JP2009162528A - Piezoelectric sensor and sensing apparatus - Google Patents

Piezoelectric sensor and sensing apparatus Download PDF

Info

Publication number
JP2009162528A
JP2009162528A JP2007339864A JP2007339864A JP2009162528A JP 2009162528 A JP2009162528 A JP 2009162528A JP 2007339864 A JP2007339864 A JP 2007339864A JP 2007339864 A JP2007339864 A JP 2007339864A JP 2009162528 A JP2009162528 A JP 2009162528A
Authority
JP
Japan
Prior art keywords
crystal
piezoelectric
electrode
piece
excitation electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007339864A
Other languages
Japanese (ja)
Other versions
JP5069094B2 (en
Inventor
Shigenori Watanabe
重徳 渡辺
Takeshi Muto
猛 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2007339864A priority Critical patent/JP5069094B2/en
Publication of JP2009162528A publication Critical patent/JP2009162528A/en
Application granted granted Critical
Publication of JP5069094B2 publication Critical patent/JP5069094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a compact piezoelectric sensor, which detects an object to be measured in a sample liquid through the use of a Langevin piezoelectric transducer of 9 MHz or less, secure a high precision in measurement, reduce variations in CI values between piezoelectric sensors, and perform highly precise measurements. <P>SOLUTION: A quartz sensor is provided with the piezoelectric transducer. The piezoelectric transducer is provided with a circular exciting electrode and a band-like extraction electrode extracted from the exciting electrode and electrically connected to the electrode on each of one surface side and the other surface side of a circular piezoelectric piece. The exciting electrode on the other surface side is provided for a wiring board in such a way as to block a recession part so as to face the recession part. In the piezoelectric transducer, a ratio of the diameter of a piezoelectric piece to the thickness of the piezoelectric piece is 50 or less, and the frequency of principal oscillations is 9 MHz or less. The percentage of the area of the exciting electrode to that of the piezoelectric piece is between 60-70%. The size of the breadth of the extraction electrode is 0.3 of the size of the diameter of the exciting electrode or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧電片の一面側に設けられた励振電極が測定雰囲気に接すると共に、他面側に設けられた励振電極が気密空間に臨むように構成された圧電振動子を含み、この圧電振動子の固有振動数の変化を検出することにより測定対象物を感知する圧電センサ及びこの圧電センサを用いた感知装置に関する。   The present invention includes a piezoelectric vibrator configured such that an excitation electrode provided on one surface side of a piezoelectric piece contacts a measurement atmosphere and an excitation electrode provided on the other surface side faces an airtight space. The present invention relates to a piezoelectric sensor that senses a measurement object by detecting a change in the natural frequency of a child, and a sensing device that uses this piezoelectric sensor.

試料液中における微量物質、例えばダイオキシンなどの環境汚染物質あるいはC型肝炎ウイルスやC−反応性タンパク(CPR)などの疾病マーカーの有無を感知したり、これら物質の測定を行うために、水晶振動子を含んだ水晶センサと、この水晶センサに電気的に接続され、当該水晶振動子を発振させるための発振回路などを含んだ測定器とを利用した測定法が広く知られている(例えば特許文献1)。   To detect the presence of trace substances in the sample liquid, for example, environmental pollutants such as dioxin, disease markers such as hepatitis C virus and C-reactive protein (CPR), and to measure these substances, crystal vibration A measurement method using a crystal sensor including a child and a measuring instrument that is electrically connected to the crystal sensor and includes an oscillation circuit for oscillating the crystal resonator is widely known (for example, a patent) Reference 1).

具体的に説明すると、前記測定法は、例えば板状の水晶片とその水晶片の一面側及び他面側に各々前記水晶片を挟むように設けられた一対の箔状の励振用の電極(励振電極)とを備えた、ランジュバン型と呼ばれる水晶振動子を含む水晶センサについて、一面側の電極が測定雰囲気(試料液)に接触すると共に、他面側の電極が気密空間に臨むように構成し、一面側の電極に試料液中の測定対象物質が接触すると、その接触した物質の質量に応じて水晶片の固有振動数が変動する性質を利用するものである。   Specifically, the measurement method includes, for example, a plate-shaped crystal piece and a pair of foil-like excitation electrodes (a pair of foil-like excitation electrodes provided so as to sandwich the crystal piece on one side and the other side of the crystal piece) A quartz sensor including a crystal resonator called a Langevin type with an excitation electrode) is configured so that the electrode on one side contacts the measurement atmosphere (sample solution) and the electrode on the other side faces the airtight space When the measurement target substance in the sample solution comes into contact with the electrode on the one surface side, the characteristic that the natural frequency of the quartz crystal fluctuates according to the mass of the contacted substance is utilized.

上記のように水晶振動子の一面側のみを測定雰囲気に接触させ、他面側を気密空間に臨むように構成するのは、水晶振動子が安定して発振するためにはこのような構成とすることが好ましいからである。なお、上記の測定においては励振電極の表面に試料液中の測定対象物が、物理的に吸着することに基づいて測定が行われる場合もあるが、前記一面側の電極の表面に測定対象物質に対して選択的に化学結合する物質により構成される吸着層を設け、その吸着層へ測定対象物質を化学的に吸着させて測定を行う場合もある。   As described above, only one side of the crystal unit is brought into contact with the measurement atmosphere and the other side faces the airtight space. It is because it is preferable to do. In the above measurement, the measurement target substance in the sample liquid may be measured based on physical adsorption on the surface of the excitation electrode. However, the measurement target substance is formed on the surface of the electrode on the one side. In some cases, an adsorption layer composed of a substance that selectively chemically bonds to the above is provided, and the measurement target substance is chemically adsorbed to the adsorption layer to perform measurement.

図10は、前記水晶センサに設けられた水晶振動子の周辺の構成の一例を示したものである。図10中の11は配線基板であり、この配線基板11上に水晶振動子10が載置されている。この水晶振動子10は、円形状の水晶片12の一面側及び他面側に、円形状の励振電極13と、当該励振電極13から引き出された帯状の引出電極13aとが、各々設けられており、前記引出電極13aが配線基板11側に設けられた電極に電気的に接続されている。   FIG. 10 shows an example of the configuration around the crystal resonator provided in the crystal sensor. In FIG. 10, reference numeral 11 denotes a wiring board, and the crystal resonator 10 is placed on the wiring board 11. This crystal resonator 10 is provided with a circular excitation electrode 13 and a strip-shaped extraction electrode 13 a extracted from the excitation electrode 13 on one side and the other side of a circular crystal piece 12, respectively. The lead electrode 13a is electrically connected to an electrode provided on the wiring board 11 side.

図10中の14は配線基板11を厚さ方向に穿孔された貫通孔であり、図10中の15は基板11の裏面側から貫通孔14を塞ぐ封止部材である。これら封止部材15、貫通孔14及び水晶振動子10に囲まれる領域は気密空間を構成しており、その水晶振動子10の裏面側の励振電極13は、この気密空間に面している。図10中の16は例えばゴム等からなる板状の水晶押さえ部材であり、水晶振動子10を基板11に押圧して、その位置を固定している。   Reference numeral 14 in FIG. 10 denotes a through-hole formed in the wiring substrate 11 in the thickness direction, and reference numeral 15 in FIG. 10 denotes a sealing member that closes the through-hole 14 from the back side of the substrate 11. A region surrounded by the sealing member 15, the through hole 14, and the crystal resonator 10 forms an airtight space, and the excitation electrode 13 on the back side of the crystal resonator 10 faces the airtight space. Reference numeral 16 in FIG. 10 denotes a plate-like crystal pressing member made of rubber or the like, and presses the crystal resonator 10 against the substrate 11 to fix the position thereof.

図10中の17は、水晶押さえ部材16を厚さ方向に貫くように設けられた開口部であり、水晶振動子10の表面側の励振電極13に面している。図11中の18は水晶押さえ部材16の環状の突起である。そして前記開口部17及び環状突起18に囲まれる液収容空間19に所定量の試料液が収容され、前記励振電極13が測定雰囲気に接するようになっている。   Reference numeral 17 in FIG. 10 denotes an opening provided so as to penetrate the crystal pressing member 16 in the thickness direction, and faces the excitation electrode 13 on the surface side of the crystal resonator 10. Reference numeral 18 in FIG. 11 denotes an annular protrusion of the crystal pressing member 16. A predetermined amount of sample liquid is stored in a liquid storage space 19 surrounded by the opening 17 and the annular protrusion 18, and the excitation electrode 13 is in contact with the measurement atmosphere.

