JP2009163207A - Liquid crystal display and manufacturing method therefor - Google Patents

Liquid crystal display and manufacturing method therefor Download PDF

Info

Publication number
JP2009163207A
JP2009163207A JP2008199610A JP2008199610A JP2009163207A JP 2009163207 A JP2009163207 A JP 2009163207A JP 2008199610 A JP2008199610 A JP 2008199610A JP 2008199610 A JP2008199610 A JP 2008199610A JP 2009163207 A JP2009163207 A JP 2009163207A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
crystal display
film
crystal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008199610A
Other languages
Japanese (ja)
Other versions
JP5488951B2 (en
Inventor
Toshihiko Motomatsu
俊彦 元松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianma Japan Ltd
Original Assignee
NEC LCD Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC LCD Technologies Ltd filed Critical NEC LCD Technologies Ltd
Priority to JP2008199610A priority Critical patent/JP5488951B2/en
Priority to US12/266,184 priority patent/US8629969B2/en
Priority to CN 200810174562 priority patent/CN101430459B/en
Publication of JP2009163207A publication Critical patent/JP2009163207A/en
Application granted granted Critical
Publication of JP5488951B2 publication Critical patent/JP5488951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display capable of restraining a liquid crystal material from contaminated with an impurity eluted out of a seal material, capable of restraining an adhesive strength of the seal material from getting low, and capable of enhancing a display quality and reliability of the liquid crystal display, and a manufacturing method therefor. <P>SOLUTION: This liquid crystal display 1 having a TFT substrate 2 and a CF substrate 3 bonded with the closed-curved-line-like seal material 5 surrounding a pixel area, and sandwiched with the liquid crystal material 4 in an area surrounded by the seal material 5 between the TFT substrate 2 and the CF substrate 3, has a frame area in an outer circumferential side of the pixel area and in an inner circumferential side of the closed-curved-line-like seal material 5, and is constituted to form a film face contacting with a frame BM6 in the frame area of the CF substrate 3 and/or the liquid crystal material 4 of an organic film or an inorganic film in the frame area of the TFT substrate 2, into a rough face shape 11 having surface roughness more rough than that of a film face contacting with the liquid crystal material 4 in the pixel area. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液晶表示装置及びその製造方法に関する。   The present invention relates to a liquid crystal display device and a manufacturing method thereof.

図12は従来の液晶表示パネルの額縁近傍の構造を示した断面図である。この液晶表示パネル1には、薄膜トランジスタ(TFT:Thin Film Transistor)等のスイッチング素子がマトリクス状に形成されたTFT基板2と、カラーフィルタ(CF)やブラックマトリクス(BM)等が形成されたCF基板3とを有し、これらの基板の対向面には配向処理が施された配向膜9が形成されている。そして、両基板間に所定のギャップ(間隙)を形成させる為に柱スペーサ10とシール材5とが形成され、そのギャップに液晶材4が封入されている。   FIG. 12 is a cross-sectional view showing a structure in the vicinity of a frame of a conventional liquid crystal display panel. The liquid crystal display panel 1 includes a TFT substrate 2 on which switching elements such as thin film transistors (TFTs) are formed in a matrix, and a CF substrate on which a color filter (CF), a black matrix (BM), and the like are formed. 3 and an alignment film 9 subjected to an alignment process is formed on the opposing surfaces of these substrates. Then, in order to form a predetermined gap (gap) between the two substrates, the column spacer 10 and the sealing material 5 are formed, and the liquid crystal material 4 is sealed in the gap.

ここで図13に従来の液晶表示パネルの貼り合せ工程フローを示す。シール塗布工程において、シール材をTFT基板の所定の位置に塗布して外周(補助)シール及び本シールを未硬化の状態で形成し、続いてAg塗布工程において、AgトランスファーをTFT基板の所定の位置に打点状に塗布していた(TN(Twisted Nematic)モードの液晶表示パネルを作製する場合)。次に、液晶滴下工程において、液晶材を所定の滴下量で、前記本シール内側の所定の位置にマトリックス状、線状或いは放射状に滴下していた。   FIG. 13 shows a flow of a conventional liquid crystal display panel bonding process. In the seal application process, a sealant is applied to a predetermined position of the TFT substrate to form the outer peripheral (auxiliary) seal and the main seal in an uncured state. Subsequently, in the Ag application process, the Ag transfer is applied to the TFT substrate at a predetermined position. It was applied in the form of dots at the position (when a TN (Twisted Nematic) mode liquid crystal display panel was produced). Next, in the liquid crystal dropping step, the liquid crystal material was dropped at a predetermined drop amount in a matrix shape, a linear shape, or a radial shape at a predetermined position inside the main seal.

次に、CF基板の画素領域に、基板間に所定のギャップを形成させる為の柱スペーサ或いは球状スペーサを予め配置し、貼り合せ工程において、前記両基板を接触・加圧することによって、基板間の画素領域全域に液晶材を均一に拡散させながら基板間のギャップを均一に形成していた。   Next, column spacers or spherical spacers for forming a predetermined gap between the substrates are arranged in advance in the pixel region of the CF substrate, and the substrates are brought into contact with each other and pressed in the bonding step. The gap between the substrates was formed uniformly while the liquid crystal material was uniformly diffused throughout the pixel region.

そして、次工程への搬送の際、貼り合せ基板の嵌合ずれを防止する為に、シール材の仮止めとして部分的に数箇所のUV仮硬化を行っていた。このとき、液晶材は時間経過と共に速やかに拡散し、画素領域からその外側の額縁BM形成部を通過してシール材にまで達しており、シール材と接触していた。次のUV硬化工程において、UV照射によりシール材を硬化させていた(このときシール材は半硬化状態である)。従来の方法では、このUV硬化工程を完了させるまでの間、未硬化状態のシール材と液晶材とが長時間接触していたことになる。更に、次の熱硬化工程において、シール材を完全硬化させていたが、このときも初期の半硬化状態のシール材と液晶材とは接触し続けていた。   And in order to prevent the fitting shift | offset | difference of a bonding board | substrate at the time of conveyance to the next process, UV temporary hardening of several places was performed partially as temporary fixing of a sealing material. At this time, the liquid crystal material diffused rapidly with time, passed from the pixel region through the outer frame BM formation portion to the seal material, and was in contact with the seal material. In the next UV curing step, the sealing material was cured by UV irradiation (at this time, the sealing material was in a semi-cured state). In the conventional method, the uncured sealing material and the liquid crystal material are in contact with each other for a long time until the UV curing step is completed. Furthermore, in the next thermosetting step, the sealing material was completely cured, but at this time, the initial semi-cured sealing material and the liquid crystal material were kept in contact with each other.

このように、従来の構造では、貼り合せ工程、UV硬化工程或いは熱硬化工程において、未硬化或いは半硬化状態のシール材と液晶材とが接触することにより、図12に示すように、不純物イオンなどの多量の不純物がシール材5から液晶材4へ溶出し、液晶材4を汚染させる問題が発生していた。この液晶材4を汚染する物質として、未硬化或いは半硬化状態のシール材5から溶け出すオリゴマー成分、フタル酸エステルなどの有機物、Na、K、Clなどのイオン性不純物などが一例として挙げられる。また、更に液晶材4が未硬化或いは半硬化状態のシール材5と接触し、液晶材4がシール材5とその下地との界面部を浸食することで、シール材5が塗布された基板界面部においてシール接着強度が低下する問題が発生していた。その結果、信頼性試験後の液晶表示パネルのシール周辺部において、シミ、ムラ及びシール剥離などの課題が発生するなど、液晶表示装置の表示品位、信頼性に問題が生じていた。   As described above, in the conventional structure, the uncured or semi-cured sealing material and the liquid crystal material come into contact with each other in the bonding process, the UV curing process, or the thermosetting process, as shown in FIG. As a result, a large amount of impurities such as elution from the sealing material 5 to the liquid crystal material 4 causes a problem of contaminating the liquid crystal material 4. Examples of substances that contaminate the liquid crystal material 4 include oligomer components that dissolve from the uncured or semi-cured sealing material 5, organic substances such as phthalates, and ionic impurities such as Na, K, and Cl. Further, the liquid crystal material 4 comes into contact with the uncured or semi-cured sealing material 5, and the liquid crystal material 4 erodes the interface between the sealing material 5 and its base, so that the substrate interface to which the sealing material 5 is applied is applied. There has been a problem that the seal adhesive strength is lowered at the portion. As a result, problems such as spots, unevenness, and peeling of the seal occur in the periphery of the seal of the liquid crystal display panel after the reliability test, causing problems in display quality and reliability of the liquid crystal display device.

このような未硬化或いは半硬化状態のシール材と液晶材とが接触することに起因した液晶材の汚染及びシール材の接着強度の低下の問題を解決する技術として、(1)障壁を用いた技術と、(2)表面エネルギーを高くする技術とがある。   As a technique for solving the problem of contamination of the liquid crystal material caused by contact between the uncured or semi-cured sealing material and the liquid crystal material, and the problem of decrease in the adhesive strength of the sealing material, (1) a barrier was used. There are technologies and (2) technologies for increasing the surface energy.

(1)の障壁を用いた技術を用いた技術は、図14に示すように、TFT基板2の画素領域とシール材5を塗布する領域の間に凸部12を形成し、前記凸部12と前記凸部12に対向するCF基板3との距離を狭く調整することで液晶材4の拡散を抑制するものである。この方法に関連する従来例として、特開平11-38424号公報と特開2003-315810号公報とがあり、特開平11-38424号公報では、TFT基板の画素領域とシール材5を塗布する領域に凸部12を形成し、凸部12の頂部には配向膜として垂直配向膜を形成することについて開示している。特開2003-315810号公報では、図15に示すように、画素領域内或いは、画素領域内及び画素領域外に液晶材4の流動制御壁13を多数形成することについて開示している。   As shown in FIG. 14, the technique using the barrier (1) technique forms a convex portion 12 between the pixel region of the TFT substrate 2 and the region to which the sealing material 5 is applied, and the convex portion 12 The diffusion of the liquid crystal material 4 is suppressed by adjusting the distance from the CF substrate 3 facing the convex portion 12 to be narrow. As conventional examples related to this method, there are JP-A-11-38424 and JP-A-2003-315810. In JP-A-11-38424, the pixel region of the TFT substrate and the region where the sealing material 5 is applied. It is disclosed that a convex portion 12 is formed on the top and a vertical alignment film is formed on the top of the convex portion 12 as an alignment film. Japanese Patent Laid-Open No. 2003-315810 discloses that a large number of flow control walls 13 of the liquid crystal material 4 are formed in the pixel region or in the pixel region and outside the pixel region, as shown in FIG.

(2)の表面エネルギーを高くする技術に関する従来例として、特開平10−260406号公報があり、この公報では、表示領域から離れた位置の配向膜を表面改質することにより、表示領域の配向膜よりも表面エネルギーを高くすることについて開示している。   As a conventional example relating to the technique for increasing the surface energy of (2), there is JP-A-10-260406. In this publication, the orientation of the display region is modified by surface modification of the alignment film at a position away from the display region. It discloses that the surface energy is higher than that of the film.

特開平11-38424号公報JP 11-38424 A 特開2003-315810号公報JP 2003-315810 A 特開平10−260406号公報JP-A-10-260406

しかしながら、特開平11-38424号公報では液晶材の流れを直接止める為の凸部を、前記凸部が対向する基板との間隙が極めて小さくなるように形成している為、液晶材の汚染という課題はある程度解消されるが、液晶止め用凸部を形成することによるシール周辺部のギャップ均一性悪化を招くことについては配慮されていない。すなわち、上記公報による抑制方法は、液晶材の流れを直接止める為の凸部で液晶拡散を抑制するものであり、凸部高さなどで制御する方法である。その為、液晶拡散速度を減少させるにはシール周辺部に、凸部高さを大きく且つ広範囲に凸部を形成させる必要があり、凸部高さのばらつき具合によっては凸部と対向する基板とが局所的に接触する問題が起き、この接触により局所的な応力が発生し、シール周辺部のギャップばらつきを招くことになる。その結果、額縁BM形成部と画素領域との境界部で表示品位の低下が発生する。このことは凸部と基板間距離が短くなるほど顕著に現れる。   However, in Japanese Patent Application Laid-Open No. 11-38424, the convex portion for directly stopping the flow of the liquid crystal material is formed so that the gap between the convex portion and the substrate opposite to the substrate is extremely small. Although the problem is solved to some extent, no consideration is given to the deterioration of the gap uniformity at the periphery of the seal due to the formation of the liquid crystal stopper. That is, the suppression method described in the above publication is a method of controlling liquid crystal diffusion by a convex portion for directly stopping the flow of the liquid crystal material, and controlling by the height of the convex portion. For this reason, in order to reduce the liquid crystal diffusion rate, it is necessary to form a convex part in the periphery of the seal with a large convex part height and in a wide range, and depending on how the convex part height varies, the substrate facing the convex part This causes a problem of local contact, and local stress is generated due to this contact, resulting in gap variations in the periphery of the seal. As a result, the display quality is degraded at the boundary between the frame BM formation portion and the pixel region. This becomes more noticeable as the distance between the convex portion and the substrate becomes shorter.

