JP2009154115A - Solvent-containing gas treatment apparatus - Google Patents

Solvent-containing gas treatment apparatus Download PDF

Info

Publication number
JP2009154115A
JP2009154115A JP2007336330A JP2007336330A JP2009154115A JP 2009154115 A JP2009154115 A JP 2009154115A JP 2007336330 A JP2007336330 A JP 2007336330A JP 2007336330 A JP2007336330 A JP 2007336330A JP 2009154115 A JP2009154115 A JP 2009154115A
Authority
JP
Japan
Prior art keywords
zone
gas
solvent
adsorption
regeneration zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007336330A
Other languages
Japanese (ja)
Inventor
Daisuke Kato
大輔 加藤
Manabu Asano
学 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2007336330A priority Critical patent/JP2009154115A/en
Publication of JP2009154115A publication Critical patent/JP2009154115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solvent-containing gas treatment apparatus keeping the oxygen gas concentration in a regeneration gas zone sufficiently lower than a limit oxygen concentration, and greatly reducing consumption of nitrogen to efficiently perform the adsorption/desorption treatment. <P>SOLUTION: In the solvent-containing gas treatment apparatus composed of a zone including a raw gas adsorbing zone 11, an additional adsorbing zone 14, a first regeneration zone 13, a second regeneration zone 12, and a cooling zone 20, formed by dividing an adsorption boy 1 consisting of an adsorption element containing an adsorption material, the adsorption element is composed of a sheet having a gas permeability of 5.0 L/m<SP>2</SP>/sec or less at an inlet pressure of 50 mmH<SB>2</SB>O. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、吸着エレメントからなる吸着体を区分けした、吸着ゾーン、再生ゾーン、冷却ゾーンに溶剤含有ガスを順次連続的に移動させ、所定成分の溶剤の吸着及び脱着を効率良く安全に行なうことができる溶剤含有ガス処理装置に関するものである。   In the present invention, the solvent-containing gas is sequentially moved to the adsorption zone, the regeneration zone, and the cooling zone in which the adsorbents composed of the adsorbing elements are separated, and the adsorption and desorption of the solvent of the predetermined component can be performed efficiently and safely. The present invention relates to a solvent-containing gas processing apparatus that can be used.

従来から、各種工場から発生する有機溶剤ガスの処理方法としては、この有機溶剤ガスを活性炭などの吸着材で吸着し、その後吸着材に水蒸気を吹き込み吸着された成分を脱着回収し、脱着によって再生された吸着材に再度有機溶剤ガスを通過させて吸着させ、連続的に有機溶剤を吸着脱着処理することが一般的であった。   Conventionally, as a method of treating organic solvent gas generated from various factories, this organic solvent gas is adsorbed with an adsorbent such as activated carbon, then steam is blown into the adsorbent, and the adsorbed components are desorbed and recovered and regenerated by desorption. In general, the organic solvent gas is again passed through the adsorbent thus adsorbed, and the organic solvent is continuously adsorbed and desorbed.

しかし、脱着に直接水蒸気を吹き込む方法では、脱着時に多量の水蒸気による凝縮水の廃水が生じたり、水蒸気と接触することで回収溶剤成分の分解が促進されたりするなど問題があり、近年ではこのような方法以外の脱着方法が望まれていた。   However, the method of directly blowing water vapor into the desorption has problems such as the generation of waste water of condensed water due to a large amount of water vapor at the time of desorption, and the decomposition of the recovered solvent component by promoting contact with the water vapor. A desorption method other than the simple method has been desired.

脱着時に直接水蒸気を吹き込まずに有機溶剤を回収する方法としては、吸着部と脱着部との間で吸着材を循環させ、吸着と脱着を連続して行なう流動式方法、回転吸着体を用いて多段で吸着脱着を行なうことによって有機溶剤を濃縮回収する連続式方法などがある。   As a method of recovering the organic solvent without directly blowing water vapor at the time of desorption, the adsorbent is circulated between the adsorbing part and the desorbing part, and the adsorbent and the desorption are continuously performed. There is a continuous method in which an organic solvent is concentrated and recovered by performing adsorption and desorption in multiple stages.

流動式方法としては、例えば特許文献1に粒状活性炭を用いた多段流動床式の吸着脱着方法及び装置が開示されている。しかし、この方式は粒状活性炭が流動しながら吸着するため、排気濃度を低く抑えることができない。また、流動によって粒状活性炭が磨耗し、破砕した活性炭くずが飛散するなどの問題点があった。   As a fluidized method, for example, Patent Document 1 discloses a multistage fluidized bed adsorption / desorption method and apparatus using granular activated carbon. However, since this method adsorbs granular activated carbon while flowing, the exhaust concentration cannot be kept low. In addition, there is a problem that the granular activated carbon is worn by the flow and crushed activated carbon waste is scattered.

また、連続式方法としては、例えば特許文献2及び特許文献3に回転吸着体を用いた吸着脱着方法及び装置が開示されている。この回転吸着体による連続式方法を図1を参照して以下に説明する。   As a continuous method, for example, Patent Document 2 and Patent Document 3 disclose an adsorption / desorption method and apparatus using a rotating adsorbent. A continuous method using this rotary adsorber will be described below with reference to FIG.

図1は円筒状の回転吸着体を用いた溶剤含有ガス処理装置を示す。円筒状の回転吸着体1には、図1の右回りに順に、原ガス吸着ゾーン11、追吸着ゾーン14、第1再生ゾーン13、第2再生ゾーン12が設けられ、第2再生ゾーン12から原ガス吸着ゾーン11へ移り変わる間の位置に冷却ゾーン20が設けられている。   FIG. 1 shows a solvent-containing gas processing apparatus using a cylindrical rotary adsorber. The cylindrical rotary adsorber 1 is provided with a raw gas adsorption zone 11, a supplementary adsorption zone 14, a first regeneration zone 13, and a second regeneration zone 12 in order clockwise from FIG. A cooling zone 20 is provided at a position during the transition to the raw gas adsorption zone 11.

ここで従来使用される回転吸着体は、吸着材と難燃性かつ耐熱性を有するフィブリル化した合成パルプなどとを抄紙して得られるシート状の吸着材ペーパーを段加工しこの段加工シートを円筒ハニカム状に成形したディスクハニカム型ハニローターである。   Here, the rotary adsorbent conventionally used is formed by step-processing a sheet-like adsorbent paper obtained by paper making an adsorbent and a fibrillated synthetic pulp having flame resistance and heat resistance. This is a disc honeycomb type honey rotor formed into a cylindrical honeycomb shape.

原ガス吸着ゾーン11には供給ファン5aによって有機溶剤を含有する原ガスが供給される。この原ガス中の有機溶剤は原ガス吸着ゾーン11内を矢印A1方向に通過する間に吸着材に吸着されて排気ダクト11aから清浄空気として排出される。   The raw gas containing the organic solvent is supplied to the raw gas adsorption zone 11 by the supply fan 5a. The organic solvent in the raw gas is adsorbed by the adsorbent while passing through the raw gas adsorption zone 11 in the direction of the arrow A1, and is discharged as clean air from the exhaust duct 11a.

吸着材が原ガス吸着ゾーン11に移動する前の冷却ゾーン20の入口側には追吸着ゾーン14を矢印A2方向に通過したガスを導入し、導入されたガスが矢印C方向に沿って冷却ゾーン20の吸着材を通過することによって吸着材を冷却し、原ガス吸着ゾーン11で溶剤が吸着されやすいようにする。一方、吸着材との熱交換によって温度が高まったガスはヒーター6aの入口側へ導入し、第2再生ゾーン12における脱着用ガスとして使用するように構成する。次に、前記第2再生ゾーン12を矢印E1方向に通過し、第2再生ゾーン12の吸着材から有機溶剤を脱着したガスはファン5bを介してクーラー9に供給され、冷却した後に追吸着ゾーン14を矢印A2方向に流通され、第2再生ゾーン12で脱着した有機溶剤を吸着され、さらに追吸着ゾーン14の出口ガスは冷却ゾーン20の入口側に循環される。追吸着ゾーン14においては、原ガス吸着ゾーン11の後に第2再生ゾーン12で脱着した溶剤をさらに吸着するので、追吸着ゾーン14の吸着材の吸着量を増加させることができる。この結果、以下に説明する第1再生ゾーン13の脱着ガスは有機溶剤を高濃度に含んだ状態となる。   Gas that has passed through the additional adsorption zone 14 in the direction of arrow A2 is introduced to the inlet side of the cooling zone 20 before the adsorbent moves to the raw gas adsorption zone 11, and the introduced gas is cooled along the direction of arrow C. The adsorbent is cooled by passing through the 20 adsorbents so that the solvent is easily adsorbed in the raw gas adsorption zone 11. On the other hand, the gas whose temperature has been increased by heat exchange with the adsorbent is introduced to the inlet side of the heater 6a and used as a desorption gas in the second regeneration zone 12. Next, the gas that has passed through the second regeneration zone 12 in the direction of the arrow E1 and desorbed the organic solvent from the adsorbent in the second regeneration zone 12 is supplied to the cooler 9 via the fan 5b, and after cooling, the additional adsorption zone 14, the organic solvent desorbed in the second regeneration zone 12 is adsorbed, and the outlet gas of the additional adsorption zone 14 is further circulated to the inlet side of the cooling zone 20. In the additional adsorption zone 14, since the solvent desorbed in the second regeneration zone 12 after the raw gas adsorption zone 11 is further adsorbed, the amount of adsorbent adsorbed in the additional adsorption zone 14 can be increased. As a result, the desorption gas in the first regeneration zone 13 described below is in a state containing an organic solvent at a high concentration.

ところで、一般の有機溶剤の多くはその蒸気は可燃性であり、溶剤蒸気(ガス)と空気(酸素)との共存下においては、溶剤個々に一定の爆発限界濃度(上限、下限)が存在し、その範囲の濃度の溶剤ガスは発火源があれば爆発燃焼に至る。爆発限界濃度の範囲は溶剤種によって多少異なるものの、大体の溶剤は空気中における濃度が1〜3%の範囲が爆発下限である。   By the way, in many common organic solvents, the vapor is flammable, and in the presence of solvent vapor (gas) and air (oxygen), there is a certain explosion limit concentration (upper limit, lower limit) for each solvent. If there is an ignition source, the solvent gas with a concentration in that range will cause explosion combustion. Although the range of the explosion limit concentration differs somewhat depending on the solvent type, the range of 1 to 3% of the concentration in the air for most solvents is the lower limit of explosion.

一方、不活性ガス(窒素等)を付加してガス中の酸素濃度を下げると爆発限界濃度の範囲は狭くなり、ある酸素濃度以下では、いかなる溶剤ガス組成においても不燃領域に入る。溶剤ガスが不燃領域に入る酸素濃度(限界酸素濃度)も爆発限界濃度の範囲と同様に溶剤種によって異なるが、大体の溶剤において限界酸素濃度は10数%である(高圧ガス保安協会訳;Flammability Characteristics of Combustible Gases and Vapors,1971)。   On the other hand, when an inert gas (nitrogen or the like) is added to lower the oxygen concentration in the gas, the explosion limit concentration range becomes narrower, and below a certain oxygen concentration, any solvent gas composition enters the incombustible region. The oxygen concentration (limit oxygen concentration) where the solvent gas enters the non-flammable region varies depending on the solvent type as well as the range of the explosion limit concentration, but in most solvents, the limit oxygen concentration is 10% or more (translated by High Pressure Gas Safety Association; Flammability) Characteristics of Combustible Gases and Vapors, 1971).

前記回転吸着体を用いた連続吸着脱着装置において、第1再生ゾーン13で脱着されたガスは溶剤を高濃度に含んだ状態であり、その濃度は原ガス濃度に対して30〜40倍程度となる。従って、原ガスが1000ppm程度の比較的低濃度の場合でも、脱着ガス濃度は30000ppm(3%)以上になり、爆発下限濃度を超えることになる。従って、第1再生ゾーン13における脱着ガスの爆発燃焼に対する安全対策としては、脱着ガスの酸素濃度を限界酸素濃度以下にする必要がある。通常、爆発限界濃度の範囲の溶剤ガス中の酸素濃度としては、安全を見て限界酸素濃度の1/3〜1/4以下(酸素濃度3%以下)で管理することが望ましく、窒素等の不活性ガスによって酸素と置換する方法が一般的である。   In the continuous adsorption / desorption apparatus using the rotary adsorber, the gas desorbed in the first regeneration zone 13 contains a solvent at a high concentration, and its concentration is about 30 to 40 times the concentration of the raw gas. Become. Therefore, even when the raw gas has a relatively low concentration of about 1000 ppm, the desorption gas concentration is 30000 ppm (3%) or more, which exceeds the lower explosion limit concentration. Therefore, as a safety measure against the explosive combustion of the desorption gas in the first regeneration zone 13, it is necessary to make the oxygen concentration of the desorption gas below the critical oxygen concentration. Normally, it is desirable to manage the oxygen concentration in the solvent gas within the explosion limit concentration range from 1/3 to 1/4 of the limit oxygen concentration (oxygen concentration 3% or less) for safety reasons. A method of replacing oxygen with an inert gas is common.

そのため、第1再生ゾーン13ではヒーター6bで加熱した窒素ガスを第1再生ゾーン13に矢印E2方向に通過させ、酸素濃度が限界酸素濃度の1/3〜1/4以下になるように調整を行ないながら第1再生ゾーン13の吸着材から有機溶剤を脱着する。脱着された有機溶剤ガスは凝縮器8へ導入され有機溶剤が凝縮回収される。なお、凝縮器8へ導入する以前に高濃度とするために、バイパス路10及びファン5cを設けて凝縮器8の出口側排ガスを第1再生ゾーン13の入口側へ循環する経路を形成している。   Therefore, in the first regeneration zone 13, the nitrogen gas heated by the heater 6b is passed through the first regeneration zone 13 in the direction of arrow E2, and the oxygen concentration is adjusted to be 1/3 to 1/4 or less of the limit oxygen concentration. While performing, the organic solvent is desorbed from the adsorbent in the first regeneration zone 13. The desorbed organic solvent gas is introduced into the condenser 8, and the organic solvent is condensed and recovered. In order to obtain a high concentration before introduction into the condenser 8, a bypass path 10 and a fan 5c are provided to form a path for circulating the exhaust gas on the outlet side of the condenser 8 to the inlet side of the first regeneration zone 13. Yes.

このように回転吸着体を用いた連続式方法は、脱着に加熱空気を用いることにより吸着体を迅速に、しかも均一に加熱でき、さらに前述の循環経路を採用することで安全に効率的に吸着脱着処理が安定に高くできるというメリットがある。   In this way, the continuous method using a rotating adsorbent allows the adsorbent to be heated quickly and uniformly by using heated air for desorption, and also uses the above-mentioned circulation path for safe and efficient adsorption. There is an advantage that the desorption process can be stably increased.

しかし、このような回転吸着体が複数のゾーンを通過する吸着脱着処理装置の場合、各ゾーンは吸着体両端面において個々に独立した隔壁(ヘッダー)によって区分けされているが、吸着体は回転しているために隣り合うゾーンで一定のガスのリークが生じる。また、吸着体の回転によって隣接するゾーンに持ち出されたり、逆に持ち込まれるガスもある。さらに、吸着体自体にガス透過もあることから、第1再生ゾーン13の循環ガスが隣接するゾーンに漏れ込み、酸素濃度を調整するための窒素使用量が増大する。   However, in the case of such an adsorption / desorption processing apparatus in which such a rotary adsorber passes through a plurality of zones, each zone is divided by an independent partition (header) at both end faces of the adsorbent, but the adsorbent rotates. Therefore, a certain gas leak occurs in adjacent zones. There are also gases that are taken out into adjacent zones by the rotation of the adsorbent, or are brought back in. Furthermore, since the adsorbent itself also has gas permeation, the circulating gas in the first regeneration zone 13 leaks into the adjacent zone, and the amount of nitrogen used for adjusting the oxygen concentration increases.

第1再生ゾーン13から漏れ出すガス(窒素)を低減するために従来、図1のファンなどにより各ゾーンの静圧調整を行ない、第1再生ゾーン13のガスの隣接するゾーンへの漏れを低減するようにしているが、わずかな静圧バランスの崩れで、シートから隣接するゾーンへガスが漏れるという問題点がある。
特開昭52−14580号 特開昭63−236514号 特開2005−238046号
In order to reduce the gas (nitrogen) leaking from the first regeneration zone 13, conventionally, the static pressure of each zone is adjusted by a fan or the like in FIG. 1 to reduce the leakage of the gas from the first regeneration zone 13 to the adjacent zone. However, there is a problem that gas leaks from the sheet to the adjacent zone due to a slight breakdown of the static pressure balance.
JP 52-14580 A JP 63-236514 A JP 2005-238046 A

本発明は、かかる従来技術の問題点に鑑みてなされたものであって、回転吸着体を用いた連続吸着脱着装置において、ガスの透過性を減少させることによって前記問題点を解決し、再生ガスゾーンでの酸素ガス濃度を限界酸素濃度よりも充分低く保ち、しかも窒素使用量を大幅に低減して効率的な吸着脱着処理を行うことができる溶剤含有ガス処理装置を提供することを目的とするものである。   The present invention has been made in view of the problems of the prior art, and in a continuous adsorptive desorption apparatus using a rotating adsorber, the problem is solved by reducing the gas permeability, and the regenerated gas. An object of the present invention is to provide a solvent-containing gas treatment device that can maintain an oxygen gas concentration in a zone sufficiently lower than a critical oxygen concentration and that can perform an efficient adsorption / desorption treatment by greatly reducing the amount of nitrogen used. Is.

即ち、本発明は吸着材を含有する吸着エレメントからなる吸着体を区分けして原ガス吸着ゾーン、追吸着ゾーン、第1再生ゾーン、第2再生ゾーン、及び冷却ゾーンを含むゾーンを構成した溶剤含有ガス処理装置において、吸着エレメントが入口圧力50mmHOにおいて5.0L/m/sec以下のガス透過性を有するシートから構成されることを特徴とする溶剤含有ガス処理装置である。 That is, in the present invention, an adsorbent composed of an adsorbing element containing an adsorbent is divided into a solvent containing a zone including a raw gas adsorption zone, a supplemental adsorption zone, a first regeneration zone, a second regeneration zone, and a cooling zone. In the gas processing apparatus, the adsorption element is composed of a sheet having a gas permeability of 5.0 L / m 2 / sec or less at an inlet pressure of 50 mmH 2 O.

本発明の溶剤含有ガス処理装置の好ましい態様では、溶剤含有ガスが原ガス吸着ゾーン、追吸着ゾーン、第1再生ゾーン、第2再生ゾーン、冷却ゾーンの順序で連続的または間欠的に通過するように構成され、追吸着ゾーンから排出されたガスが冷却ゾーンに接続され、冷却ゾーンから排出されたガスが第2再生ゾーンに接続され、第2再生ゾーンから排出されたガスが追吸着ゾーンに接続される循環経路を形成するとともに、第1再生ゾーンの脱着ガスラインに窒素を導入し、第1再生ゾーンから脱着した脱着ガスの全部または一部を凝縮器にて回収し、吸着エレメントが円柱状または円筒状であり、吸着エレメントの構造がハニカム状であり、吸着材がゼオライトである。   In a preferred embodiment of the solvent-containing gas processing apparatus of the present invention, the solvent-containing gas passes continuously or intermittently in the order of the raw gas adsorption zone, the additional adsorption zone, the first regeneration zone, the second regeneration zone, and the cooling zone. The gas discharged from the additional adsorption zone is connected to the cooling zone, the gas discharged from the cooling zone is connected to the second regeneration zone, and the gas discharged from the second regeneration zone is connected to the additional adsorption zone The circulation path is formed, nitrogen is introduced into the desorption gas line of the first regeneration zone, and all or part of the desorption gas desorbed from the first regeneration zone is recovered by a condenser, and the adsorption element is cylindrical. Or it is cylindrical, the structure of the adsorption element is a honeycomb, and the adsorbent is zeolite.

本発明の溶剤含有ガス処理装置は、ガス透過性の極めて低いシートから構成される吸着エレメントを用いて吸着体自体のガス透過性を極めて少なくしているので、ゾーン間のガスのリークが少なく、窒素使用量を低減しても酸素濃度を充分低く保つことができ、低コストで効率良くしかも安全に溶剤含有ガスを処理することができる。   The solvent-containing gas treatment apparatus of the present invention has an extremely small gas permeability of the adsorbent itself using an adsorption element composed of a sheet with extremely low gas permeability, so there is little gas leakage between zones, Even if the amount of nitrogen used is reduced, the oxygen concentration can be kept sufficiently low, and the solvent-containing gas can be processed efficiently and safely at low cost.

本発明の溶剤含有ガス処理装置は、基本的には、従来技術の説明で使用した図1に記載の溶剤含有ガス処理装置の構成を有し、その詳細な構成は、既述した通りであり、当業者に公知のため、さらに詳述しない。   The solvent-containing gas processing apparatus of the present invention basically has the configuration of the solvent-containing gas processing apparatus shown in FIG. 1 used in the description of the prior art, and the detailed configuration is as described above. Since it is known to those skilled in the art, it will not be described in further detail.

本発明の溶剤含有ガス処理装置の最大の特徴は、吸着エレメントがガス透過性の極めて低いシートから構成されることにある。具体的には、本発明で使用する吸着エレメントは、入口圧力50mmHOにおいて5.0L/m/sec以下、好ましくは1.0L/m/sec以下、より好ましくは0.5L/m/sec以下のガス透過性のシートから構成される。なお、シートのガス透過性は、次のように行なう。測定するシートを約50φmmの大きさに切り取り、切り取ったシートを測定機材に搭載し、ガスがシートに対して垂直に吹き付けるように設置する。Nガスを測定機材に供給し、入口圧力が一定になるまで待つ。入口圧力が一定になることを確認した後、測定機材の出口側の単位時間、単位面積あたりのガス透過量を測定する。入口圧力を10mmHO,25mmHO,50mmHO及び100mmHOの4種類とし、各圧力について3回づつ測定を行い、グラフを作成して圧力とガス透過量が比例することを確認し、入口圧力50mmHOでの測定値の平均をシートのガス透過性とする。 The greatest feature of the solvent-containing gas processing apparatus of the present invention is that the adsorption element is composed of a sheet having extremely low gas permeability. Specifically, the adsorption element used in the present invention is 5.0 L / m 2 / sec or less, preferably 1.0 L / m 2 / sec or less, more preferably 0.5 L / m at an inlet pressure of 50 mmH 2 O. It is composed of a gas permeable sheet of 2 / sec or less. The gas permeability of the sheet is performed as follows. A sheet to be measured is cut to a size of about 50 mm, and the cut sheet is mounted on a measuring device and installed so that gas is blown perpendicular to the sheet. Supply N 2 gas to the measuring equipment and wait until the inlet pressure is constant. After confirming that the inlet pressure is constant, measure the gas permeation per unit time and unit area on the outlet side of the measurement equipment. The inlet pressure 10mmH 2 O, 25mmH 2 O, and four 50 mm H 2 O and 100 mm H 2 O, for 3 times by one measured for each pressure, ensure that the pressure and the gas permeation amount proportional to create a chart The average of the measured values at an inlet pressure of 50 mmH 2 O is defined as the gas permeability of the sheet.

吸着エレメントに用いられるシートとしては、無機繊維シートに吸着材を坦持させたものが好ましい。その理由は、従来のように湿式抄紙法などで吸着材とフィブリル化したパルプとを抄紙したシートではガスの透過性が高くなるからである。また、湿式抄紙法などで作成されたシートに無機バインダーなどを塗布させてガス透過性を低減させても、無機繊維シートを用いたシートのガス透過率のレベルまでの効果は得られない。さらに、無機繊維シートと同程度のガス透過性にするため、大量の無機バインダーを塗布すると紙厚が厚くなり、吸着エレメントに加工した場合、通気圧損が増加する。さらにシート中の吸着材含有比率が極端に低下し、シートの柔軟性も極端に悪くなるため、後工程でシートを吸着エレメントに加工することができなくなる。   As a sheet | seat used for an adsorption | suction element, what carried the adsorption material on the inorganic fiber sheet is preferable. The reason for this is that the gas permeability is high in a sheet obtained by papermaking an adsorbent and fibrillated pulp by a wet papermaking method or the like as in the prior art. Further, even if an inorganic binder or the like is applied to a sheet prepared by a wet papermaking method or the like to reduce gas permeability, the effect up to the level of gas permeability of the sheet using the inorganic fiber sheet cannot be obtained. Further, in order to make the gas permeability comparable to that of the inorganic fiber sheet, when a large amount of inorganic binder is applied, the paper thickness becomes thick, and when processed into an adsorption element, the air pressure loss increases. Furthermore, since the adsorbent content ratio in the sheet is extremely lowered and the flexibility of the sheet is extremely deteriorated, the sheet cannot be processed into an adsorbing element in a subsequent process.

吸着エレメントに用いられる吸着材としては、ゼオライト、シリカゲル、活性アルミナなどが挙げられるが、ゼオライトが好ましい。さらには、細孔径7Å以上のゼオライトが望ましく、X型ゼオライトもしくはY型ゼオライトが好ましい。また、吸着材の比表面積は500〜1500m/gの範囲が好ましい。細孔径が7Åより小さくかつ比表面積が500m/gより小さいと、追吸着ゾーンにて高濃度ガスを吸着することができず、除去性能が低減する。 Examples of the adsorbent used in the adsorption element include zeolite, silica gel, activated alumina, and the like, with zeolite being preferred. Further, zeolite having a pore diameter of 7 mm or more is desirable, and X-type zeolite or Y-type zeolite is preferable. The specific surface area of the adsorbent is preferably in the range of 500 to 1500 m 2 / g. If the pore diameter is smaller than 7 mm and the specific surface area is smaller than 500 m 2 / g, the high concentration gas cannot be adsorbed in the additional adsorption zone, and the removal performance is reduced.

本発明では、吸着エレメントは、円柱状または円筒状であることが好ましく、その構造はハニカム状であることが好ましい。円柱状とは、芯材にハニカムを巻き付けてローター状にした形状を指し、円筒状とは、平行にガスが通気するようにハニカムを複数積層し、処理ガスが中心から径方向に向かって通気するようにハニカム積層体を円周状に配置した形状を指す。このように円筒状または円柱状に吸着ゾーン及び再生ゾーンを設け、中心軸を中心に回転させることにより、吸着と再生の処理を効率良く連続に行なうことができ、更にフェルト状やフィルム状などと比べて圧損を低くすることができる。   In the present invention, the adsorption element is preferably columnar or cylindrical, and the structure is preferably honeycomb. The columnar shape refers to a shape in which a honeycomb is wound around a core material to form a rotor, and the cylindrical shape is formed by stacking a plurality of honeycombs so that gas can flow in parallel, and the processing gas is vented in the radial direction from the center. Thus, it refers to a shape in which honeycomb laminated bodies are arranged circumferentially. Thus, by providing the adsorption zone and the regeneration zone in a cylindrical shape or a columnar shape and rotating around the central axis, the adsorption and regeneration processes can be performed efficiently and continuously. Compared with the pressure loss, the pressure loss can be reduced.

以下、本発明の溶剤含有ガス処理装置の優れた効果を実施例及び比較例に基づいて詳細に説明する。
<実施例>
ゼオライトを坦持させた無機繊維シートを900mmφの円筒ハニカム状に成形してディスク型のハニカムローターを作成した。シートのガス透過性は、入口圧力50mmHO時、0.2L/m/secであった。ハニカムローターは、円周方向に分断された隔壁によって、原ガス吸着ゾーン11、追吸着ゾーン14、第1再生ゾーン13、第2再生ゾーン12、冷却ゾーン20に分割され、各々の占有角度は150°、85°、50°、45°、30°とした。
Hereinafter, the excellent effect of the solvent-containing gas processing apparatus of the present invention will be described in detail based on Examples and Comparative Examples.
<Example>
An inorganic fiber sheet carrying zeolite was formed into a 900 mmφ cylindrical honeycomb shape to form a disk-type honeycomb rotor. The gas permeability of the sheet was 0.2 L / m 2 / sec when the inlet pressure was 50 mmH 2 O. The honeycomb rotor is divided into a raw gas adsorption zone 11, a supplemental adsorption zone 14, a first regeneration zone 13, a second regeneration zone 12, and a cooling zone 20 by partition walls that are divided in the circumferential direction. The angles were set to °, 85 °, 50 °, 45 ° and 30 °.

追吸着ゾーン14、第1再生ゾーン13、冷却ゾーン20の循環風量は2.1Nm/min、第1再生ゾーン13の循環風量は2.3Nm/minとし、凝縮器8へ導入する風量は0.8m/minとした。また、第1再生ゾーン13の循環ガス中に導入する窒素を60L/minから徐々に下げて酸素濃度を測定した。第1再生ゾーン13及び第2再生ゾーン12の入口ガス温度は130℃に設定し、凝縮器8の出口ガス温度は10℃となるように設定し、第1再生ゾーン13の脱着ガスからイソプロピルアルコール(IPA)を凝縮回収した。なお、第1再生ゾーン13出口のIPA濃度は40000〜50000ppmで爆発限界濃度の範囲内であった(IPAの場合、下限2.0vol%、上限7.99vol%)。 The circulating air volume in the additional adsorption zone 14, the first regeneration zone 13, and the cooling zone 20 is 2.1 Nm 3 / min, the circulating air volume in the first regeneration zone 13 is 2.3 Nm 3 / min, and the air volume introduced into the condenser 8 is It was set to 0.8 m 3 / min. Further, the oxygen concentration was measured by gradually reducing the nitrogen introduced into the circulating gas in the first regeneration zone 13 from 60 L / min. The inlet gas temperature of the first regeneration zone 13 and the second regeneration zone 12 is set to 130 ° C., the outlet gas temperature of the condenser 8 is set to 10 ° C., and the desorption gas of the first regeneration zone 13 is changed to isopropyl alcohol. (IPA) was condensed and recovered. The IPA concentration at the outlet of the first regeneration zone 13 was 40000 to 50000 ppm, which was within the explosion limit concentration range (in the case of IPA, the lower limit is 2.0 vol% and the upper limit is 7.9 vol%).

第1再生ゾーン13に導入する窒素量を多くするほど、第1再生ゾーン13を循環する脱着濃縮ガスの酸素濃度は低下したが、窒素量が20L/min(窒素/原ガス量比=1/300)でも第1再生ゾーン13の酸素濃度は2.8%で限界酸素濃度(IPAの限界酸素濃度は17%)の約1/6となっており、窒素量を40L/min(窒素/原ガス量比=1/150)に増やすと第1再生ゾーン13の酸素濃度は0.9%まで低減し、非常に低い酸素濃度にできた。また、IPAの除去率は98.0%程度で安定していた。   As the amount of nitrogen introduced into the first regeneration zone 13 increases, the oxygen concentration of the desorption concentrated gas circulating in the first regeneration zone 13 decreases, but the nitrogen amount is 20 L / min (nitrogen / raw gas amount ratio = 1 / 300), the oxygen concentration in the first regeneration zone 13 is 2.8%, which is about 1/6 of the critical oxygen concentration (IPA's critical oxygen concentration is 17%), and the nitrogen amount is 40 L / min (nitrogen / raw material). When the gas amount ratio was increased to 1/150), the oxygen concentration in the first regeneration zone 13 was reduced to 0.9%, and a very low oxygen concentration was achieved. The IPA removal rate was stable at about 98.0%.

<比較例>
比較例として、粉末状活性炭と難燃性かつ耐熱性を有するフィブリル化した合成パルプとを抄紙して得られるシート状の活性炭ペーパーを段加工し、入口圧力50mmHO時、15L/m/secであるシートを円筒ハニカム状にして、実施例と同様にディスク型のハニカムローターを作成した。そして実施例と同条件で被処理ガス(IPA)を清浄化処理し、回収した。
<Comparative example>
As a comparative example, a sheet-like activated carbon paper obtained by papermaking powdered activated carbon and fibrillated synthetic pulp having flame retardancy and heat resistance is stepped, and at an inlet pressure of 50 mmH 2 O, 15 L / m 2 / A sec-type sheet was formed into a cylindrical honeycomb shape, and a disk-type honeycomb rotor was produced in the same manner as in the example. And the to-be-processed gas (IPA) was cleaned and collect | recovered on the same conditions as the Example.

比較例では、窒素量20L/min(窒素/原ガス量比=1/300)の場合、第1再生ゾーン13の酸素濃度は6.7%であり、窒素量40L/min(窒素/原ガス量比=1/150)の場合、第1再生ゾーン13の酸素濃度は2.7%であり、実施例と比べて酸素濃度が約3倍高くなる結果となった。また、IPAの除去率は97.5%程度で安定していた。さらに、比較例では、ファンやダンパーなどで静圧バランスを調整しなければならず、これらのバランスが崩れた場合、酸素濃度を低く保つためにさらに窒素使用量が増加する結果となった。   In the comparative example, when the nitrogen amount is 20 L / min (nitrogen / raw gas amount ratio = 1/300), the oxygen concentration in the first regeneration zone 13 is 6.7%, and the nitrogen amount is 40 L / min (nitrogen / raw gas). In the case of the quantity ratio = 1/150), the oxygen concentration in the first regeneration zone 13 was 2.7%, and the oxygen concentration was about three times higher than in the example. The IPA removal rate was stable at about 97.5%. Furthermore, in the comparative example, the static pressure balance must be adjusted with a fan, a damper, or the like. When these balances are lost, the amount of nitrogen used is further increased to keep the oxygen concentration low.

上記のように、実施例の装置は比較例の装置に比べてさらに少量の窒素量で第1再生ゾーン13の脱着濃縮ガス中の酸素濃度を限界酸素濃度よりも十分低くすることが可能であった。これは、前記したように、吸着エレメントとしてガス透過性が極めて少ない吸着エレメントを採用したため、これまでは第1再生ゾーンから隣接するゾーンに漏れていたガスがほとんどなくなったからである。さらに、ガス透過性の極めて少ない吸着エレメントを採用することで、第1再生ゾーンに隣接している追吸着ゾーンと第2再生ゾーンを循環している循環ガスライン(追吸着ゾーン14、冷却ゾーン20、第2再生ゾーン12を経て追吸着ゾーン14を循環している循環ガスライン)も酸素濃度が約2%で安定して運転する結果を得た。さらに、実施例の装置は、従来実施してきたファンなどによる各ゾーンの静圧バランスの調整を特に考慮する必要がない。   As described above, the apparatus of the example can make the oxygen concentration in the desorption concentrated gas of the first regeneration zone 13 sufficiently lower than the limit oxygen concentration with a smaller amount of nitrogen than the apparatus of the comparative example. It was. This is because, as described above, since the adsorption element having extremely low gas permeability is adopted as the adsorption element, there has been almost no gas leaked from the first regeneration zone to the adjacent zone. Further, by adopting an adsorption element with extremely low gas permeability, a circulation gas line (a supplementary adsorption zone 14 and a cooling zone 20) circulating in the additional adsorption zone adjacent to the first regeneration zone and the second regeneration zone. The circulation gas line circulating through the additional adsorption zone 14 through the second regeneration zone 12) also obtained a result of stable operation at an oxygen concentration of about 2%. Furthermore, the apparatus of the embodiment does not need to take into consideration the adjustment of the static pressure balance of each zone by a fan or the like that has been conventionally performed.

本発明の溶剤含有ガス処理装置によれば、ガス透過性の極めて少ない吸着エレメントを用いているので、ゾーン間のガスのリークが少なく、非常に少量の窒素使用量でも酸素濃度を充分低く保つことができ、低ランニングコストで効率良くしかも安全に溶剤を除去、回収することができる。   According to the solvent-containing gas processing apparatus of the present invention, since the adsorption element having extremely low gas permeability is used, there is little gas leakage between zones, and the oxygen concentration can be kept sufficiently low even with a very small amount of nitrogen used. It is possible to remove and recover the solvent efficiently and safely at a low running cost.

円筒状回転吸着体を用いた溶剤含有ガス処理装置の一例を示す。An example of the solvent containing gas processing apparatus using a cylindrical rotation adsorption body is shown.

符号の説明Explanation of symbols

1 吸着体
5a 供給ファン
5b,5c ファン
6a,6b ヒーター
8 凝縮器
9 クーラー
10 バイパス路
11 原ガス吸着ゾーン
11a 排気ダクト
12,13 再生ゾーン
14 追吸着ゾーン
20 冷却ゾーン
DESCRIPTION OF SYMBOLS 1 Adsorbent body 5a Supply fan 5b, 5c Fan 6a, 6b Heater 8 Condenser 9 Cooler 10 Bypass path 11 Raw gas adsorption zone 11a Exhaust duct 12, 13 Regeneration zone 14 Additional adsorption zone 20 Cooling zone

Claims (6)

吸着材を含有する吸着エレメントからなる吸着体を区分けして原ガス吸着ゾーン、追吸着ゾーン、第1再生ゾーン、第2再生ゾーン、及び冷却ゾーンを含むゾーンを構成した溶剤含有ガス処理装置において、吸着エレメントが入口圧力50mmHOにおいて5.0L/m/sec以下のガス透過性を有するシートから構成されることを特徴とする溶剤含有ガス処理装置。 In a solvent-containing gas processing apparatus that divides an adsorbent composed of an adsorbing element containing an adsorbent and constitutes a zone including a raw gas adsorption zone, a supplementary adsorption zone, a first regeneration zone, a second regeneration zone, and a cooling zone, A solvent-containing gas processing apparatus, wherein the adsorption element is composed of a sheet having a gas permeability of 5.0 L / m 2 / sec or less at an inlet pressure of 50 mmH 2 O. 溶剤含有ガスが原ガス吸着ゾーン、追吸着ゾーン、第1再生ゾーン、第2再生ゾーン、冷却ゾーンの順序で連続的または間欠的に通過するように構成され、追吸着ゾーンから排出されたガスが冷却ゾーンに接続され、冷却ゾーンから排出されたガスが第2再生ゾーンに接続され、第2再生ゾーンから排出されたガスが追吸着ゾーンに接続される循環経路を形成するとともに、第1再生ゾーンの脱着ガスラインに窒素を導入することを特徴とする請求項1に記載の溶剤含有ガス処理装置。   The solvent-containing gas is configured to pass continuously or intermittently in the order of the raw gas adsorption zone, the additional adsorption zone, the first regeneration zone, the second regeneration zone, and the cooling zone, and the gas discharged from the additional adsorption zone Connected to the cooling zone, the gas discharged from the cooling zone is connected to the second regeneration zone, and the gas discharged from the second regeneration zone forms a circulation path connected to the additional adsorption zone, and the first regeneration zone The solvent-containing gas processing apparatus according to claim 1, wherein nitrogen is introduced into the desorption gas line. 第1再生ゾーンから脱着した脱着ガスの全部または一部を凝縮器にて回収することを特徴とする請求項1または2に記載の溶剤含有ガス処理装置。   3. The solvent-containing gas processing apparatus according to claim 1, wherein all or part of the desorbed gas desorbed from the first regeneration zone is recovered by a condenser. 吸着エレメントが円柱状または円筒状であることを特徴とする請求項1〜3のいずれかに記載の溶剤含有ガス処理装置。   The solvent-containing gas processing apparatus according to claim 1, wherein the adsorption element is columnar or cylindrical. 吸着エレメントの構造がハニカム状であることを特徴とする請求項1〜4のいずれかに記載の溶剤含有ガス処理装置。   The solvent-containing gas processing device according to any one of claims 1 to 4, wherein the adsorption element has a honeycomb structure. 吸着材がゼオライトであることを特徴とする請求項1〜5のいずれかに記載の溶剤含有ガス処理装置。   The solvent-containing gas processing apparatus according to any one of claims 1 to 5, wherein the adsorbent is zeolite.
JP2007336330A 2007-12-27 2007-12-27 Solvent-containing gas treatment apparatus Pending JP2009154115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007336330A JP2009154115A (en) 2007-12-27 2007-12-27 Solvent-containing gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007336330A JP2009154115A (en) 2007-12-27 2007-12-27 Solvent-containing gas treatment apparatus

Publications (1)

Publication Number Publication Date
JP2009154115A true JP2009154115A (en) 2009-07-16

Family

ID=40958713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336330A Pending JP2009154115A (en) 2007-12-27 2007-12-27 Solvent-containing gas treatment apparatus

Country Status (1)

Country Link
JP (1) JP2009154115A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165934A (en) * 1990-12-25 1994-06-14 Seibu Giken:Kk Gas adsorption element, production and use therefor
JPH06226037A (en) * 1992-09-08 1994-08-16 Seibu Giken:Kk Method for making either of organic solvent vapor or moisture in gas selectively adsorbed and removing the same
JP2004249259A (en) * 2003-02-21 2004-09-09 Toyobo Co Ltd Adsorption sheet, adsorption elements and adsorption treatment apparatus
JP2005238046A (en) * 2004-02-25 2005-09-08 Toyobo Co Ltd Gas adsorption/desorption apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165934A (en) * 1990-12-25 1994-06-14 Seibu Giken:Kk Gas adsorption element, production and use therefor
JPH06226037A (en) * 1992-09-08 1994-08-16 Seibu Giken:Kk Method for making either of organic solvent vapor or moisture in gas selectively adsorbed and removing the same
JP2004249259A (en) * 2003-02-21 2004-09-09 Toyobo Co Ltd Adsorption sheet, adsorption elements and adsorption treatment apparatus
JP2005238046A (en) * 2004-02-25 2005-09-08 Toyobo Co Ltd Gas adsorption/desorption apparatus

Similar Documents

Publication Publication Date Title
JP2750996B2 (en) Organic solvent vapor adsorption device
AU708270B2 (en) Pressure and temperature swing adsorption and temperature swing adsorption
JPH0455727B2 (en)
JP2004515349A (en) Pressure swing adsorption using contaminant-sensitive adsorbents
JPH09308814A (en) System and method for recovery of organic solvent
JP4200439B2 (en) Gas adsorption / desorption treatment equipment
JP5248767B2 (en) Concentrator for volatile organic compounds
JP2011031159A (en) Organic solvent recovery system
JP5240889B2 (en) Volatile organic compound concentration apparatus and concentration method, and volatile organic compound recovery facility and recovery method
JP7481859B2 (en) Gas Separation and Recovery Equipment
JP2013132582A (en) Organic solvent-containing gas treatment system
JP2007160163A (en) Method of separating volatile readily adsorbable component and hardly adsorbable component from solution containing volatile readily adsorbable component and hardly adsorbable component using adsorbent
JP6839235B2 (en) Dehumidification system
JP4960985B2 (en) Adsorption rotor type gas processing apparatus and adsorption rotor manufacturing method
JP4523146B2 (en) Organic solvent vapor processing equipment
JP2009154115A (en) Solvent-containing gas treatment apparatus
JP2004209420A (en) Dehumidification element and dehumidification apparatus
JP2005296724A (en) Apparatus for supplying low-moisture air and filter medium for the same
JPH0290921A (en) Concentrator for fluorocarbon-containing gas
JP2008043920A (en) Organic matter-containing gas treatment facility and its treatment method
JP5581550B2 (en) Adsorption / desorption type concentrator
JP3988762B2 (en) Organic substance-containing gas treatment equipment and treatment method
JP2005095858A (en) Cleaning method of exhaust gas containing volatile hydrocarbon
JP4418313B2 (en) Packed bed type heat exchange type adsorption apparatus and method for obtaining gas having a predetermined adsorbate concentration using the adsorption apparatus
JPH06320A (en) Dry dehumidifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124