ところで上記のような水晶センサは、後段の測定器本体において信号処理のやり易さから周波数が9.2MHzの水晶片12が用いられる。水晶片の厚さと当該水晶片の周波数とは対応関係があるため、水晶片12の周波数が9.2MHzでは当該水晶片12の厚さtは182μmとなる。また小型化が進む水晶センサの要請に応えるために、水晶片12の直径Dは8.7mmに設定してある。その結果、この水晶片12は、水晶片12の厚さtに対する水晶片12の直径Dの比(以下、辺比D/tという)の値が47.802となっている。一方、測定感度の低下を抑えるために励振電極13の面積はある程度大きくしなければならず、例えば直径7mmに設定している。   By the way, in the crystal sensor as described above, the crystal piece 12 having a frequency of 9.2 MHz is used for the ease of signal processing in the measuring instrument body at the subsequent stage. Since the thickness of the crystal piece and the frequency of the crystal piece have a corresponding relationship, when the frequency of the crystal piece 12 is 9.2 MHz, the thickness t of the crystal piece 12 is 182 μm. Further, in order to meet the demand for a crystal sensor that is becoming smaller in size, the diameter D of the crystal piece 12 is set to 8.7 mm. As a result, the crystal piece 12 has a ratio of the diameter D of the crystal piece 12 to the thickness t of the crystal piece 12 (hereinafter referred to as a side ratio D / t) of 47.802. On the other hand, in order to suppress a decrease in measurement sensitivity, the area of the excitation electrode 13 must be increased to some extent, for example, set to a diameter of 7 mm.

しかしこのように水晶片12の辺比D/tを小さくし、且つ水晶片12の面積に対する励振電極13の面積の割合が50%以上になると、水晶振動子10の振動が励振電極13から引出電極13aに漏れる割合が多くなり、実施の形態で記載されている図3(b)に示すように主振動である厚みすべりモードの振動エネルギが十分に水晶片12の中央部に集中せず、水晶片12の端部にまで達するというような現象が生じる。この水晶片12の周縁部は前記水晶押さえ部材16の環状突起18によって押圧されているため、振動エネルギが水晶片12の端部にまで広がると、水晶センサ間において前記環状突起18によって水晶片12に加わる応力にばらつきがあることから、振動モードにばらつき生じ、その結果水晶センサ間においてクリスタルインピーダンス(CI)値にばらつきが生じてしまう。   However, when the side ratio D / t of the crystal piece 12 is reduced in this way and the ratio of the area of the excitation electrode 13 to the area of the crystal piece 12 is 50% or more, the vibration of the crystal unit 10 is extracted from the excitation electrode 13. The ratio of leakage to the electrode 13a increases, and the vibration energy of the thickness-slip mode that is the main vibration is not sufficiently concentrated on the center portion of the crystal piece 12, as shown in FIG. 3B described in the embodiment. A phenomenon of reaching the end of the crystal piece 12 occurs. Since the peripheral edge portion of the crystal piece 12 is pressed by the annular protrusion 18 of the crystal holding member 16, when the vibration energy spreads to the end portion of the crystal piece 12, the crystal piece 12 is interposed between the crystal sensors by the annular protrusion 18. As a result, the vibration mode varies, and as a result, the crystal impedance (CI) value varies among the quartz sensors.

一方、上述した現象を抑えるために、水晶片の両端部を研磨し、ベベルを付加して沿面距離を大きくすることにより主振動のエネルギを中央部に集中させることができるが、水晶片12の周縁部を前記水晶押さえ部材16の環状突起18で押圧して液漏れを防止する必要があるため、ベベルは水晶片12の押圧面の外側に設けなければならず、そうすると水晶センサ自体が大型化し、上記の要請に反することになる。   On the other hand, in order to suppress the phenomenon described above, the main vibration energy can be concentrated in the central portion by polishing both ends of the crystal piece and adding a bevel to increase the creepage distance. Since it is necessary to press the peripheral edge with the annular protrusion 18 of the crystal pressing member 16 to prevent liquid leakage, the bevel must be provided outside the pressing surface of the crystal piece 12, and the crystal sensor itself becomes larger. This would be against the above request.

またベベルを付加した水晶片12の直径Dを8.7mmとして、水晶片12表面の励振電極の形成エリアを小さくすることで、水晶片12において環状突起18の押圧面を確保することができるが、励振電極エリアが小さくなることで水晶センサの感度が低下してしまい、水晶センサの所期の目的を達成し難くなる。   Further, the diameter D of the crystal piece 12 to which the bevel is added is set to 8.7 mm, and the formation area of the excitation electrode on the surface of the crystal piece 12 is reduced, so that the pressing surface of the annular protrusion 18 can be secured in the crystal piece 12. Since the excitation electrode area is reduced, the sensitivity of the quartz sensor is lowered, and it is difficult to achieve the intended purpose of the quartz sensor.

特開2006−194866JP 2006-194866 A

本発明はかかる事情に鑑みてなされたものであって、その目的は、ランジュバン型の9MHz以下の圧電振動子を用いて試料液中の測定対象物を検知する圧電センサにおいて、小型化を図り、且つ高い測定精度を確保できると共に、圧電センサ間におけるCI値のばらつきを抑えて高精度な測定を行うことができる技術を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to achieve downsizing in a piezoelectric sensor that detects an object to be measured in a sample liquid using a Langevin type piezoelectric vibrator of 9 MHz or less, It is another object of the present invention to provide a technique capable of ensuring high measurement accuracy and performing high-precision measurement while suppressing variations in CI values between piezoelectric sensors.

本発明は、試料液中の測定対象物を検知するために測定器本体に電気的に接続される圧電センサにおいて、
前記測定器本体に接続される接続端子部が設けられると共に、その一面側に、前記接続端子部に電気的に接続された電極及び気密空間を構成するための凹部が設けられた配線基板と、
円形状の圧電片の一面側及び他面側に円形状の励振電極と、当該励振電極から引き出され、前記電極に電気的に接続された帯状の引出電極と、が夫々設けられると共に、他面側の励振電極が前記凹部に臨むように当該凹部を塞いだ状態で配線基板に設けられ、前記圧電片の厚さに対する圧電片の直径の比が50以下、主振動の周波数が9MHz以下である圧電振動子と、
前記圧電振動子の一面側を底面とする液収容空間を形成すると共に、この液収容空間を囲むように設けられ、圧電振動子の一面側における前記凹部の外側部位を配線基板側に押し付けて圧電振動子の位置を固定するための環状突起を備えた弾性素材からなる押さえ部材と、
前記配線基板と対向して前記押さえ部材を覆い、その表面に前記液収容空間に連通し、試料液を前記液収容空間に注入するための注入口が設けられた液注入用カバーと、を備え、
前記圧電片に対する前記励振電極の面積の割合が60〜70%であり、前記引出電極の横幅の大きさを、励振電極の直径の大きさの0.3以下にしたことを特徴とする。なお、主振動の周波数が9MHz以下とは、具体的には9.5MHz以下をいう。
The present invention relates to a piezoelectric sensor that is electrically connected to a measuring instrument body in order to detect an object to be measured in a sample liquid.
A wiring board provided with a connection terminal part connected to the measuring instrument main body, and on one side thereof, an electrode electrically connected to the connection terminal part and a recess for constituting an airtight space;
A circular excitation electrode is provided on one surface side and the other surface side of the circular piezoelectric piece, and a strip-shaped extraction electrode is provided from the excitation electrode and electrically connected to the electrode. The excitation electrode on the side is provided on the wiring board so as to face the recess, and the ratio of the diameter of the piezoelectric piece to the thickness of the piezoelectric piece is 50 or less, and the frequency of the main vibration is 9 MHz or less. A piezoelectric vibrator;
A liquid storage space having a bottom surface on one surface side of the piezoelectric vibrator is formed, and is provided so as to surround the liquid storage space. The piezoelectric resonator is formed by pressing an outer portion of the concave portion on the one surface side of the piezoelectric vibrator toward the wiring board side. A holding member made of an elastic material having an annular protrusion for fixing the position of the vibrator;
A liquid injection cover that covers the pressing member facing the wiring substrate, communicates with the liquid storage space on the surface thereof, and is provided with an injection port for injecting a sample liquid into the liquid storage space. ,
The ratio of the area of the excitation electrode to the piezoelectric piece is 60 to 70%, and the width of the extraction electrode is set to 0.3 or less of the diameter of the excitation electrode. Note that the frequency of the main vibration being 9 MHz or less specifically means 9.5 MHz or less.

また前記圧電振動子は、圧電片の一面側に設けられた励振電極と、この励振電極の表面に形成され、感知対象物を吸着するための吸着層と、を備え、感知対象物の吸着により固有振動数が変わるように構成してもよい。   The piezoelectric vibrator includes an excitation electrode provided on one surface side of the piezoelectric piece, and an adsorption layer formed on the surface of the excitation electrode for adsorbing the sensing object. You may comprise so that a natural frequency may change.

また本発明の感知装置は、上述した圧電センサと、圧電振動子の固有振動数を検出し、その検出結果に基づいて試料液中の測定対象物を検知する測定器本体と、を備えたことを特徴とする。   Further, the sensing device of the present invention includes the above-described piezoelectric sensor, and a measuring instrument main body that detects the natural frequency of the piezoelectric vibrator and detects a measurement object in the sample liquid based on the detection result. It is characterized by.

