JP2009153230A - Method of manufacturing rotor core, rotor core manufactured by the manufacturing method, rotor core, embedded magnet type dynamo-electric machine having the rotor, vehicle, lift and working machine each using the dynamo-electric machine - Google Patents

Method of manufacturing rotor core, rotor core manufactured by the manufacturing method, rotor core, embedded magnet type dynamo-electric machine having the rotor, vehicle, lift and working machine each using the dynamo-electric machine Download PDF

Info

Publication number
JP2009153230A
JP2009153230A JP2007326154A JP2007326154A JP2009153230A JP 2009153230 A JP2009153230 A JP 2009153230A JP 2007326154 A JP2007326154 A JP 2007326154A JP 2007326154 A JP2007326154 A JP 2007326154A JP 2009153230 A JP2009153230 A JP 2009153230A
Authority
JP
Japan
Prior art keywords
rotor core
rotor
magnet
mounting hole
magnet mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007326154A
Other languages
Japanese (ja)
Other versions
JP5256724B2 (en
JP2009153230A5 (en
Inventor
Takeshi Nonaka
剛 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2007326154A priority Critical patent/JP5256724B2/en
Publication of JP2009153230A publication Critical patent/JP2009153230A/en
Publication of JP2009153230A5 publication Critical patent/JP2009153230A5/ja
Application granted granted Critical
Publication of JP5256724B2 publication Critical patent/JP5256724B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a rotor core which is easy to work and is inexpensive by increasing rotation speed while keeping low iron loss, and a rotor core which is manufactured by the manufacturing method, and a rotor, and an embedded magnet type dynamo-electric machine having the rotor. <P>SOLUTION: In the rotor for embedded magnet type dynamo-electric machines, which has magnet mounting holes 22 and 23 for mounting magnets inside the rotor core 21, the rotor core 21 is constituted of stacked steel plates, having hardenability, such as carbon steel or alloy steel, etc., and the bridge sections 24 and 25 around the magnet mounting holes 22 and 23 and the vicinity 26 and 27 of the bridge sections are quenched. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ロータコア内部にマグネットを装着するタイプのロータを有する埋込磁石型回転電機に関し、特にそのロータコアの製造方法、該製造方法により製造されたロータコア、およびそのロータ、並びに該ロータを有する埋込磁石型回転電機、さらに該回転電機を用いた車両、昇降機、および加工機に関する。   The present invention relates to an embedded magnet type rotating electrical machine having a rotor of a type in which a magnet is mounted inside a rotor core, and in particular, a manufacturing method of the rotor core, a rotor core manufactured by the manufacturing method, a rotor thereof, and an embedded having the rotor. The present invention relates to a magnet-type rotating electrical machine, and further to a vehicle, an elevator, and a processing machine using the rotating electrical machine.

ロータコア内部にマグネットを装着するタイプのロータを有する埋込磁石型回転電機は、従来より、常に高出力化と高効率化の改良がなされてきた。高出力化の手段の1つに高速回転化があり、高効率化の手段の1つにロータコアでの鉄損の低減があった。そのため、ロータコアの材質として一般的に鉄損の低い電磁鋼板が用いられてきた(例えば、特許文献1参照)。   BACKGROUND ART Conventionally, an embedded magnet type rotating electric machine having a rotor of a type in which a magnet is mounted inside a rotor core has always been improved for higher output and higher efficiency. One of the means for increasing the output is high-speed rotation, and one of the means for increasing the efficiency is reduction of iron loss in the rotor core. For this reason, an electromagnetic steel sheet having a low iron loss has been generally used as the material of the rotor core (see, for example, Patent Document 1).

図12は従来のロータコア内部にマグネットを装着する埋込磁石型回転電機のロータコア例であり、特許文献1の図2に示されているものである。
図12において、ロータコア1は1極当たり2個のマグネットを装着するために2つのマグネット装着孔2、3が設けられている。この2つのマグネット装着孔2、3の周りの外周側にはアウターブリッジ部15を有し、同内周側の2つのマグネット装着孔2、3に挟まれた位置にはセンターブリッジ部16を有する。
一般的に埋込磁石型回転電機のロータコア1は、マグネットの磁束を有効にステータコアへと導くため、洩れ磁束通路となるマグネット装着孔2、3の周りのブリッジ部の幅を最小に設計しようと試みる。そのため、ロータの最大回転速度はブリッジ部の機械強度限界より制限される場合が多い。高速回転化を達成するための手段として、ロータコアに使用する電磁鋼板の強度を上げることが考えられるが、高強度でかつ鉄損の低い電磁鋼板の実現は困難であった。
特許文献1記載の発明では、鉄損の低い電磁鋼板を用いながらブリッジ部の強度を向上させる方法が示されている。具体的には、アウターブリッジ部の一部11とセンターブリッジ部の一部12を加工硬化させ、さらに加熱処理によって熱履歴を与えることで強度の向上を得ている。
FIG. 12 shows an example of a rotor core of an embedded magnet type rotating electrical machine in which a magnet is mounted inside a conventional rotor core, which is shown in FIG.
In FIG. 12, the rotor core 1 is provided with two magnet mounting holes 2 and 3 for mounting two magnets per pole. An outer bridge portion 15 is provided on the outer peripheral side around the two magnet mounting holes 2 and 3, and a center bridge portion 16 is provided at a position sandwiched between the two magnet mounting holes 2 and 3 on the inner peripheral side. .
In general, the rotor core 1 of an embedded magnet type rotating electrical machine is designed to minimize the width of the bridge portion around the magnet mounting holes 2 and 3 that become leakage flux paths in order to effectively guide the magnetic flux of the magnet to the stator core. Try. Therefore, the maximum rotational speed of the rotor is often limited by the mechanical strength limit of the bridge portion. As a means for achieving high-speed rotation, it is conceivable to increase the strength of the electrical steel sheet used for the rotor core, but it has been difficult to realize an electrical steel sheet having high strength and low iron loss.
In invention of patent document 1, the method of improving the intensity | strength of a bridge part is shown, using an electromagnetic steel plate with a low iron loss. Specifically, a part 11 of the outer bridge part and a part 12 of the center bridge part are work-hardened, and further a heat history is given by heat treatment, thereby improving the strength.

一方、本出願人は、マグネットの磁束集中によりロータコアを意図的に磁束飽和させてロータコア表面近くの部分での磁束密度変化を低減することで、鉄損の低い電磁鋼板を用いなくともロータコアの鉄損を低く止め得る方法を見出した。
この方法によれば、磁束の交番しないロータコアにヒステリシス特性の良い電磁鋼板を用いる必要がなく、同じ板厚で、より高強度な鋼板を用いることができると考え、炭素鋼よりなる高強度な焼入れ鋼板をロータコアに用いて、高速回転化と低い鉄損の両立を確認した。一般的な電磁鋼板の強度限界は、500MPa以下であるものが多いのに対し、前記焼入れ鋼板は、約1600MPaの強度限界を有する。
このように、従来の埋込磁石型回転電機のロータコアは、高速回転化と低い鉄損の両立が図られてきたのである。
特開2005−39963号公報(第11頁、図2)
On the other hand, the present applicant intentionally saturates the rotor core by concentrating the magnetic flux of the magnet to reduce the change in magnetic flux density near the rotor core surface, thereby reducing the iron core of the rotor core without using a magnetic steel sheet with low iron loss. We found a way to keep the loss low.
According to this method, it is not necessary to use a magnetic steel sheet with good hysteresis characteristics for the rotor core that does not alternate magnetic flux, and it is considered that a higher strength steel sheet can be used with the same thickness, and a high strength quenching made of carbon steel. Using steel plates for the rotor core, both high-speed rotation and low iron loss were confirmed. In general, the strength limit of a general electromagnetic steel sheet is 500 MPa or less, whereas the quenched steel sheet has a strength limit of about 1600 MPa.
As described above, the rotor core of the conventional embedded magnet type rotating electric machine has achieved both high speed rotation and low iron loss.
Japanese Patent Laying-Open No. 2005-39963 (page 11, FIG. 2)

従来の埋込磁石型回転電機において、一般的な電磁鋼板を用いたロータコアでは低い鉄損を実現することは容易であったが、そのために洩れ磁束通路となるマグネット装着孔周りのブリッジ部の幅を最小に設計するため機械的強度に弱く高速回転化を実現することは困難であった。
特許文献1に示した従来の埋込磁石型回転電機においても、一部を加工硬化させた電磁鋼板を用いることで、低い鉄損を維持したまま高速回転化はなされるが、加工硬化による電磁鋼板の強化には限界があり、充分な高速回転化は実現できなかった。
一方、本発明の対象とする焼入れ鋼板を用いたロータコアは、低い鉄損を維持したまま充分な高速回転化を実現できたが、しかしながら高強度であるがゆえに鋼板の硬度も高いため、プレス成形において加工精度の低下と型寿命の低下が問題となった。また、鋼板の全体を焼入れ処理する熱量を要するため、高価な鋼板となる問題もあった。
本発明はこのような問題点に鑑みてなされたものであり、低い鉄損を維持したまま高速回転化を実現し、しかも加工も容易で、安価なロータコアの製造方法を提供することにあり、したがってまた、その製造方法により製造されたロータコア、ロータ、そのロータを有する埋込磁石型回転電機、さらに該回転電機を用いた車両、昇降機、および加工機を提供することを目的とする。
In a conventional embedded magnet type rotating electrical machine, it was easy to achieve low iron loss with a rotor core using a general electromagnetic steel sheet. For this reason, the width of the bridge portion around the magnet mounting hole that becomes the leakage flux path Therefore, it is difficult to realize high speed rotation due to weak mechanical strength.
Even in the conventional embedded magnet type rotating electric machine shown in Patent Document 1, the use of an electromagnetic steel sheet partially work-hardened enables high-speed rotation while maintaining a low iron loss. There is a limit to the strengthening, and sufficient high-speed rotation could not be realized.
On the other hand, the rotor core using the hardened steel sheet, which is the subject of the present invention, was able to achieve sufficient high-speed rotation while maintaining a low iron loss, but because of its high strength, the steel sheet has high hardness, so press forming However, the processing accuracy and mold life decreased. Moreover, since the heat quantity which quenches the whole steel plate is required, there also existed a problem which became an expensive steel plate.
The present invention has been made in view of such problems, and is intended to provide an inexpensive method for manufacturing a rotor core that achieves high-speed rotation while maintaining low iron loss, and is easy to process. Accordingly, another object of the present invention is to provide a rotor core manufactured by the manufacturing method, a rotor, an embedded magnet type rotating electric machine having the rotor, a vehicle using the rotating electric machine, an elevator, and a processing machine.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1記載のロータコアの発明は、鋼板を積層して成るロータコア内部にマグネットを装着するマグネット装着孔を有するロータにおいて、前記鋼板が焼入れ性を有する鋼板であり、かつ前記マグネット装着孔の近傍が焼入れ処理されたことを特徴とする。
請求項2記載の発明は、請求項1記載のロータコアにおいて、前記焼入れ性を有する鋼板が炭素鋼または合金鋼であることを特徴とする。
請求項3記載の発明は、請求項1記載のロータコアにおいて、前記マグネット装着孔の近傍が前記マグネット装着孔周りのブリッジ部および当該ブリッジ部の近傍であることを特徴とする。
請求項4記載の発明は、請求項1記載のロータコアにおいて、前記マグネット装着孔が、各極毎に回転子の中心側を頂点とするV字形状であることを特徴とする。
請求項5記載の発明は、請求項1記載のロータコアにおいて、前記各鋼板が、積層面に、非導電性の皮膜または表面処理による非導電性の化合層を有することを特徴とする。
In order to solve the above problem, the present invention is configured as follows.
The rotor core according to claim 1 is a rotor having a magnet mounting hole for mounting a magnet inside a rotor core formed by stacking steel plates, wherein the steel plate is a hardened steel plate, and the vicinity of the magnet mounting hole is It is characterized by being quenched.
According to a second aspect of the present invention, in the rotor core according to the first aspect, the steel plate having hardenability is carbon steel or alloy steel.
According to a third aspect of the present invention, in the rotor core according to the first aspect, the vicinity of the magnet mounting hole is a bridge portion around the magnet mounting hole and the vicinity of the bridge portion.
According to a fourth aspect of the present invention, in the rotor core according to the first aspect, the magnet mounting hole is V-shaped with the center side of the rotor as a vertex for each pole.
According to a fifth aspect of the present invention, in the rotor core according to the first aspect, each of the steel plates has a non-conductive compound layer or a non-conductive compound layer formed by a surface treatment on the laminated surface.

請求項6記載のロータコアの製造方法の発明は、焼入れ性を有する鋼板を積層して成るロータコア内部にマグネットを装着するマグネット装着孔を有するロータコアの製造方法において、前記ロータコアの焼入れ処理が、鋼板を設定の形状に加工して積層後、前記マグネット装着孔を利用して行うことにより、前記マグネット装着孔の近傍のみ焼入れ処理することを特徴とする。
請求項7記載の発明は、請求項6記載のロータコアの製造方法において、前記ロータコアの焼入れ処理が、前記マグネット装着孔に火炎を通風して、前記ブリッジ部とブリッジ部の近傍を含むマグネット装着孔周りを焼入れ処理することを特徴とする。
請求項8記載の発明は、請求項6記載のロータコアの製造方法において、前記ロータコアの焼入れ処理が、前記マグネット装着孔に加熱した浸炭性ガスを通風して前記ブリッジ部とブリッジ部の近傍を含むマグネット装着孔周りをガス浸炭焼入れ処理することを特徴とする。
請求項9記載の発明は、請求項6記載のロータコアの製造方法において、前記ロータコアの焼入れ処理が、前記マグネット装着孔にレーザトーチを挿入して前記ブリッジ部とブリッジ部の近傍をレーザビーム照射による加熱により焼入れ処理することを特徴とする。
請求項10記載のロータの発明は、請求項1〜5のいずれか1項記載のロータコアと、前記ロータコアの前記マグネット装着孔に装着されたマグネットとから構成されることを特徴とする。
請求項11記載の埋込磁石型回転電機の発明は、ロータと、前記ロータを内部空間内に軸受を介して支持し自己のスロット内にコイルを巻回した固定子と、から成る埋込磁石型回転電機において、前記ロータとして請求項10記載のロータを用いたことを特徴とする。
請求項12記載の車両の発明は、請求項11記載の埋込磁石型回転電機を、車輪を駆動するための駆動用モータもしくは発電機として用いたことを特徴とする。
請求項13記載の昇降機の発明は、請求項11記載の埋込磁石型回転電機を、駆動用モータとして用いたことを特徴とする。
請求項14記載の加工機の発明は、請求項11記載の埋込磁石型回転電機を、駆動用モータとして用いたことを特徴とする。
The invention of a rotor core manufacturing method according to claim 6 is a method of manufacturing a rotor core having a magnet mounting hole for mounting a magnet inside a rotor core formed by laminating steel plates having hardenability. After processing into a set shape and laminating, it is performed using the magnet mounting hole, so that only the vicinity of the magnet mounting hole is quenched.
A seventh aspect of the present invention is the method of manufacturing a rotor core according to the sixth aspect, wherein the hardening process of the rotor core blows a flame through the magnet mounting hole and includes the bridge portion and the vicinity of the bridge portion. It is characterized by quenching the surroundings.
The invention according to claim 8 is the rotor core manufacturing method according to claim 6, wherein the hardening process of the rotor core includes the bridge portion and the vicinity of the bridge portion by passing a carburizing gas heated to the magnet mounting hole. It is characterized by gas carburizing and quenching around the magnet mounting hole.
According to a ninth aspect of the present invention, in the method for manufacturing a rotor core according to the sixth aspect, the hardening process of the rotor core is performed by inserting a laser torch into the magnet mounting hole and heating the bridge portion and the vicinity of the bridge portion by laser beam irradiation. It is characterized by quenching.
According to a tenth aspect of the present invention, there is provided a rotor according to any one of the first to fifth aspects, and a magnet mounted in the magnet mounting hole of the rotor core.
The invention of an embedded magnet type rotating electrical machine according to claim 11 is an embedded magnet comprising a rotor and a stator in which the rotor is supported in an internal space via a bearing and a coil is wound in its own slot. In the type rotating electric machine, the rotor according to claim 10 is used as the rotor.
According to a twelfth aspect of the present invention, the interior permanent magnet electric machine according to the eleventh aspect is used as a drive motor or a generator for driving wheels.
An elevator according to a thirteenth aspect is characterized in that the interior permanent magnet type electric rotating machine according to the eleventh aspect is used as a drive motor.
According to a fourteenth aspect of the present invention, the interior permanent magnet rotating electric machine according to the eleventh aspect is used as a drive motor.