また、特開2003-315810号公報では液晶材の流れを直接止める為の凸部状の流動制御壁を多数配置している為、液晶材の汚染という課題はある程度解消されるが、前記流動制御壁を対向する基板に接触するように多数配置させることによる画素領域及びシール周辺部でのギャップ均一性悪化を招くことについては配慮されていない。すなわち、上記公報による抑制方法は、液晶材の流れを直接止める為の凸部状の流動制御壁を多数配置することで液晶拡散を抑制するものであり、流動制御壁の配置数などで制御する方法である。この流動制御壁を画素領域内或いは、画素領域内及び画素領域外に、前記流動制御壁に対向する基板に接触するように多数配置させている為、画素領域、シール周辺部での接触応力によるギャップばらつきを招くことになる。その結果、画素領域の表示品位の低下、額縁BM形成部と画素領域との境界部での表示品位の低下が発生する。   In Japanese Patent Application Laid-Open No. 2003-315810, since a large number of convex flow control walls for directly stopping the flow of the liquid crystal material are arranged, the problem of contamination of the liquid crystal material is solved to some extent. No consideration is given to the deterioration of the uniformity of the gap in the pixel region and the peripheral portion of the seal by arranging a large number of walls so as to contact the opposing substrate. That is, the suppression method according to the above publication suppresses liquid crystal diffusion by arranging a large number of convex flow control walls for directly stopping the flow of the liquid crystal material, and is controlled by the number of flow control walls arranged. Is the method. A large number of flow control walls are arranged in the pixel region or in the pixel region and outside the pixel region so as to come into contact with the substrate facing the flow control wall. This leads to gap variations. As a result, the display quality of the pixel area is lowered, and the display quality is lowered at the boundary between the frame BM formation part and the pixel area.

また、特開平10−260406号公報では表示領域から離れた位置の配向膜を、表示領域の配向膜よりも表面エネルギーを高くすることで、液晶表示パネル作製後にシール材中のイオン性不純物が液晶材へ拡散することによる液晶材の汚染という課題はある程度解消されるかも知れないが、未硬化或いは半硬化状態のシール材と液晶材が接触することに何ら違いはない。すなわち、上記公報による抑制方法では、表示領域から離れた位置の配向膜を、表示領域の配向膜よりも表面エネルギーを高くすることで、液晶表示パネル作製後にシール材から液晶材へと溶け出す或いは既に溶け出していたイオン性不純物を吸着させ、液晶材へと拡散するのを抑制するに過ぎず、未硬化或いは半硬化状態のシール材と液晶材が接触することで製造中から多量に溶け出すイオン性不純物を事前に抑制することが出来ない。   Japanese Patent Laid-Open No. 10-260406 discloses that an ionic impurity in a sealant is produced after the liquid crystal display panel is manufactured by increasing the surface energy of the alignment film at a position away from the display region than the alignment film in the display region. Although the problem of contamination of the liquid crystal material due to diffusion into the material may be solved to some extent, there is no difference in that the liquid crystal material comes into contact with the uncured or semi-cured seal material. That is, in the suppression method according to the above publication, the alignment film at a position away from the display region is melted from the sealing material to the liquid crystal material after the liquid crystal display panel is manufactured by making the surface energy higher than that of the alignment film in the display region. It only adsorbs ionic impurities that have already melted out and suppresses diffusion to the liquid crystal material, but it melts in large quantities from the manufacturing process due to the contact between the uncured or semi-cured sealing material and the liquid crystal material. Ionic impurities cannot be suppressed in advance.

本発明は、上記問題点に鑑みてなされたものであって、その主たる目的は、シール材から溶け出す不純物による液晶材の汚染及びシール材の接着強度の低下を抑制し、液晶表示装置の表示品位、信頼性を向上させることが出来る液晶表示装置及びその製造方法を提供することにある。   The present invention has been made in view of the above problems, and its main purpose is to suppress the contamination of the liquid crystal material and the decrease in the adhesive strength of the seal material due to impurities dissolved from the seal material, and the display of the liquid crystal display device An object of the present invention is to provide a liquid crystal display device capable of improving the quality and reliability and a method for manufacturing the same.

上記目的を達成するため、本発明は、対向する一対の基板が画素領域を囲む閉曲線状のシール材で接着され、前記一対の基板間の前記シール材で囲まれる領域に液晶材が挟持されてなる液晶表示装置において、前記画素領域の外周側かつ前記閉曲線状のシール材の内周側に額縁領域を有し、少なくとも一方の基板の前記額縁領域の少なくとも一部における前記液晶材と接する膜面を、前記画素領域における前記液晶材と接する膜面よりも、表面粗さの大きな粗面形状とするものである。   In order to achieve the above object, according to the present invention, a pair of opposing substrates are bonded by a closed-curved sealing material surrounding a pixel region, and a liquid crystal material is sandwiched between regions of the sealing material between the pair of substrates. In the liquid crystal display device, a film surface having a frame region on the outer peripheral side of the pixel region and the inner peripheral side of the closed curved seal material and in contact with the liquid crystal material in at least a part of the frame region of at least one substrate Is a rough surface having a larger surface roughness than the film surface in contact with the liquid crystal material in the pixel region.

本発明の液晶表示装置及びその製造方法によれば、下記記載の効果を奏する。   According to the liquid crystal display device and the method of manufacturing the same of the present invention, the following effects can be obtained.

本発明の第1の効果は、未硬化或いは半硬化状態のシール材と液晶材が接触することによる液晶材の汚染及びシール材の接着強度の低下を抑制することが出来るということである。その理由は、CF基板の額縁BM形成部及びそれに対向するTFT基板の遮光領域に形成される膜の表面に、液晶拡散を制御する為の微細な粗面形状を形成することで、この部分での液晶材に対する表面エネルギーを低下させ、その結果、液晶材に対する濡れ性を低下させ、液晶拡散速度を減少させることが出来るからである。   The first effect of the present invention is that contamination of the liquid crystal material and a decrease in adhesive strength of the seal material due to contact between the uncured or semi-cured seal material and the liquid crystal material can be suppressed. The reason is that a fine rough surface shape for controlling liquid crystal diffusion is formed on the surface of the film formed in the frame BM forming portion of the CF substrate and the light shielding region of the TFT substrate facing the CF substrate. This is because the surface energy of the liquid crystal material can be reduced, and as a result, the wettability with respect to the liquid crystal material can be reduced, and the liquid crystal diffusion rate can be reduced.

また、本発明の第2の効果は、信頼性が各段に向上した高品質の液晶表示装置を提供することが可能となるということである。その理由は、額縁BM形成部におけるCF基板とTFT基板間との距離を短くする必要がないため、額縁BM近傍のギャップ均一性を悪化させることなしに、必要とする液晶拡散速度を得ることが出来るからである。これは狭額縁化構造或いは高速応答性など、シール材と液晶材が接触し易い製品設計である液晶表示装置に対しても有効な手段となる。   The second effect of the present invention is that it is possible to provide a high-quality liquid crystal display device with improved reliability at each stage. The reason for this is that it is not necessary to shorten the distance between the CF substrate and the TFT substrate in the frame BM formation portion, so that the required liquid crystal diffusion speed can be obtained without deteriorating the gap uniformity in the vicinity of the frame BM. Because you can. This is also an effective means for a liquid crystal display device having a product design in which the sealing material and the liquid crystal material are easy to contact, such as a narrow frame structure or high-speed response.

背景技術で示したように、貼り合せ工程、UV硬化工程或いは熱硬化工程において、液晶材の拡散を制御出来ていない為に、未硬化或いは半硬化状態のシール材と液晶材が接触することによる液晶材の汚染及びシール接着強度の低下という問題が発生していた。そこで、本発明では、画素領域の外周側かつシール材塗布領域の内周側の領域に形成される膜の表面に、液晶拡散を制御する為の粗面形状を形成し、液晶材との接触界面部の表面積を増加させることで、表面エネルギーを低下させる、即ち液晶材に対する濡れ性を低下させ、液晶拡散速度を減少させる。   As shown in the background art, since the diffusion of the liquid crystal material cannot be controlled in the bonding process, the UV curing process or the thermosetting process, the liquid crystal material comes into contact with the uncured or semi-cured sealing material. There has been a problem of contamination of the liquid crystal material and a decrease in the adhesive strength of the seal. Therefore, in the present invention, a rough surface shape for controlling liquid crystal diffusion is formed on the surface of the film formed on the outer peripheral side of the pixel region and the inner peripheral side of the sealing material application region, and is in contact with the liquid crystal material. By increasing the surface area of the interface, the surface energy is lowered, that is, the wettability with respect to the liquid crystal material is lowered, and the liquid crystal diffusion rate is reduced.

具体的には、互いに対向した、額縁領域に有機膜或いは無機膜からなるブラックマトリクス(額縁BM)を形成したCF基板と、額縁領域に有機膜或いは無機膜を形成したTFT基板のいずれか一方或いは双方にシール材を塗布し、液晶材を封入する液晶表示パネルにおいて、液晶滴下後の貼り合せの際に、未硬化或いは半硬化状態のシール材と液晶材が接触することに起因した液晶材の汚染及びシール材の接着強度の低下を抑制することを目的に、CF基板の額縁BM及びそれに対向するTFT基板の膜の表面に、液晶拡散(液晶材が移動し、広がる現象を指す。)を制御する為の微細な粗面形状を設ける。その結果、シール材が未硬化或いは半硬化状態で液晶材と接触することを抑制することができ、信頼性が各段に向上した高品質の液晶表示装置を提供することが可能となる。以下、図面を参照して説明する。   Specifically, either a CF substrate having a black matrix (frame BM) made of an organic film or an inorganic film in a frame region and a TFT substrate having an organic film or an inorganic film formed in the frame region, facing each other, or In the liquid crystal display panel in which the sealing material is applied to both sides and the liquid crystal material is sealed, the liquid crystal material caused by the contact between the liquid crystal material and the uncured or semi-cured sealing material when the liquid crystal is dropped after the liquid crystal is dropped. For the purpose of suppressing contamination and lowering of the adhesive strength of the sealing material, liquid crystal diffusion (refers to a phenomenon in which the liquid crystal material moves and spreads) on the frame BM of the CF substrate and the surface of the film of the TFT substrate facing it. A fine rough surface shape for control is provided. As a result, the sealing material can be prevented from coming into contact with the liquid crystal material in an uncured or semi-cured state, and a high-quality liquid crystal display device with improved reliability can be provided. Hereinafter, description will be given with reference to the drawings.

[実施形態1]
図1は本発明の第1実施形態の液晶表示パネルの構造を示した断面図である。この液晶表示パネル1には、スイッチング素子がマトリクス状に形成された一方の基板(以下、TFT基板2と呼ぶ。)とカラーフィルタやブラックマトリクス等が形成された他方の基板(以下、CF基板3と呼ぶ。)とを有し、前記TFT基板2の額縁部(周縁部)の液晶材4と接する表面には有機膜或いは無機膜が形成されており、前記CF基板3の額縁部には有機膜或いは無機膜からなる額縁BM6が形成されている。また、これらの基板の対向面の画素領域には少なくとも配向処理が施された配向膜9が形成されている。そして、前記対向した両基板の所定のギャップ(間隙)を維持する為に、柱スペーサ10とシール材5とが形成され、そのギャップに液晶材4が封入されている。
[Embodiment 1]
FIG. 1 is a sectional view showing the structure of a liquid crystal display panel according to a first embodiment of the present invention. The liquid crystal display panel 1 includes one substrate (hereinafter referred to as a TFT substrate 2) on which switching elements are formed in a matrix and the other substrate (hereinafter referred to as a CF substrate 3) on which a color filter, a black matrix, and the like are formed. And an organic film or an inorganic film is formed on a surface of the frame portion (peripheral portion) of the TFT substrate 2 in contact with the liquid crystal material 4, and an organic film is formed on the frame portion of the CF substrate 3. A frame BM6 made of a film or an inorganic film is formed. In addition, an alignment film 9 subjected to at least alignment treatment is formed in the pixel region on the opposing surface of these substrates. In order to maintain a predetermined gap (gap) between the opposing substrates, a column spacer 10 and a seal material 5 are formed, and a liquid crystal material 4 is sealed in the gap.

