JP2009155353A - Method for producing sugar chain compound - Google Patents

Method for producing sugar chain compound Download PDF

Info

Publication number
JP2009155353A
JP2009155353A JP2006092702A JP2006092702A JP2009155353A JP 2009155353 A JP2009155353 A JP 2009155353A JP 2006092702 A JP2006092702 A JP 2006092702A JP 2006092702 A JP2006092702 A JP 2006092702A JP 2009155353 A JP2009155353 A JP 2009155353A
Authority
JP
Japan
Prior art keywords
sugar chain
formula
group
compound represented
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006092702A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kajiwara
康宏 梶原
Yuri Nanbu
由利 南部
Kazuhiro Fukae
一博 深江
Hiroaki Asai
洋明 朝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Yokohama National University NUC
Yokohama City University
Original Assignee
Otsuka Chemical Co Ltd
Yokohama National University NUC
Yokohama City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Yokohama National University NUC, Yokohama City University filed Critical Otsuka Chemical Co Ltd
Priority to JP2006092702A priority Critical patent/JP2009155353A/en
Priority to PCT/JP2007/057614 priority patent/WO2007114482A1/en
Priority to TW096110943A priority patent/TW200804429A/en
Publication of JP2009155353A publication Critical patent/JP2009155353A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an N-bonded type sugar chain compound having a free hydroxy group at its reducing terminal by using safer hydrazine hydrate as compared with that of anhydrous hydrazine. <P>SOLUTION: This sugar chain compound of formula (2) is obtained by effecting the hydrazine hydrate on a sugar chain asparagine compound of formula (1) [wherein, R<SP>1</SP>to R<SP>3</SP>are each H or a sugar residue; R<SP>4</SP>is H or a fucose residue; R<SP>5</SP>is H, a lipid-soluble protecting group or the like; R<SP>6</SP>is carboxy or a group expressed by -CONHR<SP>7</SP>]. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、糖鎖アスパラギン化合物の還元末端C−N結合を切断し、還元末端に遊離水酸基を有する糖鎖化合物の製造方法に関する。   The present invention relates to a method for producing a sugar chain compound having a free hydroxyl group at the reducing end by cleaving the reducing terminal CN bond of the sugar chain asparagine compound.

糖鎖がタンパク質と共有結合した分子は糖タンパク質と呼ばれている。糖タンパク質中の糖鎖はタンパク質の3次元構造の維持や溶解性の調節、プロテアーゼ耐性の付加などの働きを担っている。最近になり、糖タンパク質中の糖鎖が受精や分化、シグナル伝達、癌化、タンパク質の細胞内輸送や生理活性の調節などの生命現象に関与することが明らかにされつつある。このように、タンパク質に結合した糖鎖は様々な生理機能に重要な役割を果たしている。しかし、これら糖鎖の構造は多様で、その種類は膨大であるため、どの構造の糖鎖が生命現象に関与しているかを特定するのはきわめて困難な状況である。こういった機能の解明のためにも、単一構造の糖鎖を持った糖タンパク質、糖ペプチドの合成が必要不可欠である。   A molecule in which a sugar chain is covalently bonded to a protein is called a glycoprotein. Sugar chains in glycoproteins have functions such as maintaining the three-dimensional structure of proteins, controlling solubility, and adding protease resistance. Recently, it has been revealed that sugar chains in glycoproteins are involved in life phenomena such as fertilization, differentiation, signal transduction, canceration, intracellular transport of proteins and regulation of physiological activity. Thus, sugar chains bound to proteins play an important role in various physiological functions. However, since the structures of these sugar chains are diverse and the types are enormous, it is extremely difficult to identify which structure of the sugar chain is involved in the life phenomenon. In order to elucidate these functions, it is indispensable to synthesize glycoproteins and glycopeptides having a sugar chain with a single structure.

糖タンパク質は糖とタンパク質との結合様式の違いから2つのグループに分けることができる。一つはアスパラギン(Asn)の側鎖のアミノ基と糖鎖が結合したアスパラギン結合型糖鎖(N−結合型)である。もう一つはセリン(Ser)やトレオニン(Thr)の水酸基に糖鎖が結合したムチン結合型糖鎖(O−結合型)である。   Glycoproteins can be divided into two groups based on the difference in binding mode between sugar and protein. One is an asparagine-linked sugar chain (N-linked type) in which the side chain amino group of asparagine (Asn) and a sugar chain are bonded. The other is a mucin-linked sugar chain (O-linked type) in which a sugar chain is bonded to the hydroxyl group of serine (Ser) or threonine (Thr).

本発明者等は、鶏卵より酵素法と化学法を組み合わせることで2分岐複合型糖鎖を大量に調製する方法(特許文献1)を確立し、糖鎖還元末端に遊離水酸基を有する複合型糖鎖からアミノ化複合型糖鎖誘導体を製造し、得られた該誘導体をペプチドのチオール基に選択的に導入できることを示した(特許文献2)。   The present inventors established a method (Patent Document 1) for preparing a large amount of biantennary complex-type sugar chains from chicken eggs by combining an enzyme method and a chemical method, and a complex-type sugar having a free hydroxyl group at the sugar chain reducing end. It was shown that an aminated complex-type sugar chain derivative was produced from a chain, and the obtained derivative could be selectively introduced into a thiol group of a peptide (Patent Document 2).

糖鎖還元末端に遊離水酸基を有するN−結合型糖鎖の調製には、糖鎖アスパラギン及びその誘導体や糖タンパク質から酵素により糖鎖を切り出す方法や化学的に切断する方法がある。通常化学的に切断する方法としては、ヒドラジン分解法が用いられる。ヒドラジンを、ヒドラジン水和物や水の存在下で使用した場合、糖鎖還元末端側の糖が脱離(β脱離)するため、無水ヒドラジンが用いられる。
WO 03/008431号公報 WO 2004/011036号公報
Preparation of an N-linked sugar chain having a free hydroxyl group at the sugar chain reducing end includes a method of cleaving a sugar chain from a sugar chain asparagine and its derivatives and glycoproteins by an enzyme and a method of chemically cleaving it. Usually, as a method of chemically cleaving, a hydrazine decomposition method is used. When hydrazine is used in the presence of hydrazine hydrate or water, anhydrous hydrazine is used because the sugar on the sugar chain reducing terminal side is eliminated (β elimination).
WO 03/008431 Publication WO 2004/011036

しかしながら、無水ヒドラジンはその毒性や発火性等により、操作には慎重を要し、大量の処理には不向きな試薬であるため、安全で有効なN−結合型糖鎖の切り出し方法が求められている。   However, anhydrous hydrazine is a reagent that requires careful operation due to its toxicity and ignitability, and is unsuitable for a large amount of processing. Therefore, a safe and effective method for cleaving N-linked sugar chains is required. Yes.

本発明の課題は、無水ヒドラジンに比し、安全なヒドラジン水和物を使用して、還元末端に遊離水酸基を有するN−結合型糖鎖化合物を製造する方法を提供することにある。   An object of the present invention is to provide a method for producing an N-linked sugar chain compound having a free hydroxyl group at the reducing end, using hydrazine hydrate that is safer than anhydrous hydrazine.

本発明は以下の発明に係る。
式(1)で表される糖鎖アスパラギン化合物にヒドラジン水和物を作用させることを特徴とする式(2)で表される糖鎖化合物の製造方法。
The present invention relates to the following inventions.
A method for producing a sugar chain compound represented by formula (2), wherein hydrazine hydrate is allowed to act on a sugar chain asparagine compound represented by formula (1).

Figure 2009155353
[式中、R、R及びRは同一又は異なって水素原子、糖残基を示す。Rは水素原子又はフコース残基を示す。Acはアセチル基を示す。Rは水素原子、脂溶性の保護基、アミノ酸残基、又はペプチド残基を示し、Rはカルボキシル基又は基−CONHRを示す。Rは、アミノ酸残基又はペプチド残基を示す。]
Figure 2009155353
[Wherein, R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a sugar residue. R 4 represents a hydrogen atom or a fucose residue. Ac represents an acetyl group. R 5 represents a hydrogen atom, a fat-soluble protecting group, an amino acid residue, or a peptide residue, and R 6 represents a carboxyl group or a group —CONHR 7 . R 7 represents an amino acid residue or a peptide residue. ]

Figure 2009155353
[式中、R、R、R、R及びAcは前記に同じ。]
Figure 2009155353
[Wherein, R 1 , R 2 , R 3 , R 4 and Ac are the same as above. ]

本発明者等は、これまでβ脱離を生じるために使用できなかったヒドラジン水和物を使用し、ヒドラジン分解させ、引き続きベンジルアミン化合物で置換、精製後、加水分解処理により、還元末端に遊離水酸基を有するN−結合型糖鎖化合物を製造することができることを見出した。   The present inventors have used hydrazine hydrate that could not be used because of β-elimination so far, decomposed with hydrazine, subsequently substituted with benzylamine compound, purified, and then released to the reducing end by hydrolysis treatment. It has been found that an N-linked sugar chain compound having a hydroxyl group can be produced.

本発明の方法によれば、ヒドラジン分解反応に安全なヒドラジン水和物を使用して、還元末端に遊離水酸基を有するN−結合型糖鎖化合物を製造することができる。   According to the method of the present invention, an N-linked sugar chain compound having a free hydroxyl group at the reducing end can be produced using hydrazine hydrate that is safe for hydrazine decomposition reaction.

本発明の式(1)で表される糖鎖アスパラギン化合物は、アスパラギンに糖鎖が結合する糖タンパク質、糖ペプチド又は糖鎖アスパラギン及びそれらの誘導体等を包含する。
本発明の式(2)で表される糖鎖化合物は、還元末端に遊離水酸基を有するN−結合型糖鎖化合物である。
The sugar chain asparagine compound represented by the formula (1) of the present invention includes glycoproteins, glycopeptides or sugar chain asparagines in which the sugar chain binds to asparagine, and derivatives thereof.
The sugar chain compound represented by the formula (2) of the present invention is an N-linked sugar chain compound having a free hydroxyl group at the reducing end.

Figure 2009155353
[式中、R、R及びRは同一又は異なって水素原子、糖残基を示す。Rは水素原子又はフコース残基を示す。Acはアセチル基を示す。Rは水素原子、脂溶性の保護基、アミノ酸残基、又はペプチド残基を示し、Rはカルボキシル基又は基−CONHRを示す。Rは、アミノ酸残基又はペプチド残基を示す。]
Figure 2009155353
[Wherein, R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a sugar residue. R 4 represents a hydrogen atom or a fucose residue. Ac represents an acetyl group. R 5 represents a hydrogen atom, a fat-soluble protecting group, an amino acid residue, or a peptide residue, and R 6 represents a carboxyl group or a group —CONHR 7 . R 7 represents an amino acid residue or a peptide residue. ]

Figure 2009155353
[式中、R、R、R、R及びAcは前記に同じ。]
Figure 2009155353
[Wherein, R 1 , R 2 , R 3 , R 4 and Ac are the same as above. ]

糖残基は、水酸基が保護されていてもよく、フッ素等のハロゲン原子で置換されていてもよいマンノース、N−アセチルグルコサミン、ガラクトース、フコース等の単糖であってもよく、これら単糖の2つ以上がグリコシド結合して糖鎖を形成したものであってもよい。また、フッ素等のハロゲンが置換していてもよく、カルボキシル基が保護されていてもよいシアル酸を含んだ糖鎖であってもよい。   The sugar residue may be a monosaccharide such as mannose, N-acetylglucosamine, galactose, or fucose, which may be protected with a hydroxyl group and substituted with a halogen atom such as fluorine. Two or more glycoside bonds may form a sugar chain. Further, it may be a sugar chain containing sialic acid which may be substituted by halogen such as fluorine or whose carboxyl group may be protected.

即ち、式(1)で表される糖鎖アスパラギン化合物は従来公知又は未知の糖鎖アスパラギンであってもよく、高マンノース型糖鎖アスパラギン化合物、複合型糖鎖アスパラギン化合物、混成型糖鎖アスパラギン化合物であってよい。また、式(2)で表される糖鎖化合物は従来公知又は未知の糖鎖化合物であってもよく、高マンノース型糖鎖化合物、複合型糖鎖化合物、混成型糖鎖化合物であってよい。   That is, the sugar chain asparagine compound represented by the formula (1) may be a conventionally known or unknown sugar chain asparagine, a high mannose type sugar chain asparagine compound, a complex type sugar chain asparagine compound, or a hybrid sugar chain asparagine compound. It may be. In addition, the sugar chain compound represented by the formula (2) may be a conventionally known or unknown sugar chain compound, and may be a high mannose type sugar chain compound, a complex type sugar chain compound, or a hybrid sugar chain compound. .

脂溶性の保護基とは、特に制限されるものではなく、例えば9−フルオレニルメトキシカルボニル(Fmoc)基やt−ブチルオキシカルボニル(Boc)基、アリルオキシカーボネート(Alloc)基等のカーボネート含有基、アセチル(Ac)基等のアシル基、アリル基、ベンジル基等の保護基等を挙げることができる。また、当該保護基の導入は、例えばProtecting groups in Organic chemistry(John Wiley & Sons INC., New York 1991, ISBN 0-471-62301-6)等の公知の方法に従って行えばよい。   The fat-soluble protective group is not particularly limited, and includes, for example, carbonates such as 9-fluorenylmethoxycarbonyl (Fmoc) group, t-butyloxycarbonyl (Boc) group, and allyloxycarbonate (Alloc) group. Groups, acyl groups such as acetyl (Ac) group, protecting groups such as allyl group and benzyl group. The introduction of the protecting group may be performed according to a known method such as Protecting groups in Organic chemistry (John Wiley & Sons INC., New York 1991, ISBN 0-471-62301-6).

におけるアミノ酸残基又はペプチド残基は、アスパラギンのアミノ基とカルボキシル基がアミド結合したアミノ酸又はペプチドであり、特に制限されない。
におけるアミノ酸残基又はペプチド残基は、アスパラギンのカルボキシル基とアミノ基がアミド結合したアミノ酸又はペプチドであり、特に制限されない。
The amino acid residue or peptide residue in R 5 is an amino acid or peptide in which the amino group and carboxyl group of asparagine are amide-bonded, and is not particularly limited.
The amino acid residue or peptide residue in R 7 is an amino acid or peptide in which the carboxyl group and amino group of asparagine are amide-bonded, and is not particularly limited.

本工程で使用するヒドラジン水和物は従来公知のものであれば使用でき、ヒドラジン一水和物をそのまま、又は水で希釈して使用することができ、ヒドラジン一水和物の濃度としては20〜100重量%、特に好ましくは40〜100重量%程度とすればよい。   The hydrazine hydrate used in this step can be used as long as it is conventionally known, and hydrazine monohydrate can be used as it is or diluted with water. The concentration of hydrazine monohydrate is 20 ˜100 wt%, particularly preferably about 40 to 100 wt%.

ヒドラジン水和物の使用量としては、特に制限されず、式(1)で表される糖鎖アスパラギン化合物1当量に対して0.8当量以上、好ましくは1.0当量以上であるが、通常溶媒をかねて使用するため大過剰量を使用するのがよく、式(1)で表される糖鎖アスパラギン化合物1重量部に対して1〜10000重量部、好ましくは100〜5000重量部とするのが好ましい。   The amount of hydrazine hydrate used is not particularly limited and is 0.8 equivalents or more, preferably 1.0 equivalents or more, based on 1 equivalent of the sugar chain asparagine compound represented by the formula (1). Since the solvent is used for a long time, it is preferable to use a large excess amount, and it is 1 to 10000 parts by weight, preferably 100 to 5000 parts by weight with respect to 1 part by weight of the sugar chain asparagine compound represented by the formula (1). Is preferred.

本工程の反応は加熱下で行い還流温度で行なう。本反応は式(1)で表される糖鎖アスパラギン化合物がヒドラジンと反応して、式(3)で表されるヒドラジノ化合物を形成すると考えられる。本発明者等の検討によれば、理由は定かではないが、β脱離反応が、式(1)で表される糖鎖アスパラギン化合物の大部分又は全てが式(3)で表されるヒドラジノ糖鎖化合物に変換された後に生じることを見出した。換言すれば、式(1)で表される糖鎖アスパラギン化合物の大部分又は全てが式(3)で表されるヒドラジノ糖鎖化合物に変換されるまではβ脱離反応が生じないことになる。   The reaction in this step is carried out under heating and at the reflux temperature. In this reaction, it is considered that the sugar chain asparagine compound represented by the formula (1) reacts with hydrazine to form a hydrazino compound represented by the formula (3). According to the study by the present inventors, although the reason is not clear, the β elimination reaction is a hydrazino in which most or all of the sugar chain asparagine compound represented by the formula (1) is represented by the formula (3). It was found to occur after conversion to a sugar chain compound. In other words, the β elimination reaction does not occur until most or all of the sugar chain asparagine compound represented by the formula (1) is converted into the hydrazino sugar chain compound represented by the formula (3). .

よって本反応は式(1)で表される糖鎖アスパラギン化合物が全て消費されるまで行なうとしてもよいが、消費する手前で反応を終了させるのが好ましい。又はβ脱離反応によって生じる式(4)で表されるヒドラジノ糖鎖化合物の生成が生じる前に反応を終了させることが好ましい。反応はTLC若しくはマススペクトルで追跡して行なうのが好ましい。反応の終了は加熱還流を中止することで行なうことができる。   Therefore, this reaction may be performed until all of the sugar chain asparagine compound represented by the formula (1) is consumed, but it is preferable to terminate the reaction before the consumption. Alternatively, the reaction is preferably terminated before the production of the hydrazino sugar chain compound represented by the formula (4) generated by the β elimination reaction occurs. The reaction is preferably carried out by following TLC or mass spectrum. The reaction can be completed by stopping heating under reflux.

Figure 2009155353
[式中、R、R、R及びRは前記に同じ。]
Figure 2009155353
[Wherein, R 1 , R 2 , R 3 and R 4 are the same as above. ]

Figure 2009155353
[式中、R、R及びRは前記に同じ。]
Figure 2009155353
[Wherein, R 1 , R 2 and R 3 are the same as above. ]

本工程の反応においては、式(1)で表される糖鎖アスパラギン化合物にアセチル基のようなアミド結合型保護基があるため、過剰のヒドラジンによって当該保護基が脱離してアミノ基になる。そのため、アセチル化剤を作用させてN−アセチル化する必要がある。   In the reaction of this step, since the sugar chain asparagine compound represented by the formula (1) has an amide-bonded protecting group such as an acetyl group, the protecting group is eliminated by an excess of hydrazine to become an amino group. Therefore, it is necessary to N-acetylate by acting an acetylating agent.

アセチル化剤としては、N−アセチル化反応に使用し得る従来公知アセチル化剤を使用することができ、例えば、アセチルクロライド、アセチルブロマイド等のアセチルハライドや無水酢酸を例示することができ、無水酢酸が好適に使用できる。アセチル化剤の使用量は、アミノ基1当量に対して1〜20当量、好ましくは1.5〜10当量程度とすればよい。
アセチル化剤を使用するN−アセチル化反応は、従来公知の方法を適用でき、例えば前記反応液を減圧下で過剰のヒドラジンを留去後、塩基の存在下、アセチル化剤を作用させることで成される。
As the acetylating agent, conventionally known acetylating agents that can be used for the N-acetylation reaction can be used, and examples thereof include acetyl halides such as acetyl chloride and acetyl bromide, and acetic anhydride. Can be suitably used. The amount of the acetylating agent used may be 1 to 20 equivalents, preferably about 1.5 to 10 equivalents, per 1 equivalent of amino group.
For the N-acetylation reaction using an acetylating agent, a conventionally known method can be applied. For example, after the excess hydrazine is distilled off from the reaction solution under reduced pressure, the acetylating agent is allowed to act in the presence of a base. Made.

塩基としては、従来公知のものを使用でき、例えば、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等のアルカリ金属炭酸塩、トリエチルアミン、ピリジン等の有機塩基等が挙げられるが、炭酸水素ナトリウムやピリジンが特に好ましい。塩基の使用量としては、特に制限されずアセチル化剤に対して等量又はそれ以上使用することができるが、大過剰使用するのが好ましく、例えば炭酸水素ナトリウム等のアルカリ金属炭酸塩の場合は飽和水溶液として、アセチル化剤1重量部に対して1〜100重量部使用することができる。   As the base, conventionally known ones can be used, and examples thereof include alkali metal carbonates such as sodium carbonate, potassium carbonate and sodium bicarbonate, and organic bases such as triethylamine and pyridine. Sodium bicarbonate and pyridine are particularly preferred. preferable. The amount of the base used is not particularly limited and can be used in an equal amount or more with respect to the acetylating agent, but is preferably used in a large excess, for example, in the case of an alkali metal carbonate such as sodium bicarbonate. As a saturated aqueous solution, 1 to 100 parts by weight can be used with respect to 1 part by weight of an acetylating agent.

本反応は溶媒中で行なわれ、溶媒としては、水、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)等を挙げることができ、これらを単独又は2種以上を混合して使用してもよく、水が好ましく使用できる。溶媒の使用量としては特に制限されないが、式(3)で表される糖鎖化合物1重量部に対して、通常10〜2000重量部程度、好ましくは100〜1000重量部程度とすればよい。   This reaction is carried out in a solvent, and examples of the solvent include water, dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), tetrahydrofuran (THF) and the like. These may be used alone or in combination of two or more. A mixture may be used, and water can be preferably used. Although there is no restriction | limiting in particular as the usage-amount of a solvent, What is necessary is just to be about 10-2000 weight part normally with respect to 1 weight part of sugar_chain | carbohydrate compounds represented by Formula (3), Preferably it may be about 100-1000 weight part.

反応は−10〜100℃、好ましくは0〜50℃で行なわれ、通常0.1〜24時間程度で完了するが、TLCやマススペクトル等で反応の進行を確認して行なうのが好ましい。
上記アセチル化反応後の化合物は下記式(5)で表される。
The reaction is carried out at −10 to 100 ° C., preferably 0 to 50 ° C., and is usually completed in about 0.1 to 24 hours.
The compound after the acetylation reaction is represented by the following formula (5).

Figure 2009155353
[R〜R及びAcは上記に同じ。]
Figure 2009155353
[R 1 to R 4 and Ac are the same as above. ]

以上のようにして得られた式(5)で表されるヒドラジノ糖鎖化合物を含む生成物をゲルろ過カラムクロマトグラフィーで処理ことによってアスパラギン残基等の切断片やβ脱離した糖残基を除去することができる。   The product containing the hydrazino sugar chain compound represented by the formula (5) obtained as described above is treated with gel filtration column chromatography to remove cleavage fragments such as asparagine residues and β-eliminated sugar residues. Can be removed.

得られた式(5)で表されるヒドラジノ糖鎖化合物を酸により処理することによって式(1)で表される糖鎖化合物を含む生成物が得られる。   By treating the obtained hydrazino sugar chain compound represented by the formula (5) with an acid, a product containing the sugar chain compound represented by the formula (1) is obtained.

使用する酸としては、塩酸、硫酸、リン酸等の鉱酸類、蟻酸、酢酸、トリフルオロ酢酸等のカルボン酸類、メタンスルホン酸、エタンスルホン酸等のスルホン酸類を挙げることができ、中でも酢酸が安全性や使用簡便性の観点から好ましい。
酸の使用量としては、式(5)で表されるヒドラジノ糖鎖化合物1当量に対して、1当量以上であれば特に制限されず、1〜5当量が好ましい。通常は式(5)の化合物の水溶液が十分に酸性を示す程度に酸を加えるのが好ましい。
Examples of the acid to be used include mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid, carboxylic acids such as formic acid, acetic acid and trifluoroacetic acid, and sulfonic acids such as methanesulfonic acid and ethanesulfonic acid, among which acetic acid is safe. From the viewpoints of performance and ease of use.
The amount of the acid used is not particularly limited as long as it is 1 equivalent or more with respect to 1 equivalent of the hydrazino sugar chain compound represented by the formula (5), and 1 to 5 equivalents are preferable. Usually, it is preferable to add an acid to such an extent that the aqueous solution of the compound of formula (5) is sufficiently acidic.

反応は0〜50℃程度、好ましくは10〜40℃程度とすればよく、通常1〜15時間程度、好ましくは2〜10時間程度で完結するが、TLCやマススペクトルで反応を追跡して、終了を確認するのが好ましい。
以上のようにして式(2)で表される糖鎖化合物を含む生成物を製造することができるが、上記のヒドラジン分解においては、β脱離が生じない段階で反応を終了させた場合には原料となる式(1)で表される糖鎖アスパラギン化合物が残存することになり、反応がやや進行した場合にはβ脱離した式(4)で表されるヒドラジノ糖鎖化合物のN−アセチル体(6)が混入することになる。また、式(3)で表されるヒドラジノ糖鎖は不安定で時間経過とともにβ脱離を生じる。よって、この段階で得られる式(2)で表される糖鎖化合物には、化合物(1)、(4)、(6)等の他の化合物の混入が認められる。
上記式(6)の化合物は下記に示される。
The reaction may be performed at about 0 to 50 ° C., preferably about 10 to 40 ° C., and is usually completed for about 1 to 15 hours, preferably about 2 to 10 hours, but the reaction is traced by TLC or mass spectrum, It is preferable to confirm the completion.
As described above, a product containing the sugar chain compound represented by the formula (2) can be produced. However, in the above hydrazine decomposition, when the reaction is terminated at a stage where β elimination does not occur. As a raw material, the sugar chain asparagine compound represented by the formula (1) remains, and when the reaction proceeds somewhat, β-eliminated N- of the hydrazino sugar chain compound represented by the formula (4) Acetyl (6) will be mixed. Moreover, the hydrazino sugar chain represented by the formula (3) is unstable and causes β-elimination over time. Therefore, the sugar chain compound represented by the formula (2) obtained at this stage is mixed with other compounds such as the compounds (1), (4), (6).
The compound of the above formula (6) is shown below.

Figure 2009155353
[R〜R及びAcは上記に同じ。]
Figure 2009155353
[R 1 to R 3 and Ac are the same as above. ]

次に上記で得られた式(2)で表される糖鎖化合物及び他の化合物の混合物に溶媒中、アミン化合物を作用させる。   Next, an amine compound is allowed to act in a solvent on the mixture of the sugar chain compound represented by the formula (2) obtained above and another compound.

アミン化合物としては、例えば、メチルアミン、エチルアミン、イソプロピルアミン等の炭素数1〜4のモノアルキルアミン、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン、シクロヘキシルアミン、シクロヘプチルアミン、シクロオクチルアミン等の炭素数3〜8のシクロアルキルアミン、置換基を有することのあるベンジルアミン類を挙げることができる。置換基を有することのあるベンジルアミンの置換基としては、フッ素、塩素、臭素等のハロゲン原子、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基等の炭素数1〜4のアルキル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、tert−ブトキシ基等のアルコキシ基、ニトロ基等を挙げることができ、これらの置換基が単独又はフェニル環上の任意の位置に、2〜5個が同一又は異なって置換しているものを包含する。これらのベンジルアミン類の中でもベンジルアミン、p−メトキシベンジルアミン、2,4,5−トリメトキシベンジルを好ましく例示でき、中でもp−メトキシベンジルアミンが特に好ましい。
アミン化合物の使用量としては、式(2)で表される糖鎖化合物1当量に対して、通常1〜20当量、好ましくは2〜10当量とすればよい。
Examples of the amine compound include carbon atoms such as monoalkylamine having 1 to 4 carbon atoms such as methylamine, ethylamine, and isopropylamine, cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, cycloheptylamine, and cyclooctylamine. Examples thereof include 3 to 8 cycloalkylamines and benzylamines which may have a substituent. Examples of the substituent of benzylamine which may have a substituent include alkyls having 1 to 4 carbon atoms such as halogen atoms such as fluorine, chlorine and bromine, methyl groups, ethyl groups, propyl groups, isopropyl groups and tert-butyl groups. Groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, tert-butoxy groups and other alkoxy groups, nitro groups, and the like. These substituents can be used alone or at any position on the phenyl ring. Includes those in which ˜5 are the same or differently substituted. Among these benzylamines, benzylamine, p-methoxybenzylamine and 2,4,5-trimethoxybenzyl can be preferably exemplified, and among them, p-methoxybenzylamine is particularly preferable.
The amount of the amine compound used is usually 1 to 20 equivalents, preferably 2 to 10 equivalents, relative to 1 equivalent of the sugar chain compound represented by the formula (2).

本反応は、樟脳スルホン酸等の酸の存在下で行なうのが好ましい。
酸の使用量としては、式(1)で表される糖鎖化合物1当量に対して0.01〜5当量、好ましくは0.05〜1当量とすればよい。
This reaction is preferably carried out in the presence of an acid such as camphorsulfonic acid.
The amount of the acid used may be 0.01 to 5 equivalents, preferably 0.05 to 1 equivalent, with respect to 1 equivalent of the sugar chain compound represented by the formula (1).

本反応において使用する溶媒としては、水、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)等を挙げることができ、これらを単独又は2種以上を混合して使用してもよい。
溶媒の使用量としては特に制限されないが、式(2)で表される糖鎖化合物1重量部に対して、通常10〜2000重量部程度、好ましくは100〜1000重量部程度とすればよい。
Examples of the solvent used in this reaction include water, dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), tetrahydrofuran (THF) and the like. These may be used alone or in combination of two or more. May be.
The amount of the solvent used is not particularly limited, but is usually about 10 to 2000 parts by weight, preferably about 100 to 1000 parts by weight with respect to 1 part by weight of the sugar chain compound represented by the formula (2).

本反応は、通常0〜100℃、好ましくは10〜50℃程度で行なえばよく、通常1〜24時間程度で完結するが、TLC又はマススペクトル等で反応を追跡し、原料が消失する時点で反応を終了させればよい。   This reaction is usually performed at 0 to 100 ° C., preferably about 10 to 50 ° C., and is usually completed in about 1 to 24 hours. However, when the reaction is followed by TLC or mass spectrum, the raw material disappears. What is necessary is just to complete reaction.

本反応により、糖鎖還元末端にアミノ化合物が置換した式(7)で表されるアミノ糖鎖化合物を得ることができ、本化合物は塩基に対しても安定で、β脱離反応を生じず、糖鎖構造を維持することができる。なお、本反応の原料中に混入した式(6)で表されるヒドラジノ糖鎖化合物も同様に反応して、相当するアミノ置換化合物を与える。   By this reaction, an amino sugar chain compound represented by the formula (7) in which an amino compound is substituted at the reducing end of the sugar chain can be obtained. This compound is stable to a base and does not cause a β elimination reaction. The sugar chain structure can be maintained. In addition, the hydrazino sugar chain compound represented by the formula (6) mixed in the raw material of this reaction similarly reacts to give the corresponding amino-substituted compound.

Figure 2009155353
[式中、R、R、R、R及びAcは前記に同じ。Rは炭素数1〜4のアルキル基、炭素数3〜8のシクロアルキル基、置換基を有することのあるベンジル基を示す。]
Figure 2009155353
[Wherein, R 1 , R 2 , R 3 , R 4 and Ac are the same as above. R 8 represents an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or a benzyl group that may have a substituent. ]

ここで、Rの炭素数1〜4のアルキル基としては、メチル基、エチル基、イソプロピル基等を挙げることができ、炭素数3〜8のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等を挙げることができる。置換基を有することのあるベンジル基の置換基としては、フッ素、塩素、臭素等のハロゲン原子、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基等の炭素数1〜4のアルキル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、tert−ブトキシ基等のアルコキシ基、ニトロ基等を挙げることができ、これらの置換基が単独又はフェニル環上の任意の位置に、2〜5個が同一又は異なって置換しているものを包含する。これらのベンジル基の中でもベンジル基、p−メトキシベンジル基、2,4,5−トリメトキシ基を好ましく例示でき、中でもp−メトキシベンジル基が特に好ましい。 Here, examples of the alkyl group having 1 to 4 carbon atoms of R 8 include a methyl group, an ethyl group, and an isopropyl group. Examples of the cycloalkyl group having 3 to 8 carbon atoms include a cyclopropyl group and a cyclobutyl group. , Cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, and the like. Examples of the substituent of the benzyl group which may have a substituent include halogen atoms such as fluorine, chlorine and bromine, alkyls having 1 to 4 carbon atoms such as methyl, ethyl, propyl, isopropyl and tert-butyl groups. Groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, tert-butoxy groups and other alkoxy groups, nitro groups, and the like. These substituents can be used alone or at any position on the phenyl ring. Includes those in which ˜5 are the same or differently substituted. Among these benzyl groups, a benzyl group, a p-methoxybenzyl group and a 2,4,5-trimethoxy group can be preferably exemplified, and among them, a p-methoxybenzyl group is particularly preferable.

得られた式(7)で表されるアミノ糖鎖化合物及びその他の化合物をカラムクロマトグラフィーで処理することによって、式(7)で表されるアミノ糖鎖化合物を単離精製することができる。
クロマトグラフィーでの分離は、適宜、公知のクロマトグラフィーを単独で又は複数組み合わせて用いることにより行なうことができ、例えばゲルろ過クロマトグラフィーで精製後、逆相系のカラムクロマトグラフィーを用いて精製することができる。
逆相系のカラムとしては、例えば、ODS、Phenyl系、ニトリル系や、陰イオン交換系のカラム等を挙げることができるが、式(7)で表されるアミノ糖鎖化合物のアミノ基部がODSカラムのオクタデシル基と強い相互作用を生み、分離能に優れる。
分離条件等は適宜、公知の条件を参照して調整すればよい。
得られる式(7)で表されるアミノ糖鎖化合物は新規化合物である。
The amino sugar chain compound represented by the formula (7) can be isolated and purified by treating the amino sugar chain compound represented by the formula (7) and other compounds by column chromatography.
Separation by chromatography can be appropriately performed by using known chromatography alone or in combination, for example, purification by gel filtration chromatography and then purification by reverse phase column chromatography. Can do.
Examples of the reversed-phase column include ODS, Phenyl, nitrile, and anion exchange columns, and the amino group of the amino sugar chain compound represented by the formula (7) is ODS. It produces a strong interaction with the octadecyl group of the column and excels in resolution.
The separation conditions and the like may be appropriately adjusted with reference to known conditions.
The resulting amino sugar chain compound represented by the formula (7) is a novel compound.

上記クロマトグラフィーにより単離した式(7)で表されるアミノ糖鎖化合物に酸を作用させることで目的の式(2)で表される糖鎖化合物とすることができる。
使用する酸としては、塩酸、硫酸、リン酸等の鉱酸類、蟻酸、酢酸、トリフルオロ酢酸等のカルボン酸類を挙げることができ、カルボン酸類が好ましく、中でも酢酸が使用上安全且つ簡便で好ましい。
酸の使用量としては、式(7)で表されるアミノ糖鎖化合物1当量に対して、1当量以上であれば特に制限されず、1〜5当量が好ましい。通常は式(7)の化合物の水溶液が十分に酸性を示す程度に酸を加えるのが好ましい。
反応は0〜50℃程度、好ましくは10〜40℃程度とすればよく、通常1〜15時間程度、好ましくは2〜10時間程度で完結するが、TLCやマススペクトルで反応を追跡して、終了を確認するのが好ましい。
得られた式(2)で表される糖鎖化合物は、クロマトグラフィー等で精製することができる。
The target sugar chain compound represented by the formula (2) can be obtained by allowing an acid to act on the amino sugar chain compound represented by the formula (7) isolated by the chromatography.
Examples of the acid to be used include mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid, and carboxylic acids such as formic acid, acetic acid and trifluoroacetic acid. Carboxylic acids are preferred, and among them, acetic acid is preferred because it is safe and simple to use.
The amount of the acid used is not particularly limited as long as it is 1 equivalent or more with respect to 1 equivalent of the amino sugar chain compound represented by the formula (7), and 1 to 5 equivalents are preferable. Usually, it is preferable to add an acid so that the aqueous solution of the compound of the formula (7) is sufficiently acidic.
The reaction may be performed at about 0 to 50 ° C., preferably about 10 to 40 ° C., and is usually completed for about 1 to 15 hours, preferably about 2 to 10 hours, but the reaction is traced by TLC or mass spectrum, It is preferable to confirm the completion.
The obtained sugar chain compound represented by the formula (2) can be purified by chromatography or the like.

以下に実施例を挙げて説明するが、本発明は何らこれら実施例に限定されるものではない。   Examples will be described below, but the present invention is not limited to these examples.

実施例1
糖鎖アスパラギン化合物(1−1)10mgにヒドラジン水和物(ヒドラジン55%)10mlを加えて室温で溶解させた。これを100℃で加熱還流させた。TLC(イソプロパノール:1M酢酸アンモニウム水溶液=1:1)で反応を追跡し、TLC上で原料が消失した時点で加熱還流を止めた。なお、糖鎖アスパラギン化合物(1−1)においてヒドラジン水和物添加直後にFmoc基が脱離するので、Fmoc基が脱離した糖鎖アスパラギン化合物を原料として扱った。
Example 1
To 10 mg of the sugar chain asparagine compound (1-1), 10 ml of hydrazine hydrate (hydrazine 55%) was added and dissolved at room temperature. This was heated to reflux at 100 ° C. The reaction was followed by TLC (isopropanol: 1M ammonium acetate aqueous solution = 1: 1), and when the raw material disappeared on TLC, the reflux with heating was stopped. In the sugar chain asparagine compound (1-1), since the Fmoc group was released immediately after the addition of hydrazine hydrate, the sugar chain asparagine compound from which the Fmoc group was eliminated was handled as a raw material.

Figure 2009155353
Figure 2009155353

反応液を減圧下で乾固するまで濃縮し、得られた残渣に水1mlを加えて溶かした。この水溶液に炭酸水素ナトリウム粉末を飽和するまで加えた後、無水酢酸(0.1mL)を加えた。反応をTLC(イソプロパノール:1M酢酸アンモニウム水溶液=1.5:1)でアセチル化の進行を追跡した。またTLC(イソプロパノール:1M酢酸アンモニウム水溶液=1:1)で原料の消失を確認して、炭酸水素ナトリウム粉末を反応液のpHが7〜8になるように加えて中和した。
反応液を減圧下で乾固するまで濃縮し、得られた残渣を水1mlに溶かし、ゲルろ過クロマトグラフィー(カラム担体:Sephadex G−25、カラムサイズ:φ16mm×345mm、流速:0.8ml/min、展開溶媒:水)で化合物(5−1)を含むフラクションを分取し、減圧下濃縮した。
The reaction solution was concentrated to dryness under reduced pressure, and 1 ml of water was added to the resulting residue to dissolve it. To this aqueous solution was added sodium hydrogen carbonate powder until saturation, followed by acetic anhydride (0.1 mL). The progress of acetylation was followed by TLC (isopropanol: 1M aqueous ammonium acetate = 1.5: 1). Further, the disappearance of the raw materials was confirmed by TLC (isopropanol: 1M ammonium acetate aqueous solution = 1: 1), and neutralized by adding sodium bicarbonate powder so that the pH of the reaction solution was 7-8.
The reaction solution was concentrated to dryness under reduced pressure, and the resulting residue was dissolved in 1 ml of water and subjected to gel filtration chromatography (column carrier: Sephadex G-25, column size: φ16 mm × 345 mm, flow rate: 0.8 ml / min). The fraction containing the compound (5-1) was separated with a developing solvent: water and concentrated under reduced pressure.

Figure 2009155353
Figure 2009155353

得られた濃縮残渣の5mgを水1mlに溶かし、酢酸572μlを加えて酢酸水溶液とした。室温で撹拌し、反応をTLC(イソプロパノール:1M酢酸アンモニウム水溶液=1.5:1)で追跡した。6.5時間後、反応終了を確認し、1M水酸化ナトリウム水溶液で中和し、凍結乾燥して粉体とした。   5 mg of the obtained concentrated residue was dissolved in 1 ml of water, and 572 μl of acetic acid was added to make an acetic acid aqueous solution. The mixture was stirred at room temperature, and the reaction was followed by TLC (isopropanol: 1M aqueous ammonium acetate = 1.5: 1). After 6.5 hours, the completion of the reaction was confirmed, neutralized with 1M aqueous sodium hydroxide solution, and lyophilized to obtain a powder.

得られた粉体をゲルろ過カラムクロマトグラフィー(前記条件と同じ。)で精製し、目的とする化合物(2−1)を含むフラクションを分取し、減圧下濃縮して化合物(2−1)を得た。ただし、未反応原料由来の化合物(1−2)及びβ脱離した化合物(8)の混入を認めた。
収量:8.9mg〔化合物(2−1):化合物(2−2):化合物(8)=90:8:2〕
The obtained powder is purified by gel filtration column chromatography (same as above), fractions containing the target compound (2-1) are collected, concentrated under reduced pressure, and compound (2-1). Got. However, contamination of the compound (1-2) derived from the unreacted raw material and the β-eliminated compound (8) was observed.
Yield: 8.9 mg [Compound (2-1): Compound (2-2): Compound (8) = 90: 8: 2]

化合物(2−1)
H−NMR(400MHz,295K,HOD=4.81), 5.28(bd,1H,GlcNAc1−H−1), 5.23(s,1H,Man4−H−1), 5.03(s,1H,Man4'−H−1), 4.86(s,1H,Man3−H−1), 4.70(m,3H, GlcNAc2,5,5'−H−1), 4.53(d,2H,Gal6,6'−H−1), 4.34(bs,1H,Man3−H−2), 4.28(bd,1H,Man4−H−2), 4.20(bd,1H,Man4'−H−2), 2.76(bdd,2H,NeuAc7,7'−H−3eq), 2.17(s,3H,Ac), 2.16(s,6H,Ac×2), 2.13(s,6H,Ac×3), 1.80(dd,2H,NeuAc7,7'−H−3ax).
Mass: ESI calcd for 2222, found;1110[(M−2)−2
化合物(8)
Mass calcd for 2019, found;1008.3 [(M−2)−2
Compound (2-1)
1 H-NMR (400 MHz, 295 K, HOD = 4.81), 5.28 (bd, 1H, GlcNAc1-H-1), 5.23 (s, 1H, Man4-H-1), 5.03 ( s, 1H, Man4'-H-1), 4.86 (s, 1H, Man3-H-1), 4.70 (m, 3H, GlcNAc2, 5, 5'-H-1), 4.53 (D, 2H, Gal6, 6'-H-1), 4.34 (bs, 1H, Man3-H-2), 4.28 (bd, 1H, Man4-H-2), 4.20 (bd , 1H, Man4′-H-2), 2.76 (bdd, 2H, NeuAc7, 7′-H-3 eq), 2.17 (s, 3H, Ac), 2.16 (s, 6H, Ac × 2), 2.13 (s, 6H, Ac × 3), 1.80 (dd, 2H, NeuAc7, 7′-H-3ax).
Mass: ESI calcd for 2222, found; 1110 [(M-2) −2 ]
Compound (8)
Mass calcd for 2019, found; 1008.3 [(M-2) −2 ]

Figure 2009155353
Figure 2009155353

Figure 2009155353
Figure 2009155353

Figure 2009155353
Figure 2009155353

実施例2
実施例1と同様にして得た化合物(2−1)、化合物(1−2)及び化合物(8)の混合物45mgをDMSO3mlに溶解させた。この溶液にp−メトキシベンジルアミン2mlと樟脳スルホン酸5mgを加え、恒温層で約37℃に維持して反応させた。
反応をマススペクトル(1110/−2ピークの消滅と1170/−2ピークの生成)で追跡し、反応終了を確認した。反応液に10mMアンモニア水を加えて2倍に希釈し、ゲルろ過カラムクロマトグラフィー(カラム担体:Sephadex G−25、カラムサイズ:φ10mm×900mm、流速:0.8ml/min、展開溶媒:50mM炭酸アンモニウム水溶液又はアンモニア水(pH9〜10))で精製し、化合物(7−1)を含有するフラクションを分取し、減圧下濃縮し、凍結乾燥して化合物(7−1)の粉末を得た。ただし、化合物(1−2)及び化合物(9)の混入を認めた。
Example 2
45 mg of a mixture of the compound (2-1), the compound (1-2) and the compound (8) obtained in the same manner as in Example 1 was dissolved in 3 ml of DMSO. To this solution, 2 ml of p-methoxybenzylamine and 5 mg of camphor sulfonic acid were added, and the reaction was performed while maintaining the temperature at about 37 ° C. in a constant temperature layer.
The reaction was followed by mass spectrum (disappearance of 1110 / -2 peak and generation of 1170 / -2 peak) to confirm the completion of the reaction. 10 mM ammonia water was added to the reaction solution to dilute it twice, and gel filtration column chromatography (column carrier: Sephadex G-25, column size: φ10 mm × 900 mm, flow rate: 0.8 ml / min, developing solvent: 50 mM ammonium carbonate) Purification with an aqueous solution or aqueous ammonia (pH 9 to 10)), fractions containing the compound (7-1) were collected, concentrated under reduced pressure, and lyophilized to obtain a powder of the compound (7-1). However, mixing of the compound (1-2) and the compound (9) was observed.

Figure 2009155353
Figure 2009155353

Figure 2009155353
Figure 2009155353

得られた粉末20mgを10mM炭酸水素アンモニウム水溶液に溶かし、10mM炭酸水素アンモニウム水溶液で完全に置換したODSカラム(カラム担体:Cosmosil 75C18−OPN(ナカライテスク株式会社製)、カラムサイズ:0.75×0.75×10cm)に充填した。その後、10mM炭酸水素アンモニウム水溶液を担体の5倍量流し、化合物(1−2)を流出させた。その後、10mM炭酸水素アンモニウム水溶液:アセトニトリル(=98:2)を担体の5倍量流し、担体を洗浄後、10mM炭酸水素アンモニウム水溶液:アセトニトリル(=96:4)を流して、化合物(9)の流出後、化合物(7−1)を分取した。
収量:9mg
化合物(7−1)
H−NMR(400MHz,HOD=4.81), δ5.11(s,1H,Man4−H−1), 4.93(s,1H,Man4'−H−1), 4.75(s,1H,Man3−H−1), 4.59(m,3H,GlcNAc2, 5,5'−H−1), 4.43(d,2H,Gal6, 6'−H−1), 4.24(bs,1H,Man3−H−2), 4.18(bd,1H,Man4−H−2), 4.10(bd,1H,Man4'−H−2), 2.65(bdd,2H,NeuAc7,7'−H−3eq), 1.71(dd,2H,NeuAc7,7'−H−3ax).
Mass: ESI calcd for 2341.8, found;1169.9[(M−2)−2
化合物(9)
Mass: ESI calcd for 2139.8, found; 1068.4[(M−2)−2
The resulting powder 20mg dissolved in 10mM ammonium bicarbonate solution, ODS column (column carrier, which was completely replaced with 10mM ammonium bicarbonate solution: Cosmosil 75C 18 -OPN (manufactured by Nacalai Tesque, Inc.), column size: 0.75 × 0.75 × 10 cm). Thereafter, a 10 mM aqueous ammonium hydrogen carbonate solution was flowed in an amount 5 times that of the carrier to discharge the compound (1-2). Thereafter, 10 mM ammonium hydrogen carbonate aqueous solution: acetonitrile (= 98: 2) was allowed to flow 5 times the amount of the carrier, and after washing the carrier, 10 mM ammonium hydrogen carbonate aqueous solution: acetonitrile (= 96: 4) was caused to flow. After the outflow, the compound (7-1) was collected.
Yield: 9mg
Compound (7-1)
1 H-NMR (400 MHz, HOD = 4.81), δ 5.11 (s, 1H, Man4-H-1), 4.93 (s, 1H, Man4′-H-1), 4.75 (s , 1H, Man3-H-1), 4.59 (m, 3H, GlcNAc2, 5,5'-H-1), 4.43 (d, 2H, Gal6, 6'-H-1), 4. 24 (bs, 1H, Man3-H-2), 4.18 (bd, 1H, Man4-H-2), 4.10 (bd, 1H, Man4′-H-2), 2.65 (bdd, 2H, NeuAc7, 7'-H-3eq), 1.71 (dd, 2H, NeuAc7, 7'-H-3ax).
Mass: ESI calc for 2341.8, found; 1169.9 [(M-2) −2 ]
Compound (9)
Mass: ESI calcd for 2139.8, found; 1068.4 [(M-2) −2 ]

実施例3
実施例2により得られた化合物(7−1)3mgに水1mlを加えて水溶液(pH10)とした後、酢酸約20μlを加えた。この時のpHは約4であった。
反応をマススペクトル(1170/−2ピークの消滅と1110/−2ピークの生成)で追跡し、反応終了を確認した。反応液に水酸化ナトリウム水溶液を加えてpH5〜6に調整し、ゲルろ過カラムクロマトグラフィー(カラム担体:Sephadex G−25、カラムサイズ:φ10mm×900mm、流速:0.8ml/min、展開溶媒:水)で精製し、得られたフラクションを減圧下濃縮して純度(98%)の化合物(2−1)を2.5mg得た。
得られた化合物(2−1)のNMR及びマススペクトルデータは、前記実施例1で得られたものと同一であった。
Example 3
After adding 1 ml of water to 3 mg of the compound (7-1) obtained in Example 2 to make an aqueous solution (pH 10), about 20 μl of acetic acid was added. The pH at this time was about 4.
The reaction was followed by mass spectrum (disappearance of 1170 / -2 peak and generation of 1110 / -2 peak) to confirm the completion of the reaction. Sodium hydroxide aqueous solution was added to the reaction solution to adjust to pH 5-6, and gel filtration column chromatography (column carrier: Sephadex G-25, column size: φ10 mm × 900 mm, flow rate: 0.8 ml / min, developing solvent: water) The obtained fraction was concentrated under reduced pressure to obtain 2.5 mg of compound (2-1) having a purity (98%).
The NMR and mass spectral data of the obtained compound (2-1) were the same as those obtained in Example 1.

Claims (7)

式(1)で表される糖鎖アスパラギン化合物にヒドラジン水和物を作用させることを特徴とする式(2)で表される糖鎖化合物の製造方法。
Figure 2009155353
[式中、R、R及びRは同一又は異なって水素原子、糖残基を示す。Rは水素原子又はフコース残基を示す。Acはアセチル基を示す。Rは水素原子、脂溶性の保護基、アミノ酸残基、又はペプチド残基を示し、Rはカルボキシル基又は基−CONHRを示す。Rは、アミノ酸残基又はペプチド残基を示す。]
Figure 2009155353
[式中、R、R、R、R及びAcは前記に同じ。]
A method for producing a sugar chain compound represented by formula (2), wherein hydrazine hydrate is allowed to act on a sugar chain asparagine compound represented by formula (1).
Figure 2009155353
[Wherein, R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a sugar residue. R 4 represents a hydrogen atom or a fucose residue. Ac represents an acetyl group. R 5 represents a hydrogen atom, a fat-soluble protecting group, an amino acid residue, or a peptide residue, and R 6 represents a carboxyl group or a group —CONHR 7 . R 7 represents an amino acid residue or a peptide residue. ]
Figure 2009155353
[Wherein, R 1 , R 2 , R 3 , R 4 and Ac are the same as above. ]
糖鎖還元末端側のN−アセチルグルコサミンがβ脱離する前にヒドラジン水和物の作用を終了させることを特徴とする請求項1記載の製造方法。 The process according to claim 1, wherein the action of hydrazine hydrate is terminated before β-elimination of N-acetylglucosamine on the sugar chain reducing terminal side. (A)式(1)で表される糖鎖アスパラギン化合物にヒドラジン水和物を作用させる工程、
(B)アセチル化剤を作用させる工程、
(C)酸を作用させる工程、
(D)炭素数1〜4のモノアルキルアミン、炭素数3〜8のシクロアルキルアミン及び置換基を有することのあるベンジルアミンから選ばれる少なくとも1種のアミン化合物を作用させる工程、
(E)カラムクロマトグラフィーで精製する工程、
(F)酸を作用させる工程、
をこの順序で実施することを特徴とする式(2)で表される糖鎖化合物の製造方法。
(A) a step of allowing hydrazine hydrate to act on the sugar chain asparagine compound represented by formula (1),
(B) a step of allowing an acetylating agent to act;
(C) a step of allowing an acid to act,
(D) a step of acting at least one amine compound selected from monoalkylamines having 1 to 4 carbon atoms, cycloalkylamines having 3 to 8 carbon atoms and benzylamine which may have a substituent;
(E) a step of purification by column chromatography,
(F) a step of allowing an acid to act,
Are performed in this order, The manufacturing method of the sugar_chain | carbohydrate compound represented by Formula (2) characterized by the above-mentioned.
(A)のヒドラジン水和物の作用を、糖鎖還元末端側のN−アセチルグルコサミンがβ脱離する前に終了させる請求項3記載の製造方法。 The process according to claim 3, wherein the action of hydrazine hydrate (A) is terminated before β-elimination of N-acetylglucosamine on the sugar chain reducing terminal side. (D)のアミン化合物が、p−メトキシベンジルアミンである請求項3記載の製造方法。 The production method according to claim 3, wherein the amine compound of (D) is p-methoxybenzylamine. (C)及び(F)の酸が酢酸である請求項3記載の製造方法。 The process according to claim 3, wherein the acid of (C) and (F) is acetic acid. 式(7)で表されるアミノ糖鎖化合物。
Figure 2009155353
[式中、R、R、R、R及びAcは前記に同じ。Rは炭素数1〜4のアルキル基、炭素数3〜8のシクロアルキル基、置換基を有することのあるベンジル基を示す。]
An amino sugar chain compound represented by the formula (7):
Figure 2009155353
[Wherein, R 1 , R 2 , R 3 , R 4 and Ac are the same as above. R 8 represents an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or a benzyl group that may have a substituent. ]
JP2006092702A 2006-03-30 2006-03-30 Method for producing sugar chain compound Pending JP2009155353A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006092702A JP2009155353A (en) 2006-03-30 2006-03-30 Method for producing sugar chain compound
PCT/JP2007/057614 WO2007114482A1 (en) 2006-03-30 2007-03-29 Process for production of sugar chain compound
TW096110943A TW200804429A (en) 2006-03-30 2007-03-29 Process for the preparation of sugar-chain compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092702A JP2009155353A (en) 2006-03-30 2006-03-30 Method for producing sugar chain compound

Publications (1)

Publication Number Publication Date
JP2009155353A true JP2009155353A (en) 2009-07-16

Family

ID=38563742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092702A Pending JP2009155353A (en) 2006-03-30 2006-03-30 Method for producing sugar chain compound

Country Status (3)

Country Link
JP (1) JP2009155353A (en)
TW (1) TW200804429A (en)
WO (1) WO2007114482A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191313A1 (en) * 2021-03-12 2022-09-15 第一三共株式会社 Glycan, and method for producing medicine containing glycan
WO2024053574A1 (en) * 2022-09-09 2024-03-14 第一三共株式会社 Novel oligosaccharide, production intermediate for novel oligosaccharide, production method for novel oligosaccharide, and production method for production intermediate for novel oligosaccharide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163485A (en) * 2009-01-13 2010-07-29 Teijin Ltd Solution of carboxy-polysaccharide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343264C (en) * 2001-06-19 2007-10-17 大塚化学株式会社 Process for producing sugar chain asparagine derivative
JP4271924B2 (en) * 2002-10-10 2009-06-03 日本曹達株式会社 Method for producing 4-mercaptophenols
WO2004060915A2 (en) * 2002-12-03 2004-07-22 Sloan-Kettering Institute For Cancer Research Prostate specific antigens, conjugates thereof, methods for their preparation and uses thereof.
TWI330641B (en) * 2002-12-24 2010-09-21 Yasuhiro Kajihara Sugar chain asparagine derivatives

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191313A1 (en) * 2021-03-12 2022-09-15 第一三共株式会社 Glycan, and method for producing medicine containing glycan
WO2024053574A1 (en) * 2022-09-09 2024-03-14 第一三共株式会社 Novel oligosaccharide, production intermediate for novel oligosaccharide, production method for novel oligosaccharide, and production method for production intermediate for novel oligosaccharide

Also Published As

Publication number Publication date
TW200804429A (en) 2008-01-16
WO2007114482A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
EP2045257B1 (en) Process for producing di(pyrimidine nucleoside 5&#39;-)polyphosphate
US8288526B2 (en) Inosine derivatives and production methods therefor
JP7373598B2 (en) Method for producing dinucleoside polyphosphate compounds
EP3490988B1 (en) New compound and process
JP2009155353A (en) Method for producing sugar chain compound
JP3906488B2 (en) Method for producing purine derivatives
US6252075B1 (en) Process for producing purine derivatives
CN110551144B (en) Preparation method of amoxicillin
CN103087080B (en) The preparation method of a kind of Method of cefcapene pivoxil hydrochloride and synthetic intermediate thereof
AU738462B2 (en) Process for the synthesis of chloropurine intermediates
EP3307717B1 (en) A novel process for preparing enzalutamide
JPH11255807A (en) Active ester derivative of sugar-chained asparagine and synthetic intermediate
US7081548B2 (en) Process for preparing 3-chloro-5-nitrotoluene
JPH0959292A (en) Production of 4-aminopyrimidine nucleoside
CN105085595B (en) A kind of method of deacylation base protection 2,6 halosubstituted purine nucleosides of synthesis
WO2000020424A1 (en) PROCESS FOR THE PREPARATION OF β-HYDROXY ESTERS
JP7405991B2 (en) Method for producing uridine 5&#39;-diphosphate (UDP), its salt or its hydrate
JPS61263995A (en) Production of cytosine nucleoside
JP4980667B2 (en) Process for producing unnatural sugar chain derivative and raw material thereof
JP3023804B2 (en) Method for producing 3&#39;-deoxy-3&#39;-fluorothymidine
JP2015172013A (en) Method of producing aminoacyl nucleotide compound
CN115215921A (en) Preparation method of connection base drug conjugate and intermediate thereof
JP4627625B2 (en) Method for producing N-acetylcytidines
CN115385926A (en) Preparation method of connection base drug conjugate and intermediate thereof
JP2007137843A (en) Method for producing ribofuranose compound and purine nucleoside compound