ
2c 空圧レギュレータ
3 偏芯調整装置
4 作用部
5 回転加工装置
5a ベース
5b 刃物台
5c 加工工具
5d スライド機構
6 吸着面
6a 吸着穴
7 偏芯量測定器
7a ケーブル
7b メータ部
8 検出部
8a 測定子
9 先端部
10 キリ穴
10a 接着
11 円筒部
12 螺子穴
13 螺子リング
A 主軸回転軸
ΔC 偏芯量
DESCRIPTION OF SYMBOLS 1 Workpiece 2 Spindle spindle 2a Suction hole 2b Vacuum pump 2c Pneumatic regulator 3 Eccentricity adjustment device 4 Action part 5 Rotation processing device 5a Base 5b Tool post 5c Processing tool 5d Slide mechanism 6 Suction surface 6a Suction hole 7 Eccentricity Measuring instrument 7a Cable 7b Meter part 8 Detecting part 8a Measuring element 9 Tip part 10 Drilling hole 10a Adhesion 11 Cylindrical part 12 Screw hole 13 Screw ring A Spindle rotation axis ΔC Eccentricity

Claims (7)

回転軸に交差する方向に可動に被加工物が吸着保持された主軸を回転させた状態で前記被加工物の外周部に調整手段を当接させて偏芯調整を行う偏芯調整装置であって、
前記調整手段の内部に、前記被加工物の前記回転軸に対する偏芯量を測定する偏芯量測定器の検出部を装着したことを特徴とする偏芯調整装置。
An eccentricity adjustment device that performs eccentricity adjustment by bringing an adjustment means into contact with the outer peripheral portion of the workpiece while rotating the spindle on which the workpiece is attracted and held in a direction that intersects the rotation axis. And
An eccentricity adjusting apparatus, wherein a detecting unit of an eccentricity measuring device for measuring an eccentricity amount of the workpiece with respect to the rotating shaft is mounted inside the adjusting means.
請求項1に記載の偏芯調整装置において、
前記被加工物の外周に当接する前記調整手段の押し出し作用部は前記回転軸に対する押し出し方向に対し垂直な平面であり、
前記検出部は、当該検出部の測定子が前記回転軸と同じ高さとなる位置に、前記測定子の作動方向が前記押し出し方向に対して平行の向きになる姿勢で前記調整手段に取り付けられ、
前記測定子の先端部と前記調整手段の前記押し出し作用部とが同じ突き出し位置のとき、前記測定子の変位が測定範囲に含まれるように前記偏芯量測定器の前記測定範囲が設定されていることを特徴とする偏芯調整装置。
The eccentricity adjusting device according to claim 1,
The pushing action portion of the adjusting means that contacts the outer periphery of the workpiece is a plane perpendicular to the pushing direction with respect to the rotation axis,
The detection unit is attached to the adjusting unit at a position where the measuring element of the detecting unit is at the same height as the rotation axis, in an attitude in which the operating direction of the measuring element is parallel to the push-out direction,
The measurement range of the eccentricity measuring instrument is set so that the displacement of the probe is included in the measurement range when the tip of the probe and the push-out action part of the adjusting means are in the same protruding position. An eccentricity adjusting device characterized by comprising:
請求項2に記載の偏芯調整装置において、
前記検出部を前記調整手段に螺合させ、前記検出部を回動させることで当該検出部の前記押し出し方向における突き出し位置を調整可能したことを特徴とする偏芯調整装置。
The eccentricity adjusting device according to claim 2,
An eccentricity adjusting device characterized in that the protruding position of the detecting portion in the push-out direction can be adjusted by screwing the detecting portion into the adjusting means and rotating the detecting portion.
回転軸に交差する方向に可動に被加工物が吸着保持された主軸を回転させるステップと、
前記被加工物の前記回転軸に対する偏芯量を測定する偏芯量測定器の検出部を備えた調整手段を当該被加工物に当接させるステップと、
前記調整手段と前記被加工物の外周部が接触した後に、前記検出部から得られる前記偏芯量の最大値と最小値の差の半分だけ、前記被加工物を押圧する方向に前記調整手段を移動させるステップと、
を含むことを特徴とする偏芯調整方法。
Rotating a spindle on which a work piece is adsorbed and held movably in a direction intersecting the rotation axis;
Contacting the workpiece with an adjusting means including a detecting unit of an eccentricity measuring device for measuring the eccentricity of the workpiece with respect to the rotation axis;
After the adjusting means and the outer peripheral part of the workpiece are in contact with each other, the adjusting means is pressed in the direction in which the workpiece is pressed by the half of the difference between the maximum value and the minimum value of the eccentric amount obtained from the detection unit. A step of moving
The eccentricity adjustment method characterized by including.
請求項4に記載の偏芯調整方法において、
前記被加工物は真空吸引によって前記主軸に固定され、前記調整手段が前記被加工物に当接される偏芯調整の間は前記主軸に対する前記被加工物の可動方向の静摩擦力が0.01N以上で20N以下になるように真空吸着力を下げ、前記偏芯調整の終了後は前記真空吸着力を所望の回転加工に適した真空吸着力に戻して、前記被加工物の前記回転加工を行うことを特徴とする偏芯調整方法。
In the eccentricity adjustment method according to claim 4,
The workpiece is fixed to the main shaft by vacuum suction, and a static frictional force in the movable direction of the workpiece with respect to the main shaft is 0.01 N during the eccentricity adjustment in which the adjusting means is brought into contact with the workpiece. The vacuum suction force is lowered to 20 N or less as described above, and after the eccentricity adjustment is completed, the vacuum suction force is returned to the vacuum suction force suitable for the desired rotational processing, and the rotational processing of the workpiece is performed. An eccentricity adjustment method characterized by being performed.
請求項4に記載の偏芯調整方法において、
前記偏芯調整後に、前記調整手段を前記被加工物から離間させた状態で、前記検出部にて前記被加工物の偏芯量を測定することを特徴とする偏芯調整方法。
In the eccentricity adjustment method according to claim 4,
After the eccentricity adjustment, the eccentricity adjustment method is characterized in that the amount of eccentricity of the workpiece is measured by the detection unit in a state where the adjusting means is separated from the workpiece.
回転軸に交差する方向に可動に被加工物が吸着保持される主軸と、
前記主軸とともに回転する前記被加工物に当接する加工工具と、
前記主軸とともに回転する前記被加工物の外周部に当接する調整手段に当該被加工物の前記回転軸に対する偏芯量を測定する偏芯量測定器の検出部を具備した偏芯調整装置と、
を含むことを特徴とする回転加工装置。
A main shaft on which a workpiece is adsorbed and held movably in a direction intersecting the rotation axis;
A processing tool that contacts the workpiece rotating with the main shaft;
An eccentricity adjusting device comprising a detecting unit of an eccentricity measuring device for measuring an eccentricity amount of the workpiece with respect to the rotating shaft in an adjusting means that contacts an outer peripheral portion of the workpiece rotating with the main shaft;
A rotary machining apparatus comprising:
JP2008006806A 2008-01-16 2008-01-16 Eccentric center adjusting device, eccentric center adjusting method and rotary working device Pending JP2009166175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006806A JP2009166175A (en) 2008-01-16 2008-01-16 Eccentric center adjusting device, eccentric center adjusting method and rotary working device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006806A JP2009166175A (en) 2008-01-16 2008-01-16 Eccentric center adjusting device, eccentric center adjusting method and rotary working device

Publications (1)

Publication Number Publication Date
JP2009166175A true JP2009166175A (en) 2009-07-30

Family

ID=40967952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006806A Pending JP2009166175A (en) 2008-01-16 2008-01-16 Eccentric center adjusting device, eccentric center adjusting method and rotary working device

Country Status (1)

Country Link
JP (1) JP2009166175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036922A (en) * 2009-08-06 2011-02-24 Okuma Corp Main shaft centering device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999267A (en) * 1995-10-05 1997-04-15 Olympus Optical Co Ltd Lens centering device of lens blackening machine
JP2007245241A (en) * 2006-03-13 2007-09-27 Nippon Thompson Co Ltd Work centering method and device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999267A (en) * 1995-10-05 1997-04-15 Olympus Optical Co Ltd Lens centering device of lens blackening machine
JP2007245241A (en) * 2006-03-13 2007-09-27 Nippon Thompson Co Ltd Work centering method and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036922A (en) * 2009-08-06 2011-02-24 Okuma Corp Main shaft centering device

Similar Documents

Publication Publication Date Title
JP5800924B2 (en) Rotary tool runout and dynamic balance adjustment mechanism
JP4276270B2 (en) Machine tool with workpiece reference position setting function by contact detection
CN109894635B (en) Spindle device and machine tool
US10507532B2 (en) Chuck for a high precision machine tool
US20120068420A1 (en) Centering method for optical elements
US11022530B2 (en) System and method for determining structural characteristics of a machine tool
JP2012206188A (en) High-precision processing apparatus
Zarepour et al. A new approach for force measurement and workpiece clamping in micro-ultrasonic machining
JP2009166175A (en) Eccentric center adjusting device, eccentric center adjusting method and rotary working device
KR102338708B1 (en) Polishing apparatus
JP4923441B2 (en) Shape measuring instrument
CN104197887A (en) Device and method for measuring tilt error of air main shaft
JP3980893B2 (en) Method and apparatus for determining actual position data of a machining tool
JP2004090199A (en) Rotary tool contact detector of finishing machine, rotary tool correcting device of the machine using the rotary tool contact detector, nc device of the machine, position correcting method of the machine using the detectorc device of the machine, and rotary tool position correcting method of the machine using the detector
JP7222636B2 (en) Edge trimming device
KR102427972B1 (en) Jig for measuring height
JP5244489B2 (en) Workpiece holding device
JP2011123040A (en) Tool inspection method and device
JP2007190618A (en) Dressing device of grinding tool for internal cylindrical grinder and dressing method for the same
JP2017001155A (en) Workpiece holding mechanism, machining device, and workpiece machining method
JP2020069546A (en) Floating jig
JP5606838B2 (en) Jig for checking the mounting state of a rotating spindle to which a cutting blade is mounted and a method for checking the mounting state
JP2009088401A (en) Wafer position detector and semiconductor manufacturing apparatus with wafer position detector
JPH04299209A (en) Method and apparatus for detecting position of center of rotation rotary shaft
JP2011011320A (en) Workpiece automatic centering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121127