液晶を封入する方式として、液晶注入方式と液晶滴下方式とがあるが、液晶注入方式では液晶を封入する前にシール材は既に硬化が完了しているのに対し、液晶滴下方式では硬化は完了しておらず、液晶滴下後に硬化させるという違いがある。また、液晶注入方式のシール材は画素領域を囲うが、液晶を注入させる必要がある為に閉曲線状に形成することが出来ず、その一部に孔を設ける必要がある。それに対し、液晶滴下方式のシール材は画素領域を囲うように閉曲線状に形成するという違いがある。その為、液晶滴下方式の場合、未硬化或いは半硬化状態のシール材5と液晶材4が接触することによる液晶材4の汚染及びシール材5の接着強度が低下するという課題が顕著に発生する。また。液晶表示装置の技術の進展に伴い、表示の役割に関与しない額縁部、即ち画素領域とシール塗布位置の間を狭くする狭額縁化構造が採用されつつあるが、このことは前記課題をより顕在化させるものである。   There are two methods for encapsulating liquid crystal: the liquid crystal injection method and the liquid crystal dropping method. In the liquid crystal injection method, the sealing material has already been cured before the liquid crystal is encapsulated, whereas in the liquid crystal dropping method, the curing is complete. There is a difference that it is cured after the liquid crystal is dropped. Further, the liquid crystal injection type sealing material surrounds the pixel region, but since it is necessary to inject liquid crystal, it cannot be formed in a closed curve shape, and it is necessary to provide a hole in a part thereof. On the other hand, the liquid crystal dropping type sealing material is different in that it is formed in a closed curve shape so as to surround the pixel region. Therefore, in the case of the liquid crystal dropping method, the problem of contamination of the liquid crystal material 4 due to contact between the uncured or semi-cured seal material 5 and the liquid crystal material 4 and a decrease in the adhesive strength of the seal material 5 occurs remarkably. . Also. With the advancement of the technology of liquid crystal display devices, a frame portion that is not involved in the role of display, that is, a narrowed frame structure that narrows the space between the pixel region and the seal application position is being adopted. It is to make it.

そこで、本発明では、未硬化或いは半硬化状態のシール材5と液晶材4とが接触することによる液晶材4の汚染及びシール材5の接着強度の低下を防止する為に、CF基板3の額縁BM6及びそれに対向するTFT基板2の液晶材4と接する膜の表面(以下、額縁BM6で遮光される前記パネル部位を、遮光部と称す。)を、液晶拡散を制御する為の微細な粗面形状11としている。このように膜面を微細な粗面形状11とすることで、この部分での液晶材4に対する表面エネルギー(平均化された一様な表面エネルギーを前提とする。)を低下させることが可能となり、液晶材4と基板との接触角が増大し、濡れ性を低下させることが出来る。   Therefore, in the present invention, in order to prevent contamination of the liquid crystal material 4 due to contact between the uncured or semi-cured seal material 5 and the liquid crystal material 4 and a decrease in the adhesive strength of the seal material 5, The surface of the film BM6 and the surface of the film in contact with the liquid crystal material 4 of the TFT substrate 2 opposite to the frame BM6 (hereinafter, the panel portion shielded by the frame BM6 is referred to as a light shielding portion) is finely roughened to control liquid crystal diffusion. The surface shape 11 is used. By making the film surface into the fine rough surface shape 11 in this way, it becomes possible to reduce the surface energy with respect to the liquid crystal material 4 in this portion (assuming an averaged uniform surface energy). The contact angle between the liquid crystal material 4 and the substrate is increased, and the wettability can be reduced.

図2に微細な粗面形状の形成領域を示す。微細な粗面形状11は、液晶表示パネル1のTFT基板2及びCF基板3のそれぞれの画素領域とシール塗布位置の間に、一例として詳細に述べれば画素領域の外周領域とシールパターンの内周領域の共通部分で形成される額縁領域に対し、閉曲線状に形成されている。また、液晶材の拡散をより制御する為の微細な粗面形状の形成領域の一例を図3に示す。微細な粗面形状11は、液晶表示パネル1のTFT基板2及びCF基板3のそれぞれの画素領域とシール塗布位置との間に、パネルコーナー部を除く額縁領域に形成されている。これは画素領域内に液晶材を滴下する位置がシール塗布位置に対し、パネルコーナー部の方がパネル辺部に比べ遠くなる場合、パネルコーナー部においてはパネル辺部より液晶材のシール塗布位置への到達時間が比較的に長くなることを考慮したものである。   FIG. 2 shows a fine rough surface forming region. The fine rough surface shape 11 is formed between the respective pixel regions of the TFT substrate 2 and the CF substrate 3 of the liquid crystal display panel 1 and the seal application position, and more specifically, as an example, the outer peripheral region of the pixel region and the inner periphery of the seal pattern. The frame region formed by the common part of the region is formed in a closed curve shape. FIG. 3 shows an example of a fine rough surface forming region for further controlling the diffusion of the liquid crystal material. The fine rough surface shape 11 is formed in the frame area excluding the panel corner portion between the pixel area of the TFT substrate 2 and the CF substrate 3 of the liquid crystal display panel 1 and the seal application position. This is because when the position where the liquid crystal material is dropped into the pixel area is farther from the seal application position than the panel corner, the panel corner moves from the panel side to the liquid crystal seal application position. This takes into account the relatively long arrival time.

ここで、図4に本発明の液晶表示パネル工程フローを示す。CF基板の粗面形状形成工程において、画素領域からシール塗布位置間の額縁BMの最表面上すなわち液晶封入後に液晶材と接する膜面に対し、接触角が増大するように微細な粗面形状を施す。このようにして額縁BMに、貼り合せ工程アウト〜熱硬化工程インまでのリードタイムを考慮して設定した所定範囲の粗面形状を形成させる。なお、額縁BMが形成されていないCF基板の場合には、画素領域からシール塗布位置間の液晶材と接する有機膜或いは無機膜に微細な粗面形状を形成させれば良い。また、CF基板の画素領域には、基板間に所定のギャップを形成させる為の柱スペーサが予め形成されているが、柱スペーサが形成されていないCF基板を用いる場合は、粗面形状形成完了後にポリマービーズ、シリカビーズ等の絶縁性の球状スペーサを配置させても良い。   Here, the liquid crystal display panel process flow of the present invention is shown in FIG. In the rough surface shape forming process of the CF substrate, a fine rough surface shape is formed so that the contact angle increases with respect to the outermost surface of the frame BM between the pixel region and the seal application position, that is, the film surface in contact with the liquid crystal material after the liquid crystal is sealed. Apply. In this way, a rough surface shape in a predetermined range set in consideration of the lead time from the bonding process out to the thermosetting process in is formed on the frame BM. In the case of a CF substrate on which no frame BM is formed, a fine rough surface shape may be formed on an organic film or an inorganic film in contact with a liquid crystal material between a pixel region and a seal application position. In addition, column spacers for forming a predetermined gap between the substrates are formed in advance in the pixel region of the CF substrate. However, when a CF substrate without the column spacers is used, the rough surface shape formation is completed. An insulating spherical spacer such as polymer beads or silica beads may be disposed later.

一方、TFT基板の粗面形状形成工程においては、CF基板の前記粗面形状に対向する画素領域からシール塗布位置間のTFT基板の有機膜或いは無機膜の膜面上に対し、同様に微細な粗面形状を施す。例えば、ゲート絶縁膜として使用されるSiNx、画素電極として使用されるITO(Indium Tin Oxide)などの無機膜、或いは前記SiNxよりも更に絶縁性を向上させる為のノボラックなどの有機膜の最表面上に対し、微細な粗面形状を施す。このようにして、TFT基板側にもCF基板と同様に所定範囲の粗面形状を形成させる。   On the other hand, in the rough surface shape forming process of the TFT substrate, the fineness is similarly reduced from the pixel region facing the rough surface shape of the CF substrate to the organic film or inorganic film surface of the TFT substrate between the seal coating positions. A rough surface shape is applied. For example, on the top surface of an organic film such as SiNx used as a gate insulating film, an inorganic film such as ITO (Indium Tin Oxide) used as a pixel electrode, or a novolak or the like for further improving the insulating properties than the SiNx. On the other hand, a fine rough surface shape is applied. In this way, a rough surface shape in a predetermined range is formed on the TFT substrate side as well as the CF substrate.

なお、図4では、上記粗面形状形成工程を、ラビング洗浄・乾燥工程の次工程として設けた場合を例にしているが、パネル製造工程の先頭である基板(TFT/CF)洗浄工程の前に粗面形状形成工程を設けても良く、或いは、TFT製造工程の絶縁膜等を形成させるエッチング工程中で粗面形状を予め形成しても良い。すなわち、TFT基板、CF基板のどちらの基板であっても、液晶滴下工程よりも上流側の工程に粗面形状形成工程を設ければよい。   FIG. 4 shows an example in which the rough surface shape forming process is provided as the next process of the rubbing cleaning / drying process, but before the substrate (TFT / CF) cleaning process which is the head of the panel manufacturing process. A rough surface shape forming step may be provided, or a rough surface shape may be formed in advance during an etching process for forming an insulating film or the like in the TFT manufacturing process. In other words, the rough surface shape forming process may be provided in a process upstream of the liquid crystal dropping process regardless of whether the substrate is a TFT substrate or a CF substrate.

次に、シール塗布工程において、シール材を前記TFT基板の所定の位置に外周(補助)シール及び本シールとしてそれぞれ塗布するが、少なくとも貼り合わせ後に本シールが閉曲線状のシールパターンを形成するように塗布する。続いて、Ag塗布工程において、Agトランスファーを基板の所定の位置に打点状に塗布する(Ag塗布工程は、TNモードの液晶表示パネルを作製する場合に実施し、IPS(In Plane Switching)モードではこの工程は省かれる)。次に、液晶滴下工程において、液晶材を前記シールと接触しないように、所定の滴下量を所定の位置にマトリックス状(マトリックス状に多数打点)、線状或いは放射状等任意の形状で滴下する。   Next, in the seal application process, a sealant is applied to a predetermined position of the TFT substrate as an outer peripheral (auxiliary) seal and a main seal, respectively, so that at least after bonding, the main seal forms a closed curved seal pattern. Apply. Subsequently, in the Ag application process, Ag transfer is applied to a predetermined position of the substrate in a dot pattern (the Ag application process is performed when a TN mode liquid crystal display panel is manufactured, and in the IPS (In Plane Switching) mode. This process is omitted). Next, in the liquid crystal dropping step, a predetermined dropping amount is dropped at a predetermined position in any shape such as a matrix (a large number of dots in the matrix), linear or radial so that the liquid crystal material does not come into contact with the seal.

その後、貼り合せ工程において、前記TFT基板と前記CF基板とが互いに対向するようにして、接触・加圧することで、基板間の画素領域及び周辺部に液晶材を均一に拡散させながら、基板間のギャップを均一に形成させる。このとき、画素領域にギャップ均一性を持たせる為には、画素領域にける液晶材の拡散は速い方が良い。これはTFT基板とCF基板を加圧させる間に、液晶材の拡散を速くすることで画素領域内の液晶層を均一にする方が画素領域のギャップ均一性が保たれるからである。それに対し、液晶材の拡散が遅い場合、画素領域の中心部が画素領域の周辺部に比べ液晶層が厚く(太鼓腹状態)なり、ギャップ均一性が損なわれることとなる。   Thereafter, in the bonding step, the TFT substrate and the CF substrate face each other and are contacted and pressed to uniformly diffuse the liquid crystal material in the pixel region and the peripheral portion between the substrates. The gap is formed uniformly. At this time, in order to provide gap uniformity in the pixel region, it is better that the liquid crystal material diffuses quickly in the pixel region. This is because the gap uniformity in the pixel region is maintained by making the liquid crystal layer in the pixel region uniform by increasing the diffusion of the liquid crystal material while the TFT substrate and the CF substrate are pressed. On the other hand, when the diffusion of the liquid crystal material is slow, the liquid crystal layer is thicker in the center of the pixel region than in the periphery of the pixel region (drum state), and gap uniformity is impaired.

次に、UV硬化工程への搬送の際、貼り合せ基板の嵌合ずれを防止する為に、シール材の仮止めとして、外周シールに対して部分的に数箇所のUV仮硬化を行うことが好ましい。このとき、液晶材は時間経過と共に更に画素領域を速やかに拡散して行き、額縁BM形成部にまで達しているが、この額縁領域においては本発明の微細な粗面形状により液晶材の拡散速度は低下し、シール材には接しない。この状態で次のUV硬化工程において、所定量のUV照射によりシール材を硬化させる(このときシール材は半硬化状態となる)。この液晶拡散制御により、未硬化状態のシール材と液晶材が接触するのを防ぐことが出来る。   Next, in order to prevent misalignment of the bonded substrate during transport to the UV curing process, UV temporary curing may be performed at several locations on the outer peripheral seal as a temporary fixing of the sealing material. preferable. At this time, the liquid crystal material quickly diffuses in the pixel area as time passes and reaches the frame BM formation portion. In this frame area, the diffusion speed of the liquid crystal material is reduced due to the fine rough surface shape of the present invention. Decreases and does not touch the sealing material. In this state, in the next UV curing step, the sealing material is cured by a predetermined amount of UV irradiation (at this time, the sealing material is in a semi-cured state). By this liquid crystal diffusion control, it is possible to prevent the uncured sealing material and the liquid crystal material from contacting each other.

そして、次の熱硬化工程において、所定の温度で加熱することによりシール材を完全硬化させ、必要とする接着強度を持たせる。このときも本発明の微細な粗面形状により、液晶材の拡散を制御し続けている為、液晶材はシール材とは接しない。このようにして、半硬化状態のシール材と液晶材が接触することを抑制することが出来る。そして液晶材は加熱とともに次第に粘性が下がり、熱硬化が完了するときには本シール内側全領域に拡散・充填され、シール材と液晶材とが接し合い、額縁BM近傍においてもギャップの均一性が確保される。この後、作製した液晶表示パネルは、ACF(Anisotropic Conductive Film)貼付/TCP(Tape Carrier Package)圧接工程、基板圧接工程を経て、組立工程でバックライト光源を取り付けられ、液晶表示装置が完成する。   Then, in the next thermosetting step, the sealing material is completely cured by heating at a predetermined temperature, and the required adhesive strength is obtained. At this time, since the diffusion of the liquid crystal material is continuously controlled by the fine rough surface shape of the present invention, the liquid crystal material is not in contact with the sealing material. In this way, contact between the semi-cured sealing material and the liquid crystal material can be suppressed. The viscosity of the liquid crystal material gradually decreases with heating, and when the thermosetting is completed, the entire area inside the seal is diffused and filled, the seal material and the liquid crystal material come into contact with each other, and uniformity of the gap is ensured even in the vicinity of the frame BM. The Thereafter, the manufactured liquid crystal display panel is subjected to an ACF (Anisotropic Conductive Film) pasting / TCP (Tape Carrier Package) pressure welding process and a substrate pressure welding process, and a backlight light source is attached in an assembly process, thereby completing a liquid crystal display device.

このように、本発明では、TFT基板2及びCF基板3の画素領域とシール塗布位置の間の額縁領域に形成される有機膜或いは無機膜の膜面を微細な粗面形状とすることで、液晶材に対する表面エネルギーを低下させ、額縁領域を通過する液晶材の拡散速度を減少させ、未硬化或いは半硬化状態のシール材と液晶材とのが接触を抑制することができる。   Thus, in the present invention, the film surface of the organic film or inorganic film formed in the frame region between the pixel region of the TFT substrate 2 and the CF substrate 3 and the seal coating position is formed into a fine rough surface shape. The surface energy with respect to the liquid crystal material is reduced, the diffusion speed of the liquid crystal material passing through the frame region is decreased, and the contact between the uncured or semi-cured sealing material and the liquid crystal material can be suppressed.

なお、粗面形状は画素領域から外側に形成すれば良く、さらにシール材と基板との密着性を向上させるには、シール塗布位置まで延在して形成すると好適である。また、このように配置された粗面形状は、ギャップ形成からシール材硬化までのリードタイムを考慮して、幅やその粗さを適宜設定すれば良い。また、粗面形状の設定によっては、これを配置した部位の液晶の配向が乱れ、液晶表示装置の表示状態に課題(例えば光漏れ)が生じる場合もあるが、その対応は遮光部に粗面形状を配置すれば良い。また、図1では額縁BMとシール材との間に間隔を有する例を示したが、上記で説明したように、額縁BMは必要に応じてシール材の下まで延在させることが出来る。   The rough surface shape may be formed on the outer side from the pixel region. In order to further improve the adhesion between the sealing material and the substrate, it is preferable that the rough surface shape is formed extending to the seal application position. Further, the rough surface shape arranged in this way may be appropriately set in width and roughness in consideration of a lead time from gap formation to sealing material curing. In addition, depending on the setting of the rough surface shape, the orientation of the liquid crystal at the portion where it is disposed may be disturbed, and a problem (for example, light leakage) may occur in the display state of the liquid crystal display device. What is necessary is just to arrange | position a shape. In addition, FIG. 1 shows an example in which a gap is provided between the frame BM and the sealing material. However, as described above, the frame BM can be extended under the sealing material as necessary.

[実施形態2]
図5は本発明の第2実施形態の液晶表示パネルの構造を示した断面図である。この液晶表示パネル1は、図1に示す第1の実施形態の液晶表示パネルにおいて、額縁BM6を構成する膜の表面及びそれに対向するTFTを構成する膜の表面すなわち液晶材と接する膜面に、例えばゲート/ドレイン/層間絶縁膜/保護膜の表面の所望の位置に、微小凹凸の粗面構造11aを付与した構成となっている。
[Embodiment 2]
FIG. 5 is a sectional view showing the structure of the liquid crystal display panel according to the second embodiment of the present invention. This liquid crystal display panel 1 is the same as the liquid crystal display panel of the first embodiment shown in FIG. 1 on the surface of the film constituting the frame BM6 and the surface of the film constituting the TFT opposite thereto, that is, the film surface in contact with the liquid crystal material. For example, a rough surface structure 11a having fine irregularities is provided at a desired position on the surface of the gate / drain / interlayer insulating film / protective film.

この微小凹凸の粗面構造11aは高い撥液晶性を示す。Wenzelの理論は膜表面粗度と濡れ性との関係を論じたものであるが、膜表面を粗くすれば濡れ性は低下する。膜表面を粗くすることで液晶材に対する濡れ性が低下するのは、液晶材と膜表面とが接する面積が増大することによる(A.W.Adamson著、「Physical Chemistry of Surfaces (John Wiley & Sons, New York )」)。すなわち、本発明ではWenzelの理論でも明確になっているように、膜表面を粗くすることにより、表面エネルギーを低下させる、即ち液晶材に対する濡れ性を低下させ、その接触角を増大させることで、前記したようにパネル貼り合せ時の液晶の拡散速度を低下させるものである。   The fine uneven surface structure 11a exhibits high liquid repellency. Wenzel's theory discusses the relationship between film surface roughness and wettability, but wettability decreases when the film surface is roughened. The reason why the wettability with respect to the liquid crystal material is reduced by making the film surface rough is that the area where the liquid crystal material and the film surface are in contact with each other is increased (AW Adamson, “Physical Chemistry of Surfaces (John Wiley & Sons , New York))). That is, in the present invention, as clarified by Wenzel's theory, by roughening the film surface, the surface energy is lowered, that is, the wettability with respect to the liquid crystal material is lowered, and the contact angle is increased. As described above, the diffusion rate of liquid crystal during panel bonding is reduced.

但し、単に表面積を増加させる為に凹凸形状を形成しても、液晶材の拡散を制御出来ずに最終的な液晶材の拡散が滞る不具合が発生する。その結果、額縁部においてのギャップ均一性の悪化を引き起こすことも有るので、本発明の微小凹凸の粗面構造11aの形状で、閉曲線状に形成させることが重要となる。その対応を以下に説明する。   However, even if the concavo-convex shape is simply formed to increase the surface area, the diffusion of the liquid crystal material cannot be controlled and the final diffusion of the liquid crystal material is delayed. As a result, the gap uniformity in the frame portion may be deteriorated, and therefore it is important to form the minute uneven surface structure 11a of the present invention in a closed curve shape. The correspondence will be described below.

図6に本発明に関する粗面構造の形状例を示す。これは、本発明の液晶表示パネルの額縁部を断面方向及び正面方向から見た模式図である。CF基板の額縁BM及びTFT基板の無機膜或いは有機膜の最表面上すなわち液晶材と接する膜面に、柱状、櫛歯状或いは空孔状などの粗面構造を規則的に或いは不規則に有している。柱状は正方形の微小凹凸を規則的に付与した構造であり、櫛歯状は長方形の微小凹凸を規則的に付与した構造であり、また、空孔状は多数の微細な孔を不規則に付与した構造である。   FIG. 6 shows an example of the shape of the rough surface structure according to the present invention. This is a schematic view of the frame portion of the liquid crystal display panel of the present invention as viewed from the cross-sectional direction and the front direction. A rough surface structure such as a columnar shape, a comb-like shape, or a hole shape is regularly or irregularly provided on the outermost surface of the frame BM of the CF substrate and the inorganic or organic film of the TFT substrate, that is, the film surface in contact with the liquid crystal material. is doing. The columnar shape is a structure with regular square micro irregularities, the comb-like shape is a structure with regular rectangular micro irregularities, and the hole shape is irregularly provided with many fine holes. This is the structure.

このような粗面構造、すなわち液晶材との接触界面部の表面積を増加させるような表面状態とすることで、額縁BMを通過する液晶材の拡散速度を減少させる効果が得られる。これは、液晶材との接触界面部の表面粗さを大きく、即ち表面積を増加させると、平滑面であるときに比べて表面エネルギーが低下し、接触角が増加していくからである。また、表面エネルギーを低下させ接触角を増加させるには、前記したように接触界面部分の表面粗さを大きくし接触面積を広げれば良く、このとき粗面構造の凹凸が均一或いは不均一な高さで連続したものであっても良い。   By making such a rough surface structure, that is, a surface state that increases the surface area of the contact interface with the liquid crystal material, an effect of reducing the diffusion rate of the liquid crystal material passing through the frame BM can be obtained. This is because when the surface roughness of the contact interface with the liquid crystal material is increased, that is, the surface area is increased, the surface energy is decreased and the contact angle is increased as compared with a smooth surface. Further, in order to reduce the surface energy and increase the contact angle, it is only necessary to increase the surface roughness of the contact interface portion and widen the contact area as described above. At this time, the unevenness of the rough surface structure is uniform or uneven. It may be continuous.

図7に柱状の粗面構造の場合の、液晶材との接触界面部の表面粗さと接触角との関係を示す。ここで表面粗さパラメータとして、算術平均粗さ〔Ra〕/凹凸平均間隔〔Sm〕を算出した(Ra及びSmは、JIS B0601-1994による)。この値が大きいと、粗面部の表面粗さが大きく、粗面形状の形成領域における1μm2の単位面積当たりの、液晶材が接する部分の表面積が大きいことを示している。図7より、単位面積当たりの微小凹凸の粗面層の表面粗さが大きくなるにつれ、液晶材に対する接触角は増加することが判る。なお、ここでの粗面層は無機膜であるITO膜面上に付与させた場合である。同様に有機膜上に付与させた場合が、有機膜はもともと無機膜の場合に比べ撥液晶性が高い為、平滑面のときの液晶材に対する接触角は若干大きめであるが、無機膜と同様に単位面積当たりの粗面層の表面粗さが大きくなるにつれ、液晶材に対する接触角は増加することを確認している。   FIG. 7 shows the relationship between the surface roughness of the contact interface with the liquid crystal material and the contact angle in the case of a columnar rough surface structure. Here, arithmetic average roughness [Ra] / unevenness average interval [Sm] was calculated as a surface roughness parameter (Ra and Sm are based on JIS B0601-1994). When this value is large, the surface roughness of the rough surface portion is large, indicating that the surface area of the portion in contact with the liquid crystal material per unit area of 1 μm 2 in the rough surface forming region is large. FIG. 7 shows that the contact angle with the liquid crystal material increases as the surface roughness of the rough surface layer of minute irregularities per unit area increases. In addition, the rough surface layer here is a case where it is made to provide on the ITO film | membrane surface which is an inorganic film. Similarly, when applied on an organic film, the organic film has a higher liquid repellency than that of an inorganic film, so the contact angle with a liquid crystal material on a smooth surface is slightly larger. It has been confirmed that the contact angle with respect to the liquid crystal material increases as the surface roughness of the rough surface layer per unit area increases.

図8は画素領域からシール塗布位置間、すなわち液晶材と接する膜面に前記微小凹凸の粗面層を形成させたTFT基板に対し、液晶材をマトリックス状に滴下させたときの状態(ここでは1滴分)を示す模式図である。本発明の微細構造は液晶材の滴下量(約8mmφ)よりも遥かに小さい表面粗さを有している。粗面層の形成方法としては、収束イオンビーム(FIB)、フェムト秒レーザ、エッチング及びプラズマアッシングなどがある。   FIG. 8 shows a state in which the liquid crystal material is dropped in a matrix form on the TFT substrate on which the rough surface layer of the fine irregularities is formed between the pixel region and the seal application position, that is, on the film surface in contact with the liquid crystal material (here, It is a schematic diagram showing 1 drop). The microstructure of the present invention has a surface roughness much smaller than the amount of liquid crystal material dropped (about 8 mmφ). Examples of the method for forming the rough surface layer include focused ion beam (FIB), femtosecond laser, etching, and plasma ashing.

柱状、櫛歯状の微細構造においては、0.1〜10μmの範囲内の大きさで垂直方向に深い構造となるように、等ピッチに額縁BM表面及びそれに対向するTFT基板の膜面をエッチングして形成する。例えば柱状構造であれば、各辺が0.5μmの正方形の柱となるように表面を深さ0.5μmまで垂直方向にエッチング処理し、これを1μmピッチで柱状の粗面層を規則的に形成させることが出来る。このように柱状構造であれば、柱の底辺の幅と柱の高さの関係が、〔高さ〕/〔底辺の幅〕≧1以上となるように設定する。また櫛歯状構造であれば、1辺を0.5μm、他の1辺を5μmとする長方形の櫛歯となるように、表面を深さ0.8μmまで垂直方向に更に深い構造となるようエッチング処理し、これを1μmピッチで櫛歯状の粗面層を規則的に形成させることが出来る。このように櫛歯状構造においても、櫛歯の短辺側底辺の幅と櫛歯の高さの関係が、〔高さ〕/〔底辺の幅〕≧1以上となるように設定する。   In the columnar and comb-like microstructures, the surface of the frame BM and the film surface of the TFT substrate facing the frame BM are etched at an equal pitch so that the structure is in the range of 0.1 to 10 μm and deep in the vertical direction. To form. For example, in the case of a columnar structure, the surface is etched in a vertical direction to a depth of 0.5 μm so that each side becomes a square column of 0.5 μm, and the columnar rough surface layer is regularly formed at a pitch of 1 μm. It can be formed. In such a columnar structure, the relationship between the width of the bottom of the column and the height of the column is set such that [height] / [width of the bottom] ≧ 1. Further, in the case of a comb-like structure, the surface becomes a deeper structure in the vertical direction up to a depth of 0.8 μm so as to be a rectangular comb having one side of 0.5 μm and the other side of 5 μm. Etching treatment can be used to regularly form a comb-like rough surface layer at a pitch of 1 μm. As described above, also in the comb-like structure, the relationship between the width of the short side of the comb teeth and the height of the comb teeth is set so that [height] / [width of the base] ≧ 1.

また、空孔状の微細構造においては、アッシング処理により額縁BM表面上及びそれに対向するTFT基板の膜面上には多数の微細な空孔を形成させることが出来る。空孔径としては100nm以下であり、マクロ孔からマイクロ孔まで幅広い細孔分布を有し、表面積を増加させるような表面状態としている。   In the hole-like fine structure, a large number of fine holes can be formed on the surface of the frame BM and on the film surface of the TFT substrate opposite to the frame BM by ashing. The pore diameter is 100 nm or less, has a wide pore distribution from macropores to micropores, and has a surface state that increases the surface area.

以上説明したように、柱状、櫛歯状の微細構造においては多数の突起のような垂直方向に深い構造とすることで、空孔状の微細構造においては多数の微細な空孔を形成させることで、表面エネルギーを低下させる効果をより増大させることができる。   As described above, in a columnar or comb-like microstructure, a deep structure in the vertical direction such as a large number of protrusions is formed, so that a large number of minute holes are formed in a void-shaped microstructure. Thus, the effect of reducing the surface energy can be further increased.

[実施形態3]
図9は本発明の第3実施形態の液晶表示パネルの構造を示した断面図である。この液晶表示パネル1は、図1に示す第1の実施形態の液晶表示パネルにおいて、額縁BM6の表面及びそれに対向するTFT基板2の膜面すなわち液晶材と接する膜面に対し、粗面形状の形成領域に、粗面層と撥液晶膜を順次形成させた構成となっている。粗面化したTFT基板2及びCF基板3の上に發液晶膜を形成することで、前記撥液晶膜の表面粗さが増大し、前記撥液晶膜の撥液晶性と表面粗さの相乗作用により、液晶材に対する濡れ性が更に低下し、額縁BMを通過する液晶材の拡散速度をより減少させる効果が得られる。このように、液晶材の拡散速度をより抑制することが出来るので、狭額縁化構造に設計された液晶表示パネル或いは低粘度の液晶材を使用した液晶表示パネルなどにも十分に対応することが出来る。
[Embodiment 3]
FIG. 9 is a sectional view showing the structure of a liquid crystal display panel according to a third embodiment of the present invention. This liquid crystal display panel 1 is a liquid crystal display panel according to the first embodiment shown in FIG. 1, and has a rough surface shape with respect to the surface of the frame BM6 and the film surface of the TFT substrate 2 opposed thereto, that is, the film surface in contact with the liquid crystal material. In the formation region, a rough surface layer and a liquid repellent film are sequentially formed. By forming a soot liquid crystal film on the roughened TFT substrate 2 and the CF substrate 3, the surface roughness of the liquid crystal repellent film is increased, and the liquid crystal repellency and surface roughness of the liquid crystal repellent film are synergistic. As a result, the wettability with respect to the liquid crystal material is further lowered, and an effect of further reducing the diffusion rate of the liquid crystal material passing through the frame BM can be obtained. As described above, since the diffusion rate of the liquid crystal material can be further suppressed, it can sufficiently cope with a liquid crystal display panel designed with a narrow frame structure or a liquid crystal display panel using a low viscosity liquid crystal material. I can do it.

なお、撥液晶膜としては、フッ素皮膜、シリコーン皮膜などの皮膜が好適であり、10nm以上の厚さで前記膜を形成すれば、それぞれの皮膜と液晶材とがなす接触角はほぼ変化がないことを確認している。更に100nm以上とすれば、10nmの時と比べ接触角の変化は無いものの、ピンホール等のはじきや塗り残しもなく、安定した膜が形成出来ることを確認している。   As the liquid repellent film, a film such as a fluorine film or a silicone film is suitable. When the film is formed with a thickness of 10 nm or more, the contact angle between each film and the liquid crystal material is not substantially changed. I have confirmed that. Furthermore, when the thickness is 100 nm or more, it has been confirmed that a stable film can be formed without any repelling or unpainted pinholes or the like, although there is no change in contact angle compared to 10 nm.

図10に粗面形状による液晶拡散制御効果を示す概念図を示す。図10(b)は従来の基板貼り合せ時の液晶材の拡散状態を示しており、CF基板とTFT基板が接触・加圧されると、液晶材は画素領域から額縁BM形成部へと急速に拡散していく。その結果、拡散した液晶材がUV硬化する前の未硬化状態のシール材と接触することとなる。それに対して、図10(a)は本発明の基板貼り合せ時の液晶材の拡散状態を示しており、CF基板とTFT基板が接触・加圧されても、遮光部に、液晶材に対する接触角が増大するような粗面形状を施している為に、液晶材は額縁BM形成部にて拡散速度が著しく減少することとなる。その結果、液晶材がUV硬化する前の未硬化状態のシール材と接触するタイミングを遅らせ、未硬化状態のシール材と液晶材とが接触することを抑制出来る。   FIG. 10 is a conceptual diagram showing the liquid crystal diffusion control effect by the rough surface shape. FIG. 10B shows the diffusion state of the liquid crystal material when the conventional substrates are bonded together. When the CF substrate and the TFT substrate are contacted and pressed, the liquid crystal material rapidly moves from the pixel region to the frame BM formation portion. To spread. As a result, the diffused liquid crystal material comes into contact with the uncured sealing material before UV curing. On the other hand, FIG. 10A shows the diffusion state of the liquid crystal material when the substrates of the present invention are bonded. Even if the CF substrate and the TFT substrate are contacted / pressurized, the light shielding portion is in contact with the liquid crystal material. Since the rough surface shape is increased so that the angle increases, the diffusion speed of the liquid crystal material is significantly reduced at the frame BM formation portion. As a result, the timing at which the liquid crystal material comes into contact with the uncured sealing material before UV curing can be delayed, and the contact between the uncured sealing material and the liquid crystal material can be suppressed.

前記接触角を、液晶表示パネルに封入する液晶材を使用して、JIS R3257-1999「基板ガラス表面の濡れ性試験方法」に基づき測定すれば(例えば、協和界面科学製の接触角測定機DM300を使用)、撥液晶性の度合いを容易に確認出来る。この撥液晶性は粗面形状が形成されている限り、液晶表示パネルを解体し、アセトン、IPAにて付着している液晶材を除去後、再度測定しても再現する。なお、CF基板の前記額縁BM及びそれに対向するTFT基板の前記膜面に付与した粗面形状の液晶材に対する接触角は、画素領域の配向膜表面上の接触角よりも大きくなる。これはCF基板の前記額縁BM及びそれに対向するTFT基板の前記膜面に付与した粗面形状の表面粗さが、CF基板及びTFT基板の画素領域の表面層である配向膜表面上の表面粗さよりも大きくなるようにしているからである。   When the contact angle is measured based on JIS R3257-1999 “Testing method for wettability of substrate glass surface” using a liquid crystal material sealed in a liquid crystal display panel (for example, contact angle measuring machine DM300 manufactured by Kyowa Interface Science). The degree of liquid repellency can be easily confirmed. As long as the rough surface shape is formed, this liquid repellency is reproduced even if the liquid crystal display panel is disassembled and the liquid crystal material attached with acetone or IPA is removed and then measured again. Note that the contact angle with the rough liquid crystal material applied to the frame BM of the CF substrate and the film surface of the TFT substrate facing the frame BM is larger than the contact angle on the alignment film surface in the pixel region. This is because the surface roughness of the rough surface applied to the frame BM of the CF substrate and the film surface of the TFT substrate opposite thereto is a surface roughness on the surface of the alignment film which is the surface layer of the pixel region of the CF substrate and the TFT substrate. This is because it is made larger than this.

ここで、図11に本発明の実施形態に関わる額縁BM形成部での液晶拡散速度とギャップとの関係を示す。図中の×印は粗面層を形成しない場合、△印は正方形の微小凹凸を形成した柱状の粗面層のみ形成した場合、○印は前記柱状の粗面層の上にさらにフッ素皮膜を形成した場合を示している。   Here, FIG. 11 shows the relationship between the liquid crystal diffusion speed and the gap in the frame BM formation portion according to the embodiment of the present invention. The X mark in the figure indicates that a rough surface layer is not formed, the △ mark indicates that only a columnar rough surface layer formed with square minute irregularities is formed, and the ○ mark indicates that a fluorine film is further formed on the columnar rough surface layer. The case where it formed is shown.

一般に液晶表示パネルにおいて、額縁BM形成部のギャップ、即ち額縁BMとTFT基板との間隙距離は、額縁BMにおいてCFとなる色層が形成されていない分もあり、画素領域の間隙(ギャップ)より大きい。図11より、額縁BMとTFT基板との間隙距離が短くなる、つまり画素領域のギャップが小さくなるほど、液晶拡散速度が次第に減少していくのが判る。しかしながら、遮光部に粗面形状を施していない場合、額縁BMとTFT基板との間隙距離をかなり短くしても速度減少に限界が有る。そこで更に速度を減少させる為に額縁BMとTFT基板とが接触するくらいまで距離を縮めると、部分的に額縁BMとTFT基板が接触するという問題が起きる。その結果、額縁BM近傍の接触した箇所でギャップ均一性が悪化し、周辺ムラという新たな不具合が発生することになる。   In general, in a liquid crystal display panel, the gap between the frame BM formation portion, that is, the gap distance between the frame BM and the TFT substrate is that a color layer serving as a CF is not formed in the frame BM. large. From FIG. 11, it can be seen that the liquid crystal diffusion rate gradually decreases as the gap distance between the frame BM and the TFT substrate decreases, that is, the gap in the pixel region decreases. However, when the light shielding portion is not roughened, there is a limit to speed reduction even if the gap distance between the frame BM and the TFT substrate is considerably shortened. Therefore, if the distance is shortened so that the frame BM and the TFT substrate come into contact with each other in order to further reduce the speed, there arises a problem that the frame BM and the TFT substrate partially come into contact. As a result, the gap uniformity deteriorates at the contact point in the vicinity of the frame BM, and a new problem of peripheral unevenness occurs.

それに対し、表面積増加率の大きな、正方形の微小凹凸を形成した柱状の粗面層を形成、又は、前記柱状の粗面層の上にさらにフッ素皮膜などを形成することで、額縁BMとTFT基板間との間隙距離を極端に短くする必要がなく、液晶表示パネルの狙いの画素領域のギャップ或いは額縁BM幅に応じた粗面形状及びその表面粗さの設定が可能となる。その結果、額縁BM近傍のギャップ均一性を悪化させることなしに、必要とする液晶拡散速度を得ることが出来る。   On the other hand, the frame BM and the TFT substrate are formed by forming a columnar rough surface layer having a large surface area increase rate and forming square minute irregularities, or further forming a fluorine film on the columnar rough surface layer. It is not necessary to extremely shorten the gap distance from the gap, and it is possible to set the rough surface shape and the surface roughness according to the gap of the target pixel region or the frame BM width of the liquid crystal display panel. As a result, the required liquid crystal diffusion speed can be obtained without deteriorating the gap uniformity in the vicinity of the frame BM.

なお、ここでの前記皮膜の形成膜厚は100nmとした。皮膜と液晶材とがなす接触角は前述のように約10nm以上でほぼ一定の値となるが、ここでは塗り残しによって発生するピンホール発生率も考慮し100nmとした。また、粗面形状の幅は、画素領域からシール塗布位置間の額縁BM幅の許容範囲内で設定することができ、貼り合せ工程アウト〜熱硬化工程インのリードタイムを考慮して設定すると良い。例えば、貼り合せ工程アウト〜熱硬化工程インまでのリードタイムを2.5分以内とするプロセス条件にて、額縁BMとTFT基板との間隙距離が2.0μmである液晶表示パネルを作製する時は、図11より額縁BMの表面上及びそれに対向するTFT基板の膜面上に粗面層となる粗面形状を具備する場合では、ばらつきを加味して粗面形状幅を4.8mm以上とすると良い。このようにすれば未硬化のシール材と液晶材が接することはない。   Here, the film thickness of the film was 100 nm. As described above, the contact angle formed between the film and the liquid crystal material is approximately 10 nm or more and is a substantially constant value. Further, the width of the rough surface shape can be set within an allowable range of the frame BM width between the pixel region and the seal application position, and is preferably set in consideration of the lead time from the bonding process out to the thermosetting process in. . For example, when manufacturing a liquid crystal display panel in which the gap distance between the frame BM and the TFT substrate is 2.0 μm under the process conditions in which the lead time from the bonding process out to the thermosetting process in is within 2.5 minutes. FIG. 11 shows that, in the case of having a rough surface shape that becomes a rough surface layer on the surface of the frame BM and on the film surface of the TFT substrate facing it, the rough surface shape width is set to 4.8 mm or more in consideration of variation. Good. In this way, the uncured sealing material and the liquid crystal material do not come into contact with each other.

また、上記各実施形態ではCF基板及びTFT基板の両膜面に、液晶拡散を制御する為の粗面形状を施した構成を例に挙げて説明したが、CF基板或いはTFT基板の少なくとも一方に粗面形状を施した構成とすれば、液晶材の拡散速度を減少させることが可能な為、未硬化或いは半硬化のシール材と液晶材が接する時間を遅らせることができ、液晶材の汚染を抑制することが出来る。   In each of the above embodiments, a description has been given of an example in which both the CF substrate and the TFT substrate have a rough surface shape for controlling liquid crystal diffusion, but at least one of the CF substrate and the TFT substrate is used. When the rough surface configuration is used, the diffusion rate of the liquid crystal material can be reduced, so that the time for the liquid crystal material to contact the uncured or semi-cured seal material can be delayed, and contamination of the liquid crystal material can be prevented. Can be suppressed.

以下の実施例において、本発明の液晶表示パネルの製造方法の具体例を説明するが、本発明の要旨を変更しない限り、本発明は以下の実施例に限定されるものではない。   In the following examples, specific examples of the method for producing a liquid crystal display panel of the present invention will be described. However, the present invention is not limited to the following examples unless the gist of the present invention is changed.

まず、第1の実施例として、本発明の第2実施形態のIPSモードの液晶表示装置の製造方法を示す。   First, as a first example, a method for manufacturing an IPS mode liquid crystal display device according to a second embodiment of the present invention will be described.

CF基板の粗面形状形成工程において、画素領域からシール塗布位置間の額縁BMの表面に対し、収束イオンビーム(FIB)装置にて微細加工を施し、各辺0.5μm、深さ0.5μmで1μmピッチの柱状の粗面層(〔Ra〕/〔Sm〕=0.25)を画素領域周辺部に閉曲線状に形成させた。また、額縁BM−TFT基板間の間隙距離が2.1μmである液晶表示パネルで、貼り合せ工程アウト〜熱硬化工程インまでのリードタイムを2分以内とするプロセス条件で作製する為に、粗面層幅を4.2mmとした(画素領域の間隙(ギャップ)の狙い値は2.0μm)。一方、TFT基板の粗面形状形成工程においても、CF基板の前記粗面層に対向する画素領域からシール塗布位置間のTFT基板の膜面に対し、同様な微細加工を施した。このようにしてTFT基板側にもCF基板と同様に、各辺0.5μmで1μmピッチの柱状の粗面層を4.2mm幅で閉曲線状に形成させた。   In the rough surface shape forming process of the CF substrate, the surface of the frame BM between the pixel region and the seal application position is finely processed by a focused ion beam (FIB) apparatus, each side is 0.5 μm, and the depth is 0.5 μm. Then, a columnar rough surface layer ([Ra] / [Sm] = 0.25) having a pitch of 1 μm was formed in a closed curve shape around the pixel region. In addition, in a liquid crystal display panel with a gap distance between the frame BM-TFT substrate of 2.1 μm, in order to fabricate under a process condition in which the lead time from the bonding process out to the thermosetting process in is within 2 minutes, The width of the surface layer was 4.2 mm (the target value of the gap (gap) in the pixel area was 2.0 μm). On the other hand, in the rough surface shape forming step of the TFT substrate, the same fine processing was performed on the film surface of the TFT substrate between the pixel region facing the rough surface layer of the CF substrate and the seal application position. In this way, a columnar rough surface layer with a side of 0.5 μm and a pitch of 1 μm was formed in a closed curve shape with a width of 4.2 mm on the TFT substrate side as well as the CF substrate.

次に、シール塗布工程において、ハイブリッド型(UV+熱硬化)シール材を、画素領域を囲うように所定の位置に、外周(補助)シール及び本シールとしてそれぞれ閉曲線状に塗布した。次に、液晶滴下工程において、液晶材を前記本シール内側に、所定の滴下量を所定の位置にマトリックス状に滴下した。その後、貼り合せ工程において、前記両基板を接触・加圧することで、基板間の画素領域全域に液晶材を均一に拡散させながら、基板間のギャップを均一に形成させた。   Next, in the seal application process, a hybrid type (UV + thermosetting) sealant was applied in a closed curve shape as a peripheral (auxiliary) seal and a main seal at predetermined positions so as to surround the pixel region. Next, in the liquid crystal dropping step, a liquid crystal material was dropped in a matrix at a predetermined position on the inner side of the main seal. Thereafter, in the bonding step, the two substrates were brought into contact with each other and pressed to uniformly diffuse the liquid crystal material throughout the pixel region between the substrates, thereby forming a uniform gap between the substrates.

そして、次工程への搬送の際、シール材の仮止めとして部分的に数箇所のUV仮硬化を行った。次に、UV硬化工程において、UV照射量3000mJにてシール材を硬化させた。このとき前記粗面層により、未硬化状態のシール材と液晶材が接触していないことを確認した。そして、次の熱硬化工程において、120℃、1時間加熱することによりシール材を完全硬化させた。このとき加熱開始時点では、前記粗面層により、半硬化状態のシール材と液晶材が接触していないことを確認した。その後、シール材の熱硬化が完了するときには、液晶材は本シール内側全領域に拡散・充填され、シール材と液晶材とが接し合い、額縁BM近傍においてもギャップが形成された。熱硬化完了後、液晶表示パネルの表示部及び額縁BM近傍のギャップ測定を実施した。その結果、表示部全領域で均一なギャップが得られていることを確認出来た。   And in the case of conveyance to the next process, UV temporary hardening of some places was performed partially as temporary stop of a sealing material. Next, in the UV curing step, the sealing material was cured at a UV irradiation amount of 3000 mJ. At this time, it was confirmed by the rough surface layer that the uncured sealing material and the liquid crystal material were not in contact. Then, in the next thermosetting step, the sealing material was completely cured by heating at 120 ° C. for 1 hour. At this time, when the heating was started, it was confirmed that the semi-cured sealing material and the liquid crystal material were not in contact with each other due to the rough surface layer. Thereafter, when the thermosetting of the sealing material was completed, the liquid crystal material was diffused and filled in the entire area inside the seal, the sealing material and the liquid crystal material were in contact with each other, and a gap was also formed in the vicinity of the frame BM. After the thermosetting was completed, a gap measurement in the vicinity of the display part of the liquid crystal display panel and the frame BM was performed. As a result, it was confirmed that a uniform gap was obtained in the entire display area.

このようにして作製した本発明の実施例である液晶表示装置の高温高湿試験を実施した。温度60℃、湿度60%環境化で1500h駆動試験を実施した結果、液晶表示パネルのシール周辺部におけるシミ、ムラ及びシール剥離の発生は確認されず、良好な表示状態であった。比較として、粗面形状を形成させていない液晶表示パネルを作製したが、駆動試験1000hに達する頃にシール周辺部においてシミが発生しているのが確認された。   A high-temperature and high-humidity test of the liquid crystal display device according to the embodiment of the present invention thus manufactured was performed. As a result of carrying out the 1500 h drive test at a temperature of 60 ° C. and a humidity of 60%, the occurrence of spots, unevenness, and peeling of the seal in the periphery of the seal of the liquid crystal display panel was not confirmed, and the display state was good. As a comparison, a liquid crystal display panel without a rough surface shape was produced, but it was confirmed that spots were generated in the periphery of the seal when the driving test reached 1000 h.

次に、第2の実施例として、本発明の第2実施形態のIPSモードの液晶表示装置に対する別の製造方法を示す。   Next, as a second example, another manufacturing method for the IPS mode liquid crystal display device according to the second embodiment of the present invention will be described.

CF基板の粗面形状形成工程において、画素領域からシール塗布位置間の額縁BMの表面に対し、プラズマアッシング装置にてアッシング処理を施した。このとき処理ガスとして酸素或いは窒素と酸素の混合ガスを使用し、スキャン方式のプラズマアッシングヘッドを駆動させることで粗面形状の形成領域に対し、ピンポイントにプラズマ照射を施した。これより径が80nm以下の空孔状の粗面層を画素領域周辺部に閉曲線状に形成させた。また、額縁BM−TFT基板間の間隙距離が2.1μmである液晶表示パネルで、貼り合せ工程アウト〜熱硬化工程インまでのリードタイムを2分以内とするプロセス条件で作製する為に、粗面層幅を4.2mmとした(画素領域の間隙(ギャップ)の狙い値は2.0μm)。一方、TFT基板の粗面形状形成工程においても、CF基板の前記粗面層に対向する画素領域からシール塗布位置間のTFT基板の膜面に対し、同様なアッシング処理を施した。このようにしてTFT基板側にもCF基板と同様に、径が80nm以下の空孔状の粗面層を4.2mm幅で閉曲線状に形成させた。   In the rough surface shape forming process of the CF substrate, an ashing process was performed on the surface of the frame BM between the pixel region and the seal application position using a plasma ashing apparatus. At this time, oxygen or a mixed gas of nitrogen and oxygen was used as a processing gas, and a scan type plasma ashing head was driven to irradiate plasma on a rough surface forming region. Thus, a hole-like rough surface layer having a diameter of 80 nm or less was formed in a closed curve shape around the pixel region. In addition, in a liquid crystal display panel with a gap distance between the frame BM-TFT substrate of 2.1 μm, in order to fabricate under a process condition in which the lead time from the bonding process out to the thermosetting process in is within 2 minutes, The width of the surface layer was 4.2 mm (the target value of the gap (gap) in the pixel area was 2.0 μm). On the other hand, in the rough surface shape forming process of the TFT substrate, the same ashing process was performed on the film surface of the TFT substrate between the pixel region facing the rough surface layer of the CF substrate and the seal application position. In this manner, a hole-like rough surface layer having a diameter of 80 nm or less was formed in a closed curve shape with a width of 4.2 mm on the TFT substrate side as well as the CF substrate.

次に、シール塗布工程において、ハイブリッド型(UV+熱硬化)シール材を、画素領域を囲うように所定の位置に、外周(補助)シール及び本シールとしてそれぞれ閉曲線状に塗布した。次に、液晶滴下工程において、液晶材を前記本シール内側に、所定の滴下量を所定の位置にマトリックス状に滴下した。その後、貼り合せ工程において、前記両基板を接触・加圧することで、基板間の画素領域全域に液晶材を均一に拡散させながら、基板間のギャップを均一に形成させた。   Next, in the seal application process, a hybrid type (UV + thermosetting) sealant was applied in a closed curve shape as a peripheral (auxiliary) seal and a main seal at predetermined positions so as to surround the pixel region. Next, in the liquid crystal dropping step, a liquid crystal material was dropped in a matrix at a predetermined position on the inner side of the main seal. Thereafter, in the bonding step, the two substrates were brought into contact with each other and pressed to uniformly diffuse the liquid crystal material throughout the pixel region between the substrates, thereby forming a uniform gap between the substrates.

そして次工程への搬送の際、シール材の仮止めとして部分的に数箇所のUV仮硬化を行った。次のUV硬化工程において、UV照射量3000mJにてシール材を硬化させた。このとき前記粗面層により、未硬化状態のシール材と液晶材が接触していないことを確認出来た。そして、次に、熱硬化工程において、120℃、1時間加熱することによりシール材を完全硬化させた。このとき加熱開始時点では、前記粗面層により、半硬化状態のシール材と液晶材が接触していないことを確認した。その後、シール材の熱硬化が完了するときには、液晶材は本シール内側全領域に拡散・充填され、シール材と液晶材とが接し合い、額縁BM近傍においてもギャップが形成された。熱硬化完了後、液晶表示パネルの表示部及び額縁BM近傍のギャップ測定を実施した。その結果、表示部全領域で均一なギャップが得られていることを確認出来た。   And in the case of conveyance to the next process, UV temporary hardening of some places was performed partially as temporary stop of a sealing material. In the next UV curing step, the sealing material was cured at a UV irradiation amount of 3000 mJ. At this time, it was confirmed by the rough surface layer that the uncured sealing material and the liquid crystal material were not in contact. Then, in the thermosetting step, the sealing material was completely cured by heating at 120 ° C. for 1 hour. At this time, when the heating was started, it was confirmed that the semi-cured sealing material and the liquid crystal material were not in contact with each other due to the rough surface layer. Thereafter, when the thermosetting of the sealing material was completed, the liquid crystal material was diffused and filled in the entire area inside the seal, the sealing material and the liquid crystal material were in contact with each other, and a gap was also formed in the vicinity of the frame BM. After the thermosetting was completed, a gap measurement in the vicinity of the display part of the liquid crystal display panel and the frame BM was performed. As a result, it was confirmed that a uniform gap was obtained in the entire display area.

このようにして作製した本発明の実施例である液晶表示装置の高温高湿試験を実施した。温度60℃、湿度60%環境化で1500h駆動試験を実施した結果、液晶表示パネルのシール周辺部におけるシミ、ムラ及びシール剥離の発生は確認されず、良好な表示状態であった。比較として、粗面形状を形成させていない液晶表示パネルを作製したが、駆動試験1000hに達する頃にシール周辺部においてシミが発生しているのが確認された。   A high-temperature and high-humidity test of the liquid crystal display device according to the embodiment of the present invention thus manufactured was performed. As a result of carrying out the 1500 h drive test at a temperature of 60 ° C. and a humidity of 60%, the occurrence of spots, unevenness, and peeling of the seal in the periphery of the seal of the liquid crystal display panel was not confirmed, and the display state was good. As a comparison, a liquid crystal display panel without a rough surface shape was produced, but it was confirmed that spots were generated in the periphery of the seal when the driving test reached 1000 h.

次に、第3の実施例として、本発明の第3実施形態のTNモードの液晶表示装置の製造方法を示す。   Next, as a third example, a method for manufacturing a TN mode liquid crystal display device according to a third embodiment of the present invention will be described.

CF基板の粗面形状形成工程において、画素領域からシール塗布位置間の額縁BMの表面に対し、収束イオンビーム(FIB)装置にて微細加工を施し、各辺0.5μm、深さ0.5μmで1μmピッチの柱状の粗面層(〔Ra〕/〔Sm〕=0.25)を画素領域周辺部に閉曲線状に形成させた。更に前記柱状の粗面層に対し、成膜装置にてフッ素系分子を局所的に堆積させた後、重合処理を行うフッ素化処理を施し、膜厚が約100nmのフッ素皮膜を形成させた。また、額縁BM−TFT基板間の間隙距離が1.8μmである狭額縁化構造の液晶表示パネルで、貼り合せ工程アウト〜熱硬化工程インまでのリードタイムを2分以内とするプロセス条件で作製する為に、粗面層幅を2.8mmとした(画素領域の間隙(ギャップ)の狙い値は1.7μm)。一方、TFT基板の粗面形状形成工程においても、CF基板の前記粗面層+フッ素皮膜に対向する画素領域からシール塗布位置間のTFT基板の膜面に対し、前記同様に粗面形状と撥液晶膜を施した。このようにしてTFT基板側にもCF基板と同様に、各辺0.5μmで1μmピッチの柱状の粗面層と100nmのフッ素皮膜を2.8mm幅で閉曲線状に形成させた。   In the rough surface shape forming process of the CF substrate, the surface of the frame BM between the pixel region and the seal application position is finely processed by a focused ion beam (FIB) apparatus, each side is 0.5 μm, and the depth is 0.5 μm. Then, a columnar rough surface layer ([Ra] / [Sm] = 0.25) having a pitch of 1 μm was formed in a closed curve shape around the pixel region. Further, after the fluorine-based molecules were locally deposited on the columnar rough surface layer by a film forming apparatus, a fluorination treatment for polymerizing was performed to form a fluorine film having a thickness of about 100 nm. In addition, it is a liquid crystal display panel with a narrow frame structure with a gap distance between the frame BM-TFT substrate of 1.8 μm, and is manufactured under the process conditions that the lead time from the bonding process out to the thermosetting process in is within 2 minutes. For this purpose, the rough surface layer width was set to 2.8 mm (the target value of the gap (gap) in the pixel region was 1.7 μm). On the other hand, in the rough surface shape forming process of the TFT substrate, the rough surface shape and repellent property are similarly applied to the film surface of the TFT substrate between the seal application position from the pixel region facing the rough surface layer + fluorine film of the CF substrate. A liquid crystal film was applied. In this manner, a columnar rough surface layer having a side of 0.5 μm and a pitch of 1 μm and a fluorine film of 100 nm were formed in a closed curve shape with a width of 2.8 mm, similarly to the CF substrate.

次に、シール塗布工程において、ハイブリッド型(UV+熱硬化)シール材を、画素領域を囲うように所定の位置に、外周(補助)シール及び本シールとしてそれぞれ閉曲線状に塗布した。次に、Ag塗布工程において、Agトランスファーを前記本シール外側の所定の位置に打点状に塗布した。次に、液晶滴下工程において、液晶材を前記本シール内側に、所定の滴下量を所定の位置にマトリックス状に滴下した。その後、貼り合せ工程において、前記両基板を接触・加圧することで、基板間の画素領域全域に液晶材を均一に拡散させながら、基板間のギャップを均一に形成させた。   Next, in the seal application process, a hybrid type (UV + thermosetting) sealant was applied in a closed curve shape as a peripheral (auxiliary) seal and a main seal at predetermined positions so as to surround the pixel region. Next, in the Ag application step, Ag transfer was applied in a dot pattern at a predetermined position outside the seal. Next, in the liquid crystal dropping step, a liquid crystal material was dropped in a matrix at a predetermined position on the inner side of the main seal. Thereafter, in the bonding step, the two substrates were brought into contact with each other and pressed to uniformly diffuse the liquid crystal material throughout the pixel region between the substrates, thereby forming a uniform gap between the substrates.

そして、次工程への搬送の際、シール材の仮止めとして部分的に数箇所のUV仮硬化を行った。次のUV硬化工程において、UV照射量3000mJにてシール材を硬化させた。このとき前記粗面層により、未硬化状態のシール材と液晶材が接触していないことを確認出来た。そして、次に、熱硬化工程において、120℃、1時間加熱することによりシール材を完全硬化させた。このとき加熱開始時点では、前記粗面層により、半硬化状態のシール材と液晶材が接触していないことを確認した。その後、シール材の熱硬化が完了するときには、液晶材は本シール内側全領域に拡散・充填され、シール材と液晶材とが接し合い、額縁BM近傍においてもギャップが形成された。熱硬化完了後、液晶表示パネルの表示部及び額縁BM近傍のギャップ測定を実施した。その結果、表示部全領域で均一なギャップが得られていることを確認出来た。   And in the case of conveyance to the next process, UV temporary hardening of some places was performed partially as temporary stop of a sealing material. In the next UV curing step, the sealing material was cured at a UV irradiation amount of 3000 mJ. At this time, it was confirmed by the rough surface layer that the uncured sealing material and the liquid crystal material were not in contact. Then, in the thermosetting step, the sealing material was completely cured by heating at 120 ° C. for 1 hour. At this time, when the heating was started, it was confirmed that the semi-cured sealing material and the liquid crystal material were not in contact with each other due to the rough surface layer. Thereafter, when the thermosetting of the sealing material was completed, the liquid crystal material was diffused and filled in the entire area inside the seal, the sealing material and the liquid crystal material were in contact with each other, and a gap was also formed in the vicinity of the frame BM. After the thermosetting was completed, a gap measurement in the vicinity of the display part of the liquid crystal display panel and the frame BM was performed. As a result, it was confirmed that a uniform gap was obtained in the entire display area.

このようにして作製した本発明の実施例である液晶表示装置の高温高湿試験を実施した。温度60℃、湿度60%環境化で1500h駆動試験を実施した結果、液晶表示パネルのシール周辺部におけるシミ、ムラ及びシール剥離の発生は確認されず、良好な表示状態であった。比較として、粗面形状を形成させていない液晶表示パネルを作製したが、駆動試験1000hに達する頃にシール周辺部においてシミ及び一部のシール剥離が発生しているのが確認された。   A high-temperature and high-humidity test of the liquid crystal display device according to the embodiment of the present invention thus manufactured was performed. As a result of carrying out the 1500 h drive test at a temperature of 60 ° C. and a humidity of 60%, the occurrence of spots, unevenness, and peeling of the seal in the periphery of the seal of the liquid crystal display panel was not confirmed, and the display state was good. For comparison, a liquid crystal display panel having no rough surface shape was produced, but it was confirmed that spots and partial seal peeling occurred in the periphery of the seal when the driving test reached 1000 h.

本発明は、対向する一対の基板間に液晶を挟持する液晶表示パネル及びその製造方法並びに該液晶表示パネルを用いる液晶表示装置に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for a liquid crystal display panel that sandwiches liquid crystal between a pair of opposing substrates, a manufacturing method thereof, and a liquid crystal display device that uses the liquid crystal display panel.

本発明の第1の実施形態に係る液晶表示パネルの額縁近傍の構造を示す断面図である。It is sectional drawing which shows the structure of the frame vicinity of the liquid crystal display panel which concerns on the 1st Embodiment of this invention. 本発明の粗面形状の形成領域を示す液晶表示パネルの平面図である。It is a top view of the liquid crystal display panel which shows the formation area of the rough surface shape of this invention. 本発明の粗面形状の形成領域を示す液晶表示パネルの平面図である。It is a top view of the liquid crystal display panel which shows the formation area of the rough surface shape of this invention. 本発明の液晶表示パネルの製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the liquid crystal display panel of this invention. 本発明の第2の実施形態に係る液晶表示パネルの額縁近傍の構造を示す断面図である。It is sectional drawing which shows the structure of the frame vicinity of the liquid crystal display panel which concerns on the 2nd Embodiment of this invention. 本発明の粗面構造の形状例を示す断面図である。It is sectional drawing which shows the example of a shape of the rough surface structure of this invention. 液晶材との接触界面における表面粗さと接触角の相関関係を示す図である。It is a figure which shows the correlation of the surface roughness and contact angle in a contact interface with a liquid crystal material. 本発明の画素領域からシール塗布位置の間に粗面形状を形成させたTFT基板の模式図である。It is a schematic diagram of the TFT substrate in which a rough surface shape is formed between the pixel region of the present invention and the seal application position. 本発明の第3の実施形態に係る液晶表示パネルの額縁近傍の構造を示す断面図である。It is sectional drawing which shows the structure of the frame vicinity of the liquid crystal display panel which concerns on the 3rd Embodiment of this invention. 粗面形状による液晶拡散制御効果を示す概念図であり、(a)は本発明の基板貼り合せ時の液晶拡散、(b)従来の基板貼り合せ時の液晶拡散を示している。It is a conceptual diagram which shows the liquid crystal diffusion control effect by rough surface shape, (a) has shown the liquid crystal diffusion at the time of substrate bonding of this invention, (b) The liquid crystal diffusion at the time of the conventional substrate bonding. 額縁BM形成部における液晶拡散速度とギャップとの相関関係を示す図である。It is a figure which shows the correlation of the liquid-crystal diffusion speed in a frame BM formation part, and a gap. 従来の液晶表示パネルの額縁近傍の構造を示す断面図である。It is sectional drawing which shows the structure of the frame vicinity of the conventional liquid crystal display panel. 従来の液晶表示パネルの製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the conventional liquid crystal display panel. 従来の液晶表示パネルの額縁近傍の他の構造を示す断面図である。It is sectional drawing which shows the other structure of the frame vicinity of the conventional liquid crystal display panel. 従来の液晶表示パネルの他の構造を示す断面図である。It is sectional drawing which shows the other structure of the conventional liquid crystal display panel.

符号の説明Explanation of symbols

1 液晶表示パネル
2 TFT基板
3 CF基板
4 液晶材
5 シール材
6 額縁BM
7 色層
8 駆動回路層
9 配向膜
10 柱スペーサ
10a 球状スペーサ
11 粗面形状
11a 微小凹凸の粗面構造
11b 微小凹凸の粗面層+撥液晶層
12 凸部
13 流動制御壁
DESCRIPTION OF SYMBOLS 1 Liquid crystal display panel 2 TFT substrate 3 CF substrate 4 Liquid crystal material 5 Seal material 6 Frame BM
7 Color Layer 8 Drive Circuit Layer 9 Alignment Film 10 Column Spacer 10a Spherical Spacer 11 Rough Surface Shape 11a Micro Rough Surface Structure 11b Micro Rough Surface Rough + Liquid-repellent Layer 12 Protrusion 13 Flow Control Wall

Claims (10)

対向する一対の基板が画素領域を囲む閉曲線状のシール材で接着され、前記一対の基板間の前記シール材で囲まれる領域に液晶材が挟持されてなる液晶表示装置において、
前記画素領域の外周側かつ前記閉曲線状のシール材の内周側に額縁領域を有し、
少なくとも一方の基板の前記額縁領域の少なくとも一部における前記液晶材と接する膜面が、前記画素領域における前記液晶材と接する膜面よりも、表面粗さの大きな粗面形状であることを特徴とする液晶表示装置。
In a liquid crystal display device in which a pair of opposing substrates are bonded with a closed-curved sealing material surrounding a pixel region, and a liquid crystal material is sandwiched between regions of the sealing material between the pair of substrates.
A frame region on the outer peripheral side of the pixel region and the inner peripheral side of the closed-curved sealing material,
The film surface in contact with the liquid crystal material in at least a part of the frame region of at least one substrate is a rough surface shape having a larger surface roughness than the film surface in contact with the liquid crystal material in the pixel region. Liquid crystal display device.
前記表面粗さの大きな粗面形状が、前記画素領域を囲むように閉曲線状に形成されていることを特徴とする請求項1に記載の液晶表示装置。   The liquid crystal display device according to claim 1, wherein the rough surface shape having a large surface roughness is formed in a closed curve shape so as to surround the pixel region. 前記表面粗さの大きな粗面形状が、一方の基板の額縁ブラックマトリクス及び他方の基板の前記額縁ブラックマトリクスに対向する有機膜或いは無機膜に形成されていることを特徴とする請求項1又は2に記載の液晶表示装置。   3. The rough surface shape having a large surface roughness is formed on an organic film or an inorganic film facing the frame black matrix of one substrate and the frame black matrix of the other substrate. A liquid crystal display device according to 1. 前記表面粗さの大きな粗面形状は、柱状又は櫛歯状の凹凸が多数配置された構造、或いは、空孔が多数配置された構造であることを特徴とする請求項1乃至3のいずれか一に記載の液晶表示装置。   4. The rough surface shape having a large surface roughness is a structure in which a large number of columnar or comb-shaped irregularities are disposed, or a structure in which a large number of holes are disposed. The liquid crystal display device according to 1. 前記表面粗さの大きな粗面形状の膜面が、撥液晶膜からなることを特徴とする請求項1乃至4のいずれか一に記載の液晶表示装置。   5. The liquid crystal display device according to claim 1, wherein the film surface having a rough surface shape having a large surface roughness is made of a liquid repellent film. 前記撥液晶膜は、フッ素皮膜又はシリコーン皮膜であることを特徴とする請求項5に記載の液晶表示装置。   The liquid crystal display device according to claim 5, wherein the liquid repellent film is a fluorine film or a silicone film. 一方の基板に、画素領域を囲むように閉曲線状にシール材を塗布するシール塗布工程と、前記一方の基板の前記シール材で囲まれた領域に液晶材を滴下する液晶滴下工程と、前記一方の基板と該一方の基板に対向する他方の基板とを貼り合わせる貼り合わせ工程と、前記シール材を硬化させる硬化工程と、をこの順に少なくとも有する液晶表示装置の製造方法において、
前記液晶滴下工程前の前記一方の基板、及び/又は、前記貼り合わせ工程前の前記他方の基板に対して、前記画素領域の外周側かつ前記閉曲線状のシール材の内周側の額縁領域の少なくとも一部における前記液晶材と接する膜面に、イオンビーム処理を行い、
前記膜面を、前記画素領域における前記液晶材と接する膜面よりも、表面粗さの大きな粗面形状に加工することを特徴とする液晶表示装置の製造方法。
A seal coating step of applying a sealing material in a closed curve shape so as to surround a pixel region on one substrate; a liquid crystal dropping step of dropping a liquid crystal material in a region surrounded by the sealing material of the one substrate; In the method of manufacturing a liquid crystal display device, which includes at least a bonding step of bonding the substrate and the other substrate facing the one substrate, and a curing step of curing the sealing material in this order,
With respect to the one substrate before the liquid crystal dropping step and / or the other substrate before the bonding step, the outer peripheral side of the pixel region and the frame region on the inner peripheral side of the closed curved seal material At least a part of the film surface in contact with the liquid crystal material is subjected to ion beam treatment,
A method of manufacturing a liquid crystal display device, wherein the film surface is processed into a rough surface shape having a larger surface roughness than a film surface in contact with the liquid crystal material in the pixel region.
一方の基板に、画素領域を囲むように閉曲線状にシール材を塗布するシール塗布工程と、前記一方の基板の前記シール材で囲まれた領域に液晶材を滴下する液晶滴下工程と、前記一方の基板と該一方の基板に対向する他方の基板とを貼り合わせる貼り合わせ工程と、前記シール材を硬化させる硬化工程と、をこの順に少なくとも有する液晶表示装置の製造方法において、
前記液晶滴下工程前の前記一方の基板、及び/又は、前記貼り合わせ工程前の前記他方の基板に対して、前記画素領域の外周側かつ前記閉曲線状のシール材の内周側の額縁領域の少なくとも一部における前記液晶材と接する膜面に、プラズマアッシング処理を行い、
前記膜面を、前記画素領域における前記液晶材と接する膜面よりも、表面粗さの大きな粗面形状に加工することを特徴とする液晶表示装置の製造方法。
A seal coating step of applying a sealing material in a closed curve shape so as to surround a pixel region on one substrate; a liquid crystal dropping step of dropping a liquid crystal material in a region surrounded by the sealing material of the one substrate; In the method of manufacturing a liquid crystal display device, which includes at least a bonding step of bonding the substrate and the other substrate facing the one substrate, and a curing step of curing the sealing material in this order,
With respect to the one substrate before the liquid crystal dropping step and / or the other substrate before the bonding step, the outer peripheral side of the pixel region and the frame region on the inner peripheral side of the closed curved seal material At least a part of the film surface in contact with the liquid crystal material is subjected to plasma ashing treatment,
A method of manufacturing a liquid crystal display device, wherein the film surface is processed into a rough surface shape having a larger surface roughness than a film surface in contact with the liquid crystal material in the pixel region.
前記一方の基板に対する前記イオンビーム処理又は前記プラズマアッシング処理を、前記シール塗布工程よりも前に行うことを特徴とする請求項7又は8に記載の液晶表示装置の製造方法。   9. The method of manufacturing a liquid crystal display device according to claim 7, wherein the ion beam treatment or the plasma ashing treatment for the one substrate is performed before the seal coating step. 前記膜面を、前記表面粗さの大きな粗面形状に加工した後、更に、撥液晶膜を形成することを特徴とする請求項7乃至9のいずれか一に記載の液晶表示装置の製造方法。   10. The method of manufacturing a liquid crystal display device according to claim 7, further comprising forming a liquid repellent film after processing the film surface into a rough surface shape having a large surface roughness. .
JP2008199610A 2007-11-08 2008-08-01 Liquid crystal display device and manufacturing method thereof Active JP5488951B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008199610A JP5488951B2 (en) 2007-12-10 2008-08-01 Liquid crystal display device and manufacturing method thereof
US12/266,184 US8629969B2 (en) 2007-11-08 2008-11-06 Liquid crystal display panel and method of manufacturing the liquid crystal display panel
CN 200810174562 CN101430459B (en) 2007-11-08 2008-11-10 Liquid crystal display panel and method of manufacturing the liquid crystal display panel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007318700 2007-12-10
JP2007318700 2007-12-10
JP2008199610A JP5488951B2 (en) 2007-12-10 2008-08-01 Liquid crystal display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009163207A true JP2009163207A (en) 2009-07-23
JP5488951B2 JP5488951B2 (en) 2014-05-14

Family

ID=40965841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008199610A Active JP5488951B2 (en) 2007-11-08 2008-08-01 Liquid crystal display device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5488951B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI553386B (en) * 2014-11-12 2016-10-11 群創光電股份有限公司 Display panels
KR20160141902A (en) * 2015-06-01 2016-12-12 삼성디스플레이 주식회사 Liquid crystal display device
JP2019152705A (en) * 2018-02-28 2019-09-12 京セラ株式会社 Liquid crystal device
TWI677737B (en) * 2018-08-29 2019-11-21 友達光電股份有限公司 Panel structure
CN112218975A (en) * 2018-06-07 2021-01-12 朗姆研究公司 Reducing diffusion across the membrane interface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222201A (en) * 1988-03-01 1989-09-05 Toyota Central Res & Dev Lab Inc Surface roughening method
JPH0954327A (en) * 1995-08-16 1997-02-25 Advanced Display:Kk Liquid crystal injection method and liquid crystal container used for this method
JPH1138424A (en) * 1997-07-23 1999-02-12 Fujitsu Ltd Liquid crystal display panel and its production
JP2003222887A (en) * 2002-01-30 2003-08-08 Matsushita Electric Ind Co Ltd Liquid crystal display element
JP2007256987A (en) * 1997-06-12 2007-10-04 Sharp Corp Liquid crystal display device
JP2009031774A (en) * 2007-06-26 2009-02-12 Semiconductor Energy Lab Co Ltd Liquid crystal display device and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222201A (en) * 1988-03-01 1989-09-05 Toyota Central Res & Dev Lab Inc Surface roughening method
JPH0954327A (en) * 1995-08-16 1997-02-25 Advanced Display:Kk Liquid crystal injection method and liquid crystal container used for this method
JP2007256987A (en) * 1997-06-12 2007-10-04 Sharp Corp Liquid crystal display device
JPH1138424A (en) * 1997-07-23 1999-02-12 Fujitsu Ltd Liquid crystal display panel and its production
JP2003222887A (en) * 2002-01-30 2003-08-08 Matsushita Electric Ind Co Ltd Liquid crystal display element
JP2009031774A (en) * 2007-06-26 2009-02-12 Semiconductor Energy Lab Co Ltd Liquid crystal display device and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI553386B (en) * 2014-11-12 2016-10-11 群創光電股份有限公司 Display panels
US9711755B2 (en) 2014-11-12 2017-07-18 Innolux Corporation Display panels
KR20160141902A (en) * 2015-06-01 2016-12-12 삼성디스플레이 주식회사 Liquid crystal display device
KR102338476B1 (en) * 2015-06-01 2021-12-14 삼성디스플레이 주식회사 Liquid crystal display device
JP2019152705A (en) * 2018-02-28 2019-09-12 京セラ株式会社 Liquid crystal device
JP7068862B2 (en) 2018-02-28 2022-05-17 京セラ株式会社 Liquid crystal element
CN112218975A (en) * 2018-06-07 2021-01-12 朗姆研究公司 Reducing diffusion across the membrane interface
TWI677737B (en) * 2018-08-29 2019-11-21 友達光電股份有限公司 Panel structure

Also Published As

Publication number Publication date
JP5488951B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
US6819391B2 (en) Liquid crystal display panel having dummy column spacer with opened portion
US7292304B2 (en) Liquid crystal display panel and method for fabricating the same comprising a dummy column spacer to regulate a liquid crystal flow and a supplemental dummy column spacer formed substantially parallel and along the dummy column spacer
USRE46146E1 (en) Liquid crystal display device and method of manufacturing the same
JP5318486B2 (en) Liquid crystal display panel and manufacturing method thereof
JP5488951B2 (en) Liquid crystal display device and manufacturing method thereof
US8629969B2 (en) Liquid crystal display panel and method of manufacturing the liquid crystal display panel
JP2001117109A (en) Method of manufacturing for liquid crystal display device
JP2007178652A (en) Liquid crystal panel and its manufacturing method
JP2008268471A (en) Liquid crystal display device and manufacturing method thereof
US6738124B2 (en) Method for fabricating liquid crystal display panel
US20150323844A1 (en) Liquid crystal display panel and method for fabricating the same
JP2010049067A (en) Liquid crystal display
KR20080062826A (en) Liquid crystal display apparatus
KR20080059493A (en) Method for manufacturing liquid crystal display panel
US7196764B2 (en) Liquid crystal display device and method of manufacturing the same comprising at least one portion for controlling a liquid crystal flow within a closed pattern of sealant material
KR20030079429A (en) Liquid Crystal Display Device and Method of manufacturing the same
JP6035081B2 (en) Liquid crystal display
JP2008203518A (en) Method for manufacturing display device
JP2010224094A (en) Method of manufacturing electrooptical device
JP4234478B2 (en) Manufacturing method of liquid crystal display panel
KR20080002517A (en) Patterned alignment layer and liquid crystal display device having thereof, method of fabricating thereof
JP2000019540A (en) Liquid crystal display device
JP2007264102A (en) Liquid crystal display panel and method of manufacturing same
JP2006330601A (en) Method for manufacturing liquid crystal display device
JP2008014982A (en) Method and apparatus for manufacturing liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130708

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R150 Certificate of patent or registration of utility model

Ref document number: 5488951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250