請求項1〜4記載の発明によると、埋込磁石型回転電機のロータコアは、積層された炭素鋼や合金鋼などの焼入れ性を有する鋼板よりなり、モータの最大回転速度を制限するブリッジ部が焼入れ処理により強化されているため、低い鉄損を維持したまま、高速回転化を実現できるようになる。
また、請求項5記載の発明によると、ロータコアを構成する鋼板が、積層する各々の積層面に、非導電性の皮膜または表面処理による非導電性の化合層を有するため、従来の電磁鋼板と同様に渦電流による鉄損の増加を防止できる。
According to invention of Claims 1-4, the rotor core of an embedded magnet type | mold rotary electric machine consists of a steel plate which has hardenability, such as laminated carbon steel and alloy steel, and the bridge | bridging part which restrict | limits the maximum rotational speed of a motor is provided. Since it is strengthened by the quenching process, high-speed rotation can be realized while maintaining low iron loss.
In addition, according to the invention of claim 5, since the steel sheet constituting the rotor core has a non-conductive compound layer by non-conductive film or surface treatment on each laminated surface to be laminated, Similarly, an increase in iron loss due to eddy current can be prevented.

また、請求項6記載の発明によると、ロータコアが鋼板を設定の形状に加工して積層後、焼入れ処理するため、プレス成形等の形状加工工程において鋼板は軟質であり、加工精度の低下と型寿命の低下が問題とならない。また、マグネット装着孔を利用して、ロータの最大回転速度を制限するブリッジ部とブリッジ部の近傍のみを焼入れ処理するため、焼入れ処理に要する熱量が最小でよく、ロータ外周部にあるアウターブリッジ部とロータ内周部にあるセンターブリッジ部を同時に焼入れ処理できるため、処理に要する手間も少なく、安価にロータコアを製造できる。
また、請求項7記載の発明によると、マグネット装着孔に火炎を通風してブリッジ部とブリッジ部の近傍を含むマグネット装着孔周りを焼入れ処理するため、処理に要する手間も少なく、安価にロータコアを製造できる。
また、請求項8記載の発明によると、マグネット装着孔に加熱した浸炭性ガスを通風してブリッジ部とブリッジ部の近傍を含むマグネット装着孔周りをガス浸炭焼入れ処理するため、処理に要する手間も少なく、安価にロータコアを製造できる。
また、請求項9記載の発明によると、マグネット装着孔にレーザトーチを挿入してブリッジ部とブリッジ部の近傍をレーザビーム照射による加熱をもって、焼入れ処理するため、処理に要する手間も少なく、安価にロータコアを製造できる。
また、請求項10記載の発明によると、請求項1〜5のいずれか1項記載のロータコアと、前記ロータコアの前記マグネット装着孔に装着されたマグネットとから構成されるロータとするため、低い鉄損を維持したまま、高速回転化を実現できる。
また、請求項11記載の発明によると、ロータとして請求項10記載のロータを用いたため、低い鉄損を維持したまま、高速回転化を実現できる。
また、請求項12〜14記載の発明によると、請求項11に記載された埋込磁石型回転電機を、低損失で、高速回転可能な駆動用モータもしくは発電機として用いることにより、車両、昇降機、加工機におけるエネルギー消費量や効率の改善を実現することができる。
According to the invention of claim 6, since the rotor core processes the steel sheet into a set shape and laminates and quenches, the steel sheet is soft in the shape processing step such as press forming, and the processing accuracy is reduced and the die A decrease in service life is not a problem. Also, because the magnet mounting hole is used to quench the bridge part that limits the maximum rotational speed of the rotor and the vicinity of the bridge part, the amount of heat required for the quenching process can be minimized, and the outer bridge part located on the outer periphery of the rotor Since the center bridge portion in the inner peripheral portion of the rotor can be quenched at the same time, the labor required for the processing can be reduced and the rotor core can be manufactured at low cost.
According to the seventh aspect of the present invention, since the flame is blown through the magnet mounting hole and the periphery of the magnet mounting hole including the bridge portion and the vicinity of the bridge portion is quenched, there is less labor required for the processing, and the rotor core can be manufactured at low cost. Can be manufactured.
Further, according to the invention described in claim 8, since the heated carburizing gas is passed through the magnet mounting hole and the gas carburizing and quenching treatment is performed around the magnet mounting hole including the bridge portion and the vicinity of the bridge portion, the labor required for the processing is also reduced. The rotor core can be manufactured at low cost at a low cost.
According to the ninth aspect of the present invention, since the laser torch is inserted into the magnet mounting hole and the bridge portion and the vicinity of the bridge portion are subjected to quenching treatment by heating with laser beam irradiation, the labor required for the treatment is reduced and the rotor core is inexpensive. Can be manufactured.
According to the invention described in claim 10, since the rotor is constituted by the rotor core according to any one of claims 1 to 5 and the magnet mounted in the magnet mounting hole of the rotor core, low iron High speed rotation can be realized while maintaining the loss.
Further, according to the invention described in claim 11, since the rotor described in claim 10 is used as the rotor, high-speed rotation can be realized while maintaining a low iron loss.
Further, according to the invention described in claims 12 to 14, by using the embedded magnet type rotating electrical machine described in claim 11 as a drive motor or generator capable of rotating at high speed with low loss, a vehicle, an elevator Improvement of energy consumption and efficiency in the processing machine can be realized.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1実施例を示す埋込磁石型回転電機のロータコアの形状の一部を示すものである。
図1において、ロータコア21には1極当たり2個のマグネットを装着するために2つのマグネット装着孔22、23が設けられている。この2つのマグネット装着孔22、23の周りのロータ20の外周側にはアウターブリッジ部24(太線縞模様の部位)を有し、同内周側の2つのマグネット装着孔22、23に挟まれた位置にはセンターブリッジ部25(太線縞模様の部位)を有する。これら2つのマグネット装着孔22、23の周りのブリッジ部26とブリッジ部の近傍27は焼入れ処理により強化されている。
マグネット装着孔22、23にマグネット19(図3参照)を装着し、ロータ20が高速で回転する時、ブリッジ部24、25において、遠心力による応力が最大となるため、ロータ20の最大回転速度を増大するにはブリッジ部24、25の強度を向上すれば充分で、他の部分の強度を向上する必要はないことが実験でも確認された。
ロータコア21は、積層された炭素鋼や合金鋼などの焼入れ性を有する鋼板よりなり、焼入れ処理により約1600MPaの強度限界を有する高強度な鋼板となるため、本実施例のロータは充分な高速回転化を実現できる。
FIG. 1 shows a part of the shape of a rotor core of an embedded magnet type rotating electric machine according to the first embodiment of the present invention.
In FIG. 1, the rotor core 21 is provided with two magnet mounting holes 22 and 23 for mounting two magnets per pole. The outer periphery of the rotor 20 around the two magnet mounting holes 22 and 23 has an outer bridge portion 24 (part with a thick stripe pattern) and is sandwiched between the two magnet mounting holes 22 and 23 on the inner peripheral side. The center bridge portion 25 (part with a thick stripe pattern) is provided at the position. The bridge portion 26 and the vicinity 27 of the bridge portion around these two magnet mounting holes 22 and 23 are strengthened by a quenching process.
When the magnet 19 (see FIG. 3) is mounted in the magnet mounting holes 22 and 23, and the rotor 20 rotates at a high speed, the stress due to the centrifugal force is maximized in the bridge portions 24 and 25. Therefore, the maximum rotation speed of the rotor 20 Experiments have also confirmed that it is sufficient to improve the strength of the bridge portions 24 and 25 and increase the strength of other portions.
The rotor core 21 is made of a hardened steel plate such as a laminated carbon steel or alloy steel, and becomes a high strength steel plate having a strength limit of about 1600 MPa by the quenching process. Can be realized.

図2は、第1実施例を示す埋込磁石型回転電機のロータコア21を説明する図で、(a)は外観斜視図、(b)は鋼板1枚の断面図である。
図2において、ロータコア21を構成する鋼板21aは、積層する各々の積層面に、非導電性の皮膜または表面処理による非導電性の化合層21bを有する。 そのため、従来の電磁鋼板と同様に渦電流による鉄損の増加を防止できる。
また、ロータコア21は、鋼板21aを設定の形状に加工して積層後、焼入れ処理する。そのため、プレス成形等の形状加工工程において鋼板は軟質であり、加工精度の低下と型寿命の低下が問題とならない。
FIGS. 2A and 2B are views for explaining the rotor core 21 of the embedded magnet type rotating electric machine according to the first embodiment. FIG. 2A is an external perspective view, and FIG. 2B is a cross-sectional view of one steel plate.
In FIG. 2, the steel plate 21a which comprises the rotor core 21 has the nonelectroconductive compound layer 21b by a nonelectroconductive film | membrane or surface treatment in each lamination surface to laminate | stack. Therefore, an increase in iron loss due to eddy current can be prevented as in the case of conventional electromagnetic steel sheets.
The rotor core 21 is processed by quenching after the steel plate 21a is processed into a set shape and laminated. Therefore, the steel sheet is soft in the shape processing step such as press forming, and the reduction in processing accuracy and the reduction in mold life are not a problem.

図3は、第1実施例を示す埋込磁石型回転電機用ロータの断面図で、(a)は軸方向断面図、(b)は1枚の鋼板について軸と直角方向の断面図である。
図3において、ロータ20は、図2に示したロータコア21のマグネット装着孔22、23にマグネット19を装着し、シャフト28に嵌合させ、負荷側プレート29Lと反負荷側プレート29Cにより軸方向を固定されている。
本実施例のロータ20は、ロータコア21の1極当たり2個のマグネットの挟角を充分狭く設計し、マグネットより発する磁束をロータ表面に磁束集中させることにより、ロータコア21を意図的に磁束飽和させ、回転中のロータコア21表面近くの部分での磁束密度変化を低減することで、ロータコア21の鉄損を低く止めている。
FIG. 3 is a cross-sectional view of the rotor for an embedded magnet type rotating electrical machine showing the first embodiment, where (a) is a cross-sectional view in the axial direction, and (b) is a cross-sectional view in the direction perpendicular to the axis for one steel plate. .
In FIG. 3, the rotor 20 has a magnet 19 mounted in the magnet mounting holes 22 and 23 of the rotor core 21 shown in FIG. 2 and is fitted to the shaft 28, and the axial direction is adjusted by the load side plate 29L and the anti-load side plate 29C. It is fixed.
In the rotor 20 of this embodiment, the angle between two magnets per pole of the rotor core 21 is designed to be sufficiently narrow, and the magnetic flux generated from the magnet is concentrated on the rotor surface, so that the rotor core 21 is intentionally saturated with the magnetic flux. The iron loss of the rotor core 21 is kept low by reducing the change in magnetic flux density in the portion near the surface of the rotating rotor core 21.

図4は、第1実施例を示す埋込磁石型回転電機の径方向断面図、図5は軸方向断面図である。
両図において、埋込磁石型回転電機は、ロータコア21の内部にマグネット19を装着するロータ20を有し、シャフト28に設置された負荷側軸受37(図5)と反負荷側軸受38(図5)を介して、負荷側ブラケット35(図5)と反負荷側ブラケット36(図5)に回転自在に保持されている。
ステータ30はステータコア31とステータコイル32よりなり、フレーム33に保持され、フレーム33は負荷側ブラケットに、反負荷側ブラケットとともに、締結ボルト34で固定されている。ステータコイル32への通電はステータコイル32のリード線39(図5)を通して行われ、ロータ20の反負荷側には、回転位置検出のためのエンコーダ部40が設置されている。
本実施例のロータ20を有する埋込磁石型回転電機は、低い鉄損を維持したまま、高速回転化を実現し、高出力化と高効率化をなし得る。
FIG. 4 is a radial cross-sectional view of the interior magnet type rotating electric machine showing the first embodiment, and FIG. 5 is an axial cross-sectional view.
In both figures, the embedded magnet type rotating electrical machine has a rotor 20 in which a magnet 19 is mounted inside a rotor core 21, and a load side bearing 37 (FIG. 5) and an anti-load side bearing 38 (FIG. 5) installed on a shaft 28. 5), the load-side bracket 35 (FIG. 5) and the anti-load-side bracket 36 (FIG. 5) are rotatably held.
The stator 30 includes a stator core 31 and a stator coil 32, and is held by a frame 33. The frame 33 is fixed to a load side bracket by a fastening bolt 34 together with an anti-load side bracket. Energization of the stator coil 32 is performed through lead wires 39 (FIG. 5) of the stator coil 32, and an encoder unit 40 for detecting the rotational position is installed on the opposite side of the rotor 20.
The interior magnet type rotating electric machine having the rotor 20 of the present embodiment can achieve high speed rotation while maintaining low iron loss, and can achieve high output and high efficiency.

図6は、第1実施例を示すロータコア21の焼入れ処理方法を示すものである。
図6において、ロータコア21を入口側導風治具41と出口側導風治具42との間に装着し、火炎を入口側導風治具からロータコア21のマグネット装着孔22、23に通過させる。入口側導風治具41は、ロータコア21に接する側で火炎の通路をロータコア21のマグネット装着孔22、23に分岐し、火炎がマグネット装着孔22、23以外の部分に極力接しない構造となっている。出口側導風治具42も同様である。
火炎は酸素アセチレン炎を用い、マグネット装着孔22、23に通過させ、 鋼板の焼入温度以上の800〜1000℃に加熱した後、熱の拡散を利用し自然急冷する。火炎焼入れは、図1に示したロータコア21のアウターブリッジ部24、センターブリッジ部25とその近傍26、27のような局部焼入れに適した焼入れ方法であり、マグネット装着孔22、23を導風孔に兼ねることで、焼入れ処理に要する熱量が最小でよく、ロータ外周部にあるアウターブリッジ部24とロータ内周部にあるセンターブリッジ部25を同時に焼入れ処理できるため、処理に要する手間も少なく、安価にロータコア21を製造できる。
本実施例のロータコア21は、比較的大きな熱容量を有するため、熱の拡散を利用し自然急冷却したが、比較的小さな熱容量のロータコア21では、火炎による加熱後冷却風を通じて急冷しても良い。或いは、冷却風の温度調整を行い、冷却スピードを精密に管理して、焼入れ処理による鋼板の強化を、より所望の特性となるよう調整しても良い。
FIG. 6 shows a method for quenching the rotor core 21 according to the first embodiment.
In FIG. 6, the rotor core 21 is mounted between the inlet side wind guide jig 41 and the outlet side wind guide jig 42, and the flame is passed from the inlet side wind guide jig to the magnet mounting holes 22 and 23 of the rotor core 21. . The inlet side air guide jig 41 has a structure in which the flame passage is branched to the magnet mounting holes 22 and 23 of the rotor core 21 on the side in contact with the rotor core 21 so that the flame does not contact the portions other than the magnet mounting holes 22 and 23 as much as possible. ing. The same applies to the outlet side air guide jig 42.
The flame is an oxygen acetylene flame, passed through the magnet mounting holes 22 and 23, heated to 800-1000 ° C. above the quenching temperature of the steel sheet, and then naturally quenched using heat diffusion. The flame quenching is a quenching method suitable for local quenching such as the outer bridge portion 24, the center bridge portion 25 and the vicinity 26, 27 of the rotor core 21 shown in FIG. The amount of heat required for the quenching process can be minimized, and the outer bridge portion 24 on the outer peripheral portion of the rotor and the center bridge portion 25 on the inner peripheral portion of the rotor can be quenched at the same time. The rotor core 21 can be manufactured.
Since the rotor core 21 of the present embodiment has a relatively large heat capacity, it is naturally rapidly cooled using heat diffusion. However, the rotor core 21 having a relatively small heat capacity may be rapidly cooled through cooling air after heating by a flame. Alternatively, the temperature of the cooling air may be adjusted, the cooling speed may be precisely controlled, and the strengthening of the steel sheet by the quenching process may be adjusted to have more desired characteristics.

図7は、第1実施例を示すロータコア21の製造方法の工程図で、以上図1〜
図6について説明した内容を纏めたものである。
まず、シャフト28(図3)に負荷側プレート29Lを圧入して一体化する。
一方、鋼板を抜き打ち成形し、積層して一体化する。この積層鋼板を第1実施例に係る図6の方法により火炎加熱した後、冷却することで焼き入れ処理を終え、ロータコア21(図2)が出来上がる。
このロータコア21を先のシャフト28に組み付けた後、マグネット19をマグネット装着孔22、23に挿入し接着して一体化し、さらに、反負荷側プレート29Cを圧入して一体化し、着磁することでロータ20(図3)が完成する。
FIG. 7 is a process diagram of a method of manufacturing the rotor core 21 showing the first embodiment.
FIG. 7 summarizes the contents described with reference to FIG. 6.
First, the load side plate 29L is press-fitted into the shaft 28 (FIG. 3) and integrated.
On the other hand, the steel sheet is punched and laminated and integrated. The laminated steel sheet is flame-heated by the method of FIG. 6 according to the first embodiment and then cooled to finish the quenching process, and the rotor core 21 (FIG. 2) is completed.
After assembling the rotor core 21 to the shaft 28, the magnet 19 is inserted into the magnet mounting holes 22 and 23 and bonded and integrated, and the anti-load side plate 29C is press-fitted and integrated and magnetized. The rotor 20 (FIG. 3) is completed.

図8は、本発明の第2実施例を示すロータコア21の焼入れ処理方法を示すものである。
図8において、ロータコア21を入口側導風治具41と出口側導風治具42との間に装着し、加熱器44により高温に加熱した浸炭性ガスを、送風機43により入口側導風治具からロータコア21のマグネット装着孔22、23に通過させる。入口側導風治具41は、ロータコア21に接する側で浸炭性ガスの通路をロータコア21のマグネット装着孔22、23に分岐し、浸炭性ガスがマグネット装着孔22、23以外の部分に極力接しない構造となっていることは第1実施例と同様である。出口側導風治具42も同様である。
浸炭性ガスはプロパンガス等を900〜1000℃に加熱して用い、マグネット装着孔22、23に通過させ、浸炭焼入れを行う。浸炭焼入れは、図1に示したロータコア21のアウターブリッジ部24、センターブリッジ部25とその近傍26、27のような鋼板の表層部の焼入れに適した焼入れ方法であり、マグネット装着孔22、23を導風孔に兼ねることで、ブリッジ部24、25とブリッジ部の近傍26、27を含むマグネット装着孔22、23周りを、最小の熱量で短時間に焼入れ処理できるため、処理に要する手間も少なく、安価にロータコア21を製造できる。
第2実施例が第1実施例と異なる部分は、第1実施例では火炎焼入れが中、高炭素鋼を用いるのに対し、第2実施例の浸炭焼入れは低炭素鋼を用いる点である。
一般的に、ヒステリシス特性は低炭素鋼の方が良好であり、電磁鋼板には及ばないが低鉄損となる。逆に、焼入れ処理による歪が大きく、ロータコア21の形状変形に注意を要する。
第1実施例で説明したように、マグネットより発する磁束をロータ表面に磁束集中させることが充分に出来ない設計の場合、ヒステリシス特性に依存して鉄損が増大するが、本実施例の処理方法によれば、ブリッジ部とブリッジ部の近傍を含むマグネット装着孔22、23周りのみ強化して、その他の部分は比較的低鉄損に止め得るのである。
また、鋼板表面の耐食性向上を兼ね備えたい場合は、浸炭性ガス雰囲気中に0.5〜1%のアンモニアを添加し、浸炭窒化としても良い。
FIG. 8 shows a method for quenching the rotor core 21 according to the second embodiment of the present invention.
In FIG. 8, the rotor core 21 is mounted between the inlet side air guide jig 41 and the outlet side air guide jig 42, and the carburizing gas heated to a high temperature by the heater 44 is supplied to the inlet side air guide by the blower 43. The tool is passed through the magnet mounting holes 22 and 23 of the rotor core 21. The inlet side air guide jig 41 branches the carburizing gas passage into the magnet mounting holes 22 and 23 of the rotor core 21 on the side in contact with the rotor core 21, and the carburizing gas is in contact with the portions other than the magnet mounting holes 22 and 23 as much as possible. It is the same as in the first embodiment that the structure is not. The same applies to the outlet side air guide jig 42.
As the carburizing gas, propane gas or the like is heated to 900 to 1000 ° C. and passed through the magnet mounting holes 22 and 23 to perform carburizing and quenching. The carburizing quenching is a quenching method suitable for quenching the surface layer portion of the steel plate such as the outer bridge portion 24, the center bridge portion 25 and the vicinity 26, 27 of the rotor core 21 shown in FIG. Since the magnet mounting holes 22 and 23 including the bridge portions 24 and 25 and the vicinity of the bridge portions 26 and 27 can be quenched in a short time with a minimum amount of heat. The rotor core 21 can be manufactured at low cost at a low cost.
The difference between the second embodiment and the first embodiment is that the first embodiment uses high carbon steel while flame quenching is used, whereas the carburizing and quenching of the second embodiment uses low carbon steel.
In general, the low carbon steel has better hysteresis characteristics and lower iron loss than the magnetic steel sheet. On the contrary, the distortion due to the quenching process is large, and attention must be paid to the shape deformation of the rotor core 21.
As described in the first embodiment, when the design is such that the magnetic flux generated from the magnet cannot be sufficiently concentrated on the rotor surface, the iron loss increases depending on the hysteresis characteristics. According to this, only the surroundings of the magnet mounting holes 22 and 23 including the bridge portion and the vicinity of the bridge portion are reinforced, and the other portions can be stopped at a relatively low iron loss.
In addition, when it is desired to improve the corrosion resistance of the steel sheet surface, 0.5 to 1% ammonia may be added to the carburizing gas atmosphere to perform carbonitriding.

図9は、第2実施例を示すロータコア21の製造方法の工程図であり、図7の第1実施例との違いは、第1実施例では火炎加熱した後、冷却することで焼き入れ処理していたのに対して、ここでの焼入れ処理は浸炭焼入れとした点である。
このロータコア21を先のシャフト28に組み付けた後、マグネット19をマグネット装着孔22、23に挿入し接着して一体化し、さらに、反負荷側プレート29Cを圧入して一体化し、着磁することでロータ20(図3)が完成する。
FIG. 9 is a process diagram of a method for manufacturing the rotor core 21 according to the second embodiment. The difference from the first embodiment of FIG. 7 is that the first embodiment is subjected to quenching treatment by cooling after flame heating. In contrast, the quenching process here is carburizing and quenching.
After assembling the rotor core 21 to the shaft 28, the magnet 19 is inserted into the magnet mounting holes 22 and 23 and bonded and integrated, and the anti-load side plate 29C is press-fitted and integrated and magnetized. The rotor 20 (FIG. 3) is completed.

図10は、第3実施例を示すロータコア21の焼入れ処理方法を示すものである。
図において、マグネット装着孔22、23にレーザトーチ45を挿入し、ブリッジ部24、25(図1)とブリッジ部の近傍26、27(図1)をレーザビーム照射による加熱をもって、焼入れ処理する。熱源はYAGレーザ発信器より得たレーザビームを光ケーブル46でレーザトーチ45へ導く。光ケーブル46とレーザトーチ45をトーチステイ47に固定し、レーザビームをマグネット装着孔22、23内より、ブリッジ部24、25とブリッジ部の近傍26、27に照射しながら、トーチステイを移動させ焼入れ処理を行う。
FIG. 10 shows a method for quenching the rotor core 21 according to the third embodiment.
In the figure, a laser torch 45 is inserted into the magnet mounting holes 22 and 23, and the bridge portions 24 and 25 (FIG. 1) and the vicinity 26 and 27 (FIG. 1) of the bridge portion are quenched by heating by laser beam irradiation. The heat source guides the laser beam obtained from the YAG laser transmitter to the laser torch 45 by the optical cable 46. The optical cable 46 and the laser torch 45 are fixed to the torch stay 47, and the torch stay is moved and quenched while irradiating the laser beam from the magnet mounting holes 22 and 23 to the bridge portions 24 and 25 and the vicinity 26 and 27 of the bridge portion. I do.

図11は、本発明の第3実施例を示すロータコア21の製造方法の工程図であり、第1実施例の図7および第2実施例の図9との違いは、第1実施例では火炎加熱した後、冷却する焼き入れ処理であり、第2実施例では浸炭焼入れとしていたのに対し、ここでは焼入れ処理をレーザビーム照射による焼入れ処理とした点である。
そして、このロータコア21を先のシャフト28に組み付けた後、マグネット19をマグネット装着孔22、23に挿入し接着して一体化し、さらに、反負荷側プレート29Cを圧入して一体化し、着磁することでロータ20(図3)が完成する。
FIG. 11 is a process diagram of a method of manufacturing a rotor core 21 showing a third embodiment of the present invention. The difference between the first embodiment shown in FIG. 7 and the second embodiment shown in FIG. This is a quenching process in which the steel is cooled after being heated. In the second embodiment, the quenching process is a carburizing quenching process, but here the quenching process is a quenching process by laser beam irradiation.
Then, after assembling the rotor core 21 to the shaft 28, the magnet 19 is inserted into the magnet mounting holes 22 and 23 and bonded and integrated, and the anti-load side plate 29C is press-fitted and integrated and magnetized. Thus, the rotor 20 (FIG. 3) is completed.

本発明が、特許文献1と異なる部分は、加工硬化による電磁鋼板の強化ではなく、炭素鋼や合金鋼などの焼入れ性を有する鋼板を用い、マグネット装着孔22、23周りのブリッジ部とブリッジ部の近傍を、焼入れ処理して強化した部分である。   The present invention is different from Patent Document 1 in that the steel plate having hardenability such as carbon steel or alloy steel is used instead of strengthening the electromagnetic steel plate by work hardening, and the bridge portion and the bridge portion around the magnet mounting holes 22 and 23 are used. This is a portion strengthened by quenching the vicinity.

本発明の埋込磁石型回転電機は、低い鉄損を維持したまま、高速回転が可能となるため、ハイブリッド自動車や燃料電池自動車、電気自動車などの駆動用モータや発電機、鉄道車両用の駆動モータや発電機、無停電電源用発電機車に用いる発電機としても有効である。さらに、上記以外に、エレベータ、立体駐車場等の昇降機または風水力用のコンプレッサやブロワ、ポンプ等の流体機械もしくは半導体製造装置や工作機主軸を主とする加工機等の、一般産業用機械の駆動用モータの用途にも有効である。   Since the embedded magnet type rotating electric machine of the present invention can be rotated at high speed while maintaining low iron loss, it is a driving motor or generator for a hybrid vehicle, a fuel cell vehicle, an electric vehicle, etc., and a drive for a railway vehicle. It is also effective as a generator used in motors, generators, and generator cars for uninterruptible power supplies. In addition to the above, general industrial machinery such as elevators, elevators in multilevel parking lots, fluid machinery such as compressors, blowers, and pumps for wind and hydraulic power, semiconductor manufacturing equipment, and processing machines mainly using machine tool spindles. It is also effective for driving motor applications.

本発明の第1実施例を示す埋込磁石型回転電機のロータコアの形状の一部を示す図である。It is a figure which shows a part of shape of the rotor core of the interior magnet type rotary electric machine which shows 1st Example of this invention. 第1実施例を示す埋込磁石型回転電機のロータコアを説明する図で、(a)は外観斜視図、(b)は鋼板1枚の断面図である。It is a figure explaining the rotor core of the embedded magnet type rotary electric machine which shows 1st Example, (a) is an external appearance perspective view, (b) is sectional drawing of one steel plate. 第1実施例を示す埋込磁石型回転電機用ロータの断面図で、(a)は軸方向断面図、(b)は1枚の鋼板について軸と直角方向の断面図である。It is sectional drawing of the rotor for embedded magnet type rotary electric machines which shows 1st Example, (a) is an axial sectional view, (b) is sectional drawing of an orthogonal direction with respect to an axis | shaft about one steel plate. 第1実施例を示す埋込磁石型回転電機の径方向断面図である。It is radial direction sectional drawing of the interior magnet type rotary electric machine which shows 1st Example. 第1実施例を示す埋込磁石型回転電機の軸方向断面図である。It is an axial sectional view of the interior magnet type rotating electrical machine showing the first embodiment. 第1実施例を示すロータコアの焼入れ処理方法である。It is a hardening method of a rotor core which shows a 1st example. 第1実施例を示すロータコアの製造方法の工程図である。It is process drawing of the manufacturing method of the rotor core which shows 1st Example. 本発明の第2実施例を示すロータコアの焼入れ処理方法である。It is a hardening method of the rotor core which shows 2nd Example of this invention. 第2実施例を示すロータコアの製造方法の工程図である。It is process drawing of the manufacturing method of the rotor core which shows 2nd Example. 本発明の第3実施例を示すロータコアの焼入れ処理方法である。It is a hardening method of a rotor core which shows the 3rd example of the present invention. 第3実施例を示すロータコアの製造方法の工程図である。It is process drawing of the manufacturing method of the rotor core which shows 3rd Example. 従来の埋込磁石型回転電機のロータコア例である。It is an example of the rotor core of the conventional interior magnet type rotary electric machine.

符号の説明Explanation of symbols

19 マグネット
20 ロータ
21 ロータコア
22、23 マグネット装着孔
24 ロータコアのアウターブリッジ部
25 ロータコアのセンターブリッジ部
26 ロータコアのアウターブリッジ部の近傍
27 ロータコアのセンターブリッジ部の近傍
28 シャフト
29L 負荷側プレート
29C 反負荷側プレート
30 ステータ
31 ステータコア
32 ステータコイル
33 フレーム
34 締結ボルト
35 負荷側ブラケット
36 反負荷側ブラケット
37 負荷側ベアリング
38 反負荷側ベアリング
39 ステータコイルのリード線
40 エンコーダ部
19 Magnet 20 Rotor 21 Rotor core 22, 23 Magnet mounting hole 24 Outer bridge portion 25 of rotor core Center bridge portion 26 of rotor core 27 Near outer bridge portion of rotor core 28 Near center bridge portion of rotor core 28 Shaft 29L Load side plate 29C Anti-load side Plate 30 Stator 31 Stator core 32 Stator coil 33 Frame 34 Fastening bolt 35 Load side bracket 36 Anti load side bracket 37 Load side bearing 38 Anti load side bearing 39 Stator coil lead wire 40 Encoder unit

Claims (14)

鋼板を積層して成るロータコア内部にマグネットを装着するマグネット装着孔を有するロータにおいて、前記鋼板が焼入れ性を有する鋼板であり、かつ前記マグネット装着孔の近傍が焼入れ処理されたことを特徴とするロータコア。   A rotor core having a magnet mounting hole for mounting a magnet inside a rotor core formed by stacking steel plates, wherein the steel plate is a hardened steel plate, and the vicinity of the magnet mounting hole is quenched. . 前記焼入れ性を有する鋼板が炭素鋼または合金鋼であることを特徴とする請求項1記載のロータコア。   The rotor core according to claim 1, wherein the steel plate having hardenability is carbon steel or alloy steel. 前記マグネット装着孔の近傍が前記マグネット装着孔周りのブリッジ部および当該ブリッジ部の近傍であることを特徴とする請求項1記載のロータコア。   The rotor core according to claim 1, wherein a vicinity of the magnet mounting hole is a bridge portion around the magnet mounting hole and a vicinity of the bridge portion. 前記マグネット装着孔が、各極毎に回転子の中心側を頂点とするV字形状であることを特徴とする請求項1記載のロータコア。   2. The rotor core according to claim 1, wherein the magnet mounting hole has a V shape having a vertex at the center side of the rotor for each pole. 前記各鋼板は、積層面に、非導電性の皮膜または表面処理による非導電性の化合層を有することを特徴とする請求項1記載のロータコア。   2. The rotor core according to claim 1, wherein each of the steel plates has a non-conductive film or a non-conductive compound layer formed by a surface treatment on a laminated surface. 焼入れ性を有する鋼板を積層して成るロータコア内部にマグネットを装着するマグネット装着孔を有するロータコアの製造方法において、前記ロータコアの焼入れ処理は、鋼板を設定の形状に加工して積層後、前記マグネット装着孔を利用して行うことにより、前記マグネット装着孔の近傍のみ焼入れ処理することを特徴とするロータコアの製造方法。   In the method of manufacturing a rotor core having a magnet mounting hole for mounting a magnet inside a rotor core formed by stacking hardened steel plates, the rotor core is hardened by processing the steel plates into a set shape and then stacking the magnets A method of manufacturing a rotor core, characterized by quenching only in the vicinity of the magnet mounting hole by using a hole. 前記ロータコアの焼入れ処理は、前記マグネット装着孔に火炎を通風して、前記ブリッジ部とブリッジ部の近傍を含むマグネット装着孔周りを焼入れ処理することを特徴とする請求項6記載のロータコアの製造方法。   The rotor core manufacturing method according to claim 6, wherein the hardening process of the rotor core is performed by blowing a flame through the magnet mounting hole to quench the magnet mounting hole including the bridge portion and the vicinity of the bridge portion. . 前記ロータコアの焼入れ処理は、前記マグネット装着孔に加熱した浸炭性ガスを通風して前記ブリッジ部とブリッジ部の近傍を含むマグネット装着孔周りをガス浸炭焼入れ処理することを特徴とする請求項6記載のロータコアの製造方法。   7. The hardening process of the rotor core is characterized in that a gas carburizing and quenching process is performed around the magnet mounting hole including the bridge portion and the vicinity of the bridge portion by passing a carburized gas heated to the magnet mounting hole. Rotor core manufacturing method. 前記ロータコアの焼入れ処理は、前記マグネット装着孔にレーザトーチを挿入して前記ブリッジ部とブリッジ部の近傍をレーザビーム照射による加熱により焼入れ処理することを特徴とする請求項6記載のロータコアの製造方法。   7. The method of manufacturing a rotor core according to claim 6, wherein the hardening process of the rotor core includes a laser torch inserted into the magnet mounting hole, and the bridge part and the vicinity of the bridge part are hardened by heating by laser beam irradiation. 請求項1〜5のいずれか1項記載のロータコアと、前記ロータコアの前記マグネット装着孔に装着されたマグネットとから構成されることを特徴とするロータ。   A rotor comprising: the rotor core according to any one of claims 1 to 5; and a magnet mounted in the magnet mounting hole of the rotor core. ロータと、前記ロータを内部空間内に軸受を介して支持し自己のスロット内にコイルを巻回した固定子と、から成る埋込磁石型回転電機において、
前記ロータとして請求項10記載のロータを用いたことを特徴とする埋込磁石型回転電機。
In an embedded magnet type rotating electrical machine comprising a rotor and a stator that supports the rotor in an internal space via a bearing and winds a coil in its own slot,
An embedded magnet type rotary electric machine using the rotor according to claim 10 as the rotor.
請求項11記載の埋込磁石型回転電機を、車輪を駆動するための駆動用モータもしくは発電機として用いたことを特徴とする車両。   12. A vehicle using the interior magnet type rotating electric machine according to claim 11 as a driving motor or a generator for driving wheels. 請求項11記載の埋込磁石型回転電機を、駆動用モータとして用いたことを特徴とする昇降機。   An elevator using the interior magnet type rotating electric machine according to claim 11 as a drive motor. 請求項11記載の埋込磁石型回転電機を、駆動用モータとして用いたことを特徴とする加工機。   12. A processing machine using the embedded magnet type rotating electric machine according to claim 11 as a drive motor.
JP2007326154A 2007-12-18 2007-12-18 A rotor core manufacturing method, a rotor core manufactured by the manufacturing method, a rotor thereof, an embedded magnet type rotating electric machine having the rotor, and a vehicle, an elevator, and a processing machine using the rotating electric machine. Expired - Fee Related JP5256724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007326154A JP5256724B2 (en) 2007-12-18 2007-12-18 A rotor core manufacturing method, a rotor core manufactured by the manufacturing method, a rotor thereof, an embedded magnet type rotating electric machine having the rotor, and a vehicle, an elevator, and a processing machine using the rotating electric machine.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326154A JP5256724B2 (en) 2007-12-18 2007-12-18 A rotor core manufacturing method, a rotor core manufactured by the manufacturing method, a rotor thereof, an embedded magnet type rotating electric machine having the rotor, and a vehicle, an elevator, and a processing machine using the rotating electric machine.

Publications (3)

Publication Number Publication Date
JP2009153230A true JP2009153230A (en) 2009-07-09
JP2009153230A5 JP2009153230A5 (en) 2011-11-10
JP5256724B2 JP5256724B2 (en) 2013-08-07

Family

ID=40921682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326154A Expired - Fee Related JP5256724B2 (en) 2007-12-18 2007-12-18 A rotor core manufacturing method, a rotor core manufactured by the manufacturing method, a rotor thereof, an embedded magnet type rotating electric machine having the rotor, and a vehicle, an elevator, and a processing machine using the rotating electric machine.

Country Status (1)

Country Link
JP (1) JP5256724B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119270A (en) * 2008-11-14 2010-05-27 Toyota Motor Corp Rotor and rotating electrical machine
JP2011041446A (en) * 2009-08-18 2011-02-24 Yaskawa Electric Corp Method of manufacturing rotor core, rotor core manufactured by the manufacturing method, and embedded magnet type rotary electric machine having the rotor core
WO2011077483A1 (en) * 2009-12-22 2011-06-30 株式会社コスモメカニクス Disc-type coil
WO2012133404A1 (en) 2011-03-31 2012-10-04 日新製鋼株式会社 Rotor for ipm motor, and ipm motor equipped with same
JP2013116036A (en) * 2012-05-22 2013-06-10 Yaskawa Electric Corp Rotor core, rotor, and rotary electric machine
JP2015002649A (en) * 2013-06-18 2015-01-05 日新製鋼株式会社 Rotor for ipm motor, and imp motor employing the same
WO2016035191A1 (en) * 2014-09-04 2016-03-10 株式会社安川電機 Rotating electric machine and method for manufacturing rotor core
JP2019129601A (en) * 2018-01-24 2019-08-01 トヨタ自動車株式会社 Rotor for rotary electric machine
JP7217788B1 (en) 2021-10-11 2023-02-03 三菱電機株式会社 Rotating electric machine and its rotor
WO2023207775A1 (en) * 2022-04-28 2023-11-02 安徽美芝精密制造有限公司 Rotor assembly, permanent magnet motor, and compressor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032983A (en) * 2001-07-16 2003-01-31 Toshiba Corp Dynamo-electric machine
JP2003289640A (en) * 2002-03-28 2003-10-10 Asmo Co Ltd Yoke housing and motor
JP2005185081A (en) * 2003-03-05 2005-07-07 Nissan Motor Co Ltd Rotor steel plate for rotary machine, rotor for rotary machine, the rotary machine and vehicle loaded with the same and device, and method for producing the rotor steel plate for the rotary machine
JP2005348595A (en) * 2004-05-06 2005-12-15 Erumekku:Kk Multiple-phase motor
JP2006115663A (en) * 2004-10-18 2006-04-27 Toshiba Corp Permanent magnet rotor
WO2007055192A1 (en) * 2005-11-09 2007-05-18 Kabushiki Kaisha Toshiba Rotor for electric rotating machine and electric rotating machine
WO2007080650A1 (en) * 2006-01-13 2007-07-19 Aisin Seiki Kabushiki Kaisha Core member of magnetic structure body
JP2007231323A (en) * 2006-02-28 2007-09-13 Kyushu Institute Of Technology Method for reforming surface of iron alloy-made structural part

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032983A (en) * 2001-07-16 2003-01-31 Toshiba Corp Dynamo-electric machine
JP2003289640A (en) * 2002-03-28 2003-10-10 Asmo Co Ltd Yoke housing and motor
JP2005185081A (en) * 2003-03-05 2005-07-07 Nissan Motor Co Ltd Rotor steel plate for rotary machine, rotor for rotary machine, the rotary machine and vehicle loaded with the same and device, and method for producing the rotor steel plate for the rotary machine
JP2005348595A (en) * 2004-05-06 2005-12-15 Erumekku:Kk Multiple-phase motor
JP2006115663A (en) * 2004-10-18 2006-04-27 Toshiba Corp Permanent magnet rotor
WO2007055192A1 (en) * 2005-11-09 2007-05-18 Kabushiki Kaisha Toshiba Rotor for electric rotating machine and electric rotating machine
WO2007080650A1 (en) * 2006-01-13 2007-07-19 Aisin Seiki Kabushiki Kaisha Core member of magnetic structure body
JP2007231323A (en) * 2006-02-28 2007-09-13 Kyushu Institute Of Technology Method for reforming surface of iron alloy-made structural part

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119270A (en) * 2008-11-14 2010-05-27 Toyota Motor Corp Rotor and rotating electrical machine
JP2011041446A (en) * 2009-08-18 2011-02-24 Yaskawa Electric Corp Method of manufacturing rotor core, rotor core manufactured by the manufacturing method, and embedded magnet type rotary electric machine having the rotor core
US8471669B2 (en) 2009-12-22 2013-06-25 Cosmo Mechanics Co., Ltd. Disc-type coil
WO2011077483A1 (en) * 2009-12-22 2011-06-30 株式会社コスモメカニクス Disc-type coil
CN102341996A (en) * 2009-12-22 2012-02-01 株式会社Cosmomechanics Disc-type coil
CN102341996B (en) * 2009-12-22 2013-09-04 株式会社Cosmomechanics Disc-type coil
US8841810B2 (en) 2011-03-31 2014-09-23 Nisshin Steel Co., Ltd. Rotor for IPM motor, and IPM motor equipped with same
WO2012133404A1 (en) 2011-03-31 2012-10-04 日新製鋼株式会社 Rotor for ipm motor, and ipm motor equipped with same
JP2013116036A (en) * 2012-05-22 2013-06-10 Yaskawa Electric Corp Rotor core, rotor, and rotary electric machine
JP2015002649A (en) * 2013-06-18 2015-01-05 日新製鋼株式会社 Rotor for ipm motor, and imp motor employing the same
WO2016035191A1 (en) * 2014-09-04 2016-03-10 株式会社安川電機 Rotating electric machine and method for manufacturing rotor core
JP2019129601A (en) * 2018-01-24 2019-08-01 トヨタ自動車株式会社 Rotor for rotary electric machine
JP7063637B2 (en) 2018-01-24 2022-05-09 トヨタ自動車株式会社 Rotating machine rotor
JP7217788B1 (en) 2021-10-11 2023-02-03 三菱電機株式会社 Rotating electric machine and its rotor
JP2023057339A (en) * 2021-10-11 2023-04-21 三菱電機株式会社 Rotary electric machine and rotor
WO2023207775A1 (en) * 2022-04-28 2023-11-02 安徽美芝精密制造有限公司 Rotor assembly, permanent magnet motor, and compressor

Also Published As

Publication number Publication date
JP5256724B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5256724B2 (en) A rotor core manufacturing method, a rotor core manufactured by the manufacturing method, a rotor thereof, an embedded magnet type rotating electric machine having the rotor, and a vehicle, an elevator, and a processing machine using the rotating electric machine.
JP5493405B2 (en) ROTOR CORE MANUFACTURING METHOD, ROTOR CORE, ROTOR AND INTERNAL MAGNET TYPE ROTARY ELECTRIC
CN1064786C (en) DC brushless motor and control unit
CA2721987C (en) Rotor for a permanent magnet electric machine
KR100974135B1 (en) Electromagnetic steel plate, electromagnetic steel plate laminate, rotator equipped therewith for permanent magnet type synchronous rotating electrical machine, permanent magnet type synchronous rotating electrical machine, and vehicle, elevator, fluid machine, processing machine employing the rotating electrical machine
US7847461B2 (en) Multi-layer magnet arrangement in a permanent magnet machine for a motorized vehicle
JP5186036B2 (en) IPM motor rotor and IPM motor using the same
JP6210161B2 (en) Rotating electric machine
JP5255996B2 (en) Armature core, motor using the armature core, and manufacturing method thereof
US20110001386A1 (en) Motor and electronic apparatus using the same
CN103180611B (en) For the electric motor-driven compressor of vehicle
JP2010226785A (en) Manufacturing method for plate-like member, plate-like member, rotor using plate-like member, and embedded magnet rotary electric machine having the rotor
JP4867598B2 (en) Manufacturing method of rotor
JP2009153230A5 (en)
US20110006620A1 (en) Motor and electronic apparatus using the same
KR101091436B1 (en) Permanent magnet motor
JP2011041446A (en) Method of manufacturing rotor core, rotor core manufactured by the manufacturing method, and embedded magnet type rotary electric machine having the rotor core
WO2016035191A1 (en) Rotating electric machine and method for manufacturing rotor core
JP4323940B2 (en) Exciter, field machine, and synchronous machine using the same
JP5082825B2 (en) Rotor for embedded magnet type rotating electrical machine, embedded magnet type rotating electrical machine, vehicle, elevator, fluid machine, processing machine using the rotating electrical machine
KR101636463B1 (en) Stator core for motor
JP2019161795A (en) Rotary electric machine
US11239721B2 (en) Electric rotating machine, electric rotating machine system, vehicle, power generator, lifting device, and robot
JP2011019311A (en) Rotor of rotary electric machine
JP2010263714A (en) Core for motor and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees