JPH06226037A - Method for making either of organic solvent vapor or moisture in gas selectively adsorbed and removing the same - Google Patents

Method for making either of organic solvent vapor or moisture in gas selectively adsorbed and removing the same

Info

Publication number
JPH06226037A
JPH06226037A JP4283415A JP28341592A JPH06226037A JP H06226037 A JPH06226037 A JP H06226037A JP 4283415 A JP4283415 A JP 4283415A JP 28341592 A JP28341592 A JP 28341592A JP H06226037 A JPH06226037 A JP H06226037A
Authority
JP
Japan
Prior art keywords
adsorption
honeycomb
moisture
organic solvent
solvent vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4283415A
Other languages
Japanese (ja)
Other versions
JP2950448B2 (en
Inventor
Toshimi Kuma
利実 隈
Masuaki Shirahama
升章 白濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP4283415A priority Critical patent/JP2950448B2/en
Publication of JPH06226037A publication Critical patent/JPH06226037A/en
Application granted granted Critical
Publication of JP2950448B2 publication Critical patent/JP2950448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1048Geometric details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To make either of a solvent or moisture selectively absorbed and remove it by changing the rotating speed of a honeycomb-shaped adsorption rotor at the time of adsorption of the solvent or the moisture by using zeolite having mesopores as an adsorbent. CONSTITUTION:The honeycomb-shaped rotor 4 using the zeolite having the mesopores as the adsorbent is rotated and the air contg. the org. solvent vapor and the moisture is passed through an adsorption zone 7 and heating air 12 for regeneration through a regeneration zone 8, respectively, by which either of desorption and adsorption regeneration is continuously executed. The rotating speed of the honeycomb-shaped adsorption rotor 4 is changed at this time. The org. solvent vapor is then preferentially adsorbed away when the rotating speed of the rotor 4 is low and the moisture is preferentially adsorbed away when the rotating speed is high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はハニカム状吸着ロータを
使用して空気その他不活性気体中に含まれる有機溶剤蒸
気と湿分とを選択的に吸着除去する方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selectively adsorbing and removing organic solvent vapor and moisture contained in air and other inert gases by using a honeycomb adsorption rotor.

【0002】[0002]

【従来の技術】ゼオライトはアルミノ珪酸塩を主成分と
し、その結晶水を離脱して生じる細孔の径の差によつて
湿分その他有機溶剤蒸気等気体分子をその分子径に応じ
て選択吸着するためモレキユラシーブ(分子篩)として
吸着剤に使用されている。
2. Description of the Related Art Zeolite has an aluminosilicate as a main component and selectively adsorbs moisture and other gas molecules such as organic solvent vapor according to its molecular diameter due to the difference in the diameter of the pores generated by the elimination of the water of crystallization. For this reason, it is used as an adsorbent as a molecular sieve.

【0003】除湿機用素子としてはたとえば特開昭54
−19548号公報に、石綿紙、ガラス繊維紙等のシー
トにモレキユラシーブ(4A,13X等)を付着し、波
付け、積層加工を施した円筒形のハニカム構造体よりな
る回転再生型除湿体が提案され、また特開昭63−24
0921号にはA型、X型、Y型等の合成ゼオライトま
たはモルデナイトその他の天然ゼオライトの粉末に結合
剤を加え、押出成形、プレス成形等によりハニカム構造
とした除湿材が提案されている。一方、有機溶剤蒸気、
悪臭ガス等を空気中から吸着分離する回転吸着素子とし
てはたとえば特開昭53−50068号公報に繊維状活
性炭を含有する紙によりハニカム構造に成形した素子が
提案されている。
As an element for a dehumidifier, for example, Japanese Patent Laid-Open No. 54-54
No. -19548, a rotary regeneration type dehumidifier made of a cylindrical honeycomb structure obtained by attaching a molecular sieve (4A, 13X, etc.) to a sheet of asbestos paper, glass fiber paper, etc., corrugated and laminated. In addition, JP-A-63-24
No. 0921 proposes a dehumidifying material having a honeycomb structure obtained by adding a binder to powders of A-type, X-type, Y-type, etc. synthetic zeolite or mordenite and other natural zeolite powder, and by extrusion molding or press molding. On the other hand, organic solvent vapor,
As a rotary adsorption element for adsorbing and separating a malodorous gas or the like from the air, for example, JP-A-53-50068 proposes an element formed into a honeycomb structure from paper containing fibrous activated carbon.

【0004】[0004]

【発明が解決しようとする課題】上記のゼオライトはア
ルミノ珪酸塩よりなる無機質であり発火の危険性は全く
なく、モレキユラシーブと呼ばれるように気体分子をそ
の分子径に応じて選択吸着し得るものであるが、有機溶
剤蒸気、悪臭ガス等を空気中から吸着分離しようとする
場合には、該空気中には必ず湿分が共存するため有機溶
剤蒸気、悪臭ガス等とともに湿分も必ず吸着される。水
分子の径は2.8Å、これに対し有機溶剤あるいは悪臭
ガスの分子径はたとえばベンゼンか6.7Å、シクロヘ
キサンが6.1Å等とすべて水分子の径より大きく、た
とえば細孔径4Å程度のゼオライトを使用することによ
り湿分のみを吸着分離することはできても、たとえば細
孔径10Å程度のゼオライトを使用することにより多量
の湿分の共存下に有機溶剤蒸気あるいは悪臭ガスのみを
吸着分離することはできず、むしろ湿分を優先的に吸着
し、有機溶剤蒸気あるいは悪臭ガスの吸着は優先的に吸
着された水分子によつて阻害され、従つて処理空気の絶
対湿度が高い場合(たとえば8g/kg以上)には有機
溶剤蒸気あるいは悪臭物質を効率よく吸着分離すること
はできない。
The above-mentioned zeolite is an inorganic substance composed of aluminosilicate, has no danger of ignition, and is capable of selectively adsorbing gas molecules according to its molecular diameter, as is called molecular sieve. However, when trying to adsorb and separate organic solvent vapor, malodorous gas or the like from the air, since moisture always coexists in the air, moisture is always adsorbed together with the organic solvent vapor, malodorous gas and the like. The diameter of water molecules is 2.8Å, whereas the molecular diameter of organic solvent or malodorous gas is, for example, benzene or 6.7Å, cyclohexane is 6.1Å, etc., which are all larger than the diameter of water molecules, for example, zeolite with a pore size of about 4Å. Although it is possible to adsorb and separate only the moisture by using, it is possible to adsorb and separate only the organic solvent vapor or the malodorous gas in the coexistence of a large amount of the moisture by using, for example, a zeolite having a pore size of about 10Å. Rather, it preferentially adsorbs moisture, and the adsorption of organic solvent vapors or malodorous gas is hindered by the preferentially adsorbed water molecules, and therefore the absolute humidity of the treated air is high (eg 8g). / Kg or more), it is not possible to efficiently adsorb and separate organic solvent vapors or malodorous substances.

【0005】活性炭は疎水性吸着剤といわれ、炭化水素
等非極性分子を優先的に吸着するが、可燃性のため脱着
再生に130℃以上の温度の熱風を使用すれば発火の危
険がある。また吸着した溶剤の種類によつては吸着発熱
が大きく活性炭を使用したハニカムロータはこの吸着熱
によりしばしば発火事故を起しており、使用が極めて困
難である。更にこのロータをある期間使用して高沸点の
油分の附着等により活性が低下したときにこれを賦活す
る場合には350℃前後の高温処理をしなければならな
いが、この高温処理に熱風を使用することはできず過熱
水蒸気を用いて賦活する必要がある等の欠陥があつた。
Activated carbon is called a hydrophobic adsorbent and preferentially adsorbs non-polar molecules such as hydrocarbons, but since it is combustible, there is a risk of ignition if hot air at a temperature of 130 ° C. or higher is used for desorption and regeneration. Further, depending on the type of the adsorbed solvent, a large amount of heat is generated by adsorption, and a honeycomb rotor using activated carbon often causes an ignition accident due to the heat of adsorption, and is extremely difficult to use. Furthermore, when this rotor is used for a certain period of time and activated when it becomes less active due to attachment of oil with a high boiling point, etc., in order to activate it, high temperature treatment at around 350 ° C must be performed, but hot air is used for this high temperature treatment. However, there was a defect that it was necessary to activate using superheated steam.

【0006】本発明は前記の如く耐熱性にすぐれ発火の
危険性のないゼオライトを吸着剤として使用したハニカ
ム状の吸着ロータを使用して、有機溶剤蒸気および湿分
をともに含有する空気を処理して該空気中の有機溶剤蒸
気または湿分の何れか一方を選択的に吸着除去しようと
するものである。
As described above, the present invention treats air containing both organic solvent vapor and moisture using a honeycomb-shaped adsorption rotor using zeolite as an adsorbent, which has excellent heat resistance and does not pose a risk of ignition. Therefore, either the organic solvent vapor or the moisture content in the air is selectively adsorbed and removed.

【0007】[0007]

【課題を解決するための手段】ゼオライトはその種類に
よつて3Å〜10Å程度の一定の内径を有する細孔(マ
イクロポア)を有し、前述の如く主としてその細孔径の
差によつて湿分その他有機溶剤蒸気等気体分子をその分
子径に応じて選択吸着し得るが、ゼオライトの中には上
記のマイクロポアとともにメソポアを有するものがあ
る。(メソポアとは”IUPAC Manual of
Symbols and Terminology”
Appendix 2, Pt.1,Colloid
and Surface Chemistry,Pur
e and Appl.Chem.,31,578(1
972)によって内径20〜500Åの細孔を指すもの
と推奨されている。)
[Means for Solving the Problems] Zeolite has pores (micropores) having a constant inner diameter of about 3Å to 10Å depending on the type thereof, and as described above, the moisture content is mainly due to the difference in the pore diameter. Other gas molecules such as organic solvent vapor can be selectively adsorbed according to the molecular diameter, and some zeolites have mesopores in addition to the above-mentioned micropores. (What is Mesopore? “IUPAC Manual of of
Symbols and Terminology ”
Appendix 2, Pt. 1, Colloid
and Surface Chemistry, Pur
e and Appl. Chem. , 31 , 578 (1
972) recommends to refer to pores having an inner diameter of 20 to 500Å. )

【0008】図2は2種類のゼオライトによる27℃に
おける空気中のn−ヘキサンの吸着平衡等温線を示す。
図中横軸はn−ヘキサンの蒸気圧Pとn−ヘキサンの飽
和蒸気圧Psとの比の対数logP/Ps、縦軸はゼオ
ライト1g当りn−ヘキサンの吸着量〔ミリモル〕を示
す。図中Aはゼオライトとしてメソポアを有するUS−
Ex,Bはメソポアを有しない「シリカライト」を使用
した場合を示す。ここでメソポアを有しないゼオライト
においてはたとえばn−ヘキサン蒸気吸着に使用した場
合図2のカーブBに示す如く蒸気圧を漸次上昇した場合
吸着平衡等温線が急激に上昇することなく高蒸気圧から
低蒸気圧に移行する場合の吸着平衡等温線がヒステレシ
ス現象を起さず即ち吸着された蒸気が毛管凝縮を起こさ
ない。
FIG. 2 shows adsorption equilibrium isotherms of n-hexane in air at 27 ° C. for two types of zeolite.
In the figure, the horizontal axis represents the logarithm logP / Ps of the ratio between the vapor pressure P of n-hexane and the saturated vapor pressure Ps of n-hexane, and the vertical axis represents the adsorption amount [mmol] of n-hexane per 1 g of zeolite. In the figure, A is US-having mesopores as zeolite
Ex and B show the case where "silicalite" having no mesopore is used. In the case where zeolite having no mesopores is used for n-hexane vapor adsorption, for example, when vapor pressure is gradually increased as shown by the curve B in FIG. 2, the adsorption equilibrium isotherm does not rise sharply from high vapor pressure to low vapor pressure. The adsorption equilibrium isotherm on transition to vapor pressure does not cause the hysteresis phenomenon, ie the adsorbed vapor does not cause capillary condensation.

【0009】これに対しメソポアを有するゼオライトに
おいては図2のカーブAに示す如く高蒸気圧雰囲気にお
ける吸着能力は著しく高く、雰囲気の蒸気圧を漸次上昇
した場合急激に上昇し、しかも蒸気圧を低蒸気圧から漸
次高くした場合の平衡吸着量を示す曲線(吸着曲線、図
中「吸着」と示す)と蒸気圧を高蒸気圧から漸次低くし
た場合の平衡吸着量を示す曲線(脱着曲線、図中「脱
着」と示す)とが一致せずいわゆるヒステレシス(履
歴)現象が起こつており、これは多分子層吸着および毛
管凝縮が起つていることを示すものである。
On the other hand, the zeolite having mesopores has a remarkably high adsorption capacity in a high vapor pressure atmosphere as shown by the curve A in FIG. 2, and when the vapor pressure of the atmosphere gradually increases, it rapidly rises and the vapor pressure decreases. A curve showing the equilibrium adsorption amount when the vapor pressure is gradually increased (adsorption curve, shown as "adsorption" in the figure) and a curve showing the equilibrium adsorption amount when the vapor pressure is gradually decreased from the high vapor pressure (desorption curve, figure (Indicated as “desorption” in the middle) does not coincide with the phenomenon of so-called hysteresis (history), which indicates that multi-layer adsorption and capillary condensation occur.

【0010】天然のゼオライト、直接合成法によつて得
られた合成ゼオライトの結晶粒子はメソポアを有しない
が、合成ゼオライトたとえばNa−Yゼオライトのマイ
クロポアの骨格構造を変化させたゼオライトはその製造
過程で原料の結晶粒子の中に微細な溝を生じ、これは1
5〜100Åの孔径を有し、ほぼメソポアに相当する。
Natural zeolite, the crystal particles of synthetic zeolite obtained by the direct synthesis method do not have mesopores, but synthetic zeolite, for example, zeolite of Na-Y zeolite in which the skeleton structure of micropores is changed, is used for the production process. In this way, fine grooves are created in the crystal grains of the raw material.
It has a pore size of 5 to 100Å and is almost equivalent to mesopores.

【0011】さきにゼオライトは「むしろ湿分を優先的
に吸着し、有機溶剤蒸気あるいは悪臭ガスの吸着は優先
的に吸着された水分子によつて阻害され」と述べたが、
マイクロポアを形成する骨格構造の違いにより有機溶剤
蒸気等を水蒸気に優先して吸着するものがある。たとえ
ば米国UOP社のゼオライト628または173ではマ
イクロポアは有機溶剤蒸気を優先的に吸着し、同じくメ
ソポアは毛管凝縮により多量の水蒸気を優先的に吸着す
る。(英国発行ZEOLITES誌、1986年(Vo
1.6)3月号74頁以降参照)
Zeolite mentioned earlier that "rather preferentially adsorbs moisture, and adsorption of organic solvent vapor or malodorous gas is inhibited by preferentially adsorbed water molecules."
Depending on the skeleton structure that forms the micropores, there are some that preferentially adsorb organic solvent vapor or the like over water vapor. For example, in UOP's zeolite 628 or 173, micropores preferentially adsorb organic solvent vapors, and mesopores preferentially adsorb large amounts of water vapor by capillary condensation. (UK issued ZEOLITES magazine, 1986 (Vo
1.6) Please refer to page 74 of the March issue)

【0012】ここでメソポアを有するゼオライトの粉末
を担持したハニカム状吸着ロータを回転し、このハニカ
ム状吸着ロータの吸着ゾーンに有機溶剤蒸気および湿分
を含有する不活性気体たとえば空気を通過させ再生ゾー
ンに脱着用高温気体を通過させ、これを交互に繰返して
有機溶剤蒸気および湿分を連続的に吸着および脱着する
操作においては、図3に示す如く吸着ロータの回転が5
〜10r.p.h.程度の低速度である場合にはマイク
ロポアへの有機溶剤蒸気の吸着およびその脱着、メソポ
アへの水蒸気の吸着および脱着がともに完全に行なわれ
るが、吸着ロータの回転速度が15〜20r.p.h程
度に速くなると、まず再生ゾーンにおける加熱時間が不
足するためマイクロポアに吸着された有機溶剤の脱着が
不充分となり、吸着の有効表面積が減少し、一方上記回
転速度ではメソポアに吸着された湿分の脱着は充分に行
なわれ、ここでは吸着の有効表面積は減少しない。更に
吸着ロータの回転を28r.p.h.程度に速くする
と、マイクロポアにおける吸着の有効表面積は更に減少
するとともに、メソポアに吸着された湿分の脱着も漸次
不充分となり、ここでも吸着の有効表面積は減少して来
る。
Here, a honeycomb-shaped adsorption rotor carrying a powder of zeolite having mesopores is rotated, and an inert gas containing organic solvent vapor and moisture such as air is passed through the adsorption zone of the honeycomb-shaped adsorption rotor to regenerate it. In the operation of passing a high temperature gas for desorption and repeating it alternately to adsorb and desorb organic solvent vapor and moisture continuously, the rotation of the adsorption rotor should be 5 times as shown in FIG.
-10r. p. h. When the speed is low, the adsorption and desorption of the organic solvent vapor on the micropores and the adsorption and desorption of the water vapor on the mesopores are completely performed, but the rotation speed of the adsorption rotor is 15 to 20 r. p. When the speed is increased to about h, the desorption of the organic solvent adsorbed on the micropores is insufficient because the heating time in the regeneration zone is insufficient, and the effective surface area for adsorption is reduced. The desorption of minutes is well carried out, where the effective surface area of adsorption is not reduced. Further, the rotation of the adsorption rotor is set to 28 r. p. h. When the speed is made moderate, the effective surface area for adsorption in the micropores is further reduced, and desorption of the moisture adsorbed in the mesopores is gradually insufficient, and the effective surface area for adsorption is again reduced.

【0013】即ち一般的に吸着ロータの回転速度を漸次
速くすると吸着率は漸次増大し最大値を経てその後漸次
減少するが、メソポアを有するゼオライトを吸着剤とし
て使用した場合には有機溶剤蒸気の吸着率が最大を示す
時の吸着ロータの回転数に比し水蒸気の吸着率が最大を
示す時の吸着ロータの回転数は大きくなる。
That is, generally, when the rotational speed of the adsorption rotor is gradually increased, the adsorption rate gradually increases, reaches a maximum value, and then gradually decreases. However, when zeolite having mesopores is used as an adsorbent, adsorption of organic solvent vapor The number of rotations of the adsorption rotor when the adsorption rate of water vapor is maximum is higher than the number of rotations of the adsorption rotor when the rate is maximum.

【0014】本発明者は以上の事実を発見して本発明に
到達したものであり、即ち本発明はメソポアを有するゼ
オライトを吸着剤として担持したハニカム状吸着ロータ
を使用し、有機溶剤蒸気と湿分とを含有する不活性気体
たとえば空気を該吸着ロータのハニカム孔に送入し、吸
着ロータの回転速度を遅くして有機溶剤蒸気を優先的に
吸着除去し、あるいは吸着ロータの回転速度を速くして
湿分を優先的に吸着除去するものである。
The present inventors have arrived at the present invention by discovering the above facts, that is, the present invention uses a honeycomb-shaped adsorption rotor carrying a zeolite having mesopores as an adsorbent, and uses an organic solvent vapor and a wet solvent. An inert gas containing, for example, air is fed into the honeycomb holes of the adsorption rotor to slow down the rotation speed of the adsorption rotor to preferentially remove the organic solvent vapor by adsorption, or increase the rotation speed of the adsorption rotor. Then, the moisture is preferentially adsorbed and removed.

【0015】[0015]

【実施例1】シリカ・アルミナ系のエラミツクス繊維に
少量のパルプおよび少量のバインダーを加え見掛け比重
0.3〜0.55程度の低密度(坪量60〜150g/
程度)、厚さ0.10〜0.30mm程度に抄造し
た無機繊維紙を幅400mm、波の波長P 3.4m
m、波高h 1.8mm(図4参照)になるように接着
剤を用いてコルゲート成形し、図4に示す如く片波成形
体1を得、図5に示す如く芯材2に該片波成形体1を捲
付けて両端面に透通した多数の小透孔3を有する径50
0mm、長さL 400mmのハニカム状円筒体を成形
し、これを高温焼成して有機物を除去する。
[Example 1] A small amount of pulp and a small amount of binder were added to silica / alumina-based elastic fibers to have a low density of an apparent specific gravity of 0.3 to 0.55 (basis weight: 60 to 150 g /
m about 2), papermaking inorganic fiber paper width 400mm thickness of about 0.10 to 0.30 mm, the wave wavelength of P 3.4 m
m and a wave height h of 1.8 mm (see FIG. 4) are corrugated using an adhesive to obtain a single wave molded body 1 as shown in FIG. 4, and the single wave is formed on the core material 2 as shown in FIG. Diameter 50 having a large number of small through holes 3 formed by winding the molded body 1 and penetrating both end surfaces
A honeycomb cylindrical body having a length of 0 mm and a length L of 400 mm is formed, and is fired at a high temperature to remove organic substances.

【0016】ゼオライトとして米国イリノイ州UOP社
のゼオライト628または173即ちxNaO・Al
・ySiO・zHO(但しy≒5〜33、細
孔径ほぼ8Å)の粉末をシリカまたはアルミナの水性ゾ
ルに分散し、得られたゾルに上記ハニカム状円筒体を浸
漬し、無機繊維紙1,2の繊維間隙および表面にシリカ
またはアルミナの微粒子を結合剤として上記ゼオライト
を付着せしめ、高温乾燥してハニカム状吸着ロータを得
た。
Zeolite 628 or 173 or xNa 2 O.Al manufactured by UOP, Illinois, USA as zeolite
2 O 3 · ySiO 2 · zH 2 O ( where y ≒ 5 to 33, pore diameter approximately 8 Å) powder was dispersed in an aqueous sol of silica or alumina, the honeycomb-shaped cylinder was immersed in the resulting sol, The above zeolite was adhered to the fiber gaps and surfaces of the inorganic fiber papers 1 and 2 with silica or alumina fine particles as a binder and dried at high temperature to obtain a honeycomb adsorption rotor.

【0017】図5の如く円筒状で得られたハニカム状吸
着ロータはたとえば図1に示す如く該吸着ロータ4をケ
ーシング5内に駆動回転可能に保持しセパレータ6によ
り処理ゾーン7と再生ゾーン8とに分離し、ギヤドモー
タ9、駆動ベルト10により吸着ロータ4を回転させ、
湿分および有機溶剤蒸気を含有する処理空気11を処理
ゾーン7に、高温の再生空気12を再生ゾーン8に送入
し、処理空気11中の湿分または有機溶剤蒸気を吸着し
て乾燥空気または清浄な空気13を得るものである。尚
図中14はプーリー、15はテンシヨンプーリー、16
はゴムシール、17は再生空気加熱器である。
As shown in FIG. 1, for example, a honeycomb-shaped adsorption rotor obtained in a cylindrical shape as shown in FIG. 5 has the adsorption rotor 4 rotatably held in a casing 5 and a separator 6 to form a processing zone 7 and a regeneration zone 8. Separated, and the suction rotor 4 is rotated by the geared motor 9 and the drive belt 10,
The treated air 11 containing moisture and organic solvent vapor is fed into the treatment zone 7, and the high-temperature regenerated air 12 is fed into the regeneration zone 8 to adsorb moisture or organic solvent vapor in the treated air 11 to dry air or The clean air 13 is obtained. In the figure, 14 is a pulley, 15 is a tension pulley, 16
Is a rubber seal, and 17 is a regenerated air heater.

【0018】ロータ4の回転速度を4〜24r.p.
h.、再生空気量対処理空気量を1:10、処理入口空
気の温度を20℃、湿度を17g/kg’、トルエン蒸
気含有量を200ppm、再生入口空気の温度を140
℃、湿度を17g/kg’、処理空気および再生空気の
送入流速を2m/sec.の条件で吸着操作を行なつた
ときの水蒸気およびトルエン蒸気の除去量即ち吸着量を
図6に、除去率を図7に示す。ここで蒸気の除去率とは
処理出口空気の蒸気含有率と処理入口空気の蒸気含有率
との比を1から引いた値をいう。尚処理入口空気中のト
ルエン蒸気の濃度が10〜1000ppmの範囲で変わ
つてもトルエン蒸気の除去率は殆んど変わらない。
The rotation speed of the rotor 4 is 4 to 24 r. p.
h. , Regenerated air amount to treated air amount is 1:10, treated inlet air temperature is 20 ° C., humidity is 17 g / kg ′, toluene vapor content is 200 ppm, regeneration inlet air temperature is 140.
C., humidity 17 g / kg ', and process air and regeneration air flow rates of 2 m / sec. FIG. 6 shows the removal amount of water vapor and toluene vapor, that is, the adsorption amount, and the removal rate when the adsorption operation was performed under the conditions. Here, the steam removal rate means a value obtained by subtracting the ratio of the steam content rate of the process outlet air and the steam content rate of the process inlet air from one. Even if the concentration of toluene vapor in the treatment inlet air varies within the range of 10 to 1000 ppm, the removal rate of toluene vapor hardly changes.

【0019】[0019]

【対照例】ゼオライトとして直接合成により得られたメ
ソポアを殆んど有しないゼオライト(米国UOP社の
「スメルライト」、シリカ対アルミナのモル比3以上)
の微粒子を使用し、実施例1と同様な方法で無機バイン
ダーを用いてゼオライト微粒子をハニカム状円筒体に定
着し、ハニカム状吸着ロータを得た。
[Comparative Example] Zeolite having almost no mesopores obtained by direct synthesis as zeolite ("Sumerlite" manufactured by UOP, USA, silica / alumina molar ratio of 3 or more)
In the same manner as in Example 1, the fine particles of No. 3 were used to fix the zeolite fine particles to the honeycomb cylindrical body using an inorganic binder to obtain a honeycomb adsorption rotor.

【0020】得られたハニカム状吸着ロータ4を実施例
1と同様図1に示す如く組立てて使用する。ロータ4の
回転速度を4〜24r.p.h.、再生空気量対処理空
気量を1:10、処理入口空気の温度を20℃、湿度を
17g/kg’、メチルエチルケトン蒸気含有量を20
0ppm、再生入口空気の温度を140℃、湿度を17
g/kg’、処理空気および再生空気の流速を2m/s
ecの条件で吸着操作を行なつたときの水蒸気およびメ
チルエチルケトン蒸気の除去率を図8に示す。
The honeycomb adsorption rotor 4 thus obtained is assembled and used as shown in FIG. The rotation speed of the rotor 4 is 4 to 24 r. p. h. , Regenerated air amount to treated air amount 1:10, treated inlet air temperature 20 ° C., humidity 17 g / kg ′, methyl ethyl ketone vapor content 20
0 ppm, regeneration inlet air temperature 140 ° C, humidity 17
g / kg ', the flow velocity of treated air and regenerated air is 2 m / s
FIG. 8 shows the removal rates of water vapor and methyl ethyl ketone vapor when the adsorption operation was performed under the condition of ec.

【0021】[0021]

【発明の効果】実施例1の吸着データ即ち図6、図7か
ら明らかなように、吸着剤としてメソポアを有するゼオ
ライトを使用した場合には溶剤吸着を目的とするときの
最適回転数より湿分吸着を目的とするときの最適回転数
の方が大きく、しかも溶剤吸着を目的とする最適回転数
9r.p.h.においては溶剤吸着率98%に対し湿分
吸着率は37%程度で有機溶剤蒸気が優先的に吸着さ
れ、一方湿分吸着を目的とする最適回転数21r.p.
hにおいては湿分吸着率は64%に上昇し有機溶剤蒸気
吸着率は80%程度に低下し湿分が優先的に吸着され
る。即ちハニカム状吸着ロータの回転数を上げることに
より空気その他不活性気体中に含まれる湿分を優先的に
吸着し、また回転数を下げることにより有機溶剤蒸気を
優先的に吸着除去し得る効果を有するものである。本発
明の実施においては勿論他の吸着剤を併用することもで
きる。
As is apparent from the adsorption data of Example 1, that is, FIG. 6 and FIG. 7, when the zeolite having mesopores is used as the adsorbent, the moisture content is higher than the optimum number of revolutions for the purpose of solvent adsorption. The optimum rotation speed for adsorption is higher, and the optimum rotation speed for solvent adsorption is 9r. p. h. In the case of the solvent adsorption rate of 98%, the moisture adsorption rate is about 37%, and the organic solvent vapor is preferentially adsorbed. On the other hand, the optimum rotational speed of 21r. p.
At h, the moisture adsorption rate increases to 64%, the organic solvent vapor adsorption rate decreases to about 80%, and the moisture is preferentially adsorbed. That is, by increasing the rotation speed of the honeycomb adsorption rotor, the moisture contained in the air or other inert gas is preferentially adsorbed, and by lowering the rotation speed, the organic solvent vapor can be preferentially adsorbed and removed. I have. In the practice of the present invention, other adsorbents can of course be used together.

【0022】これに対し吸着剤としてメソポアを殆んど
有しないゼオライトを使用した場合には対照例の吸着デ
ータから明らかなように溶剤蒸気吸着を目的とするとき
の最適回転数より湿分吸着を目的とするときの最適回転
数が大きいが、湿分吸着を目的とする最適回転数15
r.p.h.において湿分吸着率より溶剤蒸気吸着率が
遥かに大きい。即ち回転速度を変えても湿分の除去率は
極めて低く、湿分の吸着除去には使用し得ない。
On the other hand, when zeolite having almost no mesopores is used as the adsorbent, the moisture adsorption from the optimum rotational speed when solvent vapor adsorption is aimed is clear, as is clear from the adsorption data of the control example. Optimum number of revolutions for the purpose is large, but optimal number of revolutions for adsorbing moisture is 15
r. p. h. In, the solvent vapor adsorption rate is much higher than the moisture adsorption rate. That is, even if the rotation speed is changed, the removal rate of moisture is extremely low and it cannot be used for adsorption removal of moisture.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するのに使用する装置の一
部欠截斜視図である。
1 is a partially cutaway perspective view of an apparatus used to carry out the method of the present invention.

【図2】ゼオライトの吸着平衡等温線を示すグラフであ
る。
FIG. 2 is a graph showing an adsorption equilibrium isotherm of zeolite.

【図3】マイクロポアとメソポアへの吸着を説明するグ
ラフである。
FIG. 3 is a graph illustrating adsorption on micropores and mesopores.

【図4】片波成形体を示す斜視図である。FIG. 4 is a perspective view showing a one-sided molded body.

【図5】ハニカム状円筒体を示す斜視図である。FIG. 5 is a perspective view showing a honeycomb cylindrical body.

【図6】本発明の一実施例による有機溶剤蒸気および湿
分の吸着量を示すグラフである。
FIG. 6 is a graph showing adsorption amounts of organic solvent vapor and moisture according to an embodiment of the present invention.

【図7】本発明の一実施例による有機溶剤蒸気および湿
分の吸着率を示すグラフである。
FIG. 7 is a graph showing adsorption rates of organic solvent vapor and moisture according to an embodiment of the present invention.

【図8】対照例による有機溶剤蒸気および湿分の吸着率
を示すグラフである。
FIG. 8 is a graph showing adsorption rates of organic solvent vapor and moisture according to a control example.

【符号の説明】[Explanation of symbols]

3 小透孔 4 ハニカム状吸着ロータ 7 処理ゾーン 8 再生ゾーン 11 処理空気 12 再生空気 3 Small through hole 4 Honeycomb adsorption rotor 7 Processing zone 8 Regeneration zone 11 Processing air 12 Regeneration air

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】両端面に透通する多数の小透孔を有するハ
ニカム状円筒体に成形してなり、該小透孔の壁面にメソ
ポアを有するゼオライトの粉末があらわれているハニカ
ム状吸着ロータを回転し、該ハニカム状吸着ロータの吸
着ゾーンに有機溶剤蒸気および湿分を含有する気体を通
過させ再生ゾーンに脱着用高温気体を通過させるに当た
り、該ハニカム状吸着ロータの回転数を変えることによ
り気体中の有機溶剤蒸気と湿分とを選択的に吸着除去す
る方法。
1. A honeycomb-shaped adsorption rotor formed by molding into a honeycomb-shaped cylindrical body having a large number of small through-holes penetrating at both end faces, and the powder of zeolite having mesopores appearing on the wall surface of the small through-holes. When rotating, the gas containing the organic solvent vapor and moisture is passed through the adsorption zone of the honeycomb adsorption rotor and the desorption high-temperature gas is passed through the regeneration zone, by changing the rotational speed of the honeycomb adsorption rotor. A method for selectively adsorbing and removing organic solvent vapor and moisture therein.
【請求項2】無機繊維を主成分とする低密度の紙を積層
して多数の小透孔を有するハニカム状円筒体を成形し、
該ハニカム状円筒体の紙の繊維間隙および表面にメソポ
アを有するゼオライトの粉末を無機バインダーによつて
含浸定着してなるハニカム状吸着ロータを使用する請求
項1記載の気体中の有機溶剤蒸気と湿分とを選択的に吸
着除去する方法。
2. A honeycomb-shaped cylindrical body having a large number of small through holes is formed by laminating low-density papers containing inorganic fibers as a main component,
The organic solvent vapor in a gas and wetness according to claim 1, wherein a honeycomb adsorption rotor formed by impregnating and fixing zeolite powder having mesopores on the fiber gaps and surfaces of the paper of the honeycomb cylindrical body with an inorganic binder is used. A method for selectively adsorbing and removing the components.
【請求項3】無機繊維を主成分とする低密度の紙を積層
する前およびまたは後に該紙を焼成する請求項2記載の
気体中の有機溶剤蒸気と湿分とを選択的に吸着除去する
方法。
3. The organic solvent vapor and the moisture in the gas according to claim 2, wherein the paper is fired before and / or after laminating the low-density paper containing inorganic fibers as a main component. Method.
【請求項4】厚さ0.10〜0.3mm程度の無機繊維
紙よりなる平面シートと波長2.5〜6.5mm程度、
波高1.0〜4.0mm程度の波形シートとを交互に積
層し、小透孔の長さ100〜600mm程度に成形した
ハニカム状円筒体を使用する請求項2または請求項3記
載の気体中の有機溶剤蒸気と湿分とを選択的に吸着除去
する方法。
4. A flat sheet made of inorganic fiber paper having a thickness of about 0.10 to 0.3 mm and a wavelength of about 2.5 to 6.5 mm,
4. A gas according to claim 2 or 3, wherein a honeycomb-shaped cylindrical body is used which is formed by alternately laminating corrugated sheets having a wave height of about 1.0 to 4.0 mm and forming small through holes having a length of about 100 to 600 mm. A method for selectively adsorbing and removing organic solvent vapor and moisture.
JP4283415A 1992-09-08 1992-09-08 Method and apparatus for preferentially adsorbing and removing organic solvent vapor and moisture in gas Expired - Lifetime JP2950448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4283415A JP2950448B2 (en) 1992-09-08 1992-09-08 Method and apparatus for preferentially adsorbing and removing organic solvent vapor and moisture in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4283415A JP2950448B2 (en) 1992-09-08 1992-09-08 Method and apparatus for preferentially adsorbing and removing organic solvent vapor and moisture in gas

Publications (2)

Publication Number Publication Date
JPH06226037A true JPH06226037A (en) 1994-08-16
JP2950448B2 JP2950448B2 (en) 1999-09-20

Family

ID=17665238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4283415A Expired - Lifetime JP2950448B2 (en) 1992-09-08 1992-09-08 Method and apparatus for preferentially adsorbing and removing organic solvent vapor and moisture in gas

Country Status (1)

Country Link
JP (1) JP2950448B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328787B1 (en) 1998-07-14 2001-12-11 Seibu Giken Co., Ltd. Apparatus and method for treating gas using a honeycomb rotor having a plurality of desorbing zones
JP2002058952A (en) * 2000-06-05 2002-02-26 Fuji Photo Film Co Ltd Circulated gas-concentration method for recovered gas in dry-type dehumidifier
CN1089262C (en) * 1999-06-11 2002-08-21 华懋科技股份有限公司 Method of raising the efficiency of runner type adsorption system in eliminating volatile organic waste gas
JP2004205206A (en) * 2004-04-05 2004-07-22 Daikin Ind Ltd Humidity controller, air conditioner, and rotor
US6820681B2 (en) 2000-10-05 2004-11-23 Mitsubishi Paper Mills Limited Heating regeneration type organic rotor member and method for producing the same
JP2007301483A (en) * 2006-05-11 2007-11-22 Fuji Electric Holdings Co Ltd Adsorption member excellent in adsorption and desorption capacity and its manufacturing method
WO2008004703A1 (en) 2006-07-05 2008-01-10 Mitsubishi Paper Mills Limited Sheetlike products and works
JP2009041841A (en) * 2007-08-08 2009-02-26 Fuji Electric Holdings Co Ltd Dehumidification air conditioner
JP2009154115A (en) * 2007-12-27 2009-07-16 Toyobo Co Ltd Solvent-containing gas treatment apparatus
JP2010201316A (en) * 2009-03-02 2010-09-16 Jg Environmental Technology Co Ltd Method of and apparatus for optimizing operation control used for concentration rotor system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328787B1 (en) 1998-07-14 2001-12-11 Seibu Giken Co., Ltd. Apparatus and method for treating gas using a honeycomb rotor having a plurality of desorbing zones
CN1089262C (en) * 1999-06-11 2002-08-21 华懋科技股份有限公司 Method of raising the efficiency of runner type adsorption system in eliminating volatile organic waste gas
JP2002058952A (en) * 2000-06-05 2002-02-26 Fuji Photo Film Co Ltd Circulated gas-concentration method for recovered gas in dry-type dehumidifier
JP4703889B2 (en) * 2000-06-05 2011-06-15 富士フイルム株式会社 Method for circulating concentration treatment of dry type dehumidifier regeneration gas
US6820681B2 (en) 2000-10-05 2004-11-23 Mitsubishi Paper Mills Limited Heating regeneration type organic rotor member and method for producing the same
JP2004205206A (en) * 2004-04-05 2004-07-22 Daikin Ind Ltd Humidity controller, air conditioner, and rotor
JP2007301483A (en) * 2006-05-11 2007-11-22 Fuji Electric Holdings Co Ltd Adsorption member excellent in adsorption and desorption capacity and its manufacturing method
WO2008004703A1 (en) 2006-07-05 2008-01-10 Mitsubishi Paper Mills Limited Sheetlike products and works
US7897012B2 (en) 2006-07-05 2011-03-01 Mitsubishi Paper Mills Limited Sheet containing fibrous or tubular moisture adsorbent metal oxide
JP2009041841A (en) * 2007-08-08 2009-02-26 Fuji Electric Holdings Co Ltd Dehumidification air conditioner
JP2009154115A (en) * 2007-12-27 2009-07-16 Toyobo Co Ltd Solvent-containing gas treatment apparatus
JP2010201316A (en) * 2009-03-02 2010-09-16 Jg Environmental Technology Co Ltd Method of and apparatus for optimizing operation control used for concentration rotor system

Also Published As

Publication number Publication date
JP2950448B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
US4402717A (en) Apparatus for removing moisture and odors
US5338450A (en) Spiral-wound adsorber module
JP2579767B2 (en) Ultra-low concentration gas adsorption element and gas adsorption removal device
JPH0628173Y2 (en) Moisture exchange element
JP2785870B2 (en) Pressure swing adsorption method
AU2017208389A1 (en) Desiccant based honeycomb chemical filter and method of manufacture thereof
US5348922A (en) Gas adsorbing element and method for forming same
JP2673300B2 (en) Low concentration gas sorption machine
RU179464U1 (en) ADSORPTION DEVICE WITH AN ADSORPING AGENT
JPH06226037A (en) Method for making either of organic solvent vapor or moisture in gas selectively adsorbed and removing the same
JP2012512022A (en) Adsorbent medium containing Li-exchanged zeolite
JP2002177773A (en) Method of activating monolith adsorbent
EP0492879B1 (en) A gas adsorbing element, its manufacture method and usage
JPH06165934A (en) Gas adsorption element, production and use therefor
JP3874187B2 (en) Dehumidifying element and dehumidifying device
JP2015509832A (en) Desiccant-supporting honeycomb chemical filter and manufacturing method thereof
JP2002239329A (en) Adsorption element and manufacturing method therefor
KR101487053B1 (en) Dehumidifying Rotor having air conditioning ability and Method of manufacturing the Dehumidifying Rotor
US20080083336A1 (en) Electrically conductive adsorptive honeycombs for drying of air
JPH0871352A (en) Filter, production thereof and filter apparatus
JP2005111331A (en) Catalyst carrier and catalyst filter
JPH1043540A (en) Organic gas adsorbing and removing sheet and organic gas adsorbing and removing element
JP2005138038A (en) Organic compound adsorption fibrous activated carbon and exhaust gas treatment apparatus
JP4239084B2 (en) Adsorption element
JP2007117942A (en) Dehumidifying element and dehumidifying device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11