JPH04289438A - Minute-amount measuring sensor and minute-amount measuring apparatus - Google Patents

Minute-amount measuring sensor and minute-amount measuring apparatus

Info

Publication number
JPH04289438A
JPH04289438A JP5424891A JP5424891A JPH04289438A JP H04289438 A JPH04289438 A JP H04289438A JP 5424891 A JP5424891 A JP 5424891A JP 5424891 A JP5424891 A JP 5424891A JP H04289438 A JPH04289438 A JP H04289438A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
sensor
resonator
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5424891A
Other languages
Japanese (ja)
Inventor
Takashi Sasaki
隆 佐々木
Isao Nakano
功 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5424891A priority Critical patent/JPH04289438A/en
Publication of JPH04289438A publication Critical patent/JPH04289438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To eliminate noises and disturbances, to stabilize oscillation and to make it possible to measure the minute amount of change by providing a sensor electrode on the surface of a quartz resonator which is in contact with an object to be measured, and providing a pair of oscillating electrodes on the surface different from the sensor electrode. CONSTITUTION:A sensor electrode 2 is provided on one surface of a quartz resonator 1 which is in contact with an object to be measured. A pair of oscillating electrodes 3a and 3b are provided on the other surface of the resonator 1. The electrode 2 of the resonator 1 is arranged in a liquid phase or in a gaseous phase and brought into contact with solution or gas. The electrodes 3a and 3b are not in contact with the liquid-phase solution or the gaseous-phase gas. Therefore, a solid product material is attached to the electrode 2 and is not attached to the electrodes 3a and 3b. Therefore, the resonator 1 is oscillated without generating noises and disturbances caused by the inflow of current. The oscillating frequency is changed with the attached amount of the solid product material which is attached to the electrode 2. When the frequency is read on a counter 5 which is connected to a transmitting circuit 4, the mass of the minute amount of the solid product material which is attached to the electrode 3 can be measured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は溶液中において化学反
応により生成される固体生成物を超微量に測定する場合
に使用される微量測定用センサーおよび微量測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor and a micrometer measuring device used for measuring ultra-trace amounts of solid products produced by chemical reactions in solutions.

【0002】0002

【従来の技術】微量測定用センサーは水晶等の圧電体か
ら形成され、この圧電体を後述のように溶液に接するよ
うに配置した後、圧電体を発振させる。その後、圧電体
の電極表面に固体生成物が微量に付着すると圧電体の共
振周波数が低下する。この共振周波数の低下をカウンタ
等で検出して固体生成物の付着重量が計測できるように
した装置に上記センサーが使用される。
2. Description of the Related Art A sensor for measuring a small amount is formed from a piezoelectric material such as a crystal, and after the piezoelectric material is placed in contact with a solution as described later, the piezoelectric material is caused to oscillate. Thereafter, when a small amount of solid product adheres to the electrode surface of the piezoelectric body, the resonant frequency of the piezoelectric body decreases. The above sensor is used in a device that can measure the weight of solid product deposited by detecting this decrease in resonance frequency with a counter or the like.

【0003】現在、上記微量測定用センサーには水晶振
動子マイクロバランス(以下QCMと称す)が使用され
、このQCMが液相QCM用測定セルとして使われてい
る。その代表的なものを図3〜図6に示す。図3〜図6
では水晶振動子の片面が溶液に接するように配置されて
いるが、この点を除けば原理的には真空,気相系のマイ
クロバランスと類似している。上記水晶振動子は振動の
妨げとならないよう振動用電極部分を避けてOリングあ
るいはシリコーンゴム系接着剤によりセルに固定され、
図示しない発振回路に接続される。
Currently, a quartz crystal microbalance (hereinafter referred to as QCM) is used as the sensor for measuring a small amount, and this QCM is used as a measurement cell for liquid phase QCM. Typical examples thereof are shown in FIGS. 3 to 6. Figures 3 to 6
In this method, one side of the crystal oscillator is placed in contact with the solution, but other than this point, the principle is similar to vacuum and gas phase microbalance. The crystal resonator is fixed to the cell using an O-ring or silicone rubber adhesive, avoiding the vibration electrode part so as not to interfere with vibration.
Connected to an oscillation circuit (not shown).

【0004】前記測定セルの形状はそれぞれ測定対象に
応じて異なり、図3と図4は溶液を流通できるようにし
たフロースルー型のものである。図3において、11は
溶液通路12が形成された水晶振動子保持器で、この保
持器11の溶液通路12に水晶振動子13の片面を覗か
せる。このように構成することにより水晶振動子13の
片面は溶液に接するようになる。また、図4は水晶振動
子13と保持器11との間にOリング14を設けたもの
である。
[0004] The shape of the measurement cell differs depending on the object to be measured, and FIGS. 3 and 4 are of a flow-through type in which a solution can flow. In FIG. 3, reference numeral 11 denotes a crystal oscillator holder in which a solution passage 12 is formed, and one side of the quartz crystal oscillator 13 is exposed to the solution passage 12 of this holder 11. With this configuration, one side of the crystal resonator 13 comes into contact with the solution. Further, in FIG. 4, an O-ring 14 is provided between the crystal resonator 13 and the retainer 11.

【0005】図5は電気化学測定を目的としたもので、
対極,参照極を組み込んだ電解セル(図示省略)に連結
できるようにした容器15からなるものである。また、
図6は水晶振動子13の背面に空隙部分16を設け、振
動子ごと溶液中に浸漬できるように構成したものである
FIG. 5 is for the purpose of electrochemical measurement.
It consists of a container 15 that can be connected to an electrolytic cell (not shown) incorporating a counter electrode and a reference electrode. Also,
FIG. 6 shows a configuration in which a gap 16 is provided on the back side of a crystal resonator 13 so that the entire resonator can be immersed in a solution.

【0006】上記のように作製された振動子系は溶液中
においても恒温条件であれば、数Hz/hr程度の周波
数安定度が得られる。このように作製されたQCMが液
相中でどの程度の精度で「Suerbray」式に従う
かは、溶液層に接する電極上に電気化学的に金属を析出
させることにより検量することができる。すなわち、定
量的に電析させることが可能な金属(Ag,Cu等)を
用い、電気量から算出される質量変化と周波数変化とを
比較することにより、作製したQCMの定量精度をチェ
ックすることができる。
[0006] The vibrator system manufactured as described above can obtain frequency stability of about several Hz/hr even in a solution under constant temperature conditions. The accuracy with which the QCM produced in this manner follows the "Suerbray" equation in the liquid phase can be calibrated by electrochemically depositing a metal on an electrode in contact with the solution layer. That is, by using a metal (Ag, Cu, etc.) that can be quantitatively deposited, and comparing the mass change calculated from the electrical quantity and the frequency change, the quantitative accuracy of the prepared QCM is checked. Can be done.

【0007】[0007]

【発明が解決しようとする課題】通常QCM測定用セル
において、ATカット系の厚みすべり振動子が用いられ
ている。図7はそのような振動子と電極との関係を示し
たもので、21は水晶振動子で、この水晶振動子21の
両面に対向させて発振用電極22,23を設ける。この
発振用電極22,23には図8に示すように発振回路2
4が接続される。発振回路24の発振周波数はカウンタ
25で計測される液相QCMの場合、この対向する電極
22,23のうちいずれか一方(電極23)が溶液に接
触し、電極に固体生成物が微量に付着する。この結果、
水晶振動子21の共振周波数に変化が生じるため、この
変化から質量測定が可能となる。この場合、振動させる
ための電極22と、固体生成物が付着する電極23(以
下センサー電極と称す)が同一のため、次のような問題
がある。
[Problems to be Solved by the Invention] Usually, an AT-cut thickness shear vibrator is used in a QCM measurement cell. FIG. 7 shows the relationship between such a vibrator and electrodes. Reference numeral 21 is a crystal vibrator, and oscillation electrodes 22 and 23 are provided on both sides of the crystal vibrator 21 to face each other. These oscillation electrodes 22 and 23 have an oscillation circuit 2 as shown in FIG.
4 is connected. The oscillation frequency of the oscillation circuit 24 is measured by the counter 25. In the case of liquid phase QCM, one of the opposing electrodes 22 and 23 (electrode 23) comes into contact with the solution, and a small amount of solid product adheres to the electrode. do. As a result,
Since a change occurs in the resonant frequency of the crystal resonator 21, the mass can be measured from this change. In this case, since the electrode 22 for vibration and the electrode 23 to which the solid product adheres (hereinafter referred to as sensor electrode) are the same, the following problem arises.

【0008】電気化学測定を目的とする場合、振動用電
極22とセンサー電極23が共用され、かつそれぞれの
電源(振動子用発振器電源および電気化学用電源)が独
立にできないため、振動子発振に対するノイズの発生,
発振の不安定、発振用能動素子の破壊等が起こり易かっ
た。
When the purpose is electrochemical measurement, the vibration electrode 22 and the sensor electrode 23 are shared, and the power supplies for each (oscillator power supply and electrochemical power supply) cannot be made independent. generation of noise,
Oscillation instability and oscillation active elements were likely to be destroyed.

【0009】この発明は上記の事情に鑑みてなされたも
ので、振動子の発振に対するノイズや外乱等を皆無とし
て発振の安定化を図って微少の変化量の測定を可能とす
るとともに製作も容易にできるようにした微量測定用セ
ンサーおよび微量測定装置を提供することを目的とする
The present invention has been made in view of the above circumstances, and is capable of stabilizing the oscillation by eliminating noise and disturbance to the oscillation of the vibrator, making it possible to measure minute changes, and making it easy to manufacture. The purpose of the present invention is to provide a sensor for measuring a small amount and a device for measuring a small amount.

【0010】0010

【課題を解決するための手段】この発明は上記の目的を
達成するために、水晶振動子と、この水晶振動子の測定
対象に接触する面に設けられたセンサー電極と、前記水
晶振動子を挾持するように前記センサー電極とは異なる
面に設けられた一対の振動用電極とを備えたことを特徴
とするものである。また、液相あるいは気相中にセンサ
ー電極が位置されるようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a crystal resonator, a sensor electrode provided on a surface of the crystal resonator that comes into contact with an object to be measured, and a The device is characterized in that it includes a pair of vibration electrodes provided on a different surface from the sensor electrode so as to be sandwiched therebetween. Further, the sensor electrode is placed in a liquid phase or a gas phase.

【0011】[0011]

【作用】固体生成物が付着するセンサー電極は液相ある
いは気相中に配置されるが、振動用電極はセンサー電極
の裏面側になるため、固体生成物等の付着が生じない。 この結果、振動用電極ではノイズを拾ったり、電流の回
り込みによる外乱等の発生がなくなる。
[Operation] The sensor electrode to which solid products adhere is placed in the liquid phase or gas phase, but since the vibration electrode is on the back side of the sensor electrode, no solid products, etc. adhere to it. As a result, the vibration electrode does not pick up noise or generate disturbances due to current looping.

【0012】0012

【実施例】以下この発明の一実施例を図面に基づいて説
明する。図1(a),(b),(c)において、1は水
晶振動子で、この水晶振動子1の測定対象に接する一方
の面にはセンサー電極2を設ける。また、水晶振動子1
の他方の面には一対の振動用電極3a,3bを設ける。 振動用電極3a,3bは図2に示す発振回路4に接続さ
れる。発振回路4の発振周波数はカウンタ5で計測され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIGS. 1A, 1B, and 1C, 1 is a crystal resonator, and a sensor electrode 2 is provided on one surface of the crystal resonator 1 that is in contact with the object to be measured. Also, crystal oscillator 1
A pair of vibration electrodes 3a and 3b are provided on the other surface of the oscillator. The vibration electrodes 3a, 3b are connected to an oscillation circuit 4 shown in FIG. The oscillation frequency of the oscillation circuit 4 is measured by a counter 5.

【0013】上記のようにして構成された水晶振動子を
用いた微量測定用センサーは液相あるいは気相中に配設
される。このとき、水晶振動子1のセンサー電極2は液
相あるいは気相中に接触するように構成されるが、振動
用電極3a,3bは液相の溶液や気相の気体が接触しな
いように構成される。このように構成することにより、
固体生成物が付着するのは専らセンサー電極2となるか
ら、水晶振動子1は振動用電極3a,3bにはノイズや
電流の回り込みによる外乱等が発生することなく発振す
る。この発振周波数はセンサー電極2に付着される固体
生成物による付着量で変化するから、この周波数を発振
回路4に接続されるカウンタ5で読み取ることによって
センサー電極2に付着する微量の固体生成物の質量測定
ができる。
The micro-quantity measurement sensor using the crystal oscillator constructed as described above is disposed in a liquid phase or a gas phase. At this time, the sensor electrode 2 of the crystal resonator 1 is configured to be in contact with the liquid phase or the gas phase, but the vibration electrodes 3a and 3b are configured so that the liquid phase solution or gas phase does not come into contact with them. be done. By configuring like this,
Since the solid product adheres only to the sensor electrode 2, the crystal resonator 1 oscillates without noise or disturbance due to current looping occurring in the vibration electrodes 3a, 3b. Since this oscillation frequency changes depending on the amount of solid products deposited on the sensor electrode 2, by reading this frequency with a counter 5 connected to the oscillation circuit 4, a trace amount of solid products deposited on the sensor electrode 2 can be detected. Can measure mass.

【0014】また、振動用電極3a,3bは水晶振動子
1の片面に配設されているので、微量測定用センサーと
しての製作が容量になる。なお、上記実施例においては
QCMとしては水晶振動子を用いた例を示したが、他の
圧電結晶でも、振動モードが厚み振動あるいは厚みすべ
り振動のように周波数が厚みによって規定される振動の
ものに全て適用できる。
Furthermore, since the vibration electrodes 3a and 3b are arranged on one side of the crystal resonator 1, the manufacturing process as a sensor for measuring a small amount becomes capacitive. In the above embodiment, a crystal resonator was used as the QCM, but other piezoelectric crystals may also have vibration modes where the frequency is determined by the thickness, such as thickness vibration or thickness shear vibration. All can be applied to.

【0015】[0015]

【発明の効果】以上述べたように、この発明によれば、
振動用の電極とセンサー用電極とを区分したので、振動
子の発振に対し、ノイズや電流の回り込みによる外乱等
を皆無にでき、これによって発振の安定化を図ることが
できるとともに微少の固体生成物の測定も正確にできる
。また、この発明によれば、振動子の片面の電極に発振
回路を接続することができるので、微量測定用センサー
の製作が容易になる。
[Effects of the Invention] As described above, according to the present invention,
Since the electrode for vibration and the electrode for sensor are separated, there is no disturbance due to noise or current wrap-around to the oscillation of the vibrator, which makes it possible to stabilize the oscillation and prevent the formation of minute solids. You can also measure objects accurately. Further, according to the present invention, since an oscillation circuit can be connected to the electrode on one side of the vibrator, it becomes easy to manufacture a sensor for measuring a small amount.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】(a)はこの発明の一実施例を示す正面図、(
b)は同実施例の側面図、(c)は同実施例の下方から
見た図。
FIG. 1(a) is a front view showing one embodiment of the present invention;
b) is a side view of the same embodiment, and (c) is a view of the same embodiment seen from below.

【図2】この発明を測定装置とした実施例の説明図。FIG. 2 is an explanatory diagram of an embodiment using the present invention as a measuring device.

【図3】液相QCM測定セルの説明図。FIG. 3 is an explanatory diagram of a liquid phase QCM measurement cell.

【図4】液相QCM測定セルの説明図。FIG. 4 is an explanatory diagram of a liquid phase QCM measurement cell.

【図5】液相QCM測定セルの説明図。FIG. 5 is an explanatory diagram of a liquid phase QCM measurement cell.

【図6】液相QCM測定セルの説明図。FIG. 6 is an explanatory diagram of a liquid phase QCM measurement cell.

【図7】(a)は水晶振動子と電極との関係を示す正面
図、(b)は水晶振動子と電極との関係を示す側面図。
FIG. 7(a) is a front view showing the relationship between a crystal resonator and electrodes, and FIG. 7(b) is a side view showing the relationship between the crystal resonator and electrodes.

【図8】QCMの原理を説明する図。FIG. 8 is a diagram explaining the principle of QCM.

【符号の説明】[Explanation of symbols]

1…水晶振動子、2…センサー電極、3a,3b…振動
用電極、4…発振回路、5…カウンタ。
DESCRIPTION OF SYMBOLS 1... Crystal resonator, 2... Sensor electrode, 3a, 3b... Vibration electrode, 4... Oscillation circuit, 5... Counter.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  水晶振動子と、この水晶振動子の測定
対象に接触する面に設けられたセンサー電極と、前記水
晶振動子を挾持するように前記センサー電極とは異なる
面に設けられた一対の振動用電極とを備えたことを特徴
とする微量測定用センサー。
1. A crystal resonator, a sensor electrode provided on a surface of the crystal resonator that contacts a measurement object, and a pair of sensor electrodes provided on a different surface from the sensor electrodes so as to sandwich the crystal resonator. A sensor for measuring a small amount, comprising: a vibration electrode.
【請求項2】  液相あるいは気相中にセンサー電極が
位置されるようにしたことを特徴とする請求項1に記載
の微量測定装置。
2. The micro-quantity measuring device according to claim 1, wherein the sensor electrode is located in a liquid phase or a gas phase.
JP5424891A 1991-03-19 1991-03-19 Minute-amount measuring sensor and minute-amount measuring apparatus Pending JPH04289438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5424891A JPH04289438A (en) 1991-03-19 1991-03-19 Minute-amount measuring sensor and minute-amount measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5424891A JPH04289438A (en) 1991-03-19 1991-03-19 Minute-amount measuring sensor and minute-amount measuring apparatus

Publications (1)

Publication Number Publication Date
JPH04289438A true JPH04289438A (en) 1992-10-14

Family

ID=12965246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5424891A Pending JPH04289438A (en) 1991-03-19 1991-03-19 Minute-amount measuring sensor and minute-amount measuring apparatus

Country Status (1)

Country Link
JP (1) JPH04289438A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283905A (en) * 1999-03-30 2000-10-13 Noboru Koyama Multichannel qcm sensor device
JP2004245613A (en) * 2003-02-12 2004-09-02 Japan Science & Technology Agency Flow cell type qcm device and specimen measuring method
JP2008215993A (en) * 2007-03-02 2008-09-18 Tohoku Univ Piezoelectric oscillator
JP2011128051A (en) * 2009-12-18 2011-06-30 Kri Inc Sensor
JP2019535018A (en) * 2016-10-12 2019-12-05 レイセオン カンパニー Piezoelectric quartz crystal microbalance purity monitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283905A (en) * 1999-03-30 2000-10-13 Noboru Koyama Multichannel qcm sensor device
JP2004245613A (en) * 2003-02-12 2004-09-02 Japan Science & Technology Agency Flow cell type qcm device and specimen measuring method
JP2008215993A (en) * 2007-03-02 2008-09-18 Tohoku Univ Piezoelectric oscillator
JP2011128051A (en) * 2009-12-18 2011-06-30 Kri Inc Sensor
JP2019535018A (en) * 2016-10-12 2019-12-05 レイセオン カンパニー Piezoelectric quartz crystal microbalance purity monitor

Similar Documents

Publication Publication Date Title
US6544478B1 (en) QCM sensor
US5455475A (en) Piezoelectric resonant sensor using the acoustoelectric effect
EP0775295B1 (en) A piezoelectric crystal microbalance device
JP4222513B2 (en) Mass measuring apparatus and method
CA1155197A (en) Ultra sensitive liquid level detector and method
Shana et al. Theory and application of a quartz resonator as a sensor for viscous liquids
CN100430711C (en) Measuring method, measuring signal output circuit, and measuring apparatus
CA1099947A (en) Elastic surface wave accelerometer
JPH04289438A (en) Minute-amount measuring sensor and minute-amount measuring apparatus
EP1679506A2 (en) SC cut crystal microbalance
JP2006292733A (en) Quartz crystal microbalance sensor
US5376221A (en) Process for mass producing high frequency crystal resonators
JP2004294356A (en) Qcm sensor unit
JP2012178716A (en) Etching system and etching method
JP3725195B2 (en) QCM quartz substrate and QCM quartz substrate weight change measurement method
Näbauer et al. Biosensors based on piezoelectric crystals
JP4039284B2 (en) Method for manufacturing mass measuring piezoelectric vibrator, mass measuring piezoelectric vibrator and mass measuring apparatus
Bucur et al. Quartz-crystal mass sensors with glued foil electrodes
WO1999040397A1 (en) Device at piezoelectric crystal oscillator
JPS5991338A (en) Gas sensor
JP3954430B2 (en) Concentration measurement method
JPH02226044A (en) Specimen cell
JPH0618394A (en) Concentration sensor
JPH1092789A (en) Etching speed evaluation method
TW201407954A (en) Piezoelectric resonator, etching amount detecting device, and oscillator