JP5066442B2 - Piezoelectric sensor and sensing device - Google Patents

Piezoelectric sensor and sensing device Download PDF

Info

Publication number
JP5066442B2
JP5066442B2 JP2007339759A JP2007339759A JP5066442B2 JP 5066442 B2 JP5066442 B2 JP 5066442B2 JP 2007339759 A JP2007339759 A JP 2007339759A JP 2007339759 A JP2007339759 A JP 2007339759A JP 5066442 B2 JP5066442 B2 JP 5066442B2
Authority
JP
Japan
Prior art keywords
crystal
electrode
surface side
piezoelectric
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007339759A
Other languages
Japanese (ja)
Other versions
JP2009162523A (en
Inventor
重徳 渡辺
猛 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2007339759A priority Critical patent/JP5066442B2/en
Publication of JP2009162523A publication Critical patent/JP2009162523A/en
Application granted granted Critical
Publication of JP5066442B2 publication Critical patent/JP5066442B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、圧電片の一面側に設けられた励振電極が測定雰囲気に接すると共に、他面側に設けられた励振電極が気密空間に臨むように構成された圧電振動子を含み、この圧電振動子の固有振動数を検出することにより測定対象物を感知する圧電センサ及びこの圧電センサを用いた感知装置に関する。   The present invention includes a piezoelectric vibrator configured such that an excitation electrode provided on one surface side of a piezoelectric piece contacts a measurement atmosphere and an excitation electrode provided on the other surface side faces an airtight space. The present invention relates to a piezoelectric sensor that senses an object to be measured by detecting the natural frequency of a child and a sensing device that uses this piezoelectric sensor.

試料液中における微量物質、例えばダイオキシンなどの環境汚染物質あるいはC型肝炎ウイルスやC−反応性タンパク(CPR)などの疾病マーカーの有無を感知したり、これら物質の測定を行うために、水晶振動子を含んだ水晶センサと、この水晶センサに電気的に接続され、当該水晶振動子を発振させるための発振回路などを含んだ測定器とを利用した測定法が広く知られている(例えば特許文献1)。   To detect the presence of trace substances in the sample liquid, for example, environmental pollutants such as dioxin, disease markers such as hepatitis C virus and C-reactive protein (CPR), and to measure these substances, crystal vibration A measurement method using a crystal sensor including a child and a measuring instrument that is electrically connected to the crystal sensor and includes an oscillation circuit for oscillating the crystal resonator is widely known (for example, a patent) Reference 1).

具体的に説明すると、前記測定法は、例えば板状の水晶片とその水晶片の一面側及び他面側に各々前記水晶片を挟むように設けられた一対の箔状の励振用の電極(励振電極)とを備えた、ランジュバン型と呼ばれる水晶振動子を含む水晶センサについて、一面側の電極が測定雰囲気(試料液)に接触すると共に、他面側の電極が気密空間に臨むように構成し、一面側の電極の表面に測定対象物である抗原を抗原抗体反応により捕捉する抗体を吸着層として形成し、この吸着層に抗原が捕捉され、その吸着量に応じて水晶振動子の固有振動数が変動する性質を利用するものである。そして測定対象物が吸着層に吸着する前の水晶振動子の固有振動数と測定対象物が吸着層に吸着した後の水晶振動子の固有振動数との差、即ち変化量を求め、この変化量に応じて測定対象物の有無あるいは濃度を検出している。   Specifically, the measurement method includes, for example, a plate-shaped crystal piece and a pair of foil-like excitation electrodes (a pair of foil-like excitation electrodes provided so as to sandwich the crystal piece on one side and the other side of the crystal piece) A quartz sensor including a crystal resonator called a Langevin type with an excitation electrode) is configured so that the electrode on one side contacts the measurement atmosphere (sample solution) and the electrode on the other side faces the airtight space Then, an antibody that captures the antigen to be measured by an antigen-antibody reaction is formed as an adsorption layer on the surface of the electrode on one side, and the antigen is captured in this adsorption layer. This utilizes the property that the frequency fluctuates. Then, the difference between the natural frequency of the crystal unit before the measurement object is adsorbed on the adsorption layer and the natural frequency of the crystal unit after the measurement object is adsorbed on the adsorption layer, that is, the amount of change is obtained. The presence or concentration of the measurement object is detected according to the amount.

上記のように水晶振動子の一面側のみを測定雰囲気に接触させ、他面側を気密空間に臨むように構成するのは、水晶振動子が安定して発振するためにはこのような構成とすることが好ましいからである。なお、上記の測定においては励振電極の表面に吸着層を設け、その吸着層へ測定対象物を化学的に吸着させて測定を行っているが、前記一面側の電極の表面に直接試料液中の測定対象物が、物理的に吸着することに基づいて測定を行う場合もある。具体的には、水晶センサの開発段階において、電極自体の表面に抗体を物理的に吸着させて吸着層を形成し、この電極の表面に付着している抗体の吸着量を求める場合である。   As described above, only one side of the crystal unit is brought into contact with the measurement atmosphere and the other side faces the airtight space. It is because it is preferable to do. In the above measurement, an adsorption layer is provided on the surface of the excitation electrode, and the measurement object is chemically adsorbed on the adsorption layer. The measurement is performed directly on the surface of the electrode on the one side. In some cases, the measurement object is measured based on physical adsorption. Specifically, in the development stage of the quartz sensor, an antibody is physically adsorbed on the surface of the electrode itself to form an adsorption layer, and the adsorption amount of the antibody adhering to the surface of the electrode is obtained.

図11は、前記水晶センサに設けられた水晶振動子の周辺の構成の一例を示したものである。図11中の11は配線基板であり、この配線基板11上に水晶振動子1が載置されている。この水晶振動子1は、板状の水晶片10の一面側及び他面側に、一方の励振電極12及び他方の励振電極13が夫々形成され、一面側の一方の励振電極12に接続されると共に前記水晶片10の一面側から当該水晶片10の端部を介して他面側まで引き出された一方の引出電極12aと、他面側の他方の励振電極13に接続されると共に当該水晶片10の端部を介して一面側まで引き出された他方の引出電極13aとが形成されており、前記引出電極12a,13aが導電性接着剤14を介して配線基板11側に設けられた電極11aに電気的に接続されている。   FIG. 11 shows an example of the configuration around the crystal resonator provided in the crystal sensor. In FIG. 11, reference numeral 11 denotes a wiring board, and the crystal unit 1 is placed on the wiring board 11. In this crystal resonator 1, one excitation electrode 12 and the other excitation electrode 13 are respectively formed on one surface side and the other surface side of a plate-shaped crystal piece 10, and are connected to one excitation electrode 12 on one surface side. The crystal piece 10 is connected to one lead electrode 12a drawn from one surface side of the crystal piece 10 to the other surface side through the end of the crystal piece 10 and the other excitation electrode 13 on the other surface side. The other lead electrode 13a drawn to one surface side through the end of 10 is formed, and the lead electrodes 12a, 13a are provided on the wiring board 11 side through the conductive adhesive 14 Is electrically connected.

図11中の15は配線基板11を厚さ方向に穿孔された貫通孔であり、図11中の15aは基板11の裏面側から貫通孔15を塞ぐ封止部材である。これら封止部材15a、貫通孔15及び水晶振動子1に囲まれる領域は気密空間を構成しており、その水晶振動子1の裏面側の励振電極13は、この気密空間に面している。図11中の16は例えばゴム等からなる板状の水晶押さえ部材であり、水晶振動子1を基板11に押圧して、その位置を固定している。   Reference numeral 15 in FIG. 11 denotes a through hole formed in the wiring substrate 11 in the thickness direction, and reference numeral 15 a in FIG. 11 denotes a sealing member that closes the through hole 15 from the back side of the substrate 11. A region surrounded by the sealing member 15a, the through-hole 15 and the crystal resonator 1 constitutes an airtight space, and the excitation electrode 13 on the back side of the crystal resonator 1 faces the airtight space. Reference numeral 16 in FIG. 11 denotes a plate-like crystal pressing member made of, for example, rubber or the like, and presses the crystal resonator 1 against the substrate 11 to fix its position.

