JP7063637B2 - Rotating machine rotor - Google Patents

Rotating machine rotor Download PDF

Info

Publication number
JP7063637B2
JP7063637B2 JP2018009882A JP2018009882A JP7063637B2 JP 7063637 B2 JP7063637 B2 JP 7063637B2 JP 2018009882 A JP2018009882 A JP 2018009882A JP 2018009882 A JP2018009882 A JP 2018009882A JP 7063637 B2 JP7063637 B2 JP 7063637B2
Authority
JP
Japan
Prior art keywords
fitting
rotating shaft
rotor core
radial
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018009882A
Other languages
Japanese (ja)
Other versions
JP2019129601A (en
Inventor
新也 佐野
稔 穴井
正幸 池本
毅 香田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Denso Corp
Toyota Motor Corp
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Denso Corp, Toyota Motor Corp, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2018009882A priority Critical patent/JP7063637B2/en
Publication of JP2019129601A publication Critical patent/JP2019129601A/en
Application granted granted Critical
Publication of JP7063637B2 publication Critical patent/JP7063637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Description

本明細書は、ロータコアと、当該ロータコア内に埋め込まれる磁石と、ロータコアの軸孔に挿通されて固定される回転軸と、を備えた回転電機のロータを開示する。 The present specification discloses a rotor of a rotary electric machine including a rotor core, a magnet embedded in the rotor core, and a rotary shaft inserted and fixed in a shaft hole of the rotor core.

回転電機のロータでは、永久磁石が埋め込まれたロータコアの中心に回転軸が挿通されて固定されている。回転軸は、ロータコアとともに回転するために、ロータコアに強固に固定されることが求められる。そのため、従来から、回転軸の固定について、種々の技術が提案されている。 In the rotor of a rotary electric machine, a rotating shaft is inserted and fixed in the center of a rotor core in which a permanent magnet is embedded. Since the rotating shaft rotates with the rotor core, it is required to be firmly fixed to the rotor core. Therefore, various techniques for fixing the rotating shaft have been conventionally proposed.

例えば、特許文献1にはナットを用いて、回転軸をロータコアに締結する技術が開示されている。すなわち、特許文献1では、回転軸に、ロータコアの軸方向一端面を支える大径部と、ナットが螺合される雌ネジと、を形成している。そして、回転軸に、ロータコアとナットを挿し込んだ後、ナットを、締めて、ロータコアをナットと大径部とで挟み込む。これにより、ロータコアの軸方向端面と、回転軸の大径部およびナットと、の間には、摩擦力が発生する。この摩擦力により、ロータコアと回転軸との間で回転力が伝達される。 For example, Patent Document 1 discloses a technique for fastening a rotating shaft to a rotor core using a nut. That is, in Patent Document 1, a large-diameter portion that supports one end surface in the axial direction of the rotor core and a female screw into which a nut is screwed are formed on the rotating shaft. Then, after inserting the rotor core and the nut into the rotating shaft, the nut is tightened, and the rotor core is sandwiched between the nut and the large diameter portion. As a result, a frictional force is generated between the axial end surface of the rotor core and the large diameter portion and the nut of the rotating shaft. Due to this frictional force, the rotational force is transmitted between the rotor core and the rotating shaft.

特開2015-27119号公報JP-A-2015-27119

しかしながら、こうしたナットを用いた締結の場合、ナットを適切なトルクで締め付けるための専用の設備が必要であり、製造コストの増加を招いていた。また、ロータコアの軸方向端面に生じる摩擦力で回転力を伝達するためには、ナットの締め付けトルクを大きくする必要があり、ナットの大型化や、ロータコアへの負荷増加などの問題も招いていた。 However, in the case of fastening using such a nut, a dedicated facility for tightening the nut with an appropriate torque is required, which has led to an increase in manufacturing cost. In addition, in order to transmit the rotational force by the frictional force generated on the axial end face of the rotor core, it is necessary to increase the tightening torque of the nut, which causes problems such as an increase in the size of the nut and an increase in the load on the rotor core. ..

そこで、本明細書では、部品を小型化でき、また、製造コストを低減できる回転電機のロータを開示する。 Therefore, this specification discloses a rotor of a rotary electric machine which can reduce the size of parts and the manufacturing cost.

本明細書で開示する回転電機のロータは、回転電機のロータであって、中心に延びる軸孔と、複数の磁極用孔と、を有するロータコアと、前記磁極用孔に挿入された永久磁石と、前記軸孔に挿通されて、複数の嵌合部を介して前記軸孔に固定された回転軸と、を備え、前記嵌合部では、前記回転軸の外周面および前記軸孔の内周面の一方に設けられるとともに径方向に陥没する嵌合溝と、前記回転軸の外周面および前記軸孔の内周面の他方に設けられるとともに径方向に突出した嵌合突起と、が互いに嵌り合っており、周方向に近接する二つの磁極用孔間には、微小間隙部であるブリッジ部が存在し、前記嵌合部は、周方向に近接する二つの磁極用孔間の微小間隙部であるブリッジ部と周方向に重複しない位置に配されており、複数の前記嵌合部は、前記嵌合突起の周方向寸法が前記嵌合溝の周方向寸法より大きい周側嵌合部と、前記周側嵌合部と異なる嵌合部であって、前記嵌合突起の径方向寸法が前記嵌合溝の径方向寸法より大きい径側嵌合部と、を有する、ことを特徴とする。
The rotor of a rotary electric machine disclosed in the present specification is a rotor of a rotary electric machine, and has a rotor core having a shaft hole extending to the center, a plurality of magnetic pole holes, and a permanent magnet inserted in the magnetic pole holes. A rotating shaft that is inserted into the shaft hole and fixed to the shaft hole via a plurality of fitting portions. In the fitting portion, the outer peripheral surface of the rotating shaft and the inner circumference of the shaft hole are provided. A fitting groove provided on one of the surfaces and recessed in the radial direction and a fitting projection provided on the other side of the outer peripheral surface of the rotating shaft and the inner peripheral surface of the shaft hole and protruding in the radial direction are fitted to each other. A bridge portion, which is a minute gap portion, exists between two magnetic pole holes that are close to each other in the circumferential direction, and the fitting portion is a minute gap portion between two magnetic pole holes that are close to each other in the circumferential direction. It is arranged at a position that does not overlap with the bridge portion in the circumferential direction, and the plurality of fitting portions are the peripheral fitting portion in which the circumferential dimension of the fitting protrusion is larger than the circumferential dimension of the fitting groove. The fitting portion is different from the peripheral fitting portion, and has a radial fitting portion in which the radial dimension of the fitting protrusion is larger than the radial dimension of the fitting groove. ..

かかる構成とすることで、嵌合部を介してロータコアと回転軸との間で回転力を伝達できるため、ナットが不要となる。結果として、部品を小型化でき、また、製造コストを低減できる。また、嵌合部が、強度的に弱いブリッジ部と周方向に重複しない位置に配されているため、ロータコアの破損を効果的に防止できる。 With such a configuration, the rotational force can be transmitted between the rotor core and the rotating shaft via the fitting portion, so that a nut is not required. As a result, the parts can be miniaturized and the manufacturing cost can be reduced. Further, since the fitting portion is arranged at a position where it does not overlap with the bridge portion having weak strength in the circumferential direction, damage to the rotor core can be effectively prevented.

かかる構成とすることで、周側嵌合部で回転が伝達され、径側嵌合部で回転軸の芯出しができる。 With such a configuration, the rotation is transmitted at the peripheral fitting portion, and the centering of the rotating shaft can be performed at the radial fitting portion.

この場合、前記周側嵌合部と、前記径側嵌合部と、は、周方向に交互に並んでいてもよい。 In this case, the peripheral fitting portion and the radial fitting portion may be alternately arranged in the circumferential direction.

かかる構成とすることで、周方向の応力と径方向の応力とが、周方向に交互に発生するため、ロータコアにかかる負荷を均等に分散できる。 With such a configuration, the stress in the circumferential direction and the stress in the radial direction are alternately generated in the circumferential direction, so that the load applied to the rotor core can be evenly distributed.

また、前記回転軸の外周面は、前記嵌合突起および嵌合溝として機能する歯および歯溝が周方向に連続して並ぶインボリュートスプライン形状であり、前記軸孔の内周面には、前記嵌合溝および嵌合突起として機能する歯溝および歯が、前記ブリッジ部と周方向に重複しない範囲に位置するように、間欠的に並んでいてもよい。 Further, the outer peripheral surface of the rotating shaft has an involut spline shape in which teeth and tooth grooves functioning as fitting protrusions and fitting grooves are continuously arranged in the circumferential direction, and the inner peripheral surface of the shaft hole has the above-mentioned The tooth grooves and teeth that function as fitting grooves and fitting protrusions may be intermittently arranged so as to be located within a range that does not overlap with the bridge portion in the circumferential direction.

回転軸の全周に、嵌合突起および嵌合溝を設けることで、1種類の回転軸を、ブリッジ部の位置や個数が異なる複数種類のロータコアに適用することができる。 By providing a fitting projection and a fitting groove on the entire circumference of the rotating shaft, one type of rotating shaft can be applied to a plurality of types of rotor cores having different positions and numbers of bridge portions.

また、前記嵌合部は、磁極境界位置と周方向に重複する位置に配されていてもよい。 Further, the fitting portion may be arranged at a position overlapping the magnetic pole boundary position in the circumferential direction.

通常、磁極境界位置には、ブリッジ部は無いため、かかる構成とすることで、嵌合部とブリッジ部との重複を確実に防止できる。 Normally, since there is no bridge portion at the magnetic pole boundary position, it is possible to reliably prevent the fitting portion from overlapping with the bridge portion by adopting such a configuration.

本明細書で開示するロータによれば、嵌合部を介してロータコアと回転軸との間で回転力を伝達できるため、ナットが不要となる。結果として、部品を小型化でき、また、製造コストを低減できる。また、嵌合部が、強度的に弱いブリッジ部と周方向に重複しない位置に配されているため、ロータコアの破損を効果的に防止できる。 According to the rotor disclosed herein, a nut is not required because the rotational force can be transmitted between the rotor core and the rotating shaft via the fitting portion. As a result, the parts can be miniaturized and the manufacturing cost can be reduced. Further, since the fitting portion is arranged at a position where it does not overlap with the bridge portion having weak strength in the circumferential direction, damage to the rotor core can be effectively prevented.

ロータの縦断面図である。It is a vertical sectional view of a rotor. 図1におけるA-A断面図である。FIG. 3 is a cross-sectional view taken along the line AA in FIG. ロータコアの軸孔周辺の図である。It is a figure around the shaft hole of a rotor core. 回転軸の断面図である。It is sectional drawing of the rotation axis. 周側嵌合部を説明する図である。It is a figure explaining the peripheral side fitting part. 径側嵌合部を説明する図である。It is a figure explaining the diameter side fitting part. 他の回転軸の一例を示す図である。It is a figure which shows an example of another rotation axis.

以下、回転電機のロータ10の構成について図面を参照して説明する。図1は、回転電機のロータ10の概略縦断面図である。また、図2は、図1におけるA-A断面図である。また、図3は、ロータコア12の軸孔26周辺の図であり、図4は、回転軸16の断面図である。このロータ10は、回転電機、例えば、駆動源の一つとして電動車両に搭載される三相同期型回転電機等に用いられる。ロータ10は、ロータコア12と当該ロータコア12に埋め込まれる永久磁石14と、ロータ10に固着される回転軸16と、を備えている。 Hereinafter, the configuration of the rotor 10 of the rotary electric machine will be described with reference to the drawings. FIG. 1 is a schematic vertical sectional view of a rotor 10 of a rotary electric machine. Further, FIG. 2 is a cross-sectional view taken along the line AA in FIG. Further, FIG. 3 is a view of the periphery of the shaft hole 26 of the rotor core 12, and FIG. 4 is a cross-sectional view of the rotating shaft 16. The rotor 10 is used in a rotary electric machine, for example, a three-phase synchronous rotary electric machine mounted on an electric vehicle as one of the drive sources. The rotor 10 includes a rotor core 12, a permanent magnet 14 embedded in the rotor core 12, and a rotating shaft 16 fixed to the rotor 10.

ロータコア12は、その中央に軸孔26が形成された略環状体である。ロータコア12は、複数の電磁鋼板(例えばケイ素鋼板等)を軸方向に積層してなる。複数の電磁鋼板は、例えば、カシメにより、互いに連結される。このカシメ結合を可能にするために、各電磁鋼板には、一面において突出し、他面において突出するカシメ部28が形成されている。図示例では、このカシメ部28は、隣接する二つの磁極の間、すなわち、q軸Lq上に設けられている。 The rotor core 12 is a substantially annular body having a shaft hole 26 formed in the center thereof. The rotor core 12 is formed by laminating a plurality of electromagnetic steel sheets (for example, silicon steel sheets or the like) in the axial direction. A plurality of electrical steel sheets are connected to each other by, for example, caulking. In order to enable this caulking bond, each electromagnetic steel sheet is formed with a caulking portion 28 projecting on one surface and projecting on the other surface. In the illustrated example, the caulking portion 28 is provided between two adjacent magnetic poles, that is, on the q-axis Lq.

ロータコア12の外周寄り位置には、複数の磁極用孔22a,22b,24a,24bが、周方向に間隔を開けて並んでいる。各磁極用孔は、磁極を構成するのに利用される孔であり、軸方向に貫通している。この磁極用孔は、磁石が挿入される磁石孔22a,22bと、磁束の漏れを抑制する磁束漏れ防止孔24a,24bと、を含む。磁石孔22a,22bには、1以上の永久磁石14が挿入され、磁極が構成される。 A plurality of magnetic pole holes 22a, 22b, 24a, 24b are arranged at positions near the outer periphery of the rotor core 12 at intervals in the circumferential direction. Each magnetic pole hole is a hole used to form a magnetic pole and penetrates in the axial direction. The magnetic flux holes include magnet holes 22a and 22b into which magnets are inserted, and magnetic flux leakage prevention holes 24a and 24b that suppress magnetic flux leakage. One or more permanent magnets 14 are inserted into the magnet holes 22a and 22b to form magnetic poles.

本例のロータ10は、図2に示す通り、8つの磁極を有している。ただし、この磁極数は、一例であり、偶数であるならば、磁極数は、適宜、変更されてもよい。本例において、一つの磁極は、複数の永久磁石14で構成されており、一つの磁極に属する永久磁石14は、略逆三角形状に配されている。すなわち、磁石孔22a,22bは、外側に広がるように略V字状に配された一対の第一磁石孔22aと、外周端近傍において一対の第一磁石孔22aの間に配された第二磁石孔22bと、を有しており、各磁石孔22a,22bに1以上の永久磁石14が挿入されている。 As shown in FIG. 2, the rotor 10 of this example has eight magnetic poles. However, this number of magnetic poles is an example, and if it is an even number, the number of magnetic poles may be changed as appropriate. In this example, one magnetic pole is composed of a plurality of permanent magnets 14, and the permanent magnets 14 belonging to one magnetic pole are arranged in a substantially inverted triangular shape. That is, the magnet holes 22a and 22b are arranged between the pair of first magnet holes 22a arranged in a substantially V shape so as to spread outward and the pair of first magnet holes 22a near the outer peripheral end. It has magnet holes 22b, and one or more permanent magnets 14 are inserted into the magnet holes 22a and 22b.

第二磁石孔22bの周方向両側には、二つの第二磁束漏れ防止孔24bが形成されている。また、第一磁石孔22aの径方向内側端部と、隣接する第一磁石孔22aの径方向内側端部の間には、第一磁束漏れ防止孔24aが設けられている。第一磁束漏れ防止孔24aと、第一磁石孔22aとは、周方向に近接して隣接しており、両者の間には、微小間隙であるブリッジ部25が形成されている。このブリッジ部25は、磁気的特性を重視すれば、ロータコア12の強度を維持できる範囲で、極力小さいことが望ましい。なお、本例では、このブリッジ部25を、ロータコア12の一部で構成しているが、当該ブリッジ部25となる箇所に貫通孔を形成するとともに、当該貫通孔にロータコア12とは別の部品を挿入することでブリッジ部25を構成してもよい。この場合、ブリッジ部25として挿入される部品の材質は、特に限定されないが、非磁性体であることが望ましい。 Two second magnetic flux leakage prevention holes 24b are formed on both sides of the second magnet hole 22b in the circumferential direction. Further, a first magnetic flux leakage prevention hole 24a is provided between the radial inner end portion of the first magnet hole 22a and the radial inner end portion of the adjacent first magnet hole 22a. The first magnetic flux leakage prevention hole 24a and the first magnet hole 22a are adjacent to each other in the circumferential direction, and a bridge portion 25, which is a minute gap, is formed between the first magnetic flux leakage prevention hole 24a and the first magnet hole 22a. It is desirable that the bridge portion 25 be as small as possible within the range in which the strength of the rotor core 12 can be maintained, if the magnetic characteristics are emphasized. In this example, the bridge portion 25 is composed of a part of the rotor core 12, but a through hole is formed in the portion of the bridge portion 25 and a component different from the rotor core 12 is formed in the through hole. The bridge portion 25 may be configured by inserting. In this case, the material of the component inserted as the bridge portion 25 is not particularly limited, but it is desirable that it is a non-magnetic material.

ロータコア12の中央には、軸方向に貫通する軸孔26が形成されている。この軸孔26は、回転軸16が挿通される孔である。この軸孔26の内周面には、後述する回転軸16の外歯36と噛み合うコア内歯30が形成されている(図3、図4参照)。このコア内歯30と回転軸16の外歯36とが互いに嵌り合うことで、回転軸16がロータコア12に固定されるが、これについては、後述する。 A shaft hole 26 penetrating in the axial direction is formed in the center of the rotor core 12. The shaft hole 26 is a hole through which the rotating shaft 16 is inserted. On the inner peripheral surface of the shaft hole 26, core internal teeth 30 that mesh with the external teeth 36 of the rotating shaft 16 described later are formed (see FIGS. 3 and 4). The rotating shaft 16 is fixed to the rotor core 12 by fitting the core internal teeth 30 and the external teeth 36 of the rotating shaft 16 to each other, which will be described later.

回転軸16は、ロータコア12の軸孔26に圧入される軸部材であり、その両端は、軸受を介してモータケース(いずれも図示せず)などにより軸支される。この回転軸16の途中には、軸孔26よりも大径の大径部38が形成されている。ロータコア12の軸方向一端面は、この大径部38に押し当てられる。また、ロータコア12を挟んで、この大径部38の反対側には、圧入リング18が取り付けられている。圧入リング18は、回転軸16に圧入されて固定される部品である。この圧入リング18と大径部38とで、ロータコア12が挟み込まれることで、ロータコア12の軸方向への移動が防止される。 The rotary shaft 16 is a shaft member that is press-fitted into the shaft hole 26 of the rotor core 12, and both ends thereof are pivotally supported by a motor case (neither is shown) or the like via bearings. A large diameter portion 38 having a diameter larger than that of the shaft hole 26 is formed in the middle of the rotating shaft 16. One end surface of the rotor core 12 in the axial direction is pressed against the large diameter portion 38. Further, a press-fit ring 18 is attached to the opposite side of the large diameter portion 38 with the rotor core 12 interposed therebetween. The press-fit ring 18 is a component that is press-fitted and fixed to the rotating shaft 16. By sandwiching the rotor core 12 between the press-fit ring 18 and the large diameter portion 38, the rotor core 12 is prevented from moving in the axial direction.

回転軸16のうち、軸孔26内に位置する部分は、インボリュートスプライン形状となっている。すなわち、回転軸16の当該箇所の外周には、径方向外側に突出する嵌合突起32(歯)と、径方向内側に陥没する嵌合溝34(歯溝