JP2004245613A - Flow cell type qcm device and specimen measuring method - Google Patents

Flow cell type qcm device and specimen measuring method Download PDF

Info

Publication number
JP2004245613A
JP2004245613A JP2003033080A JP2003033080A JP2004245613A JP 2004245613 A JP2004245613 A JP 2004245613A JP 2003033080 A JP2003033080 A JP 2003033080A JP 2003033080 A JP2003033080 A JP 2003033080A JP 2004245613 A JP2004245613 A JP 2004245613A
Authority
JP
Japan
Prior art keywords
sample
flow cell
cell type
sensor
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003033080A
Other languages
Japanese (ja)
Inventor
Michiya Fujiki
道也 藤木
Katsuhei Hara
勝平 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
USI SYSTEM KK
Japan Science and Technology Agency
Original Assignee
USI SYSTEM KK
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by USI SYSTEM KK, Japan Science and Technology Agency filed Critical USI SYSTEM KK
Priority to JP2003033080A priority Critical patent/JP2004245613A/en
Publication of JP2004245613A publication Critical patent/JP2004245613A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize a baseline, reduce waiting time, and allowing high-speed taking-in by imcorporating a flow cell type QCM device as the detection part of a high-speed liquid chromatography or a gas chromatography, and a measuring method by the device. <P>SOLUTION: A container body comprises an inlet part 4, an outlet part 7, and a cable take-out hole 6 for a specimen. A sensor vibrator 8 is disposed in the container body by using upper and lower O-rings 9 and a support body formed of a sensor fixing tool 11 with a circular hole 10. The specimen to be measured passes through the inlet part 4 and the circular hole 10, covering the surface of the sensor vibrator 8, and is discharged from the outlet part 7. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フローセル型QCM装置と、その測定部分に関するもので、特に、測定部をフローセル対応とし、高速液体クロマトグラフィーやガスクロマトグラフィーの検出部として組み込むことにより、ベ−スラインが安定し、待ち時間の少ない、高速取込が可能な高感度のQCM装置と、その測定方法に関するものである。
【0002】
【従来の技術】
液体クロマトグラフィ装置は化学物質を分離・定量する化学分析手段として広く使われている。特に、カラムを使った液体クロマトグラフィ装置は高感度、高分解能および高精度な分析結果を提供できる利点を有しており、活発な研究がなされている。
この液体クロマトグラフィ装置は、ポンプにより流れる移動相に被検液を注入した上でカラムに導入して被検液の各成分を分離し、カラムから流出する分離された各成分を検出器で検出することにより被検液の成分分析を行なう構成とされている。
また、液体クロマトグラフィ装置に設けられる検出器は分析方法に応じて各種提供されているが、その一つとして吸光光度検出器がある。この吸光光度検出器はフローセルを有しており、カラムで分離された被検液は配管を介してフローセル内に注入される構成とされている。また、フローセルは、注入された被検液に紫外線或いは可視光を照射しうる構成とされており、被検液に含まれる各成分の吸光率差を利用して被検液の成分分析を行なう。
図10は、従来の、フローセルを用いた液体クロマトグラフィ装置30を示している。液体クロマトグラフィ装置30は、移動相用容器31,ポンプ33,試料注入装置35,カラム36,検出器37,及び廃液用容器38等により構成されている。移動相用容器31は、移動相32を貯めておく容器である。ポンプ33は、配管39を用いて移動相用容器31内の移動相32を吸引すると共に、吸引された移動相32を配管40に所定の圧力で吐出する機能を奏するものである。ポンプ33から移動相32が吐出される配管40は、試料注入装置35に接続されており、また配管40の途中位置には圧力計34が配設されている。試料注入装置35は、注入ポート43から成分分析処理がされるサンプルである被検液が注入される。注入ポート43から注入された被検液は、試料注入装置35において移動相32と混合され、配管41を介してカラム36に送られる。カラム36は、その内部には被検液の分離処理を行なうためのカラム充填材(例えば、シリカゲルの粉体)が充填されている。このカラム36で成分分離された被検液は、注入配管20を介して検出器37に注入される。検出器37は、光源(例えば、紫外線発射装置),フローセル,及び光センサ等により構成されている。カラム36で分離処理された被検液は注入配管20を介してフローセル10に注入されるよう構成されており、また光源はフローセル10に注入された被検液に紫外線(UV光)を照射する構成とされている。この際、被検液に含まれる成分によりUV光の吸収率が異なるため、被検液を通過したUV光は被検液に含まれる成分の情報が重畳されたものとなる(この成分の情報が重畳されたUV光を情報光という)。この情報光は、光センサにより検出される。そして、この光センサから出力される信号を解析することにより、被検液に含まれる成分を分析することができる。検出器37で検出処理が終了した被検液は、廃液配管21を介して廃液用容器38に排気される。(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2002−71658号公報(第1−4頁 図3)
【0004】
【発明が解決しようとする課題】
従来の技術クロマトグラフィーの検出装置として組み込むには、毎秒110測定点ほどの高速データ取込みとフローセル対応の測定部の開発を必要としていた。しかしながら現在その両方を満足する技術は知られていなかった。
本発明は、従来の上記のような問題点を解消したもので、本発明によって測定部を、フローセル型QCM装置(Quartz Crystal Microbalance)/EQCM(Electro Chemical Quartz Crystal Microbalance)対応とし、高速液体クロマトグラフィーやガスクロマトグラフィーの検出部として組み込むことを可能にしたベ−スラインが安定し、待ち時間の少ない、高速取込が可能な高感度のQCM装置と、その測定部分に関するものである。
【0005】
【課題を解決するための手段】
このため、本発明が採用した技術的解決手段は、試料の入口部と出口部とケ−ブル取出穴を有する容器体において、前記容器体の内部に、支持体でもって水晶振動子を配置し、前記支持体は、入口部から導入された試料が、前記水晶振動子の表面を晒らし、出口部から排出できるように構成したフローセル型QCM装置としたことである。
また、前記支持体は、上、下の0リングと中心に円孔を有するセンサ−固定治具からなり、上、下部の0リングは水晶振動子を液密状態に挟み、センサ−固定治具は水晶振動子を挟みこんでいる0リングの上方から押圧し、そして、入口部から導入した試料が、センサ−固定治具の円孔を通り、水晶振動子の表面を晒し、出口部へ排出されるようにしたフローセル型QCM装置としたことである。
また、ポンプにより試料をカラムに導入して試料の各成分を分離し、カラムから流出する分離された各成分をUV検出器で検出することにより試料の成分分析を行なう液体クロマトグラフィ装置構成において、フローセル型QCM装置を、UV検出器の前部或いは後部に、又はこれらUV検出器と並列に配置し、カラムからの試料を、切換バルブによって、フローセル型QCM装置単独に導入するか、又は、UV検出器の前部或いは後部のフローセル型QCM装置に導入し、試料を測定するフローセル型QCM装置としたことである。
また、カラムに導入する試料の容器を複数個とし、その複数個の容器の一部を洗浄液用容器とし、切換バルブによって、カラムに導入する試料或いは洗浄液を適宜選択し、試料の測定を連続的に可能にしたフローセル型QCM装置としたことである。
また、水晶振動子の温度特性をデータ処理装置に入力し、測定を開始し、次に、フロ−セル型QCM装置の水晶振動子からのセンサ−発振周波数を測定し、周波数実測値を測り、一方、センサ−部の温度を測定し、前記入力した水晶振動子の温度特性カ−ブと比較し、発振周波数補正値を得、そして、前記周波数実測値を周波数温度補正値を得、この補正値より絶対量の換算などのデータ処理を行い、データ表示をする温度補償を伴う測定方法としたことである。
また、基準センサ−発振周波数を測定しておき、その基準センサ−発振周波数と、計測した実測値である計測用センサ−発振周波数を比較し、基準センサ−発振周波数の経時変化分を計測用センサ−発振周波数より相殺し、絶対量の換算などのデータ処理をし、データ表示をする差動測定方法としたことである。
【0006】
【発明の実施形態】
図1は、本発明の、フロ−セル型QCM装置1の外観図で、該装置1は、ハウジング2と蓋体3等から構成された容器体からなり、ハウジング2側には試料(洗浄液)入口部4、ケ−ブル5のケ−ブル取出穴6を設け、また、蓋体3側には試料(洗浄液)出口部7が設けられている。
図2は、本発明の、フロ−セル型QCM装置1の断面図で、前記ハウジング2内には、水晶振動子8を有する支持体が配置されている。前記支持体は、上、下の0リング9と中心に円孔10を有するセンサ−固定治具11からなり、上、下部の0リング9は水晶振動子8を液密状態に挟み、センサ−固定治具11は水晶振動子8を挟みこんでいる0リング9の上方から押圧し、更に、センサ−固定治具11は、ハウジング2を二分割している。
したがって、上記のように、センサ−固定治具11は、ハウジング2を上下に二分割しているので、ハウジング2の試料(洗浄液)入口部4から導入された検知・定量等の測定される試料は、センサ−固定治具11の円孔10を通り、水晶振動子8の表面のみを晒し0リング9の外側、すなわち、下側のハウジング2内には漏洩せず、試料(洗浄液)出口部7へと排出されるのである。
また、前記ハウジング2の側壁には、ケ−ブル取出穴6を設け、該穴6にセンサ−振動子8から情報を取り出すケ−ブル5を通し、センサ−振動子8、ケ−ブル5により所定の周波数をデータ処理装置(図示せず)に送る。
図3は、フロ−セル型QCM装置1の内部上面図である。
図4〜7は、本発明の、フロ−セルを用いたQCM装置を組み込んだ各実施例を示し、図8は、本発明の、温度補正を伴う測定フロ−図で、図9は、本発明の、差動測定を伴う測定フロ−図である。
【0007】
図4は、本発明の、フローセル型QCM装置を高速液体クロマトグラフィ−装置に組み込んだ第1実施例であって、容器12に貯留してある試料13は、配管14を介して送液ポンプ15の汲み上げにより試料注入器16を通してカラム17と、順次通過する。
前記カラム17を通過した試料13は、切換バルブVの切替により、一方はフローセル型QCM装置1に、他方はUV検出器18→フローセル型QCM装置19と適宜選択された装置に導入される。
導入された試料13は、フローセル型QCM装置1或いはUV検出器18→フローセル型QCM装置19(フローセル型QCM装置1とは同じ構造である)を通過することによって各成分等が検出され、検出されたデータは、データ処理装置(図示せず)に送られ、そこで所要のデータ処理が行われ、一方、試料13はフローセル型QCM装置1或いはUV検出器18→フローセル型QCM装置19を通過後、廃液として廃棄される。
前記容器12からUV検出器18までの構成は、従来の構成と同様であるが、本発明は、UV検出器18に代えて、あるいは、UV検出器18に追加して水晶振動子をセンサとして用いたフローセル型QCM装置を配置したものである。
前記のように、本発明のフローセル型QCM装置1を、UV検出器18に追加して配置したので、精微な測定を行うことができ、また、適宜、試料をフローセル型QCM装置1だけを通過させてデータもとることができ、比較、検討も可能となる。
【0008】
図5の第2実施例は、フローセル型QCM装置をUV検出器の前に配置した場合の実施例である。
図6の第3実施例は、数種の異なる試料を、第1切替バルブV1を用いて切り替えてそれぞれの試料を測定するもので、フローセル型QCM装置の配置は、第1実施例と同様である。
試料の流れは、前記第1実施例と同様に、第2切換バルブV2の切替により、一方はフローセル型QCM装置7、他方はUV検出器→フローセル型QCM装置と通路を適宜選択して流れ、数種の異なる試料を測定できる。
図7の第4実施例は、数種の異なる試料を第1切替バルブV1を用いて切り替えてそれぞれの試料を測定するもので、フローセル型QCM装置の配置は、第2実施例と同様である。
前記第3実施例或いは第4実施例の場合は、第1切替バルブV1の切替によって、数種の異なる試料を連続的に測定できるものである。
この場合、複数の容器の一部は、洗浄液用容器とし、この容器内の洗浄液でもってフローセル型QCM装置等を洗浄し、次々に試料の測定が可能となり、効率的に測定することができる。
次に、温度補償を伴う測定方法を、図8のフロ−チャ−ト、また、差動測定を伴う測定方法を、図9のフロ−チャ−トのそれぞれに基づいて説明する。
【0009】
図8において、水晶振動子の温度特性をデータ処理装置に入力し、測定を開始する。次に、フロ−セル型QCM装置の水晶振動子からのセンサ−発振周波数を測定し、周波数実測値を測る。一方、センサ−部の温度を測定し、前記入力した水晶振動子の温度特性カ−ブと比較し、発振周波数補正値を得る。そして、前記周波数実測値を周波数温度補正値を得、この補正値より絶対量の換算などのデータ処理を行い、データ表示をする。
図9において、この差動測定の場合は、基準センサ−発振周波数を測定しておき、その基準センサ−発振周波数と、計測した実測値である計測用センサ−発振周波数を比較し、基準センサ−発振周波数の経時変化分を計測用センサ−発振周波数より相殺し、絶対量の換算などのデータ処理をし、データ表示をする。
前記の本発明の装置及び測定方法によって、試料を、連続的に且つ精微に分析できるものである。
【0010】
【発明の効果】本発明は、UV検出器で検出することにより被検液の成分分析を行なう液体クロマトグラフィ装置に、フローセル型QCM装置を、UV検出器の前部或いは後部に、又はこれらUV検出器と並列に配置して、カラムからの被検液を、切換バルブによって、フローセル型QCM装置単独に導入するか、又は、UV検出器の前部或いは後部のフローセル型QCM装置に導入し、被検液を測定するので、高速液体クロマトグラフィ−やガスクロマトグラフィーの高感度、高精度の測定が可能になる。
これによって、環境保全や健康被害の立場から廃棄物等に含まれる有害な化学物質の計測や、様々な生体反応の定量化ができる。
また、カラムに導入する被検液の容器を複数個とし、その複数個の容器の一部を洗浄液用容器とし、切換バルブによって、カラムに導入する被検液を適宜選択し、被検液の測定を連続的に可能にしたので、効率のよい測定を可能にする。
また、本発明の、温度補償を伴う測定方法および差動測定方法によって、精度の高い測定が可能になる。
【図面の簡単な説明】
【図1】本発明の、フロ−セル型のQCM装置の外観図である。
【図2】本発明の、フロ−セル型のQCM装置の断面図である。
【図3】本発明の、フロ−セル型のQCM装置の内部上面図である。
【図4】本発明の、フロ−セルを用いたQCM装置を組み込んだ第1実施例である。
【図5】本発明の、フロ−セルを用いたQCM装置を組み込んだ第2実施例である。
【図6】本発明の、フロ−セルを用いたQCM装置を組み込んだ第3実施例である。
【図7】本発明の、フロ−セルを用いたQCM装置を組み込んだ第4実施例である。
【図8】本発明の、温度補正を伴う測定フロ−図である。
【図9】本発明の、差動測定を伴う測定フロ−図である。
【図10】従来の、フローセルを用いた液体クロマトグラフィ装置である。
【符号の説明】
1 フロ−セル型QCM装置
2 ハウジング
3 蓋体
4 試料(洗浄液)入口部
5 ケ−ブル
6 ケ−ブル取出穴
7 試料(洗浄液)出口部
8 センサ−振動子
9 0リング
10 円孔
11 センサ−固定治具
12 容器
13 試料
14 配管
15 送液ポンプ
16 試料注入器
17 カラム
18 UV検出器
19 フロ−セル型QCM装置
V 切換バルブ
V1 第1切換バルブ
V2 第2切換バルブ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flow cell type QCM device and a measurement unit thereof. In particular, the measurement unit is compatible with a flow cell and is incorporated as a detection unit for high performance liquid chromatography or gas chromatography, so that the base line is stabilized and the waiting time is short. The present invention relates to a high-sensitivity QCM device capable of performing high-speed capturing in a short time and a measuring method thereof.
[0002]
[Prior art]
Liquid chromatography apparatuses are widely used as chemical analysis means for separating and quantifying chemical substances. In particular, liquid chromatography devices using columns have the advantage of providing high sensitivity, high resolution, and high precision analysis results, and are being actively studied.
This liquid chromatography apparatus injects a test liquid into a mobile phase flowing by a pump, introduces the test liquid into a column, separates each component of the test liquid, and detects each separated component flowing out of the column with a detector. Thus, the component analysis of the test liquid is performed.
In addition, various types of detectors provided in the liquid chromatography apparatus are provided according to analysis methods, and one of them is an absorbance detector. The absorption photodetector has a flow cell, and the test liquid separated by the column is injected into the flow cell via a pipe. The flow cell is configured to be able to irradiate the injected test liquid with ultraviolet light or visible light, and performs component analysis of the test liquid using the difference in absorbance of each component contained in the test liquid. .
FIG. 10 shows a conventional liquid chromatography apparatus 30 using a flow cell. The liquid chromatography apparatus 30 includes a mobile phase container 31, a pump 33, a sample injection device 35, a column 36, a detector 37, a waste liquid container 38, and the like. The mobile phase container 31 is a container for storing the mobile phase 32. The pump 33 has a function of sucking the mobile phase 32 in the mobile phase container 31 using the pipe 39 and discharging the sucked mobile phase 32 to the pipe 40 at a predetermined pressure. A pipe 40 from which the mobile phase 32 is discharged from the pump 33 is connected to a sample injection device 35, and a pressure gauge 34 is provided at an intermediate position of the pipe 40. A sample liquid to be subjected to the component analysis process is injected into the sample injection device 35 from the injection port 43. The test liquid injected from the injection port 43 is mixed with the mobile phase 32 in the sample injection device 35 and sent to the column 36 via the pipe 41. The column 36 is filled with a column packing material (for example, silica gel powder) for performing a process of separating a test solution. The test liquid separated by the column 36 is injected into the detector 37 via the injection pipe 20. The detector 37 includes a light source (for example, an ultraviolet ray emitting device), a flow cell, an optical sensor, and the like. The test liquid separated by the column 36 is configured to be injected into the flow cell 10 via the injection pipe 20, and the light source irradiates the test liquid injected into the flow cell 10 with ultraviolet light (UV light). It is configured. At this time, since the absorptivity of the UV light varies depending on the components contained in the test liquid, the UV light that has passed through the test liquid is obtained by superimposing information on the components contained in the test liquid (information on this component). Is called information light). This information light is detected by an optical sensor. Then, by analyzing the signal output from the optical sensor, it is possible to analyze the components contained in the test liquid. The test liquid whose detection processing has been completed by the detector 37 is exhausted to the waste liquid container 38 via the waste liquid pipe 21. (For example, refer to Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2002-71658 (FIG. 3 on page 1-4)
[0004]
[Problems to be solved by the invention]
Incorporation as a conventional technology chromatography detector required high-speed data acquisition at about 110 measurement points per second and development of a measurement unit compatible with a flow cell. However, a technique satisfying both of them has not been known at present.
The present invention has solved the above-mentioned conventional problems, and according to the present invention, the measurement unit is compatible with a flow cell type QCM device (Quartz Crystal Microbalance) / EQCM (Electro Chemical Quartz Crystal Microbalance) and is compatible with high-speed liquid chromatography. The present invention relates to a high-sensitivity QCM device which has a stable baseline, can be incorporated as a detection unit of gas chromatography, has a short waiting time, and can perform high-speed acquisition, and a measurement unit thereof.
[0005]
[Means for Solving the Problems]
For this reason, the technical solution adopted by the present invention is to dispose a quartz oscillator with a support inside the container in a container having an inlet and an outlet for a sample and a cable outlet. The support may be a flow cell type QCM device configured so that a sample introduced from an inlet portion can expose a surface of the quartz oscillator and discharge the sample from an outlet portion.
The support comprises an upper and lower O-ring and a sensor-fixing jig having a circular hole at the center, and the upper and lower O-rings sandwich the crystal unit in a liquid-tight manner, and a sensor-fixing jig. Is pressed from above the O-ring sandwiching the crystal oscillator, and the sample introduced from the inlet passes through the circular hole of the sensor-fixing jig, exposes the surface of the crystal oscillator, and is discharged to the outlet. The flow cell type QCM device is adapted to be used.
Further, in a liquid chromatography apparatus configuration in which a sample is introduced into a column by a pump to separate each component of the sample, and each separated component flowing out of the column is detected by a UV detector to analyze the components of the sample, Type QCM device is placed in front of or behind the UV detector, or in parallel with these UV detectors, and the sample from the column is introduced by a switching valve into the flow cell type QCM device alone, or UV detection is performed. A flow cell type QCM device for measuring a sample by introducing the sample into a flow cell type QCM device at the front or rear of the device.
In addition, a plurality of containers for the sample to be introduced into the column are used, a part of the plurality of containers is used as a washing solution container, and a sample or a washing solution to be introduced into the column is appropriately selected by a switching valve, and the measurement of the sample is continuously performed. This is a flow cell type QCM device that has been made possible.
In addition, the temperature characteristics of the crystal oscillator are input to the data processing device and measurement is started. Next, the sensor oscillation frequency from the crystal oscillator of the flow cell type QCM device is measured, and the actual frequency measurement value is measured. On the other hand, the temperature of the sensor section is measured and compared with the input temperature characteristic curve of the crystal unit to obtain an oscillation frequency correction value. Then, the actual frequency measurement value is obtained as a frequency temperature correction value. This is a measurement method involving temperature compensation for performing data processing such as conversion of an absolute amount from a value and displaying the data.
In addition, the reference sensor-oscillation frequency is measured, and the reference sensor-oscillation frequency is compared with the measured sensor-oscillation frequency, which is an actually measured value, and the change in the reference sensor-oscillation frequency with time is measured. -A differential measurement method in which data is displayed by offsetting from the oscillation frequency, performing data processing such as conversion of an absolute amount, and the like.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an external view of a flow cell type QCM device 1 according to the present invention. The device 1 is composed of a container body composed of a housing 2 and a lid 3, and a sample (washing liquid) is provided on the housing 2 side. An inlet 4 and a cable outlet 6 for a cable 5 are provided, and a sample (washing liquid) outlet 7 is provided on the lid 3 side.
FIG. 2 is a cross-sectional view of the flow cell type QCM device 1 of the present invention. In the housing 2, a support having a crystal oscillator 8 is disposed. The support comprises an upper and lower O-ring 9 and a sensor-fixing jig 11 having a circular hole 10 at the center. The upper and lower O-rings 9 sandwich the crystal unit 8 in a liquid-tight state. The fixing jig 11 presses the O-ring 9 sandwiching the crystal unit 8 from above, and the sensor-fixing jig 11 divides the housing 2 into two parts.
Therefore, as described above, since the sensor-fixing jig 11 divides the housing 2 into upper and lower parts, the sample to be detected and quantitatively introduced from the sample (cleaning liquid) inlet 4 of the housing 2 is measured. Passes through the circular hole 10 of the sensor-fixing jig 11 and exposes only the surface of the quartz oscillator 8, does not leak outside the O-ring 9, that is, into the lower housing 2, and exits from the sample (cleaning liquid). It is discharged to 7.
Further, a cable take-out hole 6 is provided in the side wall of the housing 2 and a cable 5 for taking out information from the sensor-vibrator 8 is passed through the hole 6 so that the sensor-vibrator 8 and the cable 5 can be used. A predetermined frequency is sent to a data processing device (not shown).
FIG. 3 is an internal top view of the flow cell type QCM device 1.
4 to 7 show embodiments of the present invention in which a QCM device using a flow cell is incorporated. FIG. 8 is a measurement flow diagram with temperature correction of the present invention, and FIG. FIG. 4 is a measurement flowchart with differential measurement of the invention.
[0007]
FIG. 4 shows a first embodiment in which a flow cell type QCM apparatus of the present invention is incorporated in a high performance liquid chromatography apparatus, and a sample 13 stored in a container 12 is supplied to a liquid sending pump 15 via a pipe 14. By pumping, it passes sequentially through the sample injector 16 and the column 17.
One of the sample 13 that has passed through the column 17 is introduced into the flow cell type QCM apparatus 1 by switching the switching valve V, and the other is introduced into an apparatus appropriately selected from the UV detector 18 to the flow cell type QCM apparatus 19.
The introduced sample 13 passes through the flow cell type QCM device 1 or the UV detector 18 → the flow cell type QCM device 19 (having the same structure as the flow cell type QCM device 1), whereby each component is detected and detected. The data is sent to a data processing device (not shown), where necessary data processing is performed. On the other hand, after the sample 13 passes through the flow cell type QCM device 1 or the UV detector 18 → the flow cell type QCM device 19, Discarded as waste liquid.
The configuration from the container 12 to the UV detector 18 is the same as the conventional configuration. However, in the present invention, a quartz oscillator is used as a sensor instead of the UV detector 18 or in addition to the UV detector 18. The flow cell type QCM device used is arranged.
As described above, since the flow cell type QCM device 1 of the present invention is additionally provided to the UV detector 18, fine measurement can be performed, and the sample passes through only the flow cell type QCM device 1 as appropriate. It is possible to obtain data and make comparisons and examinations possible.
[0008]
The second embodiment of FIG. 5 is an embodiment in which a flow cell type QCM device is arranged before a UV detector.
In the third embodiment of FIG. 6, several kinds of different samples are switched using the first switching valve V1 to measure each sample. The arrangement of the flow cell type QCM apparatus is the same as that of the first embodiment. is there.
As in the first embodiment, the flow of the sample flows by selecting the flow cell type QCM device 7 on one side and the UV detector → flow cell type QCM device on the other side as appropriate by switching the second switching valve V2, Several different samples can be measured.
In the fourth embodiment of FIG. 7, several kinds of different samples are switched using the first switching valve V1 to measure each sample, and the arrangement of the flow cell type QCM apparatus is the same as that of the second embodiment. .
In the case of the third embodiment or the fourth embodiment, several different samples can be continuously measured by switching the first switching valve V1.
In this case, a part of the plurality of containers is used as a cleaning liquid container, and the flow cell type QCM device or the like is cleaned with the cleaning liquid in the container, and the sample can be measured one after another, so that the measurement can be performed efficiently.
Next, a measurement method involving temperature compensation will be described with reference to the flowchart of FIG. 8, and a measurement method involving differential measurement will be described with reference to the flowchart of FIG.
[0009]
In FIG. 8, the temperature characteristics of the crystal unit are input to the data processing device, and measurement is started. Next, a sensor oscillation frequency from the quartz oscillator of the flow cell type QCM device is measured, and an actual measured value of the frequency is measured. On the other hand, the temperature of the sensor section is measured and compared with the input temperature characteristic curve of the quartz oscillator to obtain an oscillation frequency correction value. Then, a frequency temperature correction value is obtained from the actual measured frequency value, and data processing such as conversion of an absolute amount is performed from the correction value to display data.
In FIG. 9, in the case of this differential measurement, the reference sensor-oscillation frequency is measured, and the reference sensor-oscillation frequency is compared with the measurement sensor-oscillation frequency which is a measured value. The change over time of the oscillation frequency is offset from the measurement sensor-oscillation frequency, data processing such as conversion of an absolute amount is performed, and data is displayed.
A sample can be continuously and finely analyzed by the above-described apparatus and measuring method of the present invention.
[0010]
According to the present invention, a liquid chromatography apparatus for analyzing the components of a test liquid by detecting with a UV detector, a flow cell type QCM apparatus, a front part or a rear part of a UV detector, or these UV detectors The test liquid from the column is placed in parallel with the detector, and the test liquid from the column is introduced into the flow cell type QCM device alone by the switching valve, or is introduced into the flow cell type QCM device at the front or rear of the UV detector. Since the test solution is measured, high-sensitivity and high-precision measurement of high performance liquid chromatography or gas chromatography can be performed.
This makes it possible to measure harmful chemical substances contained in waste and the like and to quantify various biological reactions from the standpoint of environmental protection and health damage.
In addition, a plurality of containers for the test liquid to be introduced into the column are used, a part of the plurality of containers is used as a container for the washing liquid, and a sample liquid to be introduced into the column is appropriately selected by a switching valve, and the Since the measurement is continuously possible, efficient measurement is possible.
Further, the measurement method with temperature compensation and the differential measurement method according to the present invention enable highly accurate measurement.
[Brief description of the drawings]
FIG. 1 is an external view of a flow cell type QCM device of the present invention.
FIG. 2 is a cross-sectional view of a flow cell type QCM device of the present invention.
FIG. 3 is an internal top view of the flow cell type QCM device of the present invention.
FIG. 4 is a first embodiment of the present invention in which a QCM device using a flow cell is incorporated.
FIG. 5 is a second embodiment of the present invention incorporating a QCM device using a flow cell.
FIG. 6 shows a third embodiment of the present invention in which a QCM device using a flow cell is incorporated.
FIG. 7 is a fourth embodiment of the present invention incorporating a QCM device using a flow cell.
FIG. 8 is a measurement flowchart with temperature correction according to the present invention.
FIG. 9 is a measurement flowchart with differential measurement according to the present invention.
FIG. 10 is a conventional liquid chromatography apparatus using a flow cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flow cell type QCM apparatus 2 Housing 3 Lid 4 Sample (cleaning liquid) inlet 5 Cable 6 Cable removal hole 7 Sample (cleaning liquid) outlet 8 Sensor-vibrator 90 ring 10 Circle hole 11 Sensor Fixing jig 12 Container 13 Sample 14 Pipe 15 Liquid feed pump 16 Sample injector 17 Column 18 UV detector 19 Flow cell type QCM device V Switching valve V1 First switching valve V2 Second switching valve

Claims (6)

試料の入口部と出口部とケ−ブル取出穴を有する容器体において、前記容器体の内部に、支持体でもって水晶振動子を配置し、前記支持体は、入口部から導入された試料が、前記水晶振動子の表面を晒らし、出口部から排出できるように構成したことを特徴とするフローセル型QCM装置。In a container having an inlet portion, an outlet portion, and a cable take-out hole for a sample, a quartz oscillator is disposed by a support inside the container, and the support introduces a sample introduced from the inlet. A flow cell type QCM device, characterized in that the surface of the crystal unit is exposed and can be discharged from an outlet. 前記支持体は、上、下の0リングと中心に円孔を有するセンサ−固定治具からなり、上、下部の0リングは水晶振動子を液密状態に挟み、センサ−固定治具は水晶振動子を挟みこんでいる0リングの上方から押圧し、そして、入口部から導入した試料が、センサ−固定治具の円孔を通り、水晶振動子の表面を晒し、出口部へ排出されるようにしたことを特徴とする請求項1記載のフローセル型QCM装置。The support comprises an upper and lower O-ring and a sensor-fixing jig having a circular hole at the center, the upper and lower O-rings sandwich the crystal oscillator in a liquid-tight state, and the sensor-fixing jig comprises a quartz crystal. The sample pressed from above the O-ring sandwiching the vibrator, and the sample introduced from the inlet passes through the circular hole of the sensor-fixing jig, exposes the surface of the quartz vibrator, and is discharged to the outlet. 2. The flow cell type QCM apparatus according to claim 1, wherein: ポンプにより試料をカラムに導入して試料の各成分を分離し、カラムから流出する分離された各成分をUV検出器で検出することにより試料の成分分析を行なう液体クロマトグラフィ装置構成において、フローセル型QCM装置を、UV検出器の前部或いは後部に、又はこれらUV検出器と並列に配置し、カラムからの試料を、切換バルブによって、フローセル型QCM装置単独に導入するか、又は、UV検出器の前部或いは後部のフローセル型QCM装置に導入し、試料を測定することを特徴とする請求項1乃至2のうちの1記載のフローセル型QCM装置。In a liquid chromatography apparatus configuration in which a sample is introduced into a column by a pump to separate each component of the sample, and each separated component flowing out of the column is detected by a UV detector to analyze the components of the sample, a flow cell type QCM The device is placed in front of or behind the UV detector or in parallel with these UV detectors, and the sample from the column is introduced by a switching valve into the flow cell type QCM device alone or the UV detector 3. The flow cell type QCM apparatus according to claim 1, wherein the sample is introduced into a front or rear flow cell type QCM apparatus and a sample is measured. カラムに導入する試料の容器を複数個とし、その複数個の容器の一部を洗浄液用容器とし、切換バルブによって、カラムに導入する試料或いは洗浄液を適宜選択し、試料の測定を連続的に可能にしたことを特徴とする請求項1乃至3のうちの1記載のフローセル型QCM装置。A plurality of containers for the sample to be introduced into the column are used, a part of the plurality of containers is used as a washing liquid container, and the sample or the washing liquid to be introduced into the column is appropriately selected by a switching valve, so that the sample can be continuously measured. 4. The flow cell type QCM device according to claim 1, wherein: 水晶振動子の温度特性をデータ処理装置に入力し、測定を開始し、次に、フロ−セル型QCM装置の水晶振動子からのセンサ−発振周波数を測定し、周波数実測値を測り、一方、センサ−部の温度を測定し、前記入力した水晶振動子の温度特性カ−ブと比較し、発振周波数補正値を得、そして、前記周波数実測値を周波数温度補正値を得、この補正値より絶対量の換算などのデータ処理を行い、データ表示をする温度補償を伴う測定方法。The temperature characteristics of the crystal oscillator are input to the data processing device and measurement is started. Next, the sensor-oscillation frequency from the crystal oscillator of the flow cell type QCM device is measured, and the actual frequency measurement value is measured. The temperature of the sensor section is measured and compared with the input temperature characteristic curve of the crystal unit to obtain an oscillation frequency correction value. Then, the actual frequency measurement value is obtained as a frequency temperature correction value. Measurement method with temperature compensation that performs data processing such as conversion of absolute amount and displays data. 基準センサ−発振周波数を測定しておき、その基準センサ−発振周波数と、計測した実測値である計測用センサ−発振周波数を比較し、基準センサ−発振周波数の経時変化分を計測用センサ−発振周波数より相殺し、絶対量の換算などのデータ処理をし、データ表示をする差動測定方法。The reference sensor-oscillation frequency is measured, and the reference sensor-oscillation frequency is compared with the measurement sensor-oscillation frequency which is a measured value, and the change of the reference sensor-oscillation frequency with time is measured by the measurement sensor-oscillation. A differential measurement method that offsets the frequency, performs data processing such as conversion of the absolute amount, and displays the data.
JP2003033080A 2003-02-12 2003-02-12 Flow cell type qcm device and specimen measuring method Pending JP2004245613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003033080A JP2004245613A (en) 2003-02-12 2003-02-12 Flow cell type qcm device and specimen measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033080A JP2004245613A (en) 2003-02-12 2003-02-12 Flow cell type qcm device and specimen measuring method

Publications (1)

Publication Number Publication Date
JP2004245613A true JP2004245613A (en) 2004-09-02

Family

ID=33019174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033080A Pending JP2004245613A (en) 2003-02-12 2003-02-12 Flow cell type qcm device and specimen measuring method

Country Status (1)

Country Link
JP (1) JP2004245613A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064954A1 (en) * 2004-12-15 2006-06-22 Nihon Dempa Kogyo Co., Ltd Quartz sensor and sensing device
JP2009162528A (en) * 2007-12-28 2009-07-23 Nippon Dempa Kogyo Co Ltd Piezoelectric sensor and sensing apparatus
JP2011022129A (en) * 2009-06-16 2011-02-03 Nippon Dempa Kogyo Co Ltd Sensor and sensing method
JP2011027717A (en) * 2009-06-30 2011-02-10 Nippon Dempa Kogyo Co Ltd Sensing device

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697869A (en) * 1980-01-08 1981-08-06 Toshiba Corp Measuring apparatus of emitting quantity of smoke
JPH02501860A (en) * 1987-12-24 1990-06-21 イゲン,インコーポレーテッド Chemical sensors using catalytic antibodies
JPH04203952A (en) * 1990-11-29 1992-07-24 Fuji Xerox Co Ltd Gas detection device
JPH04289438A (en) * 1991-03-19 1992-10-14 Meidensha Corp Minute-amount measuring sensor and minute-amount measuring apparatus
JPH055735A (en) * 1991-06-27 1993-01-14 Inax Corp Method for continuous quantitative analysis of component in urine by flow injection system
JPH05253551A (en) * 1991-10-01 1993-10-05 Hughes Aircraft Co System and method for precision cleaning by jet spray
JPH06167451A (en) * 1992-11-30 1994-06-14 Mitsubishi Electric Corp Gas detection sensor
JPH06265459A (en) * 1993-03-15 1994-09-22 Toshiba Corp Cracked gas detector
JPH06265499A (en) * 1989-12-06 1994-09-22 General Electric Co Plc:The (Gec) Detector of chemical substance
JPH06317511A (en) * 1993-05-10 1994-11-15 Sanyo Electric Co Ltd Odor detection device
JPH0875628A (en) * 1994-09-09 1996-03-22 Nippon Steel Corp Flow cell for continuous measurement of adsorbate amount in fluid
JPH08201265A (en) * 1994-11-25 1996-08-09 Ngk Insulators Ltd Viscosity measuring instrument and device for measuring characteristic of fluid
JPH1038788A (en) * 1996-05-22 1998-02-13 Ngk Insulators Ltd Sensor element
JPH1123245A (en) * 1997-06-27 1999-01-29 Hitachi Sci Syst:Kk Instrument for measuring thickness of vapor-deposited film using crystal resonator
JPH11128325A (en) * 1997-06-11 1999-05-18 Ethicon Inc Cleaning process monitor
JP2001153777A (en) * 1999-11-26 2001-06-08 Initium:Kk Quartz oscillator
JP2001269660A (en) * 2000-03-27 2001-10-02 Yokogawa Electric Corp Water quality control system
WO2002012873A2 (en) * 2000-08-08 2002-02-14 Smithkline Beecham P.L.C. Quartz crystal microbalance
JP2002071658A (en) * 2000-08-29 2002-03-12 Shiseido Co Ltd Liquid chromatographic device and flow cell
WO2002047246A1 (en) * 2000-12-07 2002-06-13 Amersham Biosciences K.K. Chip quartz oscillator and liquid-phase sensor
JP2002528715A (en) * 1998-10-26 2002-09-03 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー Quartz crystal microbalance with feedback loop for automatic gain means
JP2002267648A (en) * 2000-04-27 2002-09-18 Perkinelmer Instruments Llc Method and apparatus for detecting impurity
JP2003014720A (en) * 2001-07-04 2003-01-15 Shimadzu Corp Detector for high-performance liquid chromatograph
JP3094415U (en) * 2002-12-02 2003-06-20 有限会社白鳥ナノテクノロジー Gas sensor

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697869A (en) * 1980-01-08 1981-08-06 Toshiba Corp Measuring apparatus of emitting quantity of smoke
JPH02501860A (en) * 1987-12-24 1990-06-21 イゲン,インコーポレーテッド Chemical sensors using catalytic antibodies
JPH06265499A (en) * 1989-12-06 1994-09-22 General Electric Co Plc:The (Gec) Detector of chemical substance
JPH04203952A (en) * 1990-11-29 1992-07-24 Fuji Xerox Co Ltd Gas detection device
JPH04289438A (en) * 1991-03-19 1992-10-14 Meidensha Corp Minute-amount measuring sensor and minute-amount measuring apparatus
JPH055735A (en) * 1991-06-27 1993-01-14 Inax Corp Method for continuous quantitative analysis of component in urine by flow injection system
JPH05253551A (en) * 1991-10-01 1993-10-05 Hughes Aircraft Co System and method for precision cleaning by jet spray
JPH06167451A (en) * 1992-11-30 1994-06-14 Mitsubishi Electric Corp Gas detection sensor
JPH06265459A (en) * 1993-03-15 1994-09-22 Toshiba Corp Cracked gas detector
JPH06317511A (en) * 1993-05-10 1994-11-15 Sanyo Electric Co Ltd Odor detection device
JPH0875628A (en) * 1994-09-09 1996-03-22 Nippon Steel Corp Flow cell for continuous measurement of adsorbate amount in fluid
JPH08201265A (en) * 1994-11-25 1996-08-09 Ngk Insulators Ltd Viscosity measuring instrument and device for measuring characteristic of fluid
JPH1038788A (en) * 1996-05-22 1998-02-13 Ngk Insulators Ltd Sensor element
JPH11128325A (en) * 1997-06-11 1999-05-18 Ethicon Inc Cleaning process monitor
JPH1123245A (en) * 1997-06-27 1999-01-29 Hitachi Sci Syst:Kk Instrument for measuring thickness of vapor-deposited film using crystal resonator
JP2002528715A (en) * 1998-10-26 2002-09-03 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー Quartz crystal microbalance with feedback loop for automatic gain means
JP2001153777A (en) * 1999-11-26 2001-06-08 Initium:Kk Quartz oscillator
JP2001269660A (en) * 2000-03-27 2001-10-02 Yokogawa Electric Corp Water quality control system
JP2002267648A (en) * 2000-04-27 2002-09-18 Perkinelmer Instruments Llc Method and apparatus for detecting impurity
JP2004506194A (en) * 2000-08-08 2004-02-26 スミスクライン ビーチャム パブリック リミテッド カンパニー Quartz crystal microbalance
WO2002012873A2 (en) * 2000-08-08 2002-02-14 Smithkline Beecham P.L.C. Quartz crystal microbalance
JP2002071658A (en) * 2000-08-29 2002-03-12 Shiseido Co Ltd Liquid chromatographic device and flow cell
WO2002047246A1 (en) * 2000-12-07 2002-06-13 Amersham Biosciences K.K. Chip quartz oscillator and liquid-phase sensor
JP2004523150A (en) * 2000-12-07 2004-07-29 アマシャム バイオサイエンス株式会社 Chip-shaped quartz oscillator and liquid phase sensor
JP2003014720A (en) * 2001-07-04 2003-01-15 Shimadzu Corp Detector for high-performance liquid chromatograph
JP3094415U (en) * 2002-12-02 2003-06-20 有限会社白鳥ナノテクノロジー Gas sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064954A1 (en) * 2004-12-15 2006-06-22 Nihon Dempa Kogyo Co., Ltd Quartz sensor and sensing device
JP2009162528A (en) * 2007-12-28 2009-07-23 Nippon Dempa Kogyo Co Ltd Piezoelectric sensor and sensing apparatus
JP2011022129A (en) * 2009-06-16 2011-02-03 Nippon Dempa Kogyo Co Ltd Sensor and sensing method
US8601860B2 (en) 2009-06-16 2013-12-10 Nihon Dempa Kogyo Co., Ltd. Sensing device and sensing method
JP2011027717A (en) * 2009-06-30 2011-02-10 Nippon Dempa Kogyo Co Ltd Sensing device
US8377380B2 (en) 2009-06-30 2013-02-19 Nihon Dempa Kogyo Co., Ltd. Sensing device

Similar Documents

Publication Publication Date Title
JP5520841B2 (en) Biological sample pretreatment device and mass spectrometer equipped with the same
JP5066551B2 (en) Piezoelectric sensor and sensing device
CN108449968B (en) Handheld field portable surface plasma resonance device and application thereof in detection of chemical and biological reagents
JP5665863B2 (en) Test method and apparatus for checking the function of a mass spectrometer and method and apparatus for compensating for ion yield fluctuations in mass spectrometry
AU677001B2 (en) Apparatus for determining the physical and/or chemical properties of a sample, particularly of blood
JPH03262945A (en) Chemiluminescence detector
US20100021346A1 (en) Sensing instrument
US7437909B2 (en) Oscillatory measurement device with visual recorder
CN106018586A (en) Method for simultaneously detecting seven sleep chemical medicines
JP2004245613A (en) Flow cell type qcm device and specimen measuring method
US20030013200A1 (en) Liquid sample take-up device
WO2007077967A1 (en) Detecting sensor, and density measuring device
JP2003004616A (en) Soil contamination gas analyzer
WO2007099937A1 (en) Method of filtering solution of protein, etc. and apparatus therefor
JP5292359B2 (en) Sensing device
EP1754039B1 (en) Flow cell with continuously circulating fluid
JP2006105718A (en) Mixer and fluorine concentration measuring system using it and fluorine concentration measuring method
JP2002071658A (en) Liquid chromatographic device and flow cell
KR20120080117A (en) Biosensor cartridge
JP2019095382A (en) Optical analyzer, and system and method for manufacturing material
CN110987916A (en) Microfluidic chip and detection method thereof
JPH11108792A (en) Method for inspecting gross leakage
US6446516B1 (en) Sample introduction device
US20160209367A1 (en) Apparatus Made by Combining a Quartz Tuning Fork and a Microfluidic Channel for Low Dose Detection of Specific Specimens in a Liquid or Gas Media
US7157056B2 (en) Sample introduction device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404