本発明は、ランジュバン型の9MHz以下の圧電振動子を用いた圧電センサにあっては、小型化を図り且つ高い感度を確保しようとすると、辺比が50以下で且つ面積比が50%以上にしなければならない。しかし、このような構成にすると既述のように振動が励振電極から引出電極に漏れる割合が量が多くなる。そこで面積比は高々70%までとし且つ引出電極の横幅の大きさを、励振電極の直径の大きさの0.3以下とすることにより、振動子の主振動は励振電極から引出電極に漏れにくくなり、振動エネルギが圧電片の中央部に集中するようになる。このため圧電センサ間において押さえ部材の環状突起によって圧電片に加わる応力にばらつきがあっても振動モードのばらつきが抑えられ、後述する実施例に示すように圧電センサにおいてクリスタルインピーダンス(CI)値のばらつきが抑えられる。   According to the present invention, in a Langevin type piezoelectric sensor using a piezoelectric vibrator of 9 MHz or less, in order to reduce the size and secure high sensitivity, the side ratio is 50 or less and the area ratio is 50% or more. There must be. However, with such a configuration, the amount of vibration leaking from the excitation electrode to the extraction electrode increases as described above. Therefore, by setting the area ratio to 70% at most and making the width of the extraction electrode not more than 0.3 of the diameter of the excitation electrode, the main vibration of the vibrator hardly leaks from the excitation electrode to the extraction electrode. Thus, the vibration energy is concentrated at the center of the piezoelectric piece. For this reason, even if there is a variation in the stress applied to the piezoelectric piece due to the annular protrusion of the pressing member between the piezoelectric sensors, the variation in the vibration mode is suppressed, and the variation in the crystal impedance (CI) value in the piezoelectric sensor as shown in the embodiments described later. Is suppressed.

本発明に係る圧電センサの一例である水晶センサの実施の形態について、図1〜図6を用いて説明する。図1は本発明に係る圧電センサの一例である水晶センサ20を示した縦断面図であり、図2は圧電センサに設けられた圧電振動子である水晶振動子2の構造を示した平面図である。また図4は水晶センサ20の斜視図であり、図5は水晶センサ20の各部品の上面側を示した分解斜視図である。図1、図4及び図5に示すように水晶センサ20は封止部材3A、配線基板3、水晶振動子2、水晶押さえ部材4、液注入用カバー5の各部品がこの順に下から重ね合せることにより構成される。   An embodiment of a crystal sensor which is an example of a piezoelectric sensor according to the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view showing a quartz sensor 20 which is an example of a piezoelectric sensor according to the present invention, and FIG. 2 is a plan view showing the structure of a quartz vibrator 2 which is a piezoelectric vibrator provided in the piezoelectric sensor. It is. 4 is a perspective view of the crystal sensor 20, and FIG. 5 is an exploded perspective view showing the upper surface side of each component of the crystal sensor 20. As shown in FIG. As shown in FIGS. 1, 4 and 5, the quartz sensor 20 has the sealing member 3A, the wiring board 3, the quartz crystal resonator 2, the quartz pressing member 4, and the liquid injection cover 5 stacked in this order from the bottom. It is constituted by.

図1に示すように水晶振動子2は、圧電片である水晶片21、励振電極22,23及び引出電極24,25により構成されている。この水晶振動子2の構成について図2を参照しながら詳しく説明する。水晶センサ20は後段の後述する測定器本体において信号処理のやり易さから周波数が9MHz以下、この例では9.2MHzの水晶片21が用いられる。水晶片21の厚さtは水晶片21の周波数と対応関係にあるため、水晶片21の周波数が9.2MHzでは当該水晶片21の厚さtは182μmとなる。またこの水晶片21は円形状に形成されており、その直径Dは8.7mmとなっている。従ってこの水晶片21は水晶片21の厚さtに対する水晶21の直径Dの比、即ち、辺比D/tの値が47.802となっている。   As shown in FIG. 1, the crystal resonator 2 includes a crystal piece 21 that is a piezoelectric piece, excitation electrodes 22 and 23, and extraction electrodes 24 and 25. The configuration of the crystal resonator 2 will be described in detail with reference to FIG. The crystal sensor 20 uses a crystal piece 21 having a frequency of 9 MHz or less, in this example, 9.2 MHz, for ease of signal processing in a measuring instrument body, which will be described later. Since the thickness t of the crystal piece 21 has a corresponding relationship with the frequency of the crystal piece 21, the thickness t of the crystal piece 21 is 182 μm when the frequency of the crystal piece 21 is 9.2 MHz. The crystal piece 21 is formed in a circular shape, and its diameter D is 8.7 mm. Therefore, the crystal piece 21 has a ratio of the diameter D of the crystal 21 to the thickness t of the crystal piece 21, that is, the value of the side ratio D / t is 47.802.

また水晶片21の一面側及び他面側には、当該水晶片21よりも小径の直径dが7.0mmの円形状に形成された一方の励振電極22及び他方の励振電極23が夫々貼着されており、水晶片21の面積に対する励振電極22,23の面積の割合を65.7%としている。このように面積比を65.7%とすることで高い測定精度を確保すると共に、後述するように水晶片21において環状突起41が押圧する面を確保している。ここで面積比を70%以上とすると、水晶片21の一面側において励振電極22の形成エリアに環状突起41が接近あるいは接触し、これにより不要振動が生じて水晶センサ20間においてCI値にばらつきが生じてしまうため、面積比は60〜70%にすることが好ましい。   Further, one excitation electrode 22 and the other excitation electrode 23 formed in a circular shape having a diameter d smaller than that of the crystal piece 21 of 7.0 mm are attached to one side and the other side of the crystal piece 21, respectively. The ratio of the area of the excitation electrodes 22 and 23 to the area of the crystal piece 21 is 65.7%. In this way, by setting the area ratio to 65.7%, high measurement accuracy is secured, and a surface on which the annular protrusion 41 is pressed in the crystal piece 21 is secured as will be described later. Here, when the area ratio is 70% or more, the annular protrusion 41 approaches or comes into contact with the formation area of the excitation electrode 22 on one surface side of the crystal piece 21, thereby causing unnecessary vibrations and variations in the CI values between the crystal sensors 20. Therefore, the area ratio is preferably 60 to 70%.

この実施の形態では、ランジュバン型の9.2MHzの水晶振動子2を用いた水晶センサ20において、小型化を図り且つ高い感度を確保するために、上述のように水晶片21の厚さtに対する水晶21の直径Dの比を47.802とし、更に水晶片21の面積に対する励振電極22,23の面積の割合を65.7%にしている。そしてこのように設定された水晶片21に引出電極24,25が形成されることになる。   In this embodiment, in the quartz sensor 20 using the Langevin type 9.2 MHz quartz crystal resonator 2, in order to reduce the size and ensure high sensitivity, the thickness t of the quartz piece 21 as described above is secured. The ratio of the diameter D of the crystal 21 is 47.802, and the ratio of the area of the excitation electrodes 22 and 23 to the area of the crystal piece 21 is 65.7%. Then, the extraction electrodes 24 and 25 are formed on the crystal piece 21 set in this way.

前記水晶片21の一面側には、帯状の一方の引出電極24の一端側が前記一方の励振電極22に接続されて形成され、この引出電極24は、水晶片21の端面に沿って屈曲され、水晶片21の他面側に回し込まれている。さらに水晶片21の他面側には、帯状の他方の引出電極25の一端側が前記他方の励振電極22に先の一方の引出電極24と同様のレイアウトで接続されて形成され、水晶片21の両面において、励振電極22(23)及び引出電極24(25)のレイアウトが同じになっている。この引出電極24,25の横幅rは1.5mmである。この引出電極24,25の横幅rは、励振電極22,23の直径dに基づいて決定され、具体的には直径dが決まった励振電極22,23において、当該励振電極22,23の直径dの大きさに対する引出電極24,25の横幅rの大きさが0.3以下となるように引出電極24,25の横幅rが決定される。この引出電極24,25の横幅rの下限値は、当該引出電極24,25において電気的導通が保たれる程度の大きさであればよい。前記励振電極22,23及び引出電極24,25の厚みWは例えば2000Åであり、電極材料としては、例えば金(Au)が用いられている。   One end side of one strip-shaped extraction electrode 24 is connected to the one excitation electrode 22 on one surface side of the crystal piece 21, and the extraction electrode 24 is bent along the end surface of the crystal piece 21, The crystal piece 21 is turned to the other surface side. Further, on the other surface side of the crystal piece 21, one end side of the other strip-like extraction electrode 25 is formed by being connected to the other excitation electrode 22 in the same layout as the one extraction electrode 24. The layout of the excitation electrode 22 (23) and the extraction electrode 24 (25) is the same on both sides. The lateral width r of the extraction electrodes 24 and 25 is 1.5 mm. The lateral width r of the extraction electrodes 24 and 25 is determined based on the diameter d of the excitation electrodes 22 and 23. Specifically, in the excitation electrodes 22 and 23 in which the diameter d is determined, the diameter d of the excitation electrodes 22 and 23 is determined. The lateral width r of the extraction electrodes 24 and 25 is determined so that the size of the lateral width r of the extraction electrodes 24 and 25 is 0.3 or less. The lower limit value of the lateral width r of the extraction electrodes 24 and 25 only needs to be large enough to maintain electrical continuity in the extraction electrodes 24 and 25. The excitation electrodes 22 and 23 and the extraction electrodes 24 and 25 have a thickness W of, for example, 2000 mm, and the electrode material is, for example, gold (Au).

本実施の形態では水晶センサ20に用いられる水晶振動子2を上述のような構成にすることで次のような特性が得られる。図3(a)に示すように水晶振動子2の主振動は励振電極22,23から引出電極24,25に漏れにくくなり、振動エネルギが水晶片21の中央部に集中するようになる。一方、従来の水晶センサに用いられている水晶振動子10は、引出電極の線幅が上述した水晶振動子2の引出電極24,25の線幅よりも太いため、図3(b)に示すように主振動である厚みすべりモードの振動エネルギが十分に水晶片12の中央部に集中せず、水晶片12の端部にまで達する。つまり引出電極24,25の線幅を細くすることによって、水晶片21の中央から端部への振動の漏れ量が少なくなることになる。   In the present embodiment, the following characteristics can be obtained by configuring the crystal resonator 2 used in the crystal sensor 20 as described above. As shown in FIG. 3A, the main vibration of the crystal resonator 2 is less likely to leak from the excitation electrodes 22 and 23 to the extraction electrodes 24 and 25, and the vibration energy is concentrated at the center of the crystal piece 21. On the other hand, the crystal resonator 10 used in the conventional crystal sensor is shown in FIG. 3B because the line width of the extraction electrode is larger than the line width of the extraction electrodes 24 and 25 of the crystal resonator 2 described above. Thus, the vibration energy of the thickness-shear mode that is the main vibration does not sufficiently concentrate on the center portion of the crystal piece 12 and reaches the end portion of the crystal piece 12. That is, by reducing the line width of the extraction electrodes 24 and 25, the amount of vibration leakage from the center to the end of the crystal piece 21 is reduced.

また、後述するように励振電極22は、試料液が供給される液収容空間45に面して設けられるため、当該励振電極22上には抗体がその表面に付着した図示しない吸着層が設けられる。この抗体は、測定対象物である抗原例えばダイオキシンと抗体抗原反応によって選択的に吸着するようになっており、吸着層にその測定対象物が吸着されると、測定対象物の吸着量に応じて水晶片21の周波数が変化する。   As will be described later, since the excitation electrode 22 is provided facing the liquid storage space 45 to which the sample liquid is supplied, an adsorption layer (not shown) in which an antibody adheres to the surface is provided on the excitation electrode 22. . This antibody is selectively adsorbed by an antigen-antigen reaction with an antigen that is a measurement object, for example, dioxin. When the measurement object is adsorbed to the adsorption layer, the antibody depends on the amount of adsorption of the measurement object. The frequency of the crystal piece 21 changes.

次に配線基板3について説明する。図5に示すようにこの配線基板3は例えばプリント基板により構成され、その表面の前端側から後端側に向けて電極31、電極32が間隔をおいて設けられている、電極31,32の間にはこれら電極31,32と間隔をおいて、配線基板3の厚さ歩行に穿孔された貫通孔33が形成されている。この貫通孔33は、後述するように水晶振動子2の裏面側の励振電極23が臨む気密空間をなす凹部を構成するものであり、その口径は、励振電極23が収まる大きさに形成されている。   Next, the wiring board 3 will be described. As shown in FIG. 5, the wiring board 3 is composed of, for example, a printed circuit board, and electrodes 31 and 32 are provided at intervals from the front end side to the rear end side of the surface. A through-hole 33 is formed between the electrodes 31 and 32 so as to have a thickness walk of the wiring board 3. As will be described later, the through-hole 33 constitutes a recess that forms an airtight space where the excitation electrode 23 on the back surface side of the crystal resonator 2 faces, and the diameter of the through-hole 33 is formed so as to accommodate the excitation electrode 23. Yes.

また電極32が形成されている箇所よりも後端側寄りには、2本の並行するライン状の導電路パターンが、夫々接続端子部34,35として形成されている。一方の接続端子部34はパターン34aを介して電極31と電気的に接続されており、他方の接続端子部35はパターン35aを介して電極32と電気的に接続されている。なお、図1においては図示の便宜上基板3の各電極及びパターンは省略している。   Further, two parallel line-shaped conductive path patterns are formed as connection terminal portions 34 and 35, respectively, closer to the rear end side than the portion where the electrode 32 is formed. One connection terminal portion 34 is electrically connected to the electrode 31 via the pattern 34a, and the other connection terminal portion 35 is electrically connected to the electrode 32 via the pattern 35a. In FIG. 1, for convenience of illustration, each electrode and pattern of the substrate 3 are omitted.

図5中の36は例えばレジストを用いたフォトリソグラフィにより形成された堰であり、水晶振動子2の外形に沿って形成されている。前記堰36は、水晶振動子2の位置合わせをする役割を有し、この堰36に囲まれる領域に水晶振動子2が載置される。図5中の37a,37b,37cは係合孔であり、配線基板3の厚さ方向に穿孔されている。これら係合孔37a,37b,37cは、カバー5の下面に設けられた係合突起51a,51b,51cに夫々係合する。また図5中の38a,38b,38cは配線基板3の周縁に形成された切欠き部である。またカバー5の下面の周縁部には内側に屈曲した爪部52a,52b,52cが設けられており、切欠き部38a,38b,38cは、これら爪部52a,52b,52cに夫々係合する。   Reference numeral 36 in FIG. 5 denotes a weir formed by photolithography using a resist, for example, and is formed along the outer shape of the crystal unit 2. The weir 36 serves to align the crystal resonator 2, and the crystal resonator 2 is placed in a region surrounded by the weir 36. In FIG. 5, 37 a, 37 b, 37 c are engagement holes, which are drilled in the thickness direction of the wiring board 3. These engagement holes 37a, 37b, and 37c are engaged with engagement protrusions 51a, 51b, and 51c provided on the lower surface of the cover 5, respectively. Further, reference numerals 38 a, 38 b, and 38 c in FIG. 5 are notches formed on the peripheral edge of the wiring board 3. Further, claw portions 52a, 52b, and 52c bent inward are provided on the peripheral edge portion of the lower surface of the cover 5, and the notches 38a, 38b, and 38c are engaged with the claw portions 52a, 52b, and 52c, respectively. .

前記封止部材3Aは、フィルム状の部材であり前記貫通孔33と共に気密空間をなす凹部を構成する。   The sealing member 3 </ b> A is a film-like member and constitutes a concave portion that forms an airtight space together with the through-hole 33.

続いて水晶押さえ部材4について説明する。水晶押さえ部材4は、例えばシリコンゴムにより形成されており、配線基板3に対応した形状に構成されている。具体的に説明すると、この水晶押さえ部材4は、図5に示すように切欠き部38a,38b,38cに夫々対応する矩形状の切欠き部41a,41b,41cを夫々備えた板状に形成されている。また、これら切欠き部41b,41cが形成された側を後方側とすると、切欠き部41aは水晶押さえ部材4の前方側の一縁の中央に形成されている。   Next, the crystal pressing member 4 will be described. The crystal pressing member 4 is made of, for example, silicon rubber, and has a shape corresponding to the wiring board 3. More specifically, the crystal pressing member 4 is formed in a plate shape having rectangular cutout portions 41a, 41b, and 41c respectively corresponding to the cutout portions 38a, 38b, and 38c as shown in FIG. Has been. Further, when the side where the notches 41 b and 41 c are formed is the rear side, the notch 41 a is formed at the center of one edge on the front side of the crystal pressing member 4.

図6は水晶押さえ部材4の下面側を示した斜視図であり、この図も参照しながら押さえ部材4の構成を説明する。図1及び図6に示すように水晶押さえ部材4の下面には水晶振動子2を収容する凹部42が形成されている。凹部42の天井面部(図6の向きで説明すれば底面部)の中央には、配線基板3の上面における前記貫通孔33よりも一回り大きい環状突起43が設けられている。この環状突起43は、水晶振動子2を前記貫通孔33を囲む領域に押し付けて、水晶振動子2の位置を固定する役割を有する。   FIG. 6 is a perspective view showing the lower surface side of the crystal pressing member 4, and the configuration of the pressing member 4 will be described with reference to this drawing. As shown in FIGS. 1 and 6, a recess 42 for accommodating the crystal resonator 2 is formed on the lower surface of the crystal pressing member 4. An annular protrusion 43 that is slightly larger than the through-hole 33 on the upper surface of the wiring board 3 is provided at the center of the ceiling surface portion (bottom surface portion in the case of description in the direction of FIG. 6) of the recess 42. The annular protrusion 43 has a role of pressing the crystal unit 2 against the region surrounding the through-hole 33 and fixing the position of the crystal unit 2.

また図1、図5及び図6に示すように水晶押さえ部材4の表面側には、開口部44が形成されており、この開口部44は、環状突起43に囲まれる空間に連通している。   As shown in FIGS. 1, 5, and 6, an opening 44 is formed on the surface side of the crystal pressing member 4, and the opening 44 communicates with a space surrounded by the annular protrusion 43. .

前記開口部44の周面44a及び環状突起43の内周面43aは、内側下方に向かって傾斜している。つまり開口部44及び環状突起43の径は下方に向かうにつれて小さくなっている。また環状突起43の先端部47は水晶片20の周縁部を押圧している。周面43a、44a及び水晶振動子2により囲まれる領域は、試料液を収納する液収容空間45を構成している。   The peripheral surface 44a of the opening 44 and the inner peripheral surface 43a of the annular protrusion 43 are inclined inward and downward. That is, the diameters of the opening 44 and the annular protrusion 43 become smaller as it goes downward. The tip 47 of the annular protrusion 43 presses the peripheral edge of the crystal piece 20. A region surrounded by the peripheral surfaces 43a and 44a and the crystal resonator 2 constitutes a liquid storage space 45 for storing the sample liquid.

また図5中の46a,46bは押さえ部材4を厚さ方向に貫通するように穿孔された係合孔であり、前記配線基板3の係合孔37a,37b及び液注入用カバー5の係合突起51a,51bに対応するように形成されている。図5中の46cは後方側の一縁の中央に形成された弧状の切欠き部であり、配線基板3の係合孔37c及び液注入用カバー5の係合突起51cに対応している。   Further, 46a and 46b in FIG. 5 are engagement holes that are perforated so as to penetrate the pressing member 4 in the thickness direction, and the engagement holes 37a and 37b of the wiring board 3 and the liquid injection cover 5 are engaged. It is formed so as to correspond to the protrusions 51a and 51b. In FIG. 5, 46 c is an arc-shaped cutout formed at the center of the rear edge, and corresponds to the engagement hole 37 c of the wiring board 3 and the engagement protrusion 51 c of the liquid injection cover 5.

次に液注入用カバー5の構成について説明する、カバー5は、例えばポリカーボネイトにより構成され、その上面の前側、後側には試料液の注入口53、確認口54が夫々形成されている。図1に示すようにカバー5の下面にはカバー5の長さ方向に沿って溝である注入路55が形成されており、この注入路55の一端、他端は、注入口53、確認口54に夫々接続されている。また注入路55は開口部44に面するように設けられており、注入口53に注入した試料液は注入路55を介して液収容空間45に供給されるようになっている。また所定量の試料液が水晶センサ20に供給されると、確認口54にその試料液の液面が現れ、このセンサ20への液の供給の有無を確認できるようになっている。   Next, the configuration of the liquid injection cover 5 will be described. The cover 5 is made of, for example, polycarbonate, and a sample liquid injection port 53 and a confirmation port 54 are formed on the front side and the back side of the upper surface, respectively. As shown in FIG. 1, an injection path 55 that is a groove is formed in the lower surface of the cover 5 along the length direction of the cover 5, and one end and the other end of the injection path 55 are an injection port 53 and a confirmation port. 54, respectively. The injection path 55 is provided so as to face the opening 44, and the sample liquid injected into the injection port 53 is supplied to the liquid storage space 45 through the injection path 55. When a predetermined amount of sample liquid is supplied to the crystal sensor 20, the liquid level of the sample liquid appears at the confirmation port 54, and it is possible to check whether or not the liquid is supplied to the sensor 20.

カバー5の下面には注入路55を囲む環状の堰56が設けられており、この堰56は水晶押さえ部材4にめり込んで、注入口51に注入された試料液が液注入用カバー5と押さえ部材4との間から漏れることを防ぐ役割を有する。   An annular weir 56 surrounding the injection path 55 is provided on the lower surface of the cover 5, and the weir 56 is recessed into the crystal pressing member 4 so that the sample liquid injected into the injection port 51 is pressed against the liquid injection cover 5. It has a role of preventing leakage from between the members 4.

上記の水晶センサ20は次のようにして組み立てられる。先ず封止部材3Aにより配線基板3の貫通孔33を塞ぎ、基板3に凹部を形成する。続いて水晶振動子2側の引出電極24,25が配線基板3側の電極31,32に重なり且つ水晶振動子2の裏面側の励振電極23が前記凹部に重なるように、水晶振動子2を配線基板3に載置する。   The crystal sensor 20 is assembled as follows. First, the through hole 33 of the wiring board 3 is closed by the sealing member 3 </ b> A, and a recess is formed in the board 3. Subsequently, the crystal resonator 2 is placed so that the extraction electrodes 24 and 25 on the crystal resonator 2 side overlap with the electrodes 31 and 32 on the wiring substrate 3 side, and the excitation electrode 23 on the back surface side of the crystal resonator 2 overlaps the concave portion. Placed on the wiring board 3.

次に液注入用カバー5の係合突起51a〜51cを水晶押さえ部材4の係合孔46a,46b及び切欠き部46cに係合させ、液注入用カバー5と押さえ部材4とを重ね合わせた後、液注入用カバー5の爪部52a,52b,52cと配線基板3の切欠き部38a,38b,38cとを嵌合させるように被わせて配線基板3に向かって押圧する。これにより液注入用カバー5の各爪部52a〜52cが配線基板3の外側へと撓み、さらに各爪部52a〜52cが各切欠き部38a〜38cを介して配線基板3の周縁部の下面に回り込むと同時に各爪部52a〜52cが、内方側への復元力により元通りの形状になり、配線基板3が各爪部52a〜52cに挟み込まれて互いに係止されると同時に、配線基板3とカバー5とに挟まれた押さえ部材4がこれらに押圧される。   Next, the engagement protrusions 51a to 51c of the liquid injection cover 5 are engaged with the engagement holes 46a and 46b and the notch 46c of the crystal pressing member 4, and the liquid injection cover 5 and the pressing member 4 are overlapped. Thereafter, the claws 52 a, 52 b, 52 c of the liquid injection cover 5 and the notches 38 a, 38 b, 38 c of the wiring board 3 are put on each other so as to be fitted and pressed toward the wiring board 3. Thereby, each claw part 52a-52c of the cover 5 for liquid injection is bent to the outer side of the wiring board 3, and also each claw part 52a-52c is the lower surface of the peripheral part of the wiring board 3 via each notch part 38a-38c. At the same time, the claw portions 52a to 52c are restored to their original shape by the inward restoring force, and the wiring board 3 is sandwiched between the claw portions 52a to 52c and locked together. The pressing member 4 sandwiched between the substrate 3 and the cover 5 is pressed against them.

押圧された押さえ部材4の弾性により、環状突起43が、水晶振動子2の表面における前記凹部の外側部位を配線基板3側に押し付けることにより、水晶振動子2の位置が固定されると共に、その周縁部が配線基板3と密着して、貫通孔33と封止部材3Aとにより構成される凹部が気密空間となり、水晶振動子2の裏面側の励振電極23がこの気密空間に臨むと共に、水晶振動子2側の引出電極24,25が、配線基板3側の電極31,32に密着し、水晶振動子2と配線基板3とが電気的に接続される。   Due to the elasticity of the pressed pressing member 4, the annular protrusion 43 presses the outer portion of the recess on the surface of the crystal resonator 2 toward the wiring substrate 3, thereby fixing the position of the crystal resonator 2. The peripheral edge is in close contact with the wiring board 3, and the concave portion formed by the through hole 33 and the sealing member 3 </ b> A becomes an airtight space, and the excitation electrode 23 on the back side of the crystal unit 2 faces this airtight space, and the crystal The lead electrodes 24 and 25 on the vibrator 2 side are in close contact with the electrodes 31 and 32 on the wiring board 3 side, and the crystal vibrator 2 and the wiring board 3 are electrically connected.

本実施の形態における水晶センサ20が使用される際には、作業者が例えば注入器により液注入用カバー5の注入口53に試料液を注入する。注入口53に注入された試料液は、開口部44及び環状突起43により構成される試料液の液収容空間45に供給され、水晶振動子2の表面側の励振電極22が当該試料液に接し、励振電極22の表面に形成されている吸着層に試料液中の抗体が抗原抗体反応によって吸着する。この吸着量に応じて水晶振動子2の固有振動数が低下する。これによって抗原が吸着層に吸着する前の水晶振動子2の固有振動数と抗原が吸着層に吸着した後の水晶振動子2の固有振動数との差、即ち変化量が求まる。   When the crystal sensor 20 in the present embodiment is used, an operator injects the sample liquid into the injection port 53 of the liquid injection cover 5 by using, for example, an injector. The sample liquid injected into the injection port 53 is supplied to the liquid storage space 45 of the sample liquid constituted by the opening 44 and the annular protrusion 43, and the excitation electrode 22 on the surface side of the crystal resonator 2 is in contact with the sample liquid. The antibody in the sample solution is adsorbed by the antigen-antibody reaction on the adsorption layer formed on the surface of the excitation electrode 22. The natural frequency of the crystal unit 2 is reduced according to the amount of adsorption. As a result, the difference between the natural frequency of the crystal unit 2 before the antigen is adsorbed on the adsorption layer and the natural frequency of the crystal unit 2 after the antigen is adsorbed on the adsorption layer, that is, the amount of change is obtained.

本発明は、ランジュバン型の9MHz以下の水晶振動子2を用いた水晶センサ20にあっては、小型化を図り且つ高い感度を確保しようとすると、辺比が50以下で且つ面積比が50%以上にしなければならない。しかし、このような構成にすると図3(b)に示すように振動が励振電極22,23から引出電極24,25に漏れる割合が多くなる。そこで面積比は高々70%までとし且つ引出電極24,25の横幅rの大きさを、励振電極22,23の直径dの大きさの0.3以下とすることにより、図3(a)に示すように振動子の主振動は励振電極22,23から引出電極24,25に漏れにくくなり、振動エネルギが水晶片21の中央部に集中するようになる。このため水晶センサ20間において押さえ部材4の環状突起43によって水晶片21に加わる応力にばらつきがあっても振動モードのばらつきが抑えられ、後述する実施例に示すように水晶センサ20においてクリスタルインピーダンス(CI)値のばらつきが抑えられる。   According to the present invention, in a crystal sensor 20 using a crystal resonator 2 of Langevin type of 9 MHz or less, in order to reduce the size and secure high sensitivity, the side ratio is 50 or less and the area ratio is 50%. That must be done. However, with such a configuration, as shown in FIG. 3B, the ratio of vibration leaking from the excitation electrodes 22 and 23 to the extraction electrodes 24 and 25 increases. Therefore, the area ratio is set to 70% at most and the size of the lateral width r of the extraction electrodes 24 and 25 is set to 0.3 or less of the size of the diameter d of the excitation electrodes 22 and 23, so that FIG. As shown, the main vibration of the vibrator is less likely to leak from the excitation electrodes 22 and 23 to the extraction electrodes 24 and 25, and the vibration energy is concentrated at the center of the crystal piece 21. For this reason, even if there is a variation in the stress applied to the crystal piece 21 by the annular protrusion 43 of the holding member 4 between the quartz sensors 20, the variation in the vibration mode is suppressed. As shown in the embodiments described later, the crystal impedance ( CI) Variation in value is suppressed.

なお、上記の水晶センサ20において水晶押さえ部材4はゴム以外の弾性体によって構成されてもよい。   In the crystal sensor 20, the crystal pressing member 4 may be formed of an elastic body other than rubber.

以上において、本発明は例えば水晶センサのメーカにおいて水晶振動子の電極の表面に抗体を付着させるときに抗体を含む溶液の抗体濃度と水晶振動子の振動数の変化量(抗体の付着量)との関係を調べる場合があるが、このような検証を行うときの水晶センサにも適用できる。従って、特許請求の範囲の「試料液中の測定対象物を検知する」とは、水晶振動子の電極表面に抗体を付着させて水晶振動子の振動数の変化を測定する行為も含まれる。   In the above, the present invention relates to, for example, a crystal sensor maker in which an antibody concentration of a solution containing an antibody and an amount of change in the vibration frequency of the crystal resonator (antibody adhesion amount) However, the present invention can also be applied to a quartz sensor for performing such verification. Accordingly, “detecting a measurement object in a sample solution” in the claims includes an act of measuring a change in the vibration frequency of the crystal resonator by attaching an antibody to the electrode surface of the crystal resonator.

上述した水晶センサ20は、例えばブロック図である図7で示されるような構成を持つ測定器本体6に接続されることで感知装置の検知部として使用される。図7中の62は、水晶センサ20の水晶片21を発振させる発振回路、63は基準周波数信号を発生する基準クロック発生部、64は例えばヘテロダイン検波器からなる周波数差検出手段であり、発振回路62からの周波数信号及び基準クロック発生部63からのクロック信号に基づいて両者の周波数差に対応する周波数信号を取り出す。65は増幅部、66は増幅部65からの出力信号の周波数をカウントするカウンタ、67はデータ処理部である。   The above-described quartz sensor 20 is used as a detection unit of the sensing device by being connected to the measuring instrument body 6 having a configuration as shown in FIG. 7 which is a block diagram, for example. In FIG. 7, 62 is an oscillation circuit for oscillating the crystal piece 21 of the crystal sensor 20, 63 is a reference clock generator for generating a reference frequency signal, and 64 is a frequency difference detecting means comprising a heterodyne detector, for example. Based on the frequency signal from 62 and the clock signal from the reference clock generator 63, a frequency signal corresponding to the frequency difference between the two is extracted. 65 is an amplifying unit, 66 is a counter that counts the frequency of an output signal from the amplifying unit 65, and 67 is a data processing unit.

水晶センサ20の周波数は9.2MHzであるため、基準クロック発生部63の周波数としては例えば10MHzが選ばれる。測定対象物例えばダイオキシンが水晶センサ20の水晶振動子2に設けられた上述の吸着層に吸着していないときには、周波数差検出手段64では、水晶センサ側からの周波数と基準クロックの周波数との差である1MHzの周波数信号(周波数差信号)が出力されるが、試料溶液に含まれる測定対象物が水晶振動子2の吸着層に吸着すると、水晶振動子2の固有振動数が変化し、このため周波数差信号も変化するので、カウンタ66におけるカウント値が変化し、こうして測定対象物の濃度あるいはその物質の有無を検知できる。   Since the frequency of the quartz sensor 20 is 9.2 MHz, for example, 10 MHz is selected as the frequency of the reference clock generator 63. When the object to be measured, for example, dioxin is not adsorbed to the above-described adsorption layer provided on the quartz crystal resonator 2 of the quartz sensor 20, the frequency difference detecting means 64 determines the difference between the frequency from the quartz sensor side and the frequency of the reference clock. 1 MHz frequency signal (frequency difference signal) is output, but when the measurement object contained in the sample solution is adsorbed to the adsorption layer of the crystal resonator 2, the natural frequency of the crystal resonator 2 changes, and this Therefore, since the frequency difference signal also changes, the count value in the counter 66 changes, and thus the concentration of the measurement object or the presence or absence of the substance can be detected.

本発明の効果を確認するために行った実験について説明する。   An experiment conducted for confirming the effect of the present invention will be described.

(実施例)
既述の図1に示す水晶センサ20の構造において、水晶片21の直径Dを182μm、厚みtを8.7mmとし、励振電極22,23の直径dを7.0mmとし、引出電極24,25の横幅rを1.5mmとし、励振電極22,23及び引出電極24,25の厚さを2000Åとして、この水晶センサ20を1235個作成した。これらの水晶センサ20について主振動のクリスタルインピーダンス(CI)値を測定した。この結果を図8に示す。図8の縦軸は水晶センサ20の数であり、横軸はCI値である。
(比較例)
引出電極24,25の横幅rを2.5mmとした他は実施例と同様にして水晶センサ20を20個作成した。これら水晶センサ2について主振動のクリスタルインピーダンス(CI)値を測定した。この結果を図9に示す。図9の縦軸は水晶センサ20の数であり、横軸はCI値である。
(結果及び考察)
図9に示すように比較例では、主振動である厚みすべりモードの振動エネルギが十分に水晶片21の中央部に集中せず、水晶片21の端部にまで達するため、振動モードにばらつき生じて水晶センサ20間においてクリスタルインピーダンス(CI)値にばらつきが生じていることが分かる。具体的に述べると、CI値が7Ωの水晶センサ20は85個、CI値が9Ωの水晶センサ20は25個、CI値が11Ωの水晶センサ20は10個であり、CI値が11Ω〜21Ωでは十数個の水晶センサ20が存在している。
(Example)
In the structure of the crystal sensor 20 shown in FIG. 1 described above, the diameter D of the crystal piece 21 is 182 μm, the thickness t is 8.7 mm, the diameter d of the excitation electrodes 22 and 23 is 7.0 mm, and the extraction electrodes 24 and 25 The lateral width r was 1.5 mm, the thicknesses of the excitation electrodes 22 and 23 and the extraction electrodes 24 and 25 were 2000 mm, and 1235 crystal sensors 20 were produced. The crystal impedance (CI) value of the main vibration of these crystal sensors 20 was measured. The result is shown in FIG. The vertical axis in FIG. 8 is the number of crystal sensors 20, and the horizontal axis is the CI value.
(Comparative example)
Twenty quartz sensors 20 were produced in the same manner as in the example except that the lateral width r of the extraction electrodes 24 and 25 was 2.5 mm. With respect to these crystal sensors 2, crystal impedance (CI) values of main vibrations were measured. The result is shown in FIG. The vertical axis in FIG. 9 is the number of crystal sensors 20, and the horizontal axis is the CI value.
(Results and discussion)
As shown in FIG. 9, in the comparative example, the vibration energy in the thickness-sliding mode, which is the main vibration, does not sufficiently concentrate on the center portion of the crystal piece 21 and reaches the end portion of the crystal piece 21. It can be seen that the crystal impedance (CI) value varies between the quartz sensors 20. More specifically, there are 85 crystal sensors 20 with a CI value of 7Ω, 25 crystal sensors 20 with a CI value of 9Ω, and 10 crystal sensors 20 with a CI value of 11Ω, and a CI value of 11Ω to 21Ω. Then, there are dozens of quartz sensors 20.

一方、図8に示すように実施例では、引出電極24,25の横幅rの大きさを、励振電極22,23の直径dの大きさの0.3以下とすることで、振動子2の主振動は励振電極22,23から引出電極24,25に漏れにくくなり、振動エネルギが水晶片21の中央部に集中し、振動モードのばらつきが抑えられ、水晶センサ20間においてCI値のばらつきが抑えられていることが分かる。具体的に述べると、CI値が5Ωの水晶センサ20は800個、CI値が7Ωの水晶センサ20は400個、CI値が9Ωの水晶センサ20は20個、CI値が11Ωの水晶センサ20は5個であり、CI値が12Ω〜21Ωでは殆ど水晶センサ20が存在していない。   On the other hand, as shown in FIG. 8, in the embodiment, the size of the lateral width r of the extraction electrodes 24, 25 is set to 0.3 or less of the size of the diameter d of the excitation electrodes 22, 23. The main vibration is less likely to leak from the excitation electrodes 22 and 23 to the extraction electrodes 24 and 25, and the vibration energy is concentrated at the center of the crystal piece 21 so that variations in vibration modes are suppressed, and variations in CI values between the crystal sensors 20 occur. You can see that it is suppressed. More specifically, 800 crystal sensors 20 with a CI value of 5Ω, 400 crystal sensors 20 with a CI value of 7Ω, 20 crystal sensors 20 with a CI value of 9Ω, and a crystal sensor 20 with a CI value of 11Ω. The crystal sensor 20 hardly exists when the CI value is 12Ω to 21Ω.

この実施例では、水晶片21の面積に対する励振電極22,23の面積の割合が65.7%であるが、励振電極22,23の直径dを7.3mmとして面積比を70%とした場合にも、上述のように水晶センサ20間においてCI値のばらつきが抑えられることを確認している。なお、励振電極22,23の直径dを7.4mmとして面積比を72%とした場合には、既述のように水晶片21の一面側において励振電極22の形成エリアに環状突起41が接近して不要振動が生じ、水晶センサ20間においてCI値のばらつきが生じた。   In this embodiment, the ratio of the area of the excitation electrodes 22 and 23 to the area of the crystal piece 21 is 65.7%, but the diameter d of the excitation electrodes 22 and 23 is 7.3 mm and the area ratio is 70%. In addition, as described above, it has been confirmed that the variation of the CI value among the crystal sensors 20 can be suppressed. When the diameter d of the excitation electrodes 22 and 23 is 7.4 mm and the area ratio is 72%, the annular protrusion 41 approaches the formation area of the excitation electrode 22 on one side of the crystal piece 21 as described above. As a result, unnecessary vibrations occurred, and CI values varied among the quartz sensors 20.

本発明の実施の形態に係る水晶センサの縦断側面図である。It is a vertical side view of the crystal sensor which concerns on embodiment of this invention. 本発明の実施の形態に係る水晶片の構造を示した平面図及び断面図である。It is the top view and sectional drawing which showed the structure of the crystal piece which concerns on embodiment of this invention. 水晶片の平面において、主振動である厚みすべりモードの振動エネルギの分布を示す説明図である。It is explanatory drawing which shows distribution of the vibration energy of the thickness shear mode which is the main vibration in the plane of a crystal piece. 前記水晶センサの斜視図である。It is a perspective view of the crystal sensor. 前記水晶センサの分解斜視図である。It is a disassembled perspective view of the crystal sensor. 前記水晶センサを構成する水晶押さえ部材の裏面側の斜視図である。It is a perspective view of the back surface side of the crystal pressing member which comprises the said crystal sensor. 前記水晶センサを含む感知装置のブロック図である。It is a block diagram of the sensing apparatus containing the said quartz sensor. 本発明の効果を確認するために行った実験結果を示す説明図である。It is explanatory drawing which shows the experimental result performed in order to confirm the effect of this invention. 本発明の効果を確認するために行った実験結果を示す説明図である。It is explanatory drawing which shows the experimental result performed in order to confirm the effect of this invention. 従来の水晶センサの要部を示す概略縦側面図である。It is a schematic vertical side view which shows the principal part of the conventional quartz sensor.

符号の説明Explanation of symbols

20 水晶センサ
2 水晶振動子
21 水晶片
22,23 励振電極
24,25 引出電極
3 配線基板
4 水晶押さえ部材
43 環状突起部
44 開口部
45 液収容空間
5 液注入用カバー
6 測定器本体
20 Crystal sensor 2 Crystal oscillator 21 Crystal piece 22, 23 Excitation electrode 24, 25 Extraction electrode 3 Wiring board 4 Crystal holding member 43 Annular projection 44 Opening 45 Liquid storage space 5 Liquid injection cover 6 Measuring instrument body

Claims (3)

試料液中の測定対象物を検知するために測定器本体に電気的に接続される圧電センサにおいて、
前記測定器本体に接続される接続端子部が設けられると共に、その一面側に、前記接続端子部に電気的に接続された電極及び気密空間を構成するための凹部が設けられた配線基板と、
円形状の圧電片の一面側及び他面側に円形状の励振電極と、当該励振電極から引き出され、前記電極に電気的に接続された帯状の引出電極と、が夫々設けられると共に、他面側の励振電極が前記凹部に臨むように当該凹部を塞いだ状態で配線基板に設けられ、前記圧電片の厚さに対する圧電片の直径の比が50以下、主振動の周波数が9MHz以下である圧電振動子と、
前記圧電振動子の一面側を底面とする液収容空間を形成すると共に、この液収容空間を囲むように設けられ、圧電振動子の一面側における前記凹部の外側部位を配線基板側に押し付けて圧電振動子の位置を固定するための環状突起を備えた弾性素材からなる押さえ部材と、
前記配線基板と対向して前記押さえ部材を覆い、その表面に前記液収容空間に連通し、試料液を前記液収容空間に注入するための注入口が設けられた液注入用カバーと、を備え、
前記圧電片に対する前記励振電極の面積の割合が60〜70%であり、前記引出電極の横幅の大きさを、励振電極の直径の大きさの0.3以下にしたことを特徴とする圧電センサ。
In the piezoelectric sensor that is electrically connected to the measuring instrument body to detect the measurement object in the sample liquid,
A wiring board provided with a connection terminal part connected to the measuring instrument main body, and on one side thereof, an electrode electrically connected to the connection terminal part and a recess for constituting an airtight space;
A circular excitation electrode is provided on one surface side and the other surface side of the circular piezoelectric piece, and a strip-shaped extraction electrode is provided from the excitation electrode and electrically connected to the electrode. The excitation electrode on the side is provided on the wiring board so as to face the recess, and the ratio of the diameter of the piezoelectric piece to the thickness of the piezoelectric piece is 50 or less, and the frequency of the main vibration is 9 MHz or less. A piezoelectric vibrator;
A liquid storage space having a bottom surface on one surface side of the piezoelectric vibrator is formed, and is provided so as to surround the liquid storage space. The piezoelectric resonator is formed by pressing an outer portion of the concave portion on the one surface side of the piezoelectric vibrator toward the wiring board side. A holding member made of an elastic material having an annular protrusion for fixing the position of the vibrator;
A liquid injection cover that covers the pressing member facing the wiring substrate, communicates with the liquid storage space on the surface thereof, and is provided with an injection port for injecting a sample liquid into the liquid storage space. ,
The ratio of the area of the excitation electrode to the piezoelectric piece is 60 to 70%, and the width of the extraction electrode is set to 0.3 or less of the diameter of the excitation electrode. .
前記圧電振動子は、圧電片の一面側に設けられた励振電極と、この励振電極の表面に形成され、感知対象物を吸着するための吸着層と、を備え、感知対象物の吸着により固有振動数が変わるものであることを特徴とする請求項1に記載の圧電センサ   The piezoelectric vibrator includes an excitation electrode provided on one surface side of the piezoelectric piece, and an adsorption layer formed on the surface of the excitation electrode for adsorbing the sensing object, and is inherent to the sensing object by adsorption. 2. The piezoelectric sensor according to claim 1, wherein the frequency changes. 請求項1または2に記載の圧電センサと、圧電振動子の固有振動数を検出し、その検出結果に基づいて試料液中の測定対象物を検知する測定器本体と、を備えたことを特徴とする感知装置。   The piezoelectric sensor according to claim 1, and a measuring device main body that detects a natural frequency of the piezoelectric vibrator and detects a measurement object in the sample liquid based on the detection result. Sensing device.
JP2007339864A 2007-12-28 2007-12-28 Piezoelectric sensor and sensing device Active JP5069094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007339864A JP5069094B2 (en) 2007-12-28 2007-12-28 Piezoelectric sensor and sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007339864A JP5069094B2 (en) 2007-12-28 2007-12-28 Piezoelectric sensor and sensing device

Publications (2)

Publication Number Publication Date
JP2009162528A true JP2009162528A (en) 2009-07-23
JP5069094B2 JP5069094B2 (en) 2012-11-07

Family

ID=40965332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007339864A Active JP5069094B2 (en) 2007-12-28 2007-12-28 Piezoelectric sensor and sensing device

Country Status (1)

Country Link
JP (1) JP5069094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082490A (en) * 2014-10-20 2016-05-16 シャロム電子株式会社 Sc-cut crystal oscillator and method of manufacturing the same, and piezoelectric sensor using sc-cut crystal oscillator and method of manufacturing the same

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721114A (en) * 1980-07-15 1982-02-03 Citizen Watch Co Ltd Electrode construction of quartz oscillator and its manufacture
JPH0712695A (en) * 1993-06-29 1995-01-17 Idec Izumi Corp Manufacture of quartz oscillator system biosensor and this biosensor
JPH09145583A (en) * 1995-11-14 1997-06-06 Dev Center For Biotechnol Piezoelectric sensor chip of cartridge-form
JPH11183479A (en) * 1997-10-16 1999-07-09 Fuji Electric Co Ltd Sensor for measuring solution and method for measuring solution component
JP2000275157A (en) * 1999-03-23 2000-10-06 Keiogijuku Particle sensor using alternate attraction film
JP2001153777A (en) * 1999-11-26 2001-06-08 Initium:Kk Quartz oscillator
JP2004047929A (en) * 2002-05-13 2004-02-12 Fujitsu Ltd Molecular contamination monitoring system, storing/carrying container and molecular contamination sensor
JP2004245613A (en) * 2003-02-12 2004-09-02 Japan Science & Technology Agency Flow cell type qcm device and specimen measuring method
JP2005156289A (en) * 2003-11-25 2005-06-16 Ulvac Japan Ltd Cell, oscillator, biosensor device equipped with these, and measuring method
JP2005308452A (en) * 2004-04-19 2005-11-04 Ngk Insulators Ltd Mass detection element
WO2006027945A1 (en) * 2004-09-10 2006-03-16 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid and device for detecting substance in liquid employing same
JP2006078179A (en) * 2002-09-12 2006-03-23 Furukawa Techno Research:Kk Micro-mass sensor and holding mechanism of its oscillator
JP2006194866A (en) * 2004-12-15 2006-07-27 Nippon Dempa Kogyo Co Ltd Crystal sensor and sensing device
JP2007101225A (en) * 2005-09-30 2007-04-19 Ulvac Japan Ltd Sensor and measuring instrument equipped with it
JP2007163369A (en) * 2005-12-15 2007-06-28 Sunrise Kogyo Kk Biosensor, measuring/analytical system, and examination method therefor
JP2007178348A (en) * 2005-12-28 2007-07-12 Nippon Dempa Kogyo Co Ltd Sensing device
JP2007199048A (en) * 2005-12-28 2007-08-09 Nippon Dempa Kogyo Co Ltd Detecting sensor and concentration measuring device
WO2007112897A2 (en) * 2006-03-31 2007-10-11 Andreas Hettich Gmbh & Co. Kg Apparatus comprising a measurement chamber and a resonator, which can be integrated in the measurement chamber via a quick-action closure, for the liquid sensor system
JP2007298479A (en) * 2006-05-08 2007-11-15 Meidensha Corp Qcm sensor device
JP2008058086A (en) * 2006-08-30 2008-03-13 Nippon Dempa Kogyo Co Ltd Quartz sensor and sensing device

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721114A (en) * 1980-07-15 1982-02-03 Citizen Watch Co Ltd Electrode construction of quartz oscillator and its manufacture
JPH0712695A (en) * 1993-06-29 1995-01-17 Idec Izumi Corp Manufacture of quartz oscillator system biosensor and this biosensor
JPH09145583A (en) * 1995-11-14 1997-06-06 Dev Center For Biotechnol Piezoelectric sensor chip of cartridge-form
JPH11183479A (en) * 1997-10-16 1999-07-09 Fuji Electric Co Ltd Sensor for measuring solution and method for measuring solution component
JP2000275157A (en) * 1999-03-23 2000-10-06 Keiogijuku Particle sensor using alternate attraction film
JP2001153777A (en) * 1999-11-26 2001-06-08 Initium:Kk Quartz oscillator
JP2004047929A (en) * 2002-05-13 2004-02-12 Fujitsu Ltd Molecular contamination monitoring system, storing/carrying container and molecular contamination sensor
JP2006078179A (en) * 2002-09-12 2006-03-23 Furukawa Techno Research:Kk Micro-mass sensor and holding mechanism of its oscillator
JP2004245613A (en) * 2003-02-12 2004-09-02 Japan Science & Technology Agency Flow cell type qcm device and specimen measuring method
JP2005156289A (en) * 2003-11-25 2005-06-16 Ulvac Japan Ltd Cell, oscillator, biosensor device equipped with these, and measuring method
JP2005308452A (en) * 2004-04-19 2005-11-04 Ngk Insulators Ltd Mass detection element
WO2006027945A1 (en) * 2004-09-10 2006-03-16 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid and device for detecting substance in liquid employing same
JP2006194866A (en) * 2004-12-15 2006-07-27 Nippon Dempa Kogyo Co Ltd Crystal sensor and sensing device
JP2007101225A (en) * 2005-09-30 2007-04-19 Ulvac Japan Ltd Sensor and measuring instrument equipped with it
JP2007163369A (en) * 2005-12-15 2007-06-28 Sunrise Kogyo Kk Biosensor, measuring/analytical system, and examination method therefor
JP2007178348A (en) * 2005-12-28 2007-07-12 Nippon Dempa Kogyo Co Ltd Sensing device
JP2007199048A (en) * 2005-12-28 2007-08-09 Nippon Dempa Kogyo Co Ltd Detecting sensor and concentration measuring device
WO2007112897A2 (en) * 2006-03-31 2007-10-11 Andreas Hettich Gmbh & Co. Kg Apparatus comprising a measurement chamber and a resonator, which can be integrated in the measurement chamber via a quick-action closure, for the liquid sensor system
JP2007298479A (en) * 2006-05-08 2007-11-15 Meidensha Corp Qcm sensor device
JP2008058086A (en) * 2006-08-30 2008-03-13 Nippon Dempa Kogyo Co Ltd Quartz sensor and sensing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082490A (en) * 2014-10-20 2016-05-16 シャロム電子株式会社 Sc-cut crystal oscillator and method of manufacturing the same, and piezoelectric sensor using sc-cut crystal oscillator and method of manufacturing the same

Also Published As

Publication number Publication date
JP5069094B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP4299325B2 (en) Quartz sensor and sensing device
US7677087B2 (en) Quartz sensor and sensing device
US7552639B2 (en) Quartz sensor and sensing device
US7389673B2 (en) Sensor for detecting analyte in liquid and device for detecting analyte in liquid using the same
US8176773B2 (en) Piezoelectric sensor and sensing instrument
JP4256871B2 (en) Quartz sensor and sensing device
JP2004264254A (en) Mass measuring chip and masses measuring device
JP2009281786A (en) Piezoelectric sensor and sensing device
JP5069094B2 (en) Piezoelectric sensor and sensing device
JP4473815B2 (en) Quartz sensor and sensing device
JP5066442B2 (en) Piezoelectric sensor and sensing device
US10620199B2 (en) Sensing sensor and sensing method
JP2012008029A (en) Sensing device
TWI416108B (en) Quartz sensor and sensing device
US10126268B2 (en) Sensing sensor
JP4685962B2 (en) Piezoelectric sensor and sensing device
JP6933321B2 (en) Measuring cell and measuring device
JP6267447B2 (en) Sensing device and piezoelectric sensor
JP2008164472A (en) Qcm sensor
JP2010156589A (en) Concentration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5069094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250