図11中の17は、水晶押さえ部材16を厚さ方向に貫くように設けられた開口部であり、水晶振動子1の表面側の励振電極12に面している。図11中の18は水晶押さえ部材16の環状の突起である。そして前記開口部17及び環状突起18に囲まれる液収容空間19に所定量の試料液が収容され、前記励振電極12が測定雰囲気に接するようになっている。   Reference numeral 17 in FIG. 11 denotes an opening provided so as to penetrate the crystal pressing member 16 in the thickness direction, and faces the excitation electrode 12 on the surface side of the crystal unit 1. Reference numeral 18 in FIG. 11 denotes an annular protrusion of the crystal pressing member 16. A predetermined amount of sample liquid is stored in a liquid storage space 19 surrounded by the opening 17 and the annular protrusion 18, and the excitation electrode 12 is in contact with the measurement atmosphere.

ところで上記のような水晶センサにおいて、次のような問題がある。上記水晶センサは、導電性接着剤14を介して配線基板11に載置されるため、水晶センサ間において、導電性接着剤14の高さを揃えることが困難である。即ち、上記の水晶センサでは導電性接着剤14の高さのばらつきを避け難い。水晶センサ間において、引出電極12a,13aと電極11aとが対向する部位に塗布される導電性接着剤14の高さにばらつきがあると、水晶押さえ部材16から基板11までの距離は一定なので、水晶押さえ部材16の復元力による応力がばらついてしまう。このため、抗原が吸着層に吸着する前の水晶振動子の固有振動数fと抗原が吸着層に吸着した後の水晶振動子の固有振動数fとの差である周波数変化量(Δf)を求めるにあたって、吸着量に対するfの変化量が、水晶片10に加わる応力に応じて変わってしまい、抗原の量を高精度に検出することができない。   However, the above-described quartz sensor has the following problems. Since the crystal sensor is mounted on the wiring board 11 via the conductive adhesive 14, it is difficult to make the height of the conductive adhesive 14 uniform between the crystal sensors. That is, in the above-described quartz sensor, it is difficult to avoid variations in the height of the conductive adhesive 14. If there is variation in the height of the conductive adhesive 14 applied to the part where the extraction electrodes 12a, 13a and the electrode 11a face each other between the quartz sensors, the distance from the quartz pressing member 16 to the substrate 11 is constant. The stress due to the restoring force of the crystal pressing member 16 varies. For this reason, the frequency change amount (Δf), which is the difference between the natural frequency f of the crystal unit before the antigen is adsorbed on the adsorption layer and the natural frequency f of the crystal unit after the antigen is adsorbed on the adsorption layer, is obtained. In determining, the amount of change of f with respect to the amount of adsorption changes according to the stress applied to the crystal piece 10, and the amount of antigen cannot be detected with high accuracy.

また水晶センサの開発段階で一方の励振電極12自体の表面に抗体を付着させて抗体の吸着量を求める場合においても、上述と同様の理由により抗体の量を高精度に検出することができない。   Even when the amount of antibody adsorption is determined by attaching an antibody to the surface of one excitation electrode 12 itself in the development stage of the quartz sensor, the amount of antibody cannot be detected with high accuracy for the same reason as described above.

一方、特許文献2には、容器内に装着され励振電極が両面に付された圧電板と、導電性接着剤で固着された前記圧電板を、前記容器内にてその底板との間に空隙を保持して支持する支持台とを有する圧電振動子において、導電性接着剤で固着する支持台の上面に導電性接着剤用の塗布幅をもった溝を設け、圧電板と支持台とを重ね合わせて固着する際の導電性接着剤の拡張を防止することが記載されているが、押さえ部材で圧電振動子を基板に押圧する構成にある圧電センサにおいて、上述したような課題があることについては何ら示唆も記載もされていない。   On the other hand, in Patent Document 2, there is a gap between a piezoelectric plate mounted in a container and having excitation electrodes on both sides, and the piezoelectric plate fixed with a conductive adhesive between the bottom plate in the container. In the piezoelectric vibrator having a support base that holds and supports the piezoelectric vibrator, a groove having a coating width for the conductive adhesive is provided on the upper surface of the support base fixed with the conductive adhesive, and the piezoelectric plate and the support base are Although it is described that the conductive adhesive is prevented from expanding when it is stuck and fixed, the piezoelectric sensor configured to press the piezoelectric vibrator against the substrate with the pressing member has the above-described problems. There is no suggestion or description about.

特開2006−194866JP 2006-194866 A 特開平5−283967(段落0009、0012及び図1)JP-A-5-283967 (paragraphs 0009 and 0012 and FIG. 1)

本発明はかかる事情に鑑みてなされたものであって、その目的は、ランジュバン型の圧電振動子を含み、測定対象物が前記圧電振動子の一面側の励振電極に接触することにより圧電振動子の固有振動数が変化することに基づいて試料液中の測定対象物を検知する圧電センサであって、圧電センサ間において、測定対象物が吸着することによる圧電振動子の発振周波数の変化分のばらつきを抑え、測定対象物の量を高精度に検出することができる技術を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to include a Langevin type piezoelectric vibrator, and a measurement object comes into contact with an excitation electrode on one side of the piezoelectric vibrator, thereby the piezoelectric vibrator. A piezoelectric sensor that detects a measurement object in a sample liquid based on a change in the natural frequency of the piezoelectric vibrator, and the amount of change in the oscillation frequency of the piezoelectric vibrator caused by adsorption of the measurement object between the piezoelectric sensors An object of the present invention is to provide a technique capable of suppressing the variation and detecting the amount of the measurement object with high accuracy.

本発明は、試料液中の測定対象物を検知するために測定器本体に電気的に接続される圧電センサにおいて、
前記測定器本体に接続される接続端子部が設けられると共に、その一面側に、前記接続端子部に電気的に接続された電極及び気密空間を構成するための凹部が設けられた配線基板と、
板状の圧電片の一面側及び他面側に一方の励振電極及び他方の励振電極が夫々形成され、一面側の一方の励振電極に接続されると共に前記圧電片の一面側から当該圧電片の端部を介して他面側まで引き出された一方の引出電極と、他面側の他方の励振電極に接続されると共に前記圧電片の端部まで引き出された他方の引出電極とが形成され、他面側の他方の励振電極が前記凹部に臨むように当該凹部を塞いだ状態で配線基板に設けられた圧電振動子と
前記圧電振動子の一面側を底面とする液収容空間を形成すると共に、この液収容空間を囲むように設けられかつ水晶振動子の一面側における前記凹部の外側部位を配線基板側に付けるための環状突起を備えた弾性素材からなる押さえ部材と、
配線基板と対向して前記押さえ部材を覆い、その表面に前記液収容空間に連通し、試料液を前記液収容空間に注入するための注入口が設けられた液注入用カバーと、を備え、
前記環状突起は、液収容空間を囲む内周面が下方に向うにつれて直径が小さくなるように構成され
前記配線基板は、前記一方の引出電極及び他方の引出電極と前記電極とが対向する部位に、導電性接着剤を収容するための凹部を備え、
前記圧電片の周縁部が前記配線基板と密着した状態で前記凹部内の導電性接着剤と前記引出電極とが接着し、前記引出電極と前記電極とが電気的に接続されることを特徴とする。


The present invention relates to a piezoelectric sensor that is electrically connected to a measuring instrument body in order to detect an object to be measured in a sample liquid.
A wiring board provided with a connection terminal portion connected to the measuring instrument main body, and on one surface side thereof, an electrode electrically connected to the connection terminal portion and a recess for configuring an airtight space;
One excitation electrode and the other excitation electrode are formed on one surface side and the other surface side of the plate-shaped piezoelectric piece, respectively, and are connected to one excitation electrode on the one surface side, and from one surface side of the piezoelectric piece, the piezoelectric piece One extraction electrode drawn to the other side through the end, and the other extraction electrode connected to the other excitation electrode on the other side and drawn to the end of the piezoelectric piece are formed, A piezoelectric vibrator provided on the wiring substrate in a state in which the other excitation electrode on the other surface side faces the concave portion and a liquid storage space having a bottom surface on one surface side of the piezoelectric vibrator is formed. A pressing member made of an elastic material provided so as to surround the liquid storage space and provided with an annular protrusion for attaching the outer portion of the concave portion on one surface side of the crystal resonator to the wiring board side ;
A cover for covering the pressing member facing the wiring board, communicating with the liquid storage space on the surface thereof, and a liquid injection cover provided with an injection port for injecting a sample liquid into the liquid storage space;
The annular protrusion is configured such that the diameter decreases as the inner peripheral surface surrounding the liquid storage space faces downward ,
The wiring board includes a recess for accommodating a conductive adhesive at a portion where the one extraction electrode and the other extraction electrode and the electrode face each other,
The conductive adhesive in the recess and the extraction electrode are bonded in a state where the peripheral edge of the piezoelectric piece is in close contact with the wiring substrate, and the extraction electrode and the electrode are electrically connected. To do.


また本発明の感知装置は、上述した圧電センサと、圧電振動子の固有振動数を検出し、その検出結果に基づいて試料液中の測定対象物を検知する測定器本体と、を備えたことを特徴とする。   Further, the sensing device of the present invention includes the above-described piezoelectric sensor, and a measuring instrument main body that detects the natural frequency of the piezoelectric vibrator and detects a measurement object in the sample liquid based on the detection result. It is characterized by.

本発明の圧電センサは、配線基板において圧電振動子の裏面側の引出電極と配線基板側の電極とが対向する部位に、導電性接着剤を収容するための凹部を備え、前記圧電片の周縁部が前記配線基板と密着した状態で前記凹部内の導電性接着剤と前記引出電極とが接着し、前記引出電極と前記電極とが電気的に接続されるようにしている。このようにすれば、水晶押さえ部材によって圧電片に加わる応力が圧電片の面内において均一に加わるようになり、圧電センサ間において水晶押さえ部材によって圧電片に加わる応力にばらつきが生じるといったおそれがない。その結果、圧電センサ間において、測定対象物が吸着することによる圧電振動子の発振周波数の変化分のばらつきが抑えられ、測定対象物の量を高精度に検出することができる。   The piezoelectric sensor of the present invention includes a recess for accommodating a conductive adhesive at a portion of the wiring board where the lead-out electrode on the back side of the piezoelectric vibrator and the electrode on the wiring board face each other, and the periphery of the piezoelectric piece The conductive adhesive in the recess and the extraction electrode are bonded together in a state in which the portion is in close contact with the wiring substrate, and the extraction electrode and the electrode are electrically connected. In this way, the stress applied to the piezoelectric piece by the crystal pressing member is uniformly applied within the surface of the piezoelectric piece, and there is no possibility that the stress applied to the piezoelectric piece by the crystal pressing member varies between the piezoelectric sensors. . As a result, variation in the change in the oscillation frequency of the piezoelectric vibrator due to adsorption of the measurement object between the piezoelectric sensors can be suppressed, and the amount of the measurement object can be detected with high accuracy.

本発明に係る圧電センサの一例である水晶センサの実施の形態について、図1から図4を用いて説明する。図1は本発明に係る圧電センサの一例である水晶センサ20を示した斜視図である。図2は水晶センサ20の各部品の上面側を示した分解斜視図であり、この図2に示すように水晶センサ20は封止部材3A、配線基板3、圧電振動子である水晶振動子2、水晶押さえ部材4、液注入用カバー5の各部品がこの順に下から重ね合せることにより構成される。   An embodiment of a crystal sensor which is an example of a piezoelectric sensor according to the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing a quartz sensor 20 which is an example of a piezoelectric sensor according to the present invention. FIG. 2 is an exploded perspective view showing the upper surface side of each component of the crystal sensor 20. As shown in FIG. 2, the crystal sensor 20 includes a sealing member 3A, a wiring board 3, and a crystal resonator 2 that is a piezoelectric resonator. Each component of the crystal pressing member 4 and the liquid injection cover 5 is configured by overlapping from the bottom in this order.

水晶振動子2は、圧電片である水晶片21、励振電極22,23及び引出電極24,25により構成されている。図2及び図3に示すように、水晶片21は例えば等価厚みが1μm〜300μm、好ましく185μmであり、円形状に形成されている。水晶片21の一面側及び他面側には箔状の一方の励振電極22及び他方の励振電極23が夫々貼着して当該水晶片21よりも小径の円形状に形成されている。また水晶片21の一面側には、箔状の一方の引出電極24の一端側が前記一方の励振電極22に接続されて形成され、この引出電極24は、水晶片21の端面に沿って屈曲され、水晶片21の他面側(裏面側)に回し込まれている。   The crystal resonator 2 includes a crystal piece 21 that is a piezoelectric piece, excitation electrodes 22 and 23, and extraction electrodes 24 and 25. As shown in FIGS. 2 and 3, the crystal piece 21 has, for example, an equivalent thickness of 1 μm to 300 μm, preferably 185 μm, and is formed in a circular shape. One excitation electrode 22 and the other excitation electrode 23 in the form of a foil are attached to the one surface side and the other surface side of the crystal piece 21, respectively, and are formed in a circular shape having a smaller diameter than the crystal piece 21. In addition, one end side of one foil-shaped extraction electrode 24 is formed on one surface side of the crystal piece 21 and connected to the one excitation electrode 22, and the extraction electrode 24 is bent along the end surface of the crystal piece 21. The crystal piece 21 is turned to the other surface side (back surface side).

さらに水晶片21の他面側には、箔状の他方の引出電極25の一端側が前記他方の励振電極23に先の一方の引出電極24と同様のレイアウトで接続されて形成され、水晶片21の両面において、励振電極22(23)及び引出電極24(25)のレイアウトが同じになっている。
前記励振電極22,23及び引出電極24,25の等価厚みは例えば0.2μmであり、電極材料としては例えば金(Au)が用いられる。
Further, on the other surface side of the crystal piece 21, one end side of the other foil-like extraction electrode 25 is formed by being connected to the other excitation electrode 23 in the same layout as the previous extraction electrode 24. On both sides, the layout of the excitation electrode 22 (23) and the extraction electrode 24 (25) is the same.
The equivalent thicknesses of the excitation electrodes 22 and 23 and the extraction electrodes 24 and 25 are 0.2 μm, for example, and gold (Au) is used as an electrode material, for example.

また、後述するように励振電極22は、試料液が供給される液収容空間45に面するように設けられるため、当該励振電極22上には抗原を抗原抗体反応により捕捉する抗体が吸着層として形成されており、さらに抗体の隙間にはブロッキング用の物質(ブロック体)が吸着している。そして吸着層に測定対象物が吸着されると、測定対象物の吸着量に応じて水晶振動子2の周波数が変化するようになっている。   As will be described later, since the excitation electrode 22 is provided so as to face the liquid storage space 45 to which the sample liquid is supplied, an antibody that captures an antigen by an antigen-antibody reaction is used as an adsorption layer on the excitation electrode 22. In addition, blocking substances (block bodies) are adsorbed in the gaps between the antibodies. When the measurement object is adsorbed on the adsorption layer, the frequency of the crystal unit 2 changes according to the adsorption amount of the measurement object.

次に配線基板3について説明する。この配線基板3は例えばプリント基板により構成され、その表面の前端側から後端側に向けて電極31、電極32が間隔をおいて設けられている。また前記配線基板3の電極31,32が設けられている部位には、導電性接着剤8を収容するための凹部である例えば矩形状の溝部7が形成されており、図3に示すようにこの溝部7の底面及び側面に前記電極31,32が一体的に形成されている。前記配線基板3の電極31,32の間には、これら電極31,32と間隔をおいて、配線基板3の厚さ方向に穿孔された貫通孔33が形成されている。この貫通孔33は、後述するように水晶振動子2の裏面側の励振電極23が臨む気密空間をなす凹部を構成するものであり、その口径は、励振電極23が収まる大きさに形成されている。   Next, the wiring board 3 will be described. The wiring board 3 is composed of, for example, a printed circuit board, and electrodes 31 and 32 are provided at an interval from the front end side to the rear end side of the surface. Further, for example, a rectangular groove 7 which is a recess for accommodating the conductive adhesive 8 is formed at a portion where the electrodes 31 and 32 of the wiring board 3 are provided, as shown in FIG. The electrodes 31 and 32 are integrally formed on the bottom and side surfaces of the groove portion 7. Between the electrodes 31 and 32 of the wiring board 3, a through hole 33 is formed which is perforated in the thickness direction of the wiring board 3 at a distance from the electrodes 31 and 32. As will be described later, the through-hole 33 constitutes a recess that forms an airtight space where the excitation electrode 23 on the back surface side of the crystal resonator 2 faces, and the diameter of the through-hole 33 is formed so as to accommodate the excitation electrode 23. Yes.

また前記電極32が形成されている箇所よりも後端側寄りには、2本の並行するライン状の導電路パターンが、夫々接続端子部34,35として形成されている。一方の接続端子部34はパターン34aを介して電極31と電気的に接続されており、他方の接続端子部35はパターン35aを介して電極32と電気的に接続されている。   Further, two parallel line-shaped conductive path patterns are formed as connection terminal portions 34 and 35, respectively, closer to the rear end side than the portion where the electrode 32 is formed. One connection terminal portion 34 is electrically connected to the electrode 31 via the pattern 34a, and the other connection terminal portion 35 is electrically connected to the electrode 32 via the pattern 35a.

図2中の36は例えばレジストを用いたフォトリソグラフィにより形成された堰であり、水晶振動子2の外形に沿って形成されている。前記堰36は、水晶振動子2の位置合わせをする役割を有し、この堰36に囲まれる領域に水晶振動子2が載置される。図2中の37a,37b,37cは係合孔であり、配線基板3の厚さ方向に穿孔されている。これら係合孔37a,37b,37cは、カバー5の下面に設けられた係合突起51a,51b,51cに夫々係合する。また図2中の38a,38b,38cは配線基板3の周縁に形成された切欠き部である。またカバー5の下面の周縁部には内側に屈曲した爪部52a,52b,52cが設けられており、切欠き部38a,38b,38cは、これら爪部52a,52b,52cに夫々係合する。   Reference numeral 36 in FIG. 2 denotes a weir formed by photolithography using a resist, for example, and is formed along the outer shape of the crystal unit 2. The weir 36 serves to align the crystal resonator 2, and the crystal resonator 2 is placed in a region surrounded by the weir 36. In FIG. 2, 37 a, 37 b, and 37 c are engagement holes, which are drilled in the thickness direction of the wiring board 3. These engagement holes 37a, 37b, and 37c are engaged with engagement protrusions 51a, 51b, and 51c provided on the lower surface of the cover 5, respectively. Further, reference numerals 38 a, 38 b, and 38 c in FIG. 2 are notches formed on the periphery of the wiring board 3. Further, claw portions 52a, 52b, and 52c bent inward are provided on the peripheral edge portion of the lower surface of the cover 5, and the notches 38a, 38b, and 38c are engaged with the claw portions 52a, 52b, and 52c, respectively. .

前記封止部材3Aは、フィルム状の部材であり前記貫通孔33と共に気密空間をなす凹部を構成する。   The sealing member 3 </ b> A is a film-like member and constitutes a concave portion that forms an airtight space together with the through-hole 33.

続いて水晶押さえ部材4について説明する。水晶押さえ部材4は、例えばシリコンゴムにより形成されており、配線基板3に対応した形状に構成されている。具体的に説明すると、この水晶押さえ部材4は、切欠き部38a,38b,38cに夫々対応する矩形状の切欠き部41a,41b,41cを夫々備えた板状に形成されている。また、これら切欠き部41b,41cが形成された側を後方側とすると、切欠き部41aは水晶押さえ部材4の前方側の一縁の中央に形成されている。   Next, the crystal pressing member 4 will be described. The crystal pressing member 4 is made of, for example, silicon rubber, and has a shape corresponding to the wiring board 3. More specifically, the crystal pressing member 4 is formed in a plate shape provided with rectangular cutout portions 41a, 41b, and 41c respectively corresponding to the cutout portions 38a, 38b, and 38c. Further, when the side where the notches 41 b and 41 c are formed is the rear side, the notch 41 a is formed at the center of one edge on the front side of the crystal pressing member 4.

図4は水晶押さえ部材4の下面側を示した斜視図であり、この図も参照しながら押さえ部材4の構成を説明する。図3及び図4に示すように水晶押さえ部材4の下面には水晶振動子2を収容する凹部42が形成されている。この凹部42の天井面部(図4の向きで説明すれば底面部)の中央には、配線基板3の上面における前記貫通孔33よりも一回り大きい環状突起43が設けられている。この環状突起43は、水晶振動子2を前記配線基板3の貫通孔33を囲む領域に押し付けて、水晶振動子2の位置を固定する役割を有する。   FIG. 4 is a perspective view showing the lower surface side of the crystal pressing member 4, and the configuration of the pressing member 4 will be described with reference to this drawing. As shown in FIGS. 3 and 4, a concave portion 42 for accommodating the crystal resonator 2 is formed on the lower surface of the crystal pressing member 4. An annular protrusion 43 that is slightly larger than the through hole 33 on the upper surface of the wiring board 3 is provided at the center of the ceiling surface portion (bottom surface portion in the case of description in FIG. 4) of the recess 42. The annular protrusion 43 has a role of pressing the crystal unit 2 against a region surrounding the through hole 33 of the wiring substrate 3 to fix the position of the crystal unit 2.

また図2、図3及び図4に示すように水晶押さえ部材4の表面側には、開口部44が形成されており、この開口部44は、環状突起43に囲まれる空間に連通している。
前記開口部44の周面44a及び環状突起43の内周面43aは、内側下方に向かって傾斜している。つまり開口部44及び環状突起43の径は下方に向かうにつれて小さくなっている。また環状突起43の先端部47は水晶片20の周縁部を押圧している。また周面43a、44a及び水晶振動子2により囲まれる領域は、試料液を収納する液収容空間45を構成している。
As shown in FIGS. 2, 3, and 4, an opening 44 is formed on the surface side of the crystal pressing member 4, and the opening 44 communicates with a space surrounded by the annular protrusion 43. .
The peripheral surface 44a of the opening 44 and the inner peripheral surface 43a of the annular protrusion 43 are inclined inward and downward. That is, the diameters of the opening 44 and the annular protrusion 43 become smaller as it goes downward. The tip 47 of the annular protrusion 43 presses the peripheral edge of the crystal piece 20. The area surrounded by the peripheral surfaces 43a and 44a and the crystal resonator 2 constitutes a liquid storage space 45 for storing the sample liquid.

また図2中の46a,46bは押さえ部材4を厚さ方向に貫通するように穿孔された係合孔であり、前記配線基板3の係合孔37a,37b及び液注入用カバー5の係合突起51a,51bに対応するように形成されている。図2中の46cは後方側の一縁の中央に形成された弧状の切欠き部であり、配線基板3の係合孔37c及び液注入用カバー5の係合突起51cに対応している。   Further, 46a and 46b in FIG. 2 are engagement holes which are perforated so as to penetrate the pressing member 4 in the thickness direction, and the engagement holes 37a and 37b of the wiring board 3 and the liquid injection cover 5 are engaged. It is formed so as to correspond to the protrusions 51a and 51b. In FIG. 2, 46 c is an arc-shaped cutout formed at the center of the rear edge, and corresponds to the engagement hole 37 c of the wiring board 3 and the engagement protrusion 51 c of the liquid injection cover 5.

次に液注入用カバー5の構成について説明する。前記カバー5は、例えばポリカーボネイトにより構成され、その上面の前側、後側には試料液の注入口53、確認口54が夫々形成されている。図3に示すようにカバー5の下面にはカバー5の長さ方向に沿って溝である注入路55が形成されており、この注入路55の一端、他端は、注入口53、確認口54に夫々接続されている。また注入路55は開口部44に面するように設けられており、注入口53に注入した試料液は注入路55を介して液収容空間45に供給されるようになっている。また所定量の試料液が水晶センサ20に供給されると、確認口54にその試料液の液面が現れ、このセンサ20への液の供給の有無を確認できるようになっている。   Next, the configuration of the liquid injection cover 5 will be described. The cover 5 is made of, for example, polycarbonate, and a sample solution inlet 53 and a check port 54 are formed on the front side and the back side of the upper surface, respectively. As shown in FIG. 3, an injection path 55 that is a groove is formed in the lower surface of the cover 5 along the length direction of the cover 5, and one end and the other end of the injection path 55 are an injection port 53 and a confirmation port. 54, respectively. The injection path 55 is provided so as to face the opening 44, and the sample liquid injected into the injection port 53 is supplied to the liquid storage space 45 through the injection path 55. When a predetermined amount of sample liquid is supplied to the crystal sensor 20, the liquid level of the sample liquid appears at the confirmation port 54, and it is possible to check whether or not the liquid is supplied to the sensor 20.

カバー5の下面には注入路55を囲む環状の堰56が設けられており、この堰56は水晶押さえ部材4にめり込んで、注入口51に注入された試料液が液注入用カバー5と押さえ部材4との間から漏れることを防ぐ役割を有する。   An annular weir 56 surrounding the injection path 55 is provided on the lower surface of the cover 5, and the weir 56 is recessed into the crystal pressing member 4 so that the sample liquid injected into the injection port 51 is pressed against the liquid injection cover 5. It has a role of preventing leakage from between the members 4.

上記の水晶センサ20は次のようにして組み立てられる。先ず封止部材3Aにより配線基板3の貫通孔33を塞ぎ、基板3に凹部を形成する。続いて配線基板3の溝部7内に所定量の導電性接着剤8を塗布する。しかる後、水晶振動子2側の引出電極24,25が配線基板3側の電極31,32に重なり且つ水晶振動子2の裏面側の励振電極23が前記凹部に重なるように、水晶振動子2を配線基板3に載置する。   The crystal sensor 20 is assembled as follows. First, the through hole 33 of the wiring board 3 is closed by the sealing member 3 </ b> A, and a recess is formed in the board 3. Subsequently, a predetermined amount of conductive adhesive 8 is applied in the groove portion 7 of the wiring board 3. Thereafter, the crystal resonator 2 is formed so that the extraction electrodes 24 and 25 on the crystal resonator 2 side overlap with the electrodes 31 and 32 on the wiring substrate 3 side and the excitation electrode 23 on the back surface side of the crystal resonator 2 overlaps the concave portion. Is placed on the wiring board 3.

次に液注入用カバー5の係合突起51a〜51cを水晶押さえ部材4の係合孔46a,46b及び切欠き部46cに係合させ、液注入用カバー5と押さえ部材4とを重ね合わせた後、液注入用カバー5の爪部52a,52b,52cと配線基板3の切欠き部38a,38b,38cとを嵌合させるように被わせて配線基板3に向かって押圧する。これにより液注入用カバー5の各爪部52a〜52cが配線基板3の外側へと撓み、さらに各爪部52a〜52cが各切欠き部38a〜38cを介して配線基板3の周縁部の下面に回り込むと同時に各爪部52a〜52cが、内方側への復元力により元通りの形状になり、配線基板3が各爪部52a〜52cに挟み込まれて互いに係止されると同時に、配線基板3とカバー5とに挟まれた押さえ部材4がこれらに押圧される。   Next, the engagement protrusions 51a to 51c of the liquid injection cover 5 are engaged with the engagement holes 46a and 46b and the notch 46c of the crystal pressing member 4, and the liquid injection cover 5 and the pressing member 4 are overlapped. Thereafter, the claw portions 52 a, 52 b, 52 c of the liquid injection cover 5 and the notches 38 a, 38 b, 38 c of the wiring substrate 3 are put on each other and pressed toward the wiring substrate 3. Thereby, each claw part 52a-52c of the cover 5 for liquid injection is bent to the outer side of the wiring board 3, and further, each claw part 52a-52c is the lower surface of the peripheral part of the wiring board 3 via each notch part 38a-38c. At the same time, the claw portions 52a to 52c are restored to their original shapes by the inward restoring force, and the wiring board 3 is sandwiched between the claw portions 52a to 52c and locked together. The pressing member 4 sandwiched between the substrate 3 and the cover 5 is pressed against them.

押圧された押さえ部材4の弾性により、環状突起43が、水晶振動子2の表面における前記凹部の外側部位を配線基板3側に押し付けることにより、水晶振動子2の位置が固定されると共に、その周縁部が配線基板3と密着して、貫通孔33と封止部材3Aとにより構成される凹部が気密空間となり、水晶振動子2の裏面側の励振電極23がこの気密空間に臨むと共に、前記溝部7内の導電性接着剤8と水晶振動子2の裏面側の引出電極24,25とが接着し、前記引出電極24,25と配線基板3側の電極31,32とが電気的に接続される。   Due to the elasticity of the pressed pressing member 4, the annular protrusion 43 presses the outer portion of the recess on the surface of the crystal resonator 2 toward the wiring substrate 3, thereby fixing the position of the crystal resonator 2. The peripheral edge is in close contact with the wiring substrate 3, and the concave portion formed by the through-hole 33 and the sealing member 3 </ b> A becomes an airtight space, and the excitation electrode 23 on the back surface side of the crystal unit 2 faces the airtight space. The conductive adhesive 8 in the groove 7 and the extraction electrodes 24 and 25 on the back surface side of the crystal unit 2 are bonded, and the extraction electrodes 24 and 25 and the electrodes 31 and 32 on the wiring board 3 side are electrically connected. Is done.

また測定前に水晶振動子2に注入口53及び確認口54から侵入した不純物が付着するのを防ぐために、注入口53及び確認口54はフィルム状の保護シートで被覆される。   Before the measurement, in order to prevent impurities entering from the injection port 53 and the confirmation port 54 from adhering to the crystal unit 2, the injection port 53 and the confirmation port 54 are covered with a film-like protective sheet.

本実施の形態における水晶センサ20が使用される際には、作業者が例えば注入器により液注入用カバー5の注入口53に試料液を注入する。注入口53に注入された試料液は、開口部44及び環状突起43により構成される試料液の液収容空間45に供給され、水晶振動子2の表面側の励振電極22が当該試料液に接する。   When the crystal sensor 20 in the present embodiment is used, an operator injects the sample liquid into the injection port 53 of the liquid injection cover 5 by using, for example, an injector. The sample liquid injected into the inlet 53 is supplied to the liquid storage space 45 of the sample liquid constituted by the opening 44 and the annular protrusion 43, and the excitation electrode 22 on the surface side of the crystal unit 2 is in contact with the sample liquid. .

上述の実施の形態によれば、配線基板3において水晶振動子2の裏面側の引出電極24,25と配線基板3側の電極31,32とが対向する部位に、導電性接着剤8を収容するための溝部7を備え、前記水晶片21の周縁部が前記配線基板3と密着した状態で前記溝部7内の導電性接着剤8と前記引出電極24,25とが接着し、前記引出電極24,25と前記電極31,32とが電気的に接続されるようにしている。このようにすれば、水晶押さえ部材4によって水晶片21に加わる応力が水晶片21の面内において均一に加わるようになり、水晶センサ20間において水晶押さえ部材4によって水晶片21に加わる応力にばらつきが生じるといったおそれがない。その結果、後述する実施例に示すように水晶センサ20間における、測定対象物が吸着することにより水晶振動子2の発振周波数が変化した後の水晶振動子2の周波数安定度のばらつきが抑えられる。
なお、上記の水晶センサ20において水晶押さえ部材4はゴム以外の弾性体によって構成されてもよい。
According to the above-described embodiment, the conductive adhesive 8 is accommodated in the portion of the wiring board 3 where the extraction electrodes 24 and 25 on the back surface side of the crystal unit 2 and the electrodes 31 and 32 on the wiring board 3 side face each other. The conductive adhesive 8 in the groove 7 and the extraction electrodes 24 and 25 are bonded in a state where the peripheral edge of the crystal piece 21 is in close contact with the wiring board 3, and the extraction electrode 24, 25 and the electrodes 31, 32 are electrically connected. In this way, the stress applied to the crystal piece 21 by the crystal pressing member 4 is uniformly applied within the plane of the crystal piece 21, and the stress applied to the crystal piece 21 by the crystal pressing member 4 varies between the crystal sensors 20. There is no risk of occurrence. As a result, as shown in an embodiment to be described later, variation in the frequency stability of the crystal unit 2 after the oscillation frequency of the crystal unit 2 has changed due to adsorption of the measurement object between the crystal sensors 20 is suppressed. .
In the crystal sensor 20, the crystal pressing member 4 may be formed of an elastic body other than rubber.

上述した水晶センサ20は、例えばブロック図である図5で示されるような構成を持つ測定器本体6に接続されることで感知装置の検知部として使用される。図5中の62は、水晶センサ20の水晶片21を発振させる発振回路、63は基準周波数信号を発生する基準クロック発生部、64は例えばヘテロダイン検波器からなる周波数差検出手段であり、発振回路62からの周波数信号及び基準クロック発生部63からのクロック信号に基づいて両者の周波数差に対応する周波数信号を取り出す。65は増幅部、66は増幅部65からの出力信号の周波数をカウントするカウンタ、67はデータ処理部である。   The above-described quartz sensor 20 is used as a detection unit of the sensing device by being connected to the measuring device main body 6 having the configuration shown in FIG. 5 which is a block diagram, for example. 5, 62 is an oscillation circuit for oscillating the crystal piece 21 of the crystal sensor 20, 63 is a reference clock generator for generating a reference frequency signal, and 64 is a frequency difference detection means comprising a heterodyne detector, for example. Based on the frequency signal from 62 and the clock signal from the reference clock generator 63, a frequency signal corresponding to the frequency difference between the two is extracted. 65 is an amplifying unit, 66 is a counter that counts the frequency of an output signal from the amplifying unit 65, and 67 is a data processing unit.

水晶センサ20の周波数としては例えば9MHzが選ばれ、また基準クロック発生部63の周波数としては例えば10MHzが選ばれる。測定対象物例えばダイオキシンが水晶センサ20の水晶振動子2に設けられた上述の吸着層に吸着していないときには、周波数差検出手段64では、水晶センサ側からの周波数と基準クロックの周波数との差である1MHzの周波数信号(周波数差信号)が出力されるが、試料溶液に含まれる測定対象物が水晶振動子2の吸着層に吸着すると、水晶振動子2の固有振動数が変化し、このため周波数差信号も変化するので、カウンタ66におけるカウント値が変化し、こうして測定対象物の濃度あるいはその物質の有無を検知できる。   For example, 9 MHz is selected as the frequency of the quartz sensor 20, and 10 MHz is selected as the frequency of the reference clock generator 63, for example. When the object to be measured, for example, dioxin is not adsorbed to the above-described adsorption layer provided on the quartz crystal resonator 2 of the quartz sensor 20, the frequency difference detecting means 64 determines the difference between the frequency from the quartz sensor side and the frequency of the reference clock. 1 MHz frequency signal (frequency difference signal) is output, but when the measurement object contained in the sample solution is adsorbed to the adsorption layer of the crystal resonator 2, the natural frequency of the crystal resonator 2 changes, and this Therefore, since the frequency difference signal also changes, the count value in the counter 66 changes, and thus the concentration of the measurement object or the presence or absence of the substance can be detected.

図6は上述の測定器本体6の一例を示す図である。図6(a)で示されるように当該測定器本体6は、本体部68と本体部68の前面に形成されている開閉自在の蓋部69とからなる。蓋部69を開くと、図6(b)に示すように本体部68の前面が現れる。この本体部68の前面には当該水晶センサの差込口60が複数形成されており、当該差込口は、例えば8つ、直線状に一定の間隔を持って形成されている。   FIG. 6 is a view showing an example of the measuring instrument main body 6 described above. As shown in FIG. 6A, the measuring instrument main body 6 includes a main body portion 68 and an openable / closable lid portion 69 formed on the front surface of the main body portion 68. When the lid 69 is opened, the front surface of the main body 68 appears as shown in FIG. A plurality of insertion ports 60 of the crystal sensor are formed on the front surface of the main body 68, and the number of the insertion ports is, for example, eight, and is formed in a straight line with a constant interval.

測定器本体6の各差込口60に対して、各水晶センサ20の配線基板3の後端側を水平に一定の深さまで差し込むことで、基板3の接続端子部34,35と差込口60の内部に形成された電極とが電気的に接続されると同時に、差込口60の内部が配線基板3を挟持することで水晶センサ20が水平を保ったまま測定器本体6に固定される。   By inserting the rear end side of the wiring substrate 3 of each crystal sensor 20 horizontally to a certain depth into each insertion port 60 of the measuring device main body 6, the connection terminal portions 34 and 35 of the substrate 3 and the insertion ports are inserted. The electrodes formed inside 60 are electrically connected to each other, and at the same time, the inside of the insertion port 60 holds the wiring board 3 so that the crystal sensor 20 is fixed to the measuring device main body 6 while keeping the level. The

このように上述した水晶センサ20を用いて感知装置を構成することで、複数この例では8つの水晶センサ20における、測定対象物が吸着することにより水晶センサ20の発振周波数が変化した後の水晶センサ20の周波数安定度のばらつきが殆どないため、濃度の異なる8つの測定対象物を夫々8つの水晶センサ20を用いて測定するにあたって、8つの測定対象物の周波数の変化量を正確に測定することができる。   By configuring the sensing device using the above-described crystal sensor 20 as described above, the quartz crystal after the oscillation frequency of the crystal sensor 20 is changed by the adsorption of the measurement object in the plurality of eight crystal sensors 20 in this example. Since there is almost no variation in the frequency stability of the sensor 20, when measuring eight measurement objects having different concentrations using the eight crystal sensors 20, the amount of change in frequency of the eight measurement objects is accurately measured. be able to.

本発明の効果を確認するために行った実験について説明する。
A.実験1
(実施例)
上述した水晶センサ20を用いて周波数測定を行った。この周波数測定は、先ず水晶センサ20の注入口53に緩衝溶液であるpH6.7のPBS溶液を0.12m注入する。これにより水晶振動子2の環境雰囲気が気相から液相に変わり、それに伴って水晶振動子2の発振周波数が低くなる。次に水晶センサ20の注入口53に抗原であるP蛋白が100μg/ml含まれている試料溶液を0.6ml注入する。前記P蛋白は水晶振動子2の表面の吸着層に捕獲され、その吸着量に応じて水晶振動子2の発振周波数が変化する。
An experiment conducted for confirming the effect of the present invention will be described.
A. Experiment 1
(Example)
Frequency measurement was performed using the quartz sensor 20 described above. In this frequency measurement, first, 0.12 m of a PBS solution of pH 6.7, which is a buffer solution, is injected into the injection port 53 of the crystal sensor 20. As a result, the environmental atmosphere of the crystal unit 2 changes from the gas phase to the liquid phase, and accordingly, the oscillation frequency of the crystal unit 2 decreases. Next, 0.6 ml of a sample solution containing 100 μg / ml of P protein as an antigen is injected into the injection port 53 of the crystal sensor 20. The P protein is captured by the adsorption layer on the surface of the crystal unit 2, and the oscillation frequency of the crystal unit 2 changes according to the amount of adsorption.

上述した周波数測定を3つの水晶センサ20に対して夫々行った、この結果を図7に示す。図7の縦軸は周波数(Hz)であり、横軸は時間(秒)である。   FIG. 7 shows the result of the above-described frequency measurement performed on each of the three crystal sensors 20. The vertical axis in FIG. 7 is frequency (Hz), and the horizontal axis is time (seconds).

(比較例)
図11に示す従来の水晶センサ、つまり配線基板において水晶振動子の裏面側の引出電極と配線基板側の電極とが対向する部位に、導電性接着剤を収容するための溝部は形成されておらず、水晶振動子が導電性接着剤を介して配線基板に載置した構造にある水晶センサを用いて、実施例と同様にして周波数測定を行った。この周波数測定を3つの従来の水晶センサに対して夫々行った。この結果を図8に示す。図8の縦軸は周波数(Hz)であり、横軸は時間(秒)である。
(結果及び考察)
図8に示すように比較例では、3つの従来の水晶センサにおいて、P蛋白が吸着層に吸着して水晶振動子の発振周波数が変化した後の水晶振動子の発振周波数を観察すると、P蛋白の濃度が同じであるにもかかわらず、3つの水晶センサは夫々異なった周波数で安定していることが分かる。つまり3つの水晶センサにおいてP蛋白が吸着層に吸着することにより水晶振動子の発振周波数が変化した後の水晶振動子の周波数安定度にばらつきがあることが分かる。
(Comparative example)
In the conventional quartz sensor shown in FIG. 11, that is, in the wiring board, a groove for accommodating the conductive adhesive is not formed in a portion where the extraction electrode on the back surface side of the crystal resonator and the electrode on the wiring board side face each other. First, frequency measurement was performed in the same manner as in the example using a crystal sensor having a structure in which a crystal resonator was mounted on a wiring board via a conductive adhesive. This frequency measurement was performed for each of three conventional quartz sensors. The result is shown in FIG. The vertical axis in FIG. 8 is frequency (Hz), and the horizontal axis is time (seconds).
(Results and discussion)
As shown in FIG. 8, in the comparative example, in the three conventional quartz sensors, when the oscillation frequency of the crystal resonator after the P protein is adsorbed on the adsorption layer and the oscillation frequency of the crystal resonator is changed, the P protein is observed. It can be seen that the three quartz sensors are stable at different frequencies, even though their concentrations are the same. That is, it can be seen that the frequency stability of the crystal resonator after the oscillation frequency of the crystal resonator changes due to the adsorption of P protein to the adsorption layer in the three crystal sensors varies.

一方、図7に示すように実施例では、3つの水晶センサ20において、P蛋白が吸着層に吸着して水晶振動子2の発振周波数が変化した後の水晶振動子2を観察すると、3つの水晶センサは夫々略同じ周波数で安定していることことが分かる。つまり3つの水晶センサ20においてP蛋白が吸着層に吸着することにより水晶振動子2の発振周波数が変化した後の水晶振動子2の周波数安定度にばらつきが殆どないことが分かる。
B.実験例2
(実施例)
上述した水晶センサ20を用いて、当該水晶センサ20の周波数安定度を確認する実験を行った。この実験は、水晶センサ20の注入口53に試薬であるpH7.2のPBS溶液を0.12ml注入し、水晶振動子2の環境雰囲気が気相から液相に変わった後の水晶振動子2の発振周波数を観察している。
On the other hand, as shown in FIG. 7, in the embodiment, when the quartz crystal 2 after the P protein is adsorbed to the adsorption layer and the oscillation frequency of the quartz crystal 2 is changed is observed in the three quartz sensors 20, It can be seen that the quartz sensors are stable at substantially the same frequency. That is, it can be seen that there is almost no variation in the frequency stability of the crystal unit 2 after the oscillation frequency of the crystal unit 2 has changed due to the P protein adsorbing to the adsorption layer in the three crystal sensors 20.
B. Experimental example 2
(Example)
An experiment for confirming the frequency stability of the quartz sensor 20 was performed using the quartz sensor 20 described above. In this experiment, 0.12 ml of a pH 7.2 PBS solution as a reagent is injected into the injection port 53 of the crystal sensor 20, and the crystal resonator 2 after the environmental atmosphere of the crystal resonator 2 has changed from a gas phase to a liquid phase. The oscillation frequency is observed.

上述した実験を3つの水晶センサ20に対して夫々行った。各水晶センサ20に対する実験を夫々実施例1−1、実施例1−2及び実施例1−3とし、この結果を図9に示す。
(比較例)
図11に示す従来の水晶センサ、つまり配線基板において水晶振動子の裏面側の引出電極と配線基板側の電極とが対向する部位に、導電性接着剤を収容するための溝部は形成されておらず、水晶振動子が導電性接着剤を介して配線基板に載置した構造にある水晶センサを用いて、実施例と同様にして当該水晶センサの周波数安定度を確認する実験を行った。この実験を3つの従来の水晶センサに対して夫々行った。各水晶センサに対する実験を夫々比較例1−1、比較例1−2及び比較例1−3とし、この結果を図9に示す。
(結果及び考察)
図9は実施例1−1〜1−3及び比較例1−1〜1−3において、試薬を投入してから10分後の水晶振動子の発振周波数と、試薬を投入してから15分後の水晶振動子の発振周波数と、試薬を投入してから10分後の水晶振動子の発振周波数と試薬を投入してから15分後の水晶振動子の発振周波数との差である変化量(ΔF)と、を夫々示している。図9に示すように実施例1−1、実施例1−2及び実施例1−3の変化量(ΔF)は、夫々0.32Hz、2.61Hz、1.18Hzであり、比較例1−1、比較例1−2及び比較例1−3の変化量(ΔF)は、夫々4.00Hz、3.75Hz、4.65Hzであり、この結果から実施例の方が比較例よりも変化量(ΔF)が小さいことが分かる。つまり実施例の水晶センサは比較例の水晶センサに比べて水晶センサの周波数安定度が高いことが分かる。なお、図10に実施例1−1及び比較例1−1における水晶振動子の環境雰囲気が気相から液相に変わった後の水晶振動子の発振周波数を示しておく。図10に示すように比較例の水晶センサでは周波数が徐々に高くなっているのに対して、実施例の水晶センサでは周波数の上昇がなく、安定していることが分かる。
The above-described experiment was performed on each of the three crystal sensors 20. The experiment for each crystal sensor 20 is Example 1-1, Example 1-2, and Example 1-3, and the results are shown in FIG.
(Comparative example)
In the conventional quartz sensor shown in FIG. 11, that is, in the wiring board, a groove for accommodating the conductive adhesive is not formed in a portion where the extraction electrode on the back surface side of the crystal resonator and the electrode on the wiring board side face each other. First, an experiment was conducted to confirm the frequency stability of the quartz crystal sensor in the same manner as in the example using a quartz crystal sensor having a structure in which the quartz crystal resonator was placed on the wiring board via a conductive adhesive. This experiment was performed on three conventional quartz sensors, respectively. The experiment for each crystal sensor is referred to as Comparative Example 1-1, Comparative Example 1-2, and Comparative Example 1-3, and the results are shown in FIG.
(Results and discussion)
FIG. 9 shows the oscillation frequency of the crystal unit 10 minutes after the introduction of the reagent and 15 minutes after the introduction of the reagent in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3. The amount of change that is the difference between the oscillation frequency of the subsequent crystal resonator and the oscillation frequency of the crystal resonator 10 minutes after the reagent is added and the oscillation frequency of the crystal resonator 15 minutes after the reagent is added (ΔF), respectively. As shown in FIG. 9, the change amounts (ΔF) of Example 1-1, Example 1-2, and Example 1-3 are 0.32 Hz, 2.61 Hz, and 1.18 Hz, respectively. 1, the amount of change (ΔF) of Comparative Example 1-2 and Comparative Example 1-3 is 4.00 Hz, 3.75 Hz, and 4.65 Hz, respectively. From this result, the Example is more changed than the Comparative Example. It can be seen that (ΔF) is small. That is, it can be seen that the crystal sensor of the example has higher frequency stability of the crystal sensor than the crystal sensor of the comparative example. FIG. 10 shows the oscillation frequency of the crystal unit after the environmental atmosphere of the crystal unit in Example 1-1 and Comparative Example 1-1 has changed from the gas phase to the liquid phase. As shown in FIG. 10, the frequency of the quartz sensor of the comparative example is gradually increased, whereas the frequency of the quartz sensor of the embodiment does not increase and is stable.

本発明の実施の形態に係る水晶センサの斜視図である。1 is a perspective view of a crystal sensor according to an embodiment of the present invention. 前記水晶センサの分解斜視図である。It is a disassembled perspective view of the crystal sensor. 前記水晶センサの縦断側面図である。It is a vertical side view of the crystal sensor. 前記水晶センサを構成する水晶押さえ部材の裏面側の斜視図である。It is a perspective view of the back surface side of the crystal pressing member which comprises the said crystal sensor. 前記水晶センサを含む感知装置のブロック図である。It is a block diagram of the sensing apparatus containing the said quartz sensor. 前記感知装置の斜視図である。It is a perspective view of the sensing device. 本発明の効果を確認するために行った実験結果を示す説明図である。It is explanatory drawing which shows the experimental result performed in order to confirm the effect of this invention. 本発明の効果を確認するために行った実験結果を示す説明図である。It is explanatory drawing which shows the experimental result performed in order to confirm the effect of this invention. 本発明の効果を確認するために行った実験結果を示す説明図である。It is explanatory drawing which shows the experimental result performed in order to confirm the effect of this invention. 本発明の効果を確認するために行った実験結果を示す説明図である。It is explanatory drawing which shows the experimental result performed in order to confirm the effect of this invention. 従来の水晶センサの要部を示す概略縦側面図である。It is a schematic vertical side view which shows the principal part of the conventional quartz sensor.

符号の説明Explanation of symbols

20 水晶センサ
2 水晶振動子
21 水晶片
22,23 励振電極
24,25 引出電極
3 配線基板
4 水晶押さえ部材
43 環状突起部
44 開口部
45 液収容空間
5 液注入用カバー
6 測定器本体
7 溝部
8 導電性接着剤
20 Crystal sensor 2 Crystal oscillator 21 Crystal pieces 22 and 23 Excitation electrodes 24 and 25 Extraction electrode 3 Wiring board 4 Crystal pressing member 43 Annular projection 44 Opening 45 Liquid storage space 5 Liquid injection cover 6 Measuring instrument body 7 Groove 8 Conductive adhesive

Claims (2)

試料液中の測定対象物を検知するために測定器本体に電気的に接続される圧電センサにおいて、
前記測定器本体に接続される接続端子部が設けられると共に、その一面側に、前記接続端子部に電気的に接続された電極及び気密空間を構成するための凹部が設けられた配線基板と、
板状の圧電片の一面側及び他面側に一方の励振電極及び他方の励振電極が夫々形成され、一面側の一方の励振電極に接続されると共に前記圧電片の一面側から当該圧電片の端部を介して他面側まで引き出された一方の引出電極と、他面側の他方の励振電極に接続されると共に前記圧電片の端部まで引き出された他方の引出電極とが形成され、他面側の他方の励振電極が前記凹部に臨むように当該凹部を塞いだ状態で配線基板に設けられた圧電振動子と
前記圧電振動子の一面側を底面とする液収容空間を形成すると共に、この液収容空間を囲むように設けられかつ水晶振動子の一面側における前記凹部の外側部位を配線基板側に押し付けるための環状突起を備えた弾性素材からなる押さえ部材と、
配線基板と対向して前記押さえ部材を覆い、その表面に前記液収容空間に連通し、試料液を前記液収容空間に注入するための注入口が設けられた液注入用カバーと、を備え、
前記環状突起は、液収容空間を囲む内周面が下方に向うにつれて直径が小さくなるように構成され
前記配線基板は、前記一方の引出電極及び他方の引出電極と前記電極とが対向する部位に、導電性接着剤を収容するための凹部を備え、
前記圧電片の周縁部が前記配線基板と密着した状態で前記凹部内の導電性接着剤と前記引出電極とが接着し、前記引出電極と前記電極とが電気的に接続されることを特徴とする圧電センサ。
In the piezoelectric sensor that is electrically connected to the measuring instrument body to detect the measurement object in the sample liquid,
A wiring board provided with a connection terminal portion connected to the measuring instrument main body, and on one surface side thereof, an electrode electrically connected to the connection terminal portion and a recess for configuring an airtight space;
One excitation electrode and the other excitation electrode are formed on one surface side and the other surface side of the plate-shaped piezoelectric piece, respectively, and are connected to one excitation electrode on the one surface side, and from one surface side of the piezoelectric piece, the piezoelectric piece One extraction electrode drawn to the other side through the end, and the other extraction electrode connected to the other excitation electrode on the other side and drawn to the end of the piezoelectric piece are formed, A piezoelectric vibrator provided on the wiring substrate in a state in which the other excitation electrode on the other surface side faces the concave portion and a liquid storage space having a bottom surface on one surface side of the piezoelectric vibrator is formed. A pressing member made of an elastic material provided to surround the liquid storage space and provided with an annular protrusion for pressing the outer portion of the concave portion on one surface side of the crystal resonator against the wiring board side ;
A cover for covering the pressing member facing the wiring board, communicating with the liquid storage space on the surface thereof, and a liquid injection cover provided with an injection port for injecting a sample liquid into the liquid storage space;
The annular protrusion is configured such that the diameter decreases as the inner peripheral surface surrounding the liquid storage space faces downward ,
The wiring board includes a recess for accommodating a conductive adhesive at a portion where the one extraction electrode and the other extraction electrode and the electrode face each other,
The conductive adhesive in the recess and the extraction electrode are bonded in a state where the peripheral edge of the piezoelectric piece is in close contact with the wiring substrate, and the extraction electrode and the electrode are electrically connected. Piezoelectric sensor.
請求項1に記載の圧電センサと、圧電振動子の固有振動数を検出し、その検出結果に基づいて試料液中の測定対象物を検知する測定器本体と、を備えたことを特徴とする感知装置。   The piezoelectric sensor according to claim 1, and a measuring instrument body that detects a natural frequency of the piezoelectric vibrator and detects a measurement object in the sample liquid based on the detection result. Sensing device.
JP2007339759A 2007-12-28 2007-12-28 Piezoelectric sensor and sensing device Expired - Fee Related JP5066442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007339759A JP5066442B2 (en) 2007-12-28 2007-12-28 Piezoelectric sensor and sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007339759A JP5066442B2 (en) 2007-12-28 2007-12-28 Piezoelectric sensor and sensing device

Publications (2)

Publication Number Publication Date
JP2009162523A JP2009162523A (en) 2009-07-23
JP5066442B2 true JP5066442B2 (en) 2012-11-07

Family

ID=40965327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007339759A Expired - Fee Related JP5066442B2 (en) 2007-12-28 2007-12-28 Piezoelectric sensor and sensing device

Country Status (1)

Country Link
JP (1) JP5066442B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101788037B1 (en) * 2016-05-02 2017-10-20 두얼메카닉스 주식회사 Sensor Assembly for Detecting Laundry Jamming in Washing Machine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283967A (en) * 1992-03-31 1993-10-29 Nec Corp Piezoelectric vibrator
DE4334834A1 (en) * 1993-10-13 1995-04-20 Andrzej Dr Ing Grzegorzewski Biosensor for measuring changes in viscosity and / or density
JP2748246B2 (en) * 1995-11-14 1998-05-06 デベロップメント センター フォー バイオテクノロジー Cartridge-shaped piezoelectric sensor chip
JPH1114525A (en) * 1997-06-19 1999-01-22 Showa Crystal:Kk Piezoelectric element holding construction
JP2001326551A (en) * 2000-05-16 2001-11-22 River Eletec Kk Supporting structure of quartz oscillating reed
JP4022138B2 (en) * 2002-12-24 2007-12-12 株式会社アルバック Biosensor cell
JP3876842B2 (en) * 2003-03-04 2007-02-07 セイコーエプソン株式会社 Mass measuring chip and mass measuring device
JP2004286585A (en) * 2003-03-20 2004-10-14 Seiko Epson Corp Mass-measuring chip, method for manufacturing the same and mass-measuring apparatus
JP4398171B2 (en) * 2003-04-01 2010-01-13 京セラキンセキ株式会社 Piezoelectric vibrator
JP4256871B2 (en) * 2004-12-15 2009-04-22 日本電波工業株式会社 Quartz sensor and sensing device
JP4473815B2 (en) * 2004-12-15 2010-06-02 日本電波工業株式会社 Quartz sensor and sensing device
JP4473816B2 (en) * 2004-12-15 2010-06-02 日本電波工業株式会社 Component measuring device
JP4369452B2 (en) * 2005-08-03 2009-11-18 日本電波工業株式会社 Concentration sensor and concentration detection device.
JP4781784B2 (en) * 2005-10-31 2011-09-28 京セラキンセキ株式会社 Structure of sensor for measuring minute mass
JP2007198920A (en) * 2006-01-26 2007-08-09 Ulvac Japan Ltd Stirring unit
JP4890914B2 (en) * 2006-03-31 2012-03-07 京セラキンセキ株式会社 Support structure of quartz crystal resonator element
JP4299325B2 (en) * 2006-08-30 2009-07-22 日本電波工業株式会社 Quartz sensor and sensing device

Also Published As

Publication number Publication date
JP2009162523A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP4299325B2 (en) Quartz sensor and sensing device
WO2006064954A1 (en) Quartz sensor and sensing device
US8176773B2 (en) Piezoelectric sensor and sensing instrument
US7552639B2 (en) Quartz sensor and sensing device
JP4256871B2 (en) Quartz sensor and sensing device
JP4713459B2 (en) Sensing device
JP2009281786A (en) Piezoelectric sensor and sensing device
JP5066442B2 (en) Piezoelectric sensor and sensing device
JP4473815B2 (en) Quartz sensor and sensing device
JP2007085973A (en) Qcm analyzer
JP5069094B2 (en) Piezoelectric sensor and sensing device
JP5240794B2 (en) Sensing device
JP2019045367A (en) Manufacturing method of detection sensor, detection sensor, and detection method
JP4685962B2 (en) Piezoelectric sensor and sensing device
JP6267447B2 (en) Sensing device and piezoelectric sensor
JP5740274B2 (en) Sensor element for measuring minute mass
JP2020091193A (en) Sensor
JP2024136107A (en) Detection Sensor
JP2019168284A (en) Sensing sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

R150 Certificate of patent or registration of utility model

Ref document number: 5066442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees