JP4960985B2 - Adsorption rotor type gas processing apparatus and adsorption rotor manufacturing method - Google Patents
Adsorption rotor type gas processing apparatus and adsorption rotor manufacturing method Download PDFInfo
- Publication number
- JP4960985B2 JP4960985B2 JP2009079830A JP2009079830A JP4960985B2 JP 4960985 B2 JP4960985 B2 JP 4960985B2 JP 2009079830 A JP2009079830 A JP 2009079830A JP 2009079830 A JP2009079830 A JP 2009079830A JP 4960985 B2 JP4960985 B2 JP 4960985B2
- Authority
- JP
- Japan
- Prior art keywords
- adsorption
- rotor
- gas
- moisture
- organic substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 266
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000000126 substance Substances 0.000 claims abstract description 122
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 77
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 77
- 239000010457 zeolite Substances 0.000 claims abstract description 77
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 69
- 239000000741 silica gel Substances 0.000 claims abstract description 67
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 67
- 239000003463 adsorbent Substances 0.000 claims abstract description 49
- 238000009423 ventilation Methods 0.000 claims abstract description 25
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 8
- 238000003795 desorption Methods 0.000 claims description 94
- 239000000463 material Substances 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 13
- 230000014759 maintenance of location Effects 0.000 claims description 12
- 230000000903 blocking effect Effects 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 4
- 239000000470 constituent Substances 0.000 claims description 2
- 239000002648 laminated material Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 155
- 238000000034 method Methods 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 230000000717 retained effect Effects 0.000 description 11
- 238000005265 energy consumption Methods 0.000 description 6
- 238000000746 purification Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000007791 dehumidification Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000002156 adsorbate Substances 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Landscapes
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
本発明は、例えば工場排ガスに含まれる揮発性有機物質(いわゆるVOC)の除去に用いる吸着ロータ式ガス処理装置、及び、このガス処理装置で用いる吸着ロータの製造方法に関し、
詳しくは、被処理ガス中の揮発性有機物質に対して吸着作用させる吸着剤をロータ回転方向に分散させた状態で保持する通気性の吸着ロータを設け、この吸着ロータのロータ回転方向における各部をその吸着ロータの回転により被処理ガスの通風域である吸着域と脱着用ガスの通風域である脱着域とに交互に位置させる構成にしてある吸着ロータ式ガス処理装置、及び、このガス処理装置で用いる吸着ロータの製造方法に関する。
The present invention relates to an adsorption rotor type gas treatment device used for removing volatile organic substances (so-called VOC) contained in, for example, factory exhaust gas, and a method for producing an adsorption rotor used in the gas treatment device,
Specifically, a breathable adsorption rotor that holds an adsorbent that adsorbs volatile organic substances in the gas to be treated in a dispersed state in the rotor rotation direction is provided, and each part of the adsorption rotor in the rotor rotation direction is provided. An adsorption rotor type gas treatment device configured to be alternately positioned in an adsorption region which is a ventilation region of a gas to be treated and a desorption region which is a ventilation region of a desorption gas by rotation of the adsorption rotor, and the gas treatment device The present invention relates to a method of manufacturing an adsorption rotor used in the above.
この種の吸着ロータ式ガス処理装置では、吸着ロータに保持させる吸着剤としてゼオライトを初め種々の吸着剤が用いられるが(特許文献1参照)、被処理ガス中における揮発性有機物質を吸着剤に吸着させる吸着工程において、被処理ガスが水分(水蒸気)を含む場合、被処理ガス中における水分も揮発性有機物質とともに吸着剤に吸着されてしまい、この水分吸着に原因して本来の揮発性有機物質を吸着により除去する除去性能(換言すれば、被処理ガスに対する浄化性能)が大きく低下してしまう。 In this type of adsorption rotor type gas treatment apparatus, various adsorbents such as zeolite are used as adsorbents to be held in the adsorption rotor (see Patent Document 1), and volatile organic substances in the gas to be treated are used as adsorbents. In the adsorption process, if the gas to be treated contains moisture (water vapor), the moisture in the gas to be treated is also adsorbed by the adsorbent together with the volatile organic substance. The removal performance for removing substances by adsorption (in other words, the purification performance for the gas to be treated) is greatly reduced.
そして、この水分吸着に原因する性能低下を防止するため、吸着工程に先立ち被処理ガスを冷却除湿することも行なわれている。 And in order to prevent the performance fall resulting from this water | moisture content adsorption | suction, to-be-processed gas is also cooled and dehumidified prior to an adsorption | suction process.
しかし、上記の如く被処理ガスを吸着工程に先立ち冷却除湿するにしても、現実的にはその除湿度に限界があるため、冷却除湿後の被処理ガス中に水分が未だ残存し、このため、上記の如き水分吸着に原因する性能低下を十分に防止することができず、その分、被処理ガス中の揮発性有機物質について所要の除去率を得るのに必要な吸着剤量が多くなって装置が大型化するとともに装置コストが増大する、また、必要な吸着剤量の増大に伴い脱着工程での必要加熱量なども増大して消費エネルギが嵩むといった問題が依然としてあった。 However, even if the gas to be treated is cooled and dehumidified prior to the adsorption step as described above, there is actually a limit to the dehumidification, so that moisture still remains in the gas to be treated after cooling and dehumidification. However, the performance degradation caused by moisture adsorption as described above cannot be sufficiently prevented, and the amount of adsorbent necessary to obtain the required removal rate for the volatile organic substances in the gas to be processed increases accordingly. As a result, the size of the apparatus increases and the cost of the apparatus increases. In addition, as the amount of adsorbent increases, the necessary heating amount in the desorption process also increases, resulting in increased energy consumption.
また、吸着工程に先立ち被処理ガスを冷却除湿するには、除湿装置としてガス冷却用の熱交換器及び冷熱源機を要し、この点からも装置の全体が大型化するとともに、全体としての装置コスト及び消費エネルギがさらに増大する問題もあった。 In addition, in order to cool and dehumidify the gas to be treated prior to the adsorption step, a heat exchanger for cooling the gas and a cold heat source device are required as a dehumidifying device. There is also a problem that the apparatus cost and energy consumption are further increased.
この実情に鑑み、本発明の主たる課題は、合理的なロータ構成を採用することにより上記の如き問題を効果的に解消する点にある。 In view of this situation, the main problem of the present invention is to effectively solve the above problems by adopting a rational rotor configuration.
上記課題を解決するのに、第1の参考構成として、
被処理ガス中の揮発性有機物質に対して吸着作用させる吸着剤をロータ回転方向に分散させた状態で保持する通気性の吸着ロータを設け、
この吸着ロータのロータ回転方向における各部をその吸着ロータの回転により被処理ガスの通風域である吸着域と脱着用ガスの通風域である脱着域とに交互に位置させる構成にしてある吸着ロータ式ガス処理装置において、
前記吸着ロータは、前記吸着剤としてシリカゲルを保持させた水分吸着部と、前記吸着剤としてゼオライトを保持させた有機物質吸着部とが、その順に前記吸着域における被処理ガス通風方向の上流側から並ぶ状態に備えられた構造にしてもよい。
To solve the above problem, as a first reference configuration,
A breathable adsorption rotor that holds an adsorbent that adsorbs volatile organic substances in the gas to be treated in a state of being dispersed in the rotor rotation direction, is provided.
An adsorption rotor type in which each part in the rotor rotation direction of this adsorption rotor is positioned alternately in an adsorption area that is a ventilation area of the gas to be treated and a desorption area that is a ventilation area of the desorption gas by rotation of the adsorption rotor In gas processing equipment ,
In the adsorption rotor, a moisture adsorption part that holds silica gel as the adsorbent, and an organic substance adsorption part that holds zeolite as the adsorbent, in that order, from the upstream side in the gas flow direction of the gas to be treated in the adsorption region A structure provided in a line-up state may be used.
一般にゼオライトは揮発性有機物質に対する吸着性に優れることが知られているが、図5に示すシリカゲルの水分に対する吸着特性のグラフSs、ゼオライトのイソプロパノール(揮発性有機物質の一例)に対する吸着特性のグラフZv、ゼオライトの水分に対する吸着特性のグラフZsから判るように、シリカゲルの水分吸着性(Ss)はゼオライトの水分吸着性(Zs)に比べかなり優れている。 In general, zeolite is known to be excellent in adsorptivity to volatile organic substances, but the graph Ss of adsorption characteristics of silica gel against moisture shown in FIG. 5 and the adsorption characteristics of zeolite to isopropanol (an example of volatile organic substances) are shown. As can be seen from the graph Zs of the adsorption characteristics of Zv and zeolite with respect to moisture, the moisture adsorption property (Ss) of silica gel is considerably superior to the moisture adsorption property (Zs) of zeolite.
したがって、上記の如く、吸着ロータをシリカゲル保持の水分吸着部とゼオライト保持の有機物質吸着部とがその順に吸着域における被処理ガス通風方向の上流側から並ぶ構造にすれば、吸着域で吸着ロータの域内ロータ部分に被処理ガスを通過させて、そのロータ部分の吸着剤を吸着作用させる吸着工程において、被処理ガスが先ず上流側の水分吸着部を通過する過程で被処理ガス中における水分を水分吸着部のシリカゲルに効率的に吸着させ、このシリカゲルによる水分吸着により被処理ガス中の水分をゼオライトではもはや吸着できない程度ないしそれに近い程度まで低減することができる。 Therefore, as described above, if the adsorption rotor has a structure in which the moisture adsorption part holding silica gel and the organic substance adsorption part holding zeolite are arranged in that order from the upstream side in the direction of the gas to be treated in the adsorption area, the adsorption rotor in the adsorption area. In the adsorption process in which the gas to be treated is caused to pass through the rotor portion in the region and the adsorbent of the rotor part is adsorbed, the moisture in the gas to be treated is first removed while the gas to be treated passes through the upstream moisture adsorbing portion. By efficiently adsorbing on the silica gel of the moisture adsorbing part, the moisture in the gas to be treated can be reduced to the extent that it can no longer be adsorbed by zeolite or close to it by this silica gel.
そして、このように水分吸着部で十分に水分除去された被処理ガスを下流側の有機物質吸着部に通過させることで、その通過過程において有機物質吸着部のゼオライトを被処理ガス中の揮発性有機物質に対し水分の影響がほぼ無い状態(即ち、ゼオライト本来の揮発性有機物質に対する優れた吸着性が発揮される状態)で吸着作用させることができる。 Then, by passing the gas to be treated, from which moisture has been sufficiently removed in the moisture adsorbing part, to the organic substance adsorbing part on the downstream side, the zeolite in the organic substance adsorbing part is volatile in the gas to be treated in the passage process. The organic substance can be adsorbed in a state in which there is almost no influence of moisture (that is, a state in which excellent adsorptivity to the volatile organic substance inherent in zeolite is exhibited).
即ち、このことにより、先述の如き水分吸着に原因する性能低下を効果的に防止することができて、被処理ガス中の揮発性有機物質に対する除去性能(換言すれば、被処理ガスに対する浄化性能)を被処理ガスが水分を含まない場合に近い程度にまで高めることができる。 In other words, this can effectively prevent the performance degradation caused by moisture adsorption as described above, and can remove volatile organic substances in the gas to be treated (in other words, purification performance for the gas to be treated). ) Can be increased to a level close to the case where the gas to be treated does not contain moisture.
つまり、このように装置性能を効果的に向上し得ることで、また、シリカゲルの優れた水分吸着性を活用していることで、被処理ガス中の揮発性有機物質について所要の除去率を得るのに必要な吸着剤量を水分吸着部の付設を含めても従前に比べ全体として効果的に低減することができて、装置を小型化し得るとともに装置コストも低減することができ、更にまた、必要吸着剤量の低減により脱着工程での必要加熱量なども低減できるなど、消費エネルギも効果的に低減することができる。 In other words, it is possible to effectively improve the performance of the apparatus in this way, and to obtain the required removal rate for the volatile organic substances in the gas to be treated by utilizing the excellent moisture adsorbability of the silica gel. Even if the amount of adsorbent necessary for this is included including the attachment of the moisture adsorbing part, it can be effectively reduced as a whole compared to the past, the apparatus can be downsized and the apparatus cost can be reduced, Energy consumption can be effectively reduced, for example, the amount of heating required in the desorption process can be reduced by reducing the amount of adsorbent required.
そしてまた、吸着工程に先立ち被処理ガスを冷却除湿することも不要になり、ないしは、冷却除湿するにしても除湿装置を小能力のもので済ませることができ、この点からも装置全体の小型化及び全体としての装置コストや消費エネルギの低減を効果的に達成することができる。 In addition, it becomes unnecessary to cool and dehumidify the gas to be processed prior to the adsorption process, or even if it is cooled and dehumidified, the dehumidifying device can be completed with a small capacity. In addition, the overall apparatus cost and energy consumption can be effectively reduced.
なお、上記構成の実施において吸着ロータは、水分吸着部と有機物質吸着部とが一体的な単一ロータ構造、あるいは、水分吸着部と有機物質吸着部との夫々を独立したロータとする直列2連ロータ構造のいずれを採用してもよいが、装置構造の簡略化の面やロータ周りのシールが容易でガスリークによる装置性能の低下の虞が少ないなどの面から単一ロータ構造を採用するのが望ましい。
In the implementation of the above configuration, the adsorption rotor is a single rotor structure in which the moisture adsorption unit and the organic substance adsorption unit are integrated, or
また、有機物質吸着部に保持させるゼオライトには、揮発性有機物質に対する吸着性が特に優れる疎水性ゼオライトを使用するのが望ましい。 In addition, it is desirable to use a hydrophobic zeolite that is particularly excellent in adsorptivity to volatile organic substances as the zeolite to be held in the organic substance adsorption part.
第2の参考構成として、
前記脱着域における脱着用ガスの通風向きは、脱着用ガスを前記有機物質吸着部から前記水分吸着部の順に通過させる向きにしてもよい。
As a second reference configuration,
The direction of ventilation of the desorption gas in the desorption region may be a direction in which the desorption gas passes through the organic substance adsorption unit and the moisture adsorption unit in this order .
つまり、この構成によれば、脱着部で吸着ロータの域内ロータ部分に脱着用ガスを通過させて、そのロータ部分の吸着剤から先の吸着工程での吸着物を脱着用ガスへ脱着させる脱着工程において、未だ脱着に使用しておらずガス温度が未だ高いなど脱着性の未だ高い脱着ガスを先ず有機物質吸着部に通過させるから、その有機物質吸着部におけるゼオライトからの揮発性有機物質の脱着度を高く確保することでき、これにより、次の吸着工程において有機物質吸着部のゼオライトを水分除去後における被処理ガス中の揮発性有機物質に対し効率的に吸着作用させる所期の目的を一層確実かつ効果的に実現することができる。 In other words, according to this configuration, the desorption step of allowing the desorption gas to pass through the inner rotor portion of the adsorption rotor at the desorption portion and desorbing the adsorbate in the previous adsorption step from the adsorbent of the rotor portion to the desorption gas. In this case, a desorption gas that is not yet used for desorption and still has a high desorption property such as a high gas temperature is first passed through the organic substance adsorption part, so the degree of desorption of volatile organic substances from zeolite in the organic substance adsorption part As a result, the intended purpose of efficiently adsorbing the zeolite in the organic substance adsorbing part to the volatile organic substance in the gas to be treated after removing moisture in the next adsorption step is further ensured. And can be realized effectively.
一方、水分吸着部には有機物質吸着部のゼオライトに対する脱着作用でガス温度が低下するなど脱着性の低下した脱着用ガスを通過させて水分吸着部のシリカゲルから吸着水分を脱着させることになるが、シリカゲルは前述の如く極めて優れた水分吸着性を有することから、水分吸着部のシリカゲルからの水分脱着が多少不完全になったとしても、次の吸着工程において水分吸着部のシリカゲルを被処理ガス中の水分に対し十分に吸着作用させることができる。 On the other hand, the moisture adsorbing part desorbs the adsorbed moisture from the silica gel of the moisture adsorbing part by passing a desorbing gas having a reduced desorbing property such as a gas temperature lowering due to the desorbing action of the organic substance adsorbing part on the zeolite. As described above, since silica gel has extremely excellent moisture adsorption properties, even if moisture desorption from the silica gel of the moisture adsorption portion is somewhat incomplete, the silica gel of the moisture adsorption portion is treated as a gas to be treated in the next adsorption step. It is possible to sufficiently adsorb moisture in the water.
これらのことから、上記構成によれば、脱着域において逆に水分吸着部から有機物質吸着部の順に脱着用ガスを通過させるのに比べ、有機物質吸着部のゼオライトを被処理ガス中の揮発性有機物質に対し効率的に吸着作用させる所期目的を一層確実かつ効果的に実現し得る分、装置性能の向上を一層確実かつ効果的に達成することができる。 Therefore, according to the above configuration, the zeolite in the organic substance adsorbing part is made to be volatile in the gas to be treated as compared with the case where the desorption gas is passed in the order from the moisture adsorbing part to the organic substance adsorbing part in the desorption region. Since the intended purpose of efficiently adsorbing the organic substance can be realized more reliably and effectively, the performance of the apparatus can be improved more reliably and effectively.
第3の参考構成として、
前記水分吸着部におけるシリカゲル保持量と前記有機物質吸着部におけるゼオライト保持量との体積比を2:8〜5:5の範囲にしてもよい。
As a third reference configuration,
The volume ratio of the silica gel retention amount in the moisture adsorption portion and the zeolite retention amount in the organic substance adsorption portion may be in the range of 2: 8 to 5: 5 .
一般に水分吸着部におけるシリカゲル保持量と有機物質吸着部におけるゼオライト保持量との最適体積比は被処理ガス中の水分と揮発性有機物質との濃度比や揮発性有機物質の種類などによって異なるものとなるが、この種の吸着ロータ式ガス処理装置が用いられることの多い有機溶剤使用設備などでの一般的な濃度比(例えば、水分100ppm、揮発性有機物質15000ppm)の場合、実験によれば、水分吸着部におけるシリカゲル保持量と有機物質吸着部におけるゼオライト保持量との最適体積比は2:8〜5:5の範囲(さらに好ましくは3:7〜4:6)であることが判明した。
In general, the optimal volume ratio between the amount of silica gel retained in the moisture adsorbing part and the amount of zeolite retained in the organic substance adsorbing part differs depending on the concentration ratio of moisture and volatile organic substances in the gas to be treated and the type of volatile organic substances. However, in the case of a general concentration ratio (for example,
即ち、水分吸着部におけるシリカゲル保持量と有機物質吸着部におけるゼオライト保持量との体積比を上記の2:8〜5:5の範囲にすれば、一般的に、それらシリカゲル保持量とゼオライト保持量とを相互に過不足のない比率状態にすることができて、所期の装置性能の向上を効果的に達成しながら全体としての吸着剤量を最小化することができる。 That is, when the volume ratio of the silica gel retention amount in the moisture adsorption part and the zeolite retention amount in the organic substance adsorption part is in the above range of 2: 8 to 5: 5, generally the silica gel retention amount and the zeolite retention amount. Can be brought into a state where there is no excess or deficiency between them, and the overall amount of adsorbent can be minimized while effectively improving the expected apparatus performance.
ここで、本発明の第1特徴構成は吸着ロータ式ガス処理装置に係り、その特徴は、
被処理ガス中の揮発性有機物質に対して吸着作用させる吸着剤をロータ回転方向に分散させた状態で保持する通気性の吸着ロータを設け、
この吸着ロータのロータ回転方向における各部を吸着ロータの回転により被処理ガスの通風域である吸着域と脱着用ガスの通風域である脱着域とに交互に位置させる構成にしてある吸着ロータ式ガス処理装置であって、
前記吸着ロータは、前記吸着剤としてシリカゲルを保持させた水分吸着部と、前記吸着剤としてゼオライトを保持させた有機物質吸着部とが、その順に前記吸着域における被処理ガス通風方向の上流側から並ぶ状態に備えられた構造にし、
前記脱着域における脱着用ガスの通風向きは、脱着用ガスを前記有機物質吸着部から前記水分吸着部の順に通過させる向きにし、
前記吸着ロータのうち前記吸着域にあるロータ部分の前記有機物質吸着部に対して吸着水分加熱用のマイクロ波を照射する吸着域側マイクロ波照射手段を設けてある点にある。
Here, the first characteristic configuration of the present invention relates to an adsorption rotor type gas processing apparatus,
A breathable adsorption rotor that holds an adsorbent that adsorbs volatile organic substances in the gas to be treated in a state of being dispersed in the rotor rotation direction,
An adsorption rotor type gas configured such that each portion of the adsorption rotor in the rotor rotation direction is alternately positioned in an adsorption area which is a ventilation area of the gas to be treated and a desorption area which is a ventilation area of the desorption gas by rotation of the adsorption rotor A processing device comprising:
In the adsorption rotor, a moisture adsorption part that holds silica gel as the adsorbent, and an organic substance adsorption part that holds zeolite as the adsorbent, in that order, from the upstream side in the gas flow direction of the gas to be treated in the adsorption region A structure prepared for the lined-up state,
The ventilation direction of the desorption gas in the desorption region is a direction in which the desorption gas passes through the organic substance adsorption unit in the order of the moisture adsorption unit,
The adsorption area side microwave irradiation means for irradiating the organic substance adsorption part of the rotor part in the adsorption area of the adsorption rotor to the adsorption moisture heating microwave is provided .
この構成によれば、基本的に上述した第1参考構成及び第2参考構成と同様の効果を得ることができる。
ところで、一般に知られているように特定周波数範囲(2.45GHz前後)のマイクロ波は液体状態の水のみを選択的に効率良く加熱することができる。
According to this configuration, basically the same effects as those of the first reference configuration and the second reference configuration described above can be obtained.
By the way, as is generally known, microwaves in a specific frequency range (around 2.45 GHz) can selectively and efficiently heat only water in a liquid state.
したがって、そのような周波数範囲のマイクロ波を吸着水分加熱用のマイクロ波として上記吸着域側マイクロ波照射手段により吸着域にあるロータ部分の有機物質吸着部に照射すれば、水分吸着部のシリカゲルにより水分を吸着除去した後の被処理ガスに水分が未だ残存し、その残存水分が揮発性有機物質とともに有機物質吸着部のゼオライトに吸着されるとしても、その吸着水分(凝縮水分)のみを照射マイクロ波により選択的に効率良く加熱して気化させる形態で、その吸着水分を吸着工程の段階において有機物質吸着部のゼオライトから被処理ガス中へ脱着させることができる。 Therefore, if the microwave in such a frequency range is irradiated to the organic substance adsorbing portion of the rotor portion in the adsorption region by the adsorption region side microwave irradiating means as the microwave for adsorption moisture heating, the silica gel of the moisture adsorbing portion is used. Even if moisture still remains in the gas to be treated after adsorption and removal of moisture, and the residual moisture is adsorbed to the zeolite of the organic substance adsorption part together with the volatile organic substance, only the adsorbed moisture (condensed moisture) is irradiated. The adsorbed moisture can be desorbed from the zeolite of the organic substance adsorbing portion into the gas to be treated in the adsorption step in a form that is selectively heated and vaporized selectively by waves.
即ち、このことにより、有機物質吸着部のゼオライトを被処理ガス中の揮発性有機物質に対し水分の影響が無い状態で効率良く吸着作用させることを、水分吸着部のシリカゲルによる効果的な水分吸着と相俟って一層確実かつ効果的に達成することができる。 In other words, the effective adsorption of water by the silica gel of the moisture adsorbing part makes it possible for the zeolite in the organic substance adsorbing part to efficiently adsorb the volatile organic substance in the gas to be treated without the influence of moisture. Together with this, it can be achieved more reliably and effectively.
なお、吸着工程の段階で有機物質吸着部のゼオライトから脱着させた水分は、有機物質吸着部のゼオライトにより揮発性有機物質が除去された被処理ガス(換言すれば、浄化された処理済ガス)とともに吸着域から送出される。
本発明の第2特徴構成は、第1特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記吸着ロータにおける前記水分吸着部と前記有機物質吸着部との境界部分に通気性のマイクロ波遮断手段を設けてある点にある。
この構成によれば、吸着域側マイクロ波照射手段の照射マイクロ波が吸着域にあるロータ部分の水分吸着部にまで侵入することを防止することができる。
本発明の第3特徴構成は、第2特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
マイクロ波遮断手段が、前記吸着ロータにおける前記水分吸着部と前記有機物質吸着部との境界部分に形成した前記金網状の金属材保持部である点にある。
本発明の第4特徴構成は、第1〜第3特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記水分吸着部におけるシリカゲル保持量と前記有機物質吸着部におけるゼオライト保持量との体積比を2:8〜5:5の範囲にしてある点にある。
The moisture desorbed from the zeolite in the organic substance adsorbing part in the adsorption step is treated gas from which volatile organic substances have been removed by the zeolite in the organic substance adsorbing part (in other words, purified treated gas). And sent out from the adsorption zone.
The second feature configuration of the present invention specifies an embodiment suitable for the implementation of the first feature configuration.
A breathable microwave blocking means is provided at a boundary portion between the moisture adsorbing portion and the organic substance adsorbing portion in the adsorption rotor.
According to this configuration, it is possible to prevent the irradiation microwave of the adsorption area side microwave irradiation means from entering the moisture adsorption portion of the rotor portion in the adsorption area.
The third feature configuration of the present invention specifies an embodiment suitable for the implementation of the second feature configuration.
The microwave blocking means is the wire net-like metal material holding portion formed at a boundary portion between the moisture adsorption portion and the organic substance adsorption portion in the adsorption rotor.
The fourth characteristic configuration of the present invention specifies an embodiment suitable for the implementation of any of the first to third characteristic configurations,
The volume ratio of the silica gel retention amount in the moisture adsorption portion and the zeolite retention amount in the organic substance adsorption portion is in the range of 2: 8 to 5: 5.
本発明の第5特徴構成は、第1〜第4特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記吸着ロータのうち前記脱着域にあるロータ部分の前記水分吸着部に対して吸着水分加熱用のマイクロ波を照射する脱着域側マイクロ波照射手段を設けてある点にある。
The fifth characteristic configuration of the present invention specifies an embodiment suitable for implementation of any of the first to fourth characteristic configurations,
In the adsorption rotor, a desorption region side microwave irradiating means for irradiating the moisture adsorbing portion of the rotor portion in the desorption region with microwaves for heating adsorption moisture is provided.
つまり、前述の如く特定周波数範囲(2.45GHz前後)のマイクロ波は液体状態の水のみを選択的に効率良く加熱することができるから、そのような周波数範囲のマイクロ波を吸着水分加熱用のマイクロ波として上記脱着域側マイクロ波照射手段により脱着域にあるロータ部分の水分吸着部に照射すれば、先の吸着域での吸着工程で水分吸着部のシリカゲルが吸着した大量の水分(凝縮水分)を照射マイクロ波により効率良く加熱して気化させる形態で、その大量の吸着水分を水分吸着部のシリカゲルから脱着用ガスへ効率良く脱着させることができる。 In other words, as described above, microwaves in a specific frequency range (around 2.45 GHz) can selectively and efficiently heat only water in a liquid state. Therefore, microwaves in such a frequency range are used for heating adsorption moisture. If the moisture adsorption part of the rotor part in the desorption area is irradiated as microwaves by the microwave irradiation means on the desorption area side, a large amount of moisture (condensed water) adsorbed by the silica gel of the moisture adsorption part in the adsorption process in the previous adsorption area ) Can be efficiently desorbed from the silica gel of the moisture adsorbing portion to the desorption gas in a form that is efficiently heated and vaporized by irradiation microwave.
即ち、このことにより、水分吸着部におけるシリカゲルの水分脱着度を一層確実かつ効果的に高めた状態で、その水分吸着部のシリカゲルを次の吸着域での被処理ガス中水分の吸着除去にあたらせることができ、その分、水分吸着部におけるシリカゲルの必要保持量を一層低減することができて、吸着ロータ全体としての必要吸着剤量を一層低減することができる。 That is, with this, the silica gel in the moisture adsorption part is used for the adsorption removal of the moisture in the gas to be treated in the next adsorption zone in a state where the moisture desorption degree of the silica gel in the moisture adsorption part is further reliably and effectively increased. Accordingly, the required amount of silica gel retained in the moisture adsorbing portion can be further reduced, and the required amount of adsorbent as the entire adsorption rotor can be further reduced.
また、マイクロ波照射により吸着水分を効率良く加熱し得ることで脱着用ガスの必要温度も低減することができ、このことからも必要吸着剤量の低減と相俟って消費エネルギを一層効果的に低減することができる。 In addition, the required temperature of the desorption gas can be reduced by efficiently heating the adsorbed moisture by microwave irradiation, and this also makes energy consumption more effective in combination with the reduction in the amount of adsorbent required. Can be reduced.
なお、前述と同様、上記構成の実施において吸着水分加熱用マイクロ波は、必ずしも2.45GHz近傍の周波数のマイクロ波に限られるものではなく、水分吸着部のシリカゲルに吸着された水分を効率良く加熱し得る周波数範囲のマイクロ波であればよい。 As described above, in the implementation of the above configuration, the adsorption moisture heating microwave is not necessarily limited to a microwave having a frequency in the vicinity of 2.45 GHz, and the moisture adsorbed on the silica gel of the moisture adsorption unit is efficiently heated. Any microwave having a frequency range that can be used may be used.
本発明の第6特徴構成は、第1〜第5特徴構成のいずれかの吸着ロータ式ガス処理装置で用いる吸着ロータの製造方法に係り、その特徴は、
被処理ガス中の揮発性有機物質に対して吸着作用する吸着剤をロータ回転方向に分散させた状態で保持する通気性吸着ロータを製造するのに、
ペーパー状の保持基材に前記吸着剤としてシリカゲルを保持させたシリカゲル保持部と前記吸着剤としてゼオライトを保持させたゼオライト保持部とを隣接させて形成し、
これらシリカゲル保持部及びゼオライト保持部を形成した複数枚の前記保持基材を、それら保持基材どうしの間に通気用空隙部が形成される状態に、かつ、それら保持基材に形成した前記シリカゲル保持部どうし及び前記ゼオライト保持部どうしが前記通気用空隙部を挟んで重なる状態に積層し、
この積層体における前記シリカゲル保持部どうしの積層部を前記水分吸着部とし、かつ、前記ゼオライト保持部どうしの積層部を前記有機物質吸着部とする状態で、前記積層体をロータ構成材として前記水分吸着部と前記有機物質吸着部とが被処理ガス通風方向に並ぶ通気性吸着ロータを形成する点にある。
A sixth characteristic configuration of the present invention relates to a method of manufacturing an adsorption rotor used in any one of the adsorption rotor type gas processing apparatuses of the first to fifth characteristic configurations ,
To manufacture a breathable adsorption rotor that holds an adsorbent that acts to adsorb volatile organic substances in the gas to be treated in a state of being dispersed in the rotor rotation direction .
A silica gel holding part that holds silica gel as the adsorbent on a paper-like holding base and a zeolite holding part that holds zeolite as the adsorbent are formed adjacent to each other,
The silica gel formed in the holding base material in a state in which a plurality of the holding base materials formed with the silica gel holding portion and the zeolite holding portion are formed between the holding base materials. The holding parts and the zeolite holding parts are laminated so as to overlap each other with the air gap part interposed therebetween,
The laminated portion of each other the silica gel holder in the laminate material and the moisture adsorption portion and the moisture laminated portion of the zeolite holder each other in a state that said organic substance-adsorbing portion, the laminate as a rotor constituent material The adsorbing part and the organic substance adsorbing part form a breathable adsorbing rotor arranged in the direction of the gas to be treated.
つまり、この製造方法によれば、ペーパー状の保持基材にシリカゲル保持部とゼオライト保持部とを隣接させて形成する初期工程を除き、それ以降の製造工程は一種の吸着剤を保持させた保持基材の積層体をロータ構成材として通気性の吸着ロータを製造する従前の吸着ロータ製造方法と全く同様の製造形態で、シリカゲル保持の水分吸着部とゼオライト保持の有機物質吸着部とを有する通気性吸着ロータを製造することができる。 That is, according to this manufacturing method, except for the initial step of forming a silica gel holding part and a zeolite holding part adjacent to a paper-like holding base material, the subsequent manufacturing process holds a kind of adsorbent. Ventilation with a moisture adsorption part holding silica gel and an organic substance adsorption part holding zeolite in exactly the same production form as the previous adsorption rotor production method for producing a breathable adsorption rotor using a laminate of base materials as a rotor component Can be manufactured.
したがって、吸着剤としてシリカゲルを保持する水分吸着部と吸着剤としてゼオライトを保持する有機物質吸着部とを個別に製造し、その後、製造した水分吸着部と製造した有機物質吸着部とを接合により一体化して、それら水分吸着部と有機物質吸着部とを有する通気性吸着ロータを製造するなどの他の製造方法に比べ、シリカゲル保持の水分吸着部とゼオライト保持の有機物質吸着部とが被処理ガス通風方向に並ぶ通気性吸着ロータを容易かつ能率良く製造することができ、また、その製造コストも安価にすることができる。 Therefore, the moisture adsorbing part holding silica gel as the adsorbent and the organic substance adsorbing part holding zeolite as the adsorbent are separately manufactured, and then the manufactured moisture adsorbing part and the manufactured organic substance adsorbing part are integrated by bonding. Compared to other manufacturing methods such as manufacturing a breathable adsorption rotor having these moisture adsorbing parts and organic substance adsorbing parts, the silica gel holding moisture adsorbing part and the zeolite holding organic substance adsorbing part are treated gases. The breathable adsorption rotors arranged in the ventilation direction can be manufactured easily and efficiently, and the manufacturing cost can be reduced.
図1〜図3は工場排気などの被処理ガスGからそれに含まれる有機溶剤などの揮発性有機物質vを除去して被処理ガスGを浄化する吸着ロータ式ガス処理装置を示し、1は吸着剤Xをロータ回転方向の全周にわたらせて保持させた吸着ロータであり、この吸着ロータ1はハニカム構造のロータ構成材1xに吸着剤Xを保持させた構造にしてロータ回転軸芯Pの方向に通気可能にしてある。
1 to 3 show an adsorption rotor type gas processing apparatus for removing a volatile organic substance v such as an organic solvent contained in a gas G to be processed such as factory exhaust gas and purifying the gas G to be processed. This is an adsorption rotor in which the adsorbent X is held over the entire circumference in the rotor rotation direction. The
2は装置ケースであり、その内部は内部壁体2aにより被処理ガスGの通風域である吸着域3と脱着用ガスHの通風域である脱着域4とに区画してある。
2 is an apparatus case, and the inside is divided into an
なお、場合によっては、上記吸着域3及び脱着域4に加えて、パージ用気体を通風するパージ域や他の目的のガス通風域を区画形成したり、吸着域3や脱着域4を被処理ガスGや脱着用ガスHを折り返し形態で直列に通過させる複数の細分域に区画するなどしてもよい。
In some cases, in addition to the
吸着ロータ1は吸着域3と脱着域4とに跨らせた状態で装置ケース2に収容してあり、吸着ロータ1の回転により吸着ロータ1の回転方向における各部を吸着域3と脱着域4とに交互に通過させて位置させる。
The
つまり、吸着ロータ1の回転に伴い、吸着域3では吸着ロータ1の域内ロータ部分に被処理ガスGを通過させ、これにより、そのロータ部分の保持吸着剤X(詳しくは後述するゼオライトXz)により被処理ガスG中の揮発性有機物質vを吸着除去する吸着工程を実施する。
That is, as the
また、吸着ロータ1の回転に伴い、脱着域4では吸着ロータ1の域内ロータ部分に高温の脱着用ガスHを通過させ、これにより、そのロータ部分の保持吸着剤X(ゼオライトXz)が先の吸着工程で吸着した揮発性有機物質vを脱着用ガスHへ脱着させる脱着工程を実施して、そのロータ部分における保持吸着剤Xを次の吸着工程に備えて再生する。
Further, along with the rotation of the
即ち、このように吸着ロータ1におけるロータ回転方向の各部をロータ回転に伴い吸着域3と脱着域4とに交互に位置させることで、上記吸着工程と脱着工程との連続的な併行実施を可能にして、被処理ガスGから揮発性有機物質vを吸着除去する被処理ガスGの浄化処理を連続的に行う。
That is, by continuously positioning each part of the
なお、装置ケース2の内部壁体2a及び外部壁体2bと吸着ロータ1との間の隙間は吸着ロータ1の回転を許容するシール手段によりシールしてある。
The gaps between the
5aは生産室などから排出される被処理ガスGを吸着域3のガス流入室3aに送給する被処理ガス路、5bは吸着域3において吸着ロータ1を通過することで揮発性有機物質vが吸着除去された被処理ガスG′(即ち、浄化された処理済ガス)を吸着域3のガス流出室3bから送出する処理済ガス路である。
5a is a gas flow path for supplying the gas G to be processed discharged from the production chamber or the like to the
また、6aは脱着用ガスHを脱着域4のガス流入室4aに送給する脱着用ガス路、6bは脱着域4において吸着ロータ1を通過することで揮発性有機物質vを含む状態になった使用済の脱着用ガスH′を脱着域4のガス流出室4bから送出する使用済脱着用ガス路である。
6a is a desorption gas passage for supplying the desorption gas H to the
脱着用ガスHの風量は被処理ガスGの風量よりも小風量に制限してあり、これにより、被処理ガスGにおける揮発性有機物質vの濃度よりも使用済の脱着用ガスH′における揮発性有機物質vの濃度を高くする濃縮処理を被処理ガスGの浄化処理とともに上記吸着工程及び脱着工程の併行実施により行なうようにしてある。 The air volume of the desorption gas H is limited to a smaller volume than the gas volume of the gas to be treated G, so that the volatilization in the used desorption gas H ′ is higher than the concentration of the volatile organic substance v in the gas G to be processed. The concentration process for increasing the concentration of the organic material v is performed by performing the adsorption process and the desorption process in parallel with the purification process of the gas G to be processed.
そして、濃縮状態の揮発性有機物質vを含む状態になった使用済の脱着用ガスH′は使用済脱着用ガス路6bを通じて触媒燃焼式や直接燃焼式の後段ガス処理装置に送り、この後段ガス処理装置での燃焼処理により使用済脱着用ガスH′中の揮発性有機物質vを酸化分解して無害化する。
Then, the used desorption gas H ′ in a state containing the concentrated volatile organic substance v is sent to the catalytic combustion type or direct combustion type post-stage gas processing apparatus through the used
一方、被処理ガスGが揮発性有機物質vとともに多量の水分sを含む(例えば、揮発性有機物質100ppm、水分15000ppm)ことに対し、吸着ロータ1は、吸着剤としてシリカゲルXsを保持させた水分吸着部1Aと、吸着剤として疎水性ゼオライトXzを保持させた有機物質吸着部1Bとを備えるものにしてある。
On the other hand, the to-be-treated gas G contains a large amount of water s together with the volatile organic material v (for example, volatile
そしてまた、それら水分吸着部1Aと有機物質吸着部1Bとはその順で吸着域3における被処理ガス通風方向の上流側から並ぶ状態にして吸着ロータ1に備えさせてある。
Further, the
つまり、この吸着ロータ1を用いることにより、吸着域3で域内のロータ部分に被処理ガスGを通過させて、そのロータ部分の吸着剤Xを吸着作用させる吸着工程では、被処理ガスGを先ず上流側の水分吸着部1Aに通過させて、その通過過程で被処理ガスG中における水分s(水蒸気)を水分吸着部1AのシリカゲルXsに吸着させる。
That is, by using this
即ち、シリカゲルXsは図5に示す如くゼオライトXzに比べ水分吸着性がかなり高いことから、上記水分吸着部1AのシリカゲルXsによる水分吸着により被処理ガスG中の水分sはゼオライトXzではもはや吸着できない程度ないしそれに近い程度まで低減することができる。
That is, since the silica gel Xs has a much higher moisture adsorption property than the zeolite Xz as shown in FIG. 5, the moisture s in the gas G to be treated can no longer be adsorbed by the zeolite Xz due to the moisture adsorption by the silica gel Xs of the
そして、このように水分吸着部1Aで十分に水分除去された被処理ガスGを下流側の有機物質吸着部1Bに通過させることで、その通過過程において有機物質吸着部1BのゼオライトXzを被処理ガスG中の揮発性有機物質vに対し水分sの影響がほぼ無い状態(即ち、ゼオライト本来の揮発性有機物質vに対する優れた吸着性が十分に発揮される状態)で吸着作用させる。
And by passing the gas G to be treated, from which moisture has been sufficiently removed in the
即ち、このことにより、ゼオライトXzの水分吸着に原因する性能低下を防止して、被処理ガスG中の揮発性有機物質vに対する除去性能(換言すれば、被処理ガスGに対する浄化性能)を被処理ガスGが水分sを含まない場合に近い程度にまで向上させる。 That is, this prevents the performance degradation caused by the moisture adsorption of the zeolite Xz, and the removal performance for the volatile organic substance v in the gas G to be treated (in other words, the purification performance for the gas G to be treated). The processing gas G is improved to a level close to that in the case where the processing gas G does not contain moisture s.
なお、本例では、被処理ガスGにおける揮発性有機物質vの濃度が100ppm程度で水分sの濃度が15000ppm程度であることに対し、水分吸着部1Aにおけるシリカゲル保持量と有機物質吸着部1Bにおけるゼオライト保持量との体積比は2:8〜5:5の範囲(好ましくは、3:7〜4:6の範囲)にしてあり、これにより、水分吸着部1Aのシリカゲル保持量と有機物質吸着部1Bのゼオライト保持量とを相互に過不足のない最適比率にして、揮発性有機物質vの除去性能の向上を効果的に達成しながら全体としての吸着剤量も最小化する。
In this example, the concentration of the volatile organic substance v in the gas G to be processed is about 100 ppm and the concentration of the moisture s is about 15000 ppm, whereas the amount of silica gel retained in the
また、脱着域4における脱着用ガスHの通風向きは、域内ロータ部分における有機物質吸着部1Bから水分吸着部1Aの順に脱着用ガスHを通過させる向きにし、未だ脱着に使用していない脱着性の高い脱着用ガスHを先ず有機物質吸着部1BのゼオライトXzに対し脱着作用させる。
In addition, the direction of ventilation of the desorption gas H in the
つまり、このことにより、脱着部4における脱着用ガスHの通風向きを上記向きとは逆向きにする場合に比べ、有機物質吸着部1BにおけるゼオライトXzからの揮発性有機物質vの脱着度を高く確保して、次の吸着工程において有機物質吸着部1BのゼオライトXzを水分除去後における被処理ガスG中の揮発性有機物質vに対し効率的に吸着作用させることを一層確実かつ効果的に実現する。
That is, this increases the degree of desorption of the volatile organic substance v from the zeolite Xz in the organic
上記吸着ロータ1の製造については、図4の(a)〜(c)に示す如く、先ず、ペーパー状の保持基材7に、シリカゲルXsを保持させた層状のシリカゲル保持部7aと、疎水性ゼオライトXzを保持させた層状のゼオライト保持部7bとを隣接させて形成する。
Regarding the manufacture of the
その後、これらシリカゲル保持部7aとゼオライト保持部7bとを形成したペーパー状の保持基材7をシリカゲル保持部7aとゼオライト保持部7bとの隣接方向とは直交する方向で波打つ波形に成型する。
Thereafter, the paper-like
次に、この波型成型した保持基材7の多数枚を、それら波形保持基材7どうしの間にペーパー状隔離材8を挟んだ状態で、かつ、それら波形保持基材7のシリカゲル保持部7aどうし及びゼオライト保持部7bどうしが重なる状態に積層し、これにより、波形保持基材7どうしの間(より具体的には、波型保持基材7とペーパー状隔離材8との間)に通気用空隙部9を有するハニカム状の積層体10を形成する。
Next, a plurality of the corrugated holding
そして、このハニカム状積層体10におけるシリカゲル保持部Xsどうしの積層部をシリカゲル保持の水分吸着部1Aとし、かつ、ゼオライト保持部Xzどうしの積層部をゼオライト保持の有機物質吸着部1Bとする状態で、このハニカム状の積層体10を前述ハニカム構造のロータ構成材1xとして、それら水分吸着部1Aと有機物質吸着部1Bとがロータ回転軸芯Pの方向(即ち、吸着域3や脱着域4でのガス通風方向)に並ぶ状態の通気性吸着ロータ1を製造する。
And in this honeycomb-shaped
なお、この製造方法で吸着ロータ1を製造する場合、ペーパー状隔離材8にも保持基材7と同様のシリカゲル保持部及びゼオライト保持部を形成しておいてもよい。
In addition, when manufacturing the
〔別実施形態〕
次に本発明の別実施形態を列記する。
[Another embodiment]
Next, other embodiments of the present invention will be listed.
図1において破線で示す如く、吸着域側マイクロ波照射手段として吸着ロータ1のうち吸着域3にあるロータ部分の有機物質吸着部1Bに対して周波数が2.45GHzないしその近傍の吸着水分加熱用マイクロ波mwを照射する吸着域側マグネトロン11を吸着域3に装備するようにしてもよい。
As shown by a broken line in FIG. 1, the frequency is 2.45 GHz or higher for adsorbed moisture heating in the vicinity of the organic
つまり、このような吸着域側マイクロ波照射手段11を装備すれば、吸着域3において水分吸着部1AのシリカゲルXsにより水分sを吸着除去した後の被処理ガスGに僅かながらも水分sが残存して、その残存水分sが図6(a)に模式的に示す如く揮発性有機物質vとともに有機物質吸着部1BのゼオライトXzに吸着されたとしても、図6(b)に模式的に示す如く、その吸着水分sのみを照射マイクロ波mwにより選択的に効率良く加熱して気化させる形態で、その吸着水分sを吸着工程の段階において有機物質吸着部1BのゼオライトXzから被処理ガスG中へ脱着させることができる。
In other words, if such an adsorption zone side microwave irradiation means 11 is provided, a slight amount of moisture s remains in the gas G to be treated after the moisture s is adsorbed and removed by the silica gel Xs of the
即ち、このことにより、有機物質吸着部1BのゼオライトXzを被処理ガスG中の揮発性有機物質vに対し水分sの影響が無い状態で効率良く吸着作用させることを、水分吸着部1AのシリカゲルXsによる効果的な水分吸着と相俟って一層確実かつ効果的に達成することができる。
That is, by this, the zeolite Xz of the organic
なお、上記の如く吸着工程の段階で有機物質吸着部1BのゼオライトXzから脱着させた水分s(残存水分)は揮発性有機物質vが吸着除去された浄化済の被処理ガスG′(処理済ガス)とともに処理済ガス路5bへ送出される。
As described above, the moisture s (residual moisture) desorbed from the zeolite Xz of the organic
また、このように有機物質吸着部1BのゼオライトXzにおける吸着水分sが吸着工程の段階で脱着されることにより、脱着域4で脱着工程にある有機物質吸着部1BのゼオライトXzからは図6(c)に模式的に示す如く概ね揮発性有機物質vのみが脱着される状態になる。
Further, since the adsorbed moisture s in the zeolite Xz of the organic
上記の如き吸着域側マイクロ波照射手段11を装備する場合、吸着ロータ1における水分吸着部1Aと有機物質吸着部1Bとの境界部分に通気性のマイクロ波遮断手段12を設け、これにより、吸着域側マイクロ波照射手段11の照射マイクロ波mwが吸着域3にあるロータ部分の水分吸着部1Aにまで侵入することを確実に防止するのが望ましい。
When the adsorption area side microwave irradiation means 11 as described above is equipped, a breathable microwave blocking means 12 is provided at the boundary between the
そして、このようなマイクロ波遮断手段12を形成するには、例えば前述の如き吸着ロータ製造方法において、ペーパー状保持基材7に幅狭層状の金属材保持部をシリカゲル保持部7aとゼオライト保持部7bとの境界部分に形成しておくことで、完成した吸着ロータ1において水分吸着部1Aと有機物質吸着部1Bとの境界部分に金網状部分(図において水分吸着部1Aと有機物質吸着部1Bとの境界線に相当)が形成されるようにし、この金網状部分を上記マイクロ波遮断手段12とするなどしてもよい。
In order to form such a microwave blocking means 12, for example, in the above-described adsorption rotor manufacturing method, a narrow layered metal material holding part is formed on a paper-like
一方、図1において同じく破線で示す如く、脱着域側マイクロ波照射手段として吸着ロータ1のうち脱着域4にあるロータ部分の水分吸着部1Aに対して周波数が2.45GHzないしその近傍の吸着水分加熱用のマイクロ波mwを照射する脱着域側マグネトロン13を脱着域4に装備するようにしてもよい。
On the other hand, as shown by the broken line in FIG. 1 as well, as the desorption region side microwave irradiating means, the frequency of 2.45 GHz or the adsorbed moisture in the vicinity of the
つまり、このような脱着域側マイクロ波照射手段13を装備すれば、先の吸着域3での吸着工程で水分吸着部1のシリカゲルXsが吸着した大量の水分s(凝縮水分)を照射マイクロ波により効率良く加熱して気化させる形態で、その大量の吸着水分sを吸着部1AのシリカゲルXsから脱着用ガスHへ効率良く脱着させることができる。
That is, if such a desorption region side microwave irradiation means 13 is equipped, a large amount of moisture s (condensed moisture) adsorbed by the silica gel Xs of the
即ち、このことにより、水分吸着部1AにおけるシリカゲルXsの水分脱着度を一層確実かつ効果的に高めた状態で、その水分吸着部1AのシリカゲルXsを次の吸着域3での被処理ガスG中の水分sの吸着除去にあたらせることができ、その分、水分吸着部1AにおけるシリカゲルXsの必要保持量を一層低減することができて、吸着ロータ1全体としての必要吸着剤量を一層低減することができる。
That is, this allows the silica gel Xs of the
また、マイクロ波照射により吸着水分sを効率良く加熱し得ることで脱着用ガスHの必要温度も低減することができ、このことからも必要吸着剤量の低減と相俟って消費エネルギを一層効果的に低減することができる。 In addition, since the adsorbed moisture s can be efficiently heated by microwave irradiation, the required temperature of the desorption gas H can be reduced. This also reduces energy consumption in combination with the reduction in the amount of adsorbent required. It can be effectively reduced.
上記の吸着域側マイクロ波照射手段11や脱着域側マイクロ波照射手段13を装備する場合、図7に示す如く吸着ロータ1を金属製の仕切壁1mによりロータ回転方向において多数の吸着剤保持区画1aに内部区画したり、吸着ロータ1の外周面部に金属製の周壁1nを設けるなどし、これにより、吸着域側マイクロ波照射手段11や脱着域側マイクロ波照射手段13の照射マイクロ波mwを、漏れの無い状態で吸着域3における有機物質吸着部1Bや脱着域4における水分吸着部1Aに対し金属製仕切壁1mや金属製周壁1nによる反射波も含めた状態で一層効率良く集中的に照射できるようにしてもよい。
When the adsorption zone side microwave irradiation means 11 and the desorption zone side microwave irradiation means 13 are provided, the
また、同様の目的で装置ケース2の内部壁体2aや外部壁体2bを金属材で形成するのも好ましい。
For the same purpose, it is also preferable to form the
前述の実施形態では吸着域3及び脱着域4の夫々でロータ回転軸芯Pの方向に被処理ガスG及び脱着用ガスHを通過させる円盤状の吸着ロータ1を示したが、これに代え、シリカゲル保持の水分吸着部1A及びゼオライト保持の有機物質吸着部1Bを備える吸着ロータ1を筒状にして、吸着域3及び脱着域4の夫々でロータ半径方向に被処理ガスG及び脱着用ガスHを通過させるようにしてもよい。
In the above-described embodiment, the disk-shaped
除去対象の揮発性有機物質vはゼオライトXzによる吸着除去が可能なものであれば、どのようなものであってもよく、また、揮発性有機物質vを含む被処理ガスGも工場排ガスに限られるものではなく、除去すべき揮発性有機物質vを含むガスであれば各種分野において取り扱われるどのようなガスであってもよい。 The removal target volatile organic substance v may be any substance as long as it can be adsorbed and removed by zeolite Xz, and the gas to be treated G containing the volatile organic substance v is limited to factory exhaust gas. Any gas that is handled in various fields may be used as long as the gas contains the volatile organic substance v to be removed.
本発明の吸着ロータ式ガス処理装置で用いる吸着ロータ1は、本発明の吸着ロータ製造方法により製造したものであることが望ましいが、それに限らず、他の製造方法により製造した吸着ロータを使用してもよい。
The
本発明による吸着ロータ式ガス処理装置は各種分野において種々のガスからそれに含まれる揮発性有機物質を除去するのに利用することができる。 The adsorption rotor type gas processing apparatus according to the present invention can be used in various fields to remove volatile organic substances contained therein from various gases.
G 被処理ガス
v 揮発性有機物質
X(Xs,Xz) 吸着剤(シリカゲル、ゼオライト)
1 吸着ロータ
3 吸着域
H 脱着用ガス
4 脱着域
1A 水分吸着部
1B 有機物質吸着部
mw 吸着水分加熱用マイクロ波
11 吸着域側マイクロ波照射手段
13 脱着域側マイクロ波照射手段
7 ペーパー状保持基材
7a シリカゲル保持部
7b ゼオライト保持部
9 通気用空隙部
10 積層体
1x ロータ構成材
G Gas to be treated v Volatile organic substance X (Xs, Xz) Adsorbent (silica gel, zeolite)
DESCRIPTION OF
Claims (6)
この吸着ロータのロータ回転方向における各部を吸着ロータの回転により被処理ガスの通風域である吸着域と脱着用ガスの通風域である脱着域とに交互に位置させる構成にしてある吸着ロータ式ガス処理装置であって、
前記吸着ロータは、前記吸着剤としてシリカゲルを保持させた水分吸着部と、前記吸着剤としてゼオライトを保持させた有機物質吸着部とが、その順に前記吸着域における被処理ガス通風方向の上流側から並ぶ状態に備えられた構造にし、
前記脱着域における脱着用ガスの通風向きは、脱着用ガスを前記有機物質吸着部から前記水分吸着部の順に通過させる向きにし、
前記吸着ロータのうち前記吸着域にあるロータ部分の前記有機物質吸着部に対して吸着水分加熱用のマイクロ波を照射する吸着域側マイクロ波照射手段を設けてある吸着ロータ式ガス処理装置。 A breathable adsorption rotor that holds an adsorbent that adsorbs volatile organic substances in the gas to be treated in a state of being dispersed in the rotor rotation direction, is provided.
An adsorption rotor type gas configured such that each portion of the adsorption rotor in the rotor rotation direction is alternately positioned in an adsorption area which is a ventilation area of the gas to be treated and a desorption area which is a ventilation area of the desorption gas by rotation of the adsorption rotor A processing device comprising:
In the adsorption rotor, a moisture adsorption part that holds silica gel as the adsorbent, and an organic substance adsorption part that holds zeolite as the adsorbent, in that order, from the upstream side in the gas flow direction of the gas to be treated in the adsorption region A structure prepared for the lined-up state ,
The ventilation direction of the desorption gas in the desorption region is a direction in which the desorption gas passes through the organic substance adsorption unit in the order of the moisture adsorption unit,
An adsorption rotor type gas processing apparatus provided with adsorption region side microwave irradiation means for irradiating the organic substance adsorption part of the rotor portion in the adsorption region of the adsorption rotor with microwaves for heating adsorption moisture .
被処理ガス中の揮発性有機物質に対して吸着作用する吸着剤をロータ回転方向に分散させた状態で保持する通気性吸着ロータを製造するのに、
ペーパー状の保持基材に前記吸着剤としてシリカゲルを保持させたシリカゲル保持部と前記吸着剤としてゼオライトを保持させたゼオライト保持部とを隣接させて形成し、
これらシリカゲル保持部及びゼオライト保持部を形成した複数枚の前記保持基材を、それら保持基材どうしの間に通気用空隙部が形成される状態に、かつ、それら保持基材に形成した前記シリカゲル保持部どうし及び前記ゼオライト保持部どうしが前記通気用空隙部を挟んで重なる状態に積層し、
この積層体における前記シリカゲル保持部どうしの積層部を前記水分吸着部とし、かつ、前記ゼオライト保持部どうしの積層部を前記有機物質吸着部とする状態で、前記積層体をロータ構成材として前記水分吸着部と前記有機物質吸着部とが被処理ガス通風方向に並ぶ通気性吸着ロータを形成する吸着ロータ製造方法。 It is a manufacturing method of an adsorption rotor used with an adsorption rotor type gas processing device given in any 1 paragraph of Claims 1-5,
To manufacture a breathable adsorption rotor that holds an adsorbent that acts to adsorb volatile organic substances in the gas to be treated in a state of being dispersed in the rotor rotation direction .
A silica gel holding part that holds silica gel as the adsorbent on a paper-like holding base and a zeolite holding part that holds zeolite as the adsorbent are formed adjacent to each other,
The silica gel formed in the holding base material in a state in which a plurality of the holding base materials formed with the silica gel holding portion and the zeolite holding portion are formed between the holding base materials. The holding parts and the zeolite holding parts are laminated so as to overlap each other with the air gap part interposed therebetween,
The laminated portion of each other the silica gel holder in the laminate material and the moisture adsorption portion and the moisture laminated portion of the zeolite holder each other in a state that said organic substance-adsorbing portion, the laminate as a rotor constituent material An adsorption rotor manufacturing method in which an adsorbing part and the organic substance adsorbing part form a breathable adsorbing rotor arranged in the direction of the gas to be treated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009079830A JP4960985B2 (en) | 2009-03-27 | 2009-03-27 | Adsorption rotor type gas processing apparatus and adsorption rotor manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009079830A JP4960985B2 (en) | 2009-03-27 | 2009-03-27 | Adsorption rotor type gas processing apparatus and adsorption rotor manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010227870A JP2010227870A (en) | 2010-10-14 |
JP4960985B2 true JP4960985B2 (en) | 2012-06-27 |
Family
ID=43044256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009079830A Active JP4960985B2 (en) | 2009-03-27 | 2009-03-27 | Adsorption rotor type gas processing apparatus and adsorption rotor manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4960985B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101476285B1 (en) * | 2013-04-16 | 2014-12-24 | 주식회사 엔바이온 | Air purifying filter with desorption means by microwave heating and air purifying device thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5956216B2 (en) * | 2012-03-29 | 2016-07-27 | 高砂熱学工業株式会社 | Adsorption processing equipment |
JP6888283B2 (en) * | 2016-11-30 | 2021-06-16 | ダイキン工業株式会社 | Humidifier |
KR20220002395A (en) * | 2019-04-26 | 2022-01-06 | 도요보 가부시키가이샤 | adsorption treatment device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS544518Y2 (en) * | 1974-01-19 | 1979-02-27 | ||
JPS5724617A (en) * | 1980-07-17 | 1982-02-09 | Seibu Giken:Kk | Rotary type dehumidifier |
JPS5732713A (en) * | 1980-08-07 | 1982-02-22 | H Ii I:Kk | Dehumidifier |
JPS596924A (en) * | 1982-07-05 | 1984-01-14 | Kuraray Co Ltd | Recovery of organic solvent |
JPH07313825A (en) * | 1994-05-26 | 1995-12-05 | Seibu Giken:Kk | Honeycomb adsorbing body provided with filter |
JP2006187698A (en) * | 2005-01-04 | 2006-07-20 | Seibu Giken Co Ltd | Organic solvent gas treatment device |
JP2006239564A (en) * | 2005-03-03 | 2006-09-14 | Toto Ltd | Voc removal system |
JP4677850B2 (en) * | 2005-08-08 | 2011-04-27 | 東洋紡績株式会社 | Organic solvent-containing gas treatment system |
JP4951017B2 (en) * | 2009-03-24 | 2012-06-13 | 株式会社大気社 | Adsorption gas processing equipment |
-
2009
- 2009-03-27 JP JP2009079830A patent/JP4960985B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101476285B1 (en) * | 2013-04-16 | 2014-12-24 | 주식회사 엔바이온 | Air purifying filter with desorption means by microwave heating and air purifying device thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2010227870A (en) | 2010-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160339388A1 (en) | Volatile Organic Compound Removal System Using Microwaves | |
US6500236B2 (en) | Method for decarbonating waste gas and decarbonating apparatus | |
JP4951017B2 (en) | Adsorption gas processing equipment | |
JP4960985B2 (en) | Adsorption rotor type gas processing apparatus and adsorption rotor manufacturing method | |
US20100180763A1 (en) | Air Cleaner Having Regenerative Filter, and Method for Regenerative of Air Cleaner Filter | |
JP2008535650A (en) | Odor and harmful gas treatment system using rotary regenerative heat exchanger and its apparatus | |
KR102177063B1 (en) | Low Energy Consumption Concentrating Rotor For Treating Dehumidifier Comprising The Same | |
KR102127842B1 (en) | System for removing volatility organic compound | |
CN109548400A (en) | System is removed using the VOCS of gas distribution plate | |
JP2008224111A (en) | Deodorizing device | |
JP4523146B2 (en) | Organic solvent vapor processing equipment | |
JP2013132582A (en) | Organic solvent-containing gas treatment system | |
JP2004160444A (en) | Dry air feeding device and treatment apparatus | |
JP2008237462A (en) | Deodorizer | |
CN109069981B (en) | Adsorption treatment device | |
JP3538725B2 (en) | Exhaust gas treatment equipment | |
JP4250380B2 (en) | Gas concentrating device and gas concentrating method | |
JP2011031160A (en) | Organic solvent-containing gas treatment system | |
JP4912379B2 (en) | Fluid processing apparatus and refrigerator equipped with the same | |
JP2010051877A (en) | Apparatus and method for manufacturing oxygen enriched air | |
KR102068183B1 (en) | System for removing volatility organic compound | |
JP2005152761A (en) | Deodorization method and deodorization device | |
WO2008023659A1 (en) | Apparatus for treating organic-containing gas and method of treating the same | |
JPH08112512A (en) | Gas treating device | |
JP4014393B2 (en) | Dehumidifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120315 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120323 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150330 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4960985 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |