JPH11255807A - Active ester derivative of sugar-chained asparagine and synthetic intermediate - Google Patents

Active ester derivative of sugar-chained asparagine and synthetic intermediate

Info

Publication number
JPH11255807A
JPH11255807A JP8288298A JP8288298A JPH11255807A JP H11255807 A JPH11255807 A JP H11255807A JP 8288298 A JP8288298 A JP 8288298A JP 8288298 A JP8288298 A JP 8288298A JP H11255807 A JPH11255807 A JP H11255807A
Authority
JP
Japan
Prior art keywords
asparagine
sugar chain
active ester
sugar
ester derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8288298A
Other languages
Japanese (ja)
Inventor
Toshiyuki Inazu
敏行 稲津
Masamori Mizuno
真盛 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Institute
Original Assignee
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Institute filed Critical Noguchi Institute
Priority to JP8288298A priority Critical patent/JPH11255807A/en
Publication of JPH11255807A publication Critical patent/JPH11255807A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an active ester derivative of sugar-chained asparagine, by developing a derivative capable of introducing a natural sugar chain into a specific substrate through an organic chemical procedure. SOLUTION: An active ester derivative of sugar-chained asparagine is of formula I (wherein X represents formula II, in which Y is C of N; FMOC is 9-fluorenylmethyloxycarbonyl; and R<1> , R<2> , and R<3> are each H, a monosaccharide, or a sugar chain). This compd. is a derivative capable of introducing a sugar chain into an amino group-bearing derivative, and has a wide range of the applicability and a great industrial value, in that this compd. can introduce a sugar chain with cell recognition ability into a derivative of known medicines, reagents, agricultural chemicals, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は糖鎖アスパラギン活
性エステル誘導体に関する。糖鎖は、その細胞表層での
機能が解明されるに伴い、医薬や農薬などの分野での利
用が期待されている化合物群である。
[0001] The present invention relates to an active ester derivative of an asparagine-linked oligosaccharide. Sugar chains are a group of compounds expected to be used in fields such as medicines and agricultural chemicals as their functions on cell surfaces are elucidated.

【0002】[0002]

【従来の技術】糖鎖の機能が解明されつつあるが、その
合成は極めて困難である。化学的に合成する方法として
は様々な方法が報告されているが、いずれも長鎖の糖鎖
を工業的に製造するレベルには達していない。
2. Description of the Related Art The functions of sugar chains are being elucidated, but their synthesis is extremely difficult. Various methods for chemically synthesizing have been reported, but none of them has reached the level of industrially producing long-chain sugar chains.

【0003】[0003]

【発明が解決しようとする課題】一方で、酵素反応によ
る糖鎖の調製も盛んに研究されている。しかし、逐次単
糖を結合させる方法では、結果的に化学法と同等であ
る。これに対し、天然糖鎖を特定の基質に直接導入する
方法として、エンド酵素による方法が報告されている。
たとえば、本発明者らはMucor hiemalis由来のエンド-
β-N-アセチルグルコサミナーゼの糖鎖転移活性を利用
し、天然糖鎖を丸ごとN-アセチルグルコサミン1残基を
有する基質へ転移できることを明らかにしている。しか
しながら、これらの方法では酵素の供給量に限りがある
ことから大量合成などに難があると言わざるを得ない。
On the other hand, the preparation of sugar chains by enzymatic reactions has been actively studied. However, the method of successively binding monosaccharides is equivalent to a chemical method as a result. In contrast, an endoenzyme method has been reported as a method for directly introducing a natural sugar chain into a specific substrate.
For example, we have found an endo-derived from Mucor hiemalis.
By utilizing the sugar chain transfer activity of β-N-acetylglucosamine, it has been demonstrated that whole sugar chains can be transferred to a substrate having one residue of N-acetylglucosamine. However, in these methods, the amount of the enzyme supplied is limited, so it must be said that there is a difficulty in mass synthesis and the like.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは有
機化学的な手法で、天然糖鎖を特定の基質へ導入できる
誘導体の開発を目指し、鋭意検討した結果、天然由来の
糖鎖アスパラギンをFmoc(9-フルオレニルメチルオキシ
カルボニル)化して得られるFmoc糖鎖アスパラギンを単
離できること、これから誘導される、対応する活性エス
テル誘導体が、アミノ化合物を容易にアシル化できるこ
とを見出し、本発明に到達した。
Means for Solving the Problems Accordingly, the present inventors have conducted intensive studies with the aim of developing a derivative capable of introducing a natural sugar chain to a specific substrate by an organic chemistry technique. It was found that Fmoc (9-fluorenylmethyloxycarbonyl) can be isolated from Fmoc sugar chain asparagine, and that the corresponding active ester derivative derived therefrom can easily acylate an amino compound. Reached.

【0005】すなわち、本発明の要旨は、非プロトン性
極性溶媒中、一般式化2で表される糖鎖アスパラギン誘
導体から製造することを特徴とする、一般式化1で示さ
れる糖鎖アスパラギン活性エステル誘導体とその合成中
間体及び製造法である。
[0005] That is, the gist of the present invention is to prepare an asparagine-linked sugar chain represented by the general formula 1 characterized by being produced from an asparagine derivative of the sugar chain represented by the general formula 2 in an aprotic polar solvent. An ester derivative, a synthetic intermediate thereof, and a production method.

【化2】Embedded image

【化1】Embedded image

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0007】まず、一般式化2で表される糖鎖アスパラ
ギン活性エステル誘導体の合成中間体となるFmoc糖鎖ア
スパラギンについて説明する。
[0007] First, the Fmoc sugar asparagine as an intermediate for the synthesis of the sugar chain asparagine active ester derivative represented by the general formula 2 will be described.

【0008】Fmoc糖鎖アスパラギンの原料となる糖鎖ア
スパラギンは、アスパラギン側鎖アミド基の窒素原子
に、周知のアスパラギン結合型糖タンパク質糖鎖と呼ば
れる糖鎖、すなわち、N-アセチルグルコサミン2残基、
マンノース3残基からなる母核構造の非還元末端に種々
の糖鎖が結合した糖鎖あるいは母核5糖のみからなる糖
鎖が結合した構造であれば、特に制限はない。その調製
法にも何ら制限はなく、化学的手法で合成した誘導体で
もかまわないが、現実的には天然糖鎖を利用する方法が
優れている。
[0008] Asparagine, which is a raw material of Fmoc asparagine, has a sugar chain called a well-known asparagine-linked glycoprotein sugar chain, ie, two residues of N-acetylglucosamine, attached to a nitrogen atom of an asparagine side chain amide group.
There is no particular limitation as long as a sugar chain in which various sugar chains are bonded to the non-reducing terminal of the mother core structure consisting of three mannose residues or a sugar chain consisting of only the mother pentasaccharide is bonded. The preparation method is not limited at all, and a derivative synthesized by a chemical method may be used, but a method using a natural sugar chain is actually superior.

【0009】天然糖鎖を利用する方法としては、天然糖
タンパク質をタンパク質分解酵素で消化させ、得られる
アミノ酸と糖鎖アスパラギンの混合物から単離する方法
が報告されている。例えば、卵白アルブミンから糖鎖ア
スパラギンを調製した方法がTaiらによって報告されて
いる。(J. Biol. Chem誌250巻8569頁1975年参照)使用
する糖タンパク質やタンパク質分解酵素、精製の方法な
どにも何ら制限はない。
As a method using a natural sugar chain, a method has been reported in which a natural glycoprotein is digested with a proteolytic enzyme and isolated from a mixture of the resulting amino acid and asparagine sugar chain. For example, Tai et al. Reported a method for preparing a sugar chain asparagine from ovalbumin. (See J. Biol. Chem., Vol. 250, p. 8569, 1975.) There are no restrictions on the glycoproteins, proteolytic enzymes, or purification methods used.

【0010】上述のように調製された糖鎖アスパラギン
の糖鎖としては、高マンノース型糖鎖、複合型糖鎖、混
成型糖鎖が知られているが、そのいずれでも使用でき
る。また、いずれの型の糖鎖にも構成単糖の違いから様
々な種類の糖鎖が得られるが、そのいずれであっても、
また、混合物であっても何ら差し支えない。
[0010] As the sugar chain of asparagine sugar chain prepared as described above, a high-mannose type sugar chain, a complex type sugar chain, and a mixed type sugar chain are known, and any of them can be used. In addition, various types of sugar chains can be obtained from any type of sugar chains due to the difference in the constituent monosaccharides.
Also, a mixture may be used.

【0011】次に、糖鎖アスパラギンのFmoc化について
説明する。
Next, the conversion of asparagine sugar chain to Fmoc will be described.

【0012】Fmoc化する方法には何ら制限はない。通
常、糖鎖アスパラギンを塩基水溶液と有機溶媒の混合溶
液に溶解または懸濁させ、次いで、周知のFmoc化剤を反
応させる。周知のFmoc化剤としては、対応するハロゲン
化物、活性エステル型の誘導体などを挙げることができ
る。具体的には、塩化物やコハク酸イミドエステルが挙
げられ、特に、コハク酸イミドエステル誘導体(Fmoc-OS
u)が好ましい。
There is no limitation on the method of converting into Fmoc. Usually, asparagine-linked oligosaccharides are dissolved or suspended in a mixed solution of an aqueous base and an organic solvent, and then reacted with a well-known Fmoc agent. Well-known Fmoc agents include corresponding halides, active ester-type derivatives and the like. Specific examples include chlorides and succinimide esters, and particularly, succinimide ester derivatives (Fmoc-OS
u) is preferred.

【0013】塩基水溶液に使用する塩基としては、周知
の塩基を使用できる。無機塩基としては、炭酸ナトリウ
ム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリ
ウムなどを挙げることができる。有機塩基としては、ピ
リジン、ジイソプロピルエチルアミンなどの三級アミン
を挙げることができる。しかし、通常無機塩基を使用す
る。
As the base used in the aqueous base solution, a known base can be used. Examples of the inorganic base include sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like. Examples of the organic base include tertiary amines such as pyridine and diisopropylethylamine. However, usually an inorganic base is used.

【0014】使用する有機溶媒としては水と混和できる
溶媒が好ましい。具体的には、メタノール、エタノー
ル、N,N-ジメチルホルムアミド、1,4-ジオキサン、ジメ
チルスルホキシドなどを挙げることができる。これらの
中では、1,4-ジオキサン、ジメチルスルホキシドが好ま
しい。
The organic solvent used is preferably a solvent miscible with water. Specific examples include methanol, ethanol, N, N-dimethylformamide, 1,4-dioxane, dimethylsulfoxide and the like. Of these, 1,4-dioxane and dimethyl sulfoxide are preferred.

【0015】反応にあたっては、Fmoc化剤を過剰に用い
ることも可能であるが、通常、1.0当量から3当量の
範囲で、好ましくは、1.0〜1.5当量の範囲であ
る。
In the reaction, it is possible to use an excess of the Fmoc agent, but it is usually in the range of 1.0 to 3 equivalents, preferably in the range of 1.0 to 1.5 equivalents.

【0016】得られたFmoc糖鎖アスパラギンは高速液体
クロマト、疎水クロマト、ゲルクロマト、イオン交換な
ど通常の精製法で容易に精製できる。
The obtained Fmoc sugar chain asparagine can be easily purified by ordinary purification methods such as high performance liquid chromatography, hydrophobic chromatography, gel chromatography and ion exchange.

【0017】つぎに、本発明化合物である一般式化1で
示される糖鎖アスパラギン活性エステル誘導体について
説明する。
Next, the sugar chain asparagine active ester derivative represented by the general formula 1 which is the compound of the present invention will be described.

【0018】本発明化合物は、一般式化2で表される糖
鎖アスパラギン活性エステル誘導体の合成中間体である
Fmoc糖鎖アスパラギンから周知のベンゾトリアゾール系
活性エステルへ誘導することで調製できる。具体的には
1-ヒドロキシベンゾトリアゾール、3-オキシ-4-オキソ-
3,4-ジヒドロ-1,2,3-ベンゾトリアジンなどの化合物群
とカルボン酸から形成される活性エステルを挙げること
ができる。
The compound of the present invention is an intermediate for synthesizing an active ester derivative of an asparagine-linked oligosaccharide represented by the general formula (2).
It can be prepared by deriving Fmoc sugar chain asparagine into a well-known benzotriazole-based active ester. In particular
1-hydroxybenzotriazole, 3-oxy-4-oxo-
Active esters formed from a group of compounds such as 3,4-dihydro-1,2,3-benzotriazine and a carboxylic acid can be mentioned.

【0019】その調製法についても周知の方法を適用で
きるが、糖水酸基との反応性に乏しい試薬を用いる必要
がある。例えば、N,N-ジシクロヘキシルカルボジイミド
あるいはその類縁体との併用などもあげられるが、いわ
ゆるカップリング試薬が操作上簡便である。
Although a well-known method can be applied to the preparation, it is necessary to use a reagent having low reactivity with a sugar hydroxyl group. For example, N, N-dicyclohexylcarbodiimide or a combination thereof with N, N-dicyclohexylcarbodiimide can be used, but a so-called coupling reagent is convenient in operation.

【0020】反応は、一般式化2で表される糖鎖アスパ
ラギン活性エステル誘導体の合成中間体であるFmoc糖鎖
アスパラギンが溶解する非プロトン性極性溶媒中で行う
ことが重要である。こうした非プロトン性極性溶媒とし
て、具体的には、N,N-ジメチルホルムアミド(DMF)、N-
メチル-2-ピロリジノン(NMP)、N,N,N,N,N,N-ヘキサメチ
ルホスホリックトリアミド、ジメチルスルホキシド、ホ
ルムアミドなどを挙げることができる。これらの中でDM
F、NMPが好ましく、特に、NMPが操作性、溶解性の上か
ら推奨できる。
It is important that the reaction is carried out in an aprotic polar solvent in which Fmoc sugar asparagine, which is a synthetic intermediate of the sugar chain asparagine active ester derivative represented by the general formula 2, is dissolved. As such aprotic polar solvents, specifically, N, N-dimethylformamide (DMF), N-
Examples thereof include methyl-2-pyrrolidinone (NMP), N, N, N, N, N, N-hexamethylphosphoric triamide, dimethyl sulfoxide, and formamide. DM in these
F and NMP are preferred, and NMP is particularly recommended in terms of operability and solubility.

【0021】カップリング試薬としては、ベンゾトリア
ゾール-1-イル-オキシ-トリス-ピロリジノ-ホスホニウ
ム ヘキサフルオロホスフェート(PyBOP)や2-(1H-ベン
ゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニ
ウム ヘキサフルオロホスフェート(HBTU)などの一般式
化3で表される周知のベンゾトリアゾール誘導体を挙げ
ることができる。
Examples of the coupling reagent include benzotriazol-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBOP) and 2- (1H-benzotriazol-1-yl) -1,1,3,3 Well-known benzotriazole derivatives represented by the general formula 3 such as -tetramethyluronium hexafluorophosphate (HBTU).

【化3】Embedded image

【0022】上述のように、一般式化1で示される本発
明化合物を製造する際には、その中間体となる一般式化
2で示される糖鎖アスパラギン誘導体を上記の溶媒に溶
解させることが、極めて重要で、これら化合物群が溶解
した溶液あるいは更に一般式化3で示されるベンゾトリ
アゾール誘導体との混合溶液の工業的価値は高い。
As described above, when producing the compound of the present invention represented by the general formula 1, the asparagine-linked oligosaccharide derivative represented by the general formula 2 which is an intermediate thereof is dissolved in the above-mentioned solvent. It is extremely important that a solution in which these compounds are dissolved or a mixed solution with a benzotriazole derivative represented by the general formula 3 has high industrial value.

【0023】上記の非プロトン性極性溶媒中で反応させ
る一般式化2で表される糖鎖アスパラギン活性エステル
誘導体の合成中間体であるFmoc糖鎖アスパラギンとベン
ゾトリアゾール-1-イル-オキシ-トリス-ピロリジノ-ホ
スホニウム ヘキサフルオロホスフェート(PyBOP)や2-
(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチ
ルウロニウムヘキサフルオロホスフェート(HBTU)などの
一般式化3で表されるベンゾトリアゾール誘導体との反
応は特に制限はない。通常は縮合試薬を1.0〜3.0
当量の範囲で使用できる。好ましくは、1.0〜1.5
当量の範囲である。
Fmoc sugar asparagine, which is a synthetic intermediate of the sugar chain asparagine active ester derivative represented by the general formula 2, which is reacted in the above aprotic polar solvent, and benzotriazol-1-yl-oxy-tris- Pyrrolidino-phosphonium hexafluorophosphate (PyBOP) and 2-
The reaction with a benzotriazole derivative represented by the general formula 3 such as (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) is not particularly limited. . Usually, 1.0 to 3.0 of the condensing reagent is used.
It can be used in the equivalent range. Preferably, 1.0 to 1.5
The range of equivalents.

【0024】ところで、活性エステルは反応性の高い誘
導体で、単離精製することは困難である。そこで、通常
上記反応中にアミノ基を有する化合物を共存させ、対応
するアミド誘導体を生成させる。生成する糖鎖を有する
アミド化合物は、高速液体クロマト、疎水クロマト、ゲ
ルクロマト、イオン交換など通常の精製法で容易に精製
できる。
Incidentally, active esters are highly reactive derivatives and are difficult to isolate and purify. Therefore, usually, a compound having an amino group is allowed to coexist during the above reaction to produce a corresponding amide derivative. The resulting amide compound having a sugar chain can be easily purified by ordinary purification methods such as high performance liquid chromatography, hydrophobic chromatography, gel chromatography, and ion exchange.

【0025】アミド化合物を生成する上記の反応の反応
温度にも何ら制限はなく、0℃から溶媒の沸点までの範
囲で、通常室温から50℃の範囲である。同様に、反応
時間も制限は無く、通常、数時間から数日の範囲であ
る。
The reaction temperature of the above-mentioned reaction for producing the amide compound is not limited at all, and is in the range of 0 ° C. to the boiling point of the solvent, usually in the range of room temperature to 50 ° C. Similarly, the reaction time is not limited, and usually ranges from several hours to several days.

【0026】以下に実施例を挙げて本発明を具体的に説
明するが、以下の実施例により何等の制限をうけるもの
ではない。
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited by the following Examples.

【0027】[0027]

【実施例1】文献記載の方法で調製した卵白アルブミン
由来の糖鎖アスパラギンH-Asn(GlcNAc2Man6)-OH 62.4 m
g を1%炭酸水素ナトリウム水溶液6.2 mlに溶解し、これ
に9-フルオレニルメチルオキシカルボニルオキシコハク
酸イミド(Fmoc-OSu) 16 mgの1,4-ジオキサン(10 ml)溶
液を滴下、一夜撹拌した。反応液にエーテルを加え、分
液し、水層をエーテルで洗浄した。水層のpHを3〜4
にクエン酸で調整した。この水溶液をアンバーライトXA
D-2のカラムに通し、水で充分洗浄した。続いてメタノ
ールで溶出し、減圧濃縮した。再度水に溶解させ、凍結
乾燥したところ、Fmoc-Asn(GlcNAc2Man6)-OHが白色粉末
として63mg得られた。構造をMALDI-TOFMSで確認した。
実測値2870, 計算値[M+Na]=2871.
Example 1 Ovalbumin-derived asparagine-linked oligosaccharide H-Asn (GlcNAc2Man6) -OH prepared by a method described in the literature 62.4 m
g was dissolved in 6.2 ml of a 1% aqueous sodium hydrogen carbonate solution, and a solution of 16 mg of 9-fluorenylmethyloxycarbonyloxysuccinimide (Fmoc-OSu) in 1,4-dioxane (10 ml) was added dropwise to the solution overnight. Stirred. Ether was added to the reaction solution, the layers were separated, and the aqueous layer was washed with ether. PH of aqueous layer is 3-4
Was adjusted with citric acid. This aqueous solution is applied to Amberlite XA
The mixture was passed through the column of D-2, and sufficiently washed with water. Subsequently, it was eluted with methanol and concentrated under reduced pressure. When dissolved in water again and freeze-dried, 63 mg of Fmoc-Asn (GlcNAc2Man6) -OH was obtained as a white powder. The structure was confirmed by MALDI-TOFMS.
Observed 2870, Calculated [M + Na] = 2871.

【化4】 Embedded image

【0028】[0028]

【実施例2】卵白アルブミン由来の糖鎖アスパラギンを
糖鎖の混合物のまま、実施例1と同様にFmoc化した。H-
Asn(糖鎖)-OH 101 mgを用い、糖鎖の構造を実施例1で
用いた糖鎖構造と仮定し、行ったところ、92.7mgのFmoc
-Asn(糖鎖)-OHが得られた。高速液体クロマト(Inertsil
ODS3; 0.1%トリフルオロ酢酸-アセトニトリル(20-30%/
30分); 1ml/min)で各成分を分離単離し、そのMALDI-TOF
MS分析を行ったところ、以下の糖鎖を有する混合物で
あることがわかった。Man4GlcNAc1-Man3GlcNAc2-;実測
値1919,計算値[M+Na]=1918, Man4-Man3GlcNAc2-;実測値
2119,計算値[M+Na]=2121, Man2GlcNAc2-Man3GlcNAc2-;
実測値2021,計算値[M+K]=2016, Man2GlcNAc3-Man3GlcNA
c2-;実測値2189,計算値[M]=2197, Man2GlcNAc2-Man3Glc
NAc2-;実測値1985,計算値[M]=1977, Man3-Man3GlcNAc2
-;実測値1736,計算値[M]=1733, Man5-Man3GlcNAc2-;実
測値2063,計算値[M]=2057, Man2-Man3GlcNAc2-;実測値1
572,計算値[M]=1571, GlcNAc3-Man3GlcNAc2-;実測値185
8,計算値[M]=1856.全ての糖鎖を実施例1の糖鎖である
と仮定すると収率は81%であった。
Example 2 Asparagine-linked oligosaccharides derived from ovalbumin were converted to Fmoc in the same manner as in Example 1 while maintaining the mixture of the sugar chains. H-
When Asn (sugar chain) -OH 101 mg was used and the sugar chain structure was assumed to be the sugar chain structure used in Example 1, 92.7 mg of Fmoc
-Asn (sugar chain) -OH was obtained. High Performance Liquid Chromatography (Inertsil
ODS3; 0.1% trifluoroacetic acid-acetonitrile (20-30% /
30 min); 1 ml / min) to separate and isolate each component, and the MALDI-TOF
MS analysis revealed that the mixture had the following sugar chains. Man4GlcNAc1-Man3GlcNAc2-; found 1919, calculated [M + Na] = 1918, Man4-Man3GlcNAc2-; found
2119, Calculated [M + Na] = 2121, Man2GlcNAc2-Man3GlcNAc2-;
Actual value 2021, calculated value [M + K] = 2016, Man2GlcNAc3-Man3GlcNA
c2-; actual measured value 2189, calculated value [M] = 2197, Man2GlcNAc2-Man3Glc
NAc2-; observed 1985, calculated [M] = 1977, Man3-Man3GlcNAc2
-; Actual value 1736, calculated value [M] = 1733, Man5-Man3GlcNAc2-; actual value 2063, calculated value [M] = 2057, Man2-Man3GlcNAc2-; actual value 1
572, calculated value [M] = 1571, GlcNAc3-Man3GlcNAc2-; found 185
8, calculated value [M] = 1856. Assuming that all sugar chains were the sugar chains of Example 1, the yield was 81%.

【0029】[0029]

【実施例3】実施例1で調製したFmoc-Asn(GlcNAc2Man
6)-OH 5.0 mgをNMP 2mlに溶解した。これに室温で1Mジ
イソプロピルエチルアミン/NMP溶液2.9μlと、ベンゾト
リアゾール-1-イル-オキシ-トリス-ピロリジノ-ホスホ
ニウム ヘキサフルオロホスフェート(PyBOP)1.5 mg、
及び生成した活性エステルを捕捉するアミノ化合物とし
て6-モノ-アミノ-β-シクロデキストリン3.3 mgを加
え、一夜撹拌した。実施例2と同様の高速液体クロマト
によって検定し、74%の収率で活性エステル誘導体がア
ミノ基と反応した側鎖に天然糖鎖を有するシクロデキス
トリン誘導体が得られた。同様の反応を2-(1H-ベンゾト
リアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム
ヘキサフルオロホスフェート(HBTU)と1-ヒドロキシベン
ゾトリアゾールを用いて行ったところ、収率は54%であ
った。
Example 3 Fmoc-Asn (GlcNAc2Man) prepared in Example 1
6) 5.0 mg of -OH was dissolved in 2 ml of NMP. To this was added 2.9 μl of a 1 M diisopropylethylamine / NMP solution at room temperature and 1.5 mg of benzotriazol-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBOP),
Then, 3.3 mg of 6-mono-amino-β-cyclodextrin was added as an amino compound for capturing the generated active ester, and the mixture was stirred overnight. Tested by the same high performance liquid chromatography as in Example 2, a cyclodextrin derivative having a natural sugar chain on the side chain where the active ester derivative was reacted with an amino group was obtained in a yield of 74%. When a similar reaction was performed using 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and 1-hydroxybenzotriazole, the yield was Was 54%.

【0030】[0030]

【実施例4】実施例2で調製した様々な糖鎖を有するFm
oc-Asn(糖鎖)-OHの混合物10mgをNMP1mlに溶解し、モレ
キュラーシーブス4A共存下に、実施例3と同様にベン
ゾトリアゾール-1-イル-オキシ-トリス-ピロリジノ-ホ
スホニウム ヘキサフルオロホスフェート(PyBOP)2.8mg
を活性エステルを生成させると共に、それを捕捉するア
ミノ化合物としてアラニンメチルエステルを1当量共存
させた。高速液体クロマトにより検定したところ、83%
の収率でFmoc-Asn(糖鎖)-Ala-OMeが得られた。
Example 4 Fm having various sugar chains prepared in Example 2
10 mg of a mixture of oc-Asn (sugar chain) -OH was dissolved in 1 ml of NMP, and benzotriazol-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBOP) was dissolved in the presence of molecular sieves 4A in the same manner as in Example 3. ) 2.8mg
To form an active ester, and one equivalent of alanine methyl ester was coexisted as an amino compound for capturing the active ester. 83% as determined by high performance liquid chromatography
Fmoc-Asn (sugar chain) -Ala-OMe was obtained in a yield of

【0031】[0031]

【発明の効果】以上のように、本発明化合物はアミノ基
を有する誘導体へ糖鎖を導入できる誘導体であり、既知
の医薬や試薬、農薬などの誘導体へ細胞認識能を有する
糖鎖を導入できる点で、その応用範囲も極めて広範囲
で、その工業的価値は大である。
As described above, the compound of the present invention is a derivative that can introduce a sugar chain into a derivative having an amino group, and can introduce a sugar chain having cell recognition ability into a derivative of a known drug, reagent, or pesticide. In this respect, its application range is very wide, and its industrial value is great.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】一般式 【化1】 で表される糖鎖アスパラギン活性エステル誘導体。1. A compound of the general formula A sugar chain asparagine active ester derivative represented by the formula: 【請求項2】糖タンパク質のプロテアーゼ処理によって
得られる糖鎖アスパラギンを9-フルオレニルメチルオキ
シカルボニル化して得られる一般式 【化2】 で表される糖鎖アスパラギン活性エステル誘導体の合成
中間体。
2. A general formula obtained by 9-fluorenylmethyloxycarbonylation of asparagine-linked asparagine obtained by treating a glycoprotein with a protease. The synthetic intermediate of the sugar chain asparagine active ester derivative represented by
【請求項3】一般式 【化2】で表される糖鎖アスパラギン活性エステル誘導
体の合成中間体を溶解できる非プロトン性極性溶媒に溶
解した請求項1で示される糖鎖アスパラギン活性エステ
ル誘導体。
3. A sugar chain asparagine active ester derivative according to claim 1, which is dissolved in an aprotic polar solvent capable of dissolving a synthetic intermediate of the sugar chain asparagine active ester derivative represented by the general formula.
【請求項4】糖鎖が高マンノース型糖鎖であることを特
徴とする請求項2記載の糖鎖アスパラギン活性エステル
誘導体の合成中間体。
4. The synthetic intermediate of an asparagine active ester derivative of a sugar chain according to claim 2, wherein the sugar chain is a high mannose type sugar chain.
【請求項5】一般式 【化2】で表される糖鎖アスパラギン活性エステル誘導
体の合成中間体を溶解できる非プロトン性極性溶媒に溶
解した請求項2で示される糖鎖アスパラギン活性エステ
ル誘導体の合成中間体。
5. Synthesis of an asparagine-active ester derivative of a sugar chain represented by the general formula (2), wherein the intermediate is dissolved in an aprotic polar solvent capable of dissolving an intermediate. Intermediate.
【請求項6】一般式 【化2】で表される糖鎖アスパラギン活性エステル誘導
体の合成中間体を溶解できる非プロトン性極性溶媒中、
一般式 【化3】 で表されるベンゾトリアゾール誘導体と請求項2で示さ
れる糖鎖アスパラギン活性エステル誘導体の合成中間体
からなる糖鎖アスパラギン活性エステル誘導体合成用組
成物。
6. An aprotic polar solvent capable of dissolving a synthetic intermediate of a sugar chain asparagine active ester derivative represented by the general formula:
General formula A composition for synthesizing a sugar chain asparagine active ester derivative comprising a benzotriazole derivative represented by the following formula and a synthetic intermediate of the sugar chain asparagine active ester derivative according to claim 2.
【請求項7】一般式 【化2】で表される糖鎖アスパラギン活性エステル誘導
体の合成中間体を溶解できる非プロトン性極性溶媒とし
て、N-メチル-2-ピロリジノンまたはN,N-ジメチルホル
ムアミドを用いることを特徴とする請求項6記載の糖鎖
アスパラギン活性エステル誘導体合成用組成物。
7. N-methyl-2-pyrrolidinone or N, N-dimethylformamide is used as an aprotic polar solvent capable of dissolving an intermediate for synthesizing a sugar chain asparagine active ester derivative represented by the general formula: The composition for synthesizing an active sugar ester asparagine derivative according to claim 6, wherein the composition is used.
【請求項8】一般式 【化2】で表される糖鎖アスパラギン活性エステル誘導
体の合成中間体を溶解できる非プロトン性極性溶媒中、
一般式 【化3】で表されるベンゾトリアゾール誘導体と請求項
2で示される糖鎖アスパラギン活性エステル誘導体の合
成中間体を反応させることを特徴とする糖鎖アスパラギ
ン活性エステル誘導体の製造法。
8. An aprotic polar solvent which can dissolve a synthetic intermediate of an asparagine active ester derivative of a sugar chain represented by the general formula:
3. A process for producing an active sugar chain asparagine derivative, comprising reacting a benzotriazole derivative represented by the following general formula with a synthetic intermediate of an active sugar ester asparagine derivative represented by claim 2.
JP8288298A 1998-03-13 1998-03-13 Active ester derivative of sugar-chained asparagine and synthetic intermediate Pending JPH11255807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8288298A JPH11255807A (en) 1998-03-13 1998-03-13 Active ester derivative of sugar-chained asparagine and synthetic intermediate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8288298A JPH11255807A (en) 1998-03-13 1998-03-13 Active ester derivative of sugar-chained asparagine and synthetic intermediate

Publications (1)

Publication Number Publication Date
JPH11255807A true JPH11255807A (en) 1999-09-21

Family

ID=13786656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8288298A Pending JPH11255807A (en) 1998-03-13 1998-03-13 Active ester derivative of sugar-chained asparagine and synthetic intermediate

Country Status (1)

Country Link
JP (1) JPH11255807A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008431A1 (en) * 2001-06-19 2003-01-30 Otsuka Chemical Co.,Ltd. Process for producing sugar chain asparagine derivative
WO2004005330A1 (en) * 2002-07-05 2004-01-15 Otsuka Chemical Co., Ltd. Process for producing sugar peptide having asparagine sugar chain and the sugar peptide
JP2006022191A (en) * 2004-07-07 2006-01-26 Yasuhiro Kajiwara Three-branched sugar chain asparagine derivative, the sugar chain asparagine, the sugar chain and their preparation methods
JPWO2004058824A1 (en) * 2002-12-26 2006-04-27 康宏 梶原 Three-branched sugar chain asparagine derivatives, the sugar chain asparagine, the sugar chain, and methods for producing them
JP2006111618A (en) * 2004-09-14 2006-04-27 National Institute Of Advanced Industrial & Technology O-bonded sugar amino acid
JP2007153787A (en) * 2005-12-02 2007-06-21 Otsuka Chemical Co Ltd Sugar chain-modified liposome
JP4778315B2 (en) * 2003-12-26 2011-09-21 塩野義製薬株式会社 Synthesis of asparagine-linked glycoprotein core sugar chain structure
WO2022255289A1 (en) 2021-05-31 2022-12-08 Khネオケム株式会社 Method for producing glycopeptide

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008431A1 (en) * 2001-06-19 2003-01-30 Otsuka Chemical Co.,Ltd. Process for producing sugar chain asparagine derivative
AU2002346294B2 (en) * 2001-06-19 2006-08-17 Glytech, Inc. Process for producing sugar chain asparagine derivative
US7135566B2 (en) 2001-06-19 2006-11-14 Otsuka Chemical Co., Ltd. Process for producing sugar chain asparagine derivative
WO2004005330A1 (en) * 2002-07-05 2004-01-15 Otsuka Chemical Co., Ltd. Process for producing sugar peptide having asparagine sugar chain and the sugar peptide
EP2412720A3 (en) * 2002-07-05 2012-06-13 Otsuka Chemical Co., Ltd. Process for preparing glycopeptides having asparagine-linked oligosaccharides, and the glycopeptides
EP2412720A2 (en) * 2002-07-05 2012-02-01 Otsuka Chemical Co., Ltd. Process for preparing glycopeptides having asparagine-linked oligosaccharides, and the glycopeptides
US8063202B2 (en) 2002-07-05 2011-11-22 Otsuka Chemical Co., Ltd. Process for preparing glycopeptides having asparagine-linked oligosaccharides, and the glycopeptides
US7943763B2 (en) 2002-07-05 2011-05-17 Otsuka Chemical Holdings Co., Ltd. Process for preparing glycopeptides having asparagine-linked oligosaccharides, and the glycopeptides
JP2011038112A (en) * 2002-12-26 2011-02-24 Yasuhiro Kajiwara Three-branched sugar-chain asparagine derivative, the sugar-chain asparagine, the sugar chain, and method for producing them
JP4790271B2 (en) * 2002-12-26 2011-10-12 康宏 梶原 Three-branched sugar chain asparagine derivatives, the sugar chain asparagine, the sugar chain, and methods for producing them
JPWO2004058824A1 (en) * 2002-12-26 2006-04-27 康宏 梶原 Three-branched sugar chain asparagine derivatives, the sugar chain asparagine, the sugar chain, and methods for producing them
JP4778315B2 (en) * 2003-12-26 2011-09-21 塩野義製薬株式会社 Synthesis of asparagine-linked glycoprotein core sugar chain structure
JP2006022191A (en) * 2004-07-07 2006-01-26 Yasuhiro Kajiwara Three-branched sugar chain asparagine derivative, the sugar chain asparagine, the sugar chain and their preparation methods
JP2006111618A (en) * 2004-09-14 2006-04-27 National Institute Of Advanced Industrial & Technology O-bonded sugar amino acid
JP2007153787A (en) * 2005-12-02 2007-06-21 Otsuka Chemical Co Ltd Sugar chain-modified liposome
WO2022255289A1 (en) 2021-05-31 2022-12-08 Khネオケム株式会社 Method for producing glycopeptide

Similar Documents

Publication Publication Date Title
Roberge et al. Convergent synthesis of N-linked glycopeptides on a solid support
DK2412720T3 (en) METHOD FOR PRODUCING glycopeptides, WHO asparagine-linked oligosaccharides, AND glycopeptides
EP3392266A1 (en) Linaclotide synthesis method
US20110306757A1 (en) Process for the synthesis of unprotected pentasaccharides from a protected pentasaccharide precursor
TWI325430B (en) Aminated complex type sugar chain derivative and its production method
MX2007012544A (en) Protein glycosylation.
US7955819B2 (en) Process for producing sugar chain asparagine derivative
Urge et al. Fmoc-protected, glycosylated asparagines potentially useful as reagents in the solid-phase synthesis of N-glycopeptides
JPWO2004058984A1 (en) Sugar chain asparagine derivatives, sugar chain asparagine and sugar chains, and methods for producing them
JPH11255807A (en) Active ester derivative of sugar-chained asparagine and synthetic intermediate
JP4942014B2 (en) O-linked sugar amino acids
Takano et al. Preparation of core 2 type tetrasaccharide carrying decapeptide by benzyl protection-based solid-phase synthesis strategy
Mezzato et al. Synthesis of an Fmoc-Asn-heptasaccharide building block and its application to chemoenzymatic glycopeptide synthesis
Zhang et al. Synthesis based on affinity separation (SAS): Separation of products having barbituric acid tag from untagged compounds by using hydrogen bond interaction
Amin et al. Synthesis of asparagine-linked bacillosamine
JPH10273500A (en) Composite glycopeptide and its production
Rákosi et al. Synthesis of N-glycopeptides applying glycoamino acid building blocks with a combined Fmoc/Boc strategy
JPS5811428B2 (en) Insulin Keikago Buttsuno Seiho
JP4813838B2 (en) O-linked sugar amino acid derivative having core 6 type structure and method for producing the same
JP2006063055A (en) O-acetylated sugar amino acid
JPS61282390A (en) S-neuraminic acid derivative
Dondoni et al. Free‐Radical Thiol‐Ene and Thiol‐Yne Couplings as Click Processes for Glycoconjugation
JP4890805B2 (en) O-linked sugar amino acid derivative having core 3 type structure and method for producing the same
JPH01197465A (en) Novel alginine derivative, its production and use thereof in synthesis of peptide
Rella Chemical Synthesis of the Thymocyte Differentiation Antigen 1 (Thy-1) N-glycoprotein

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20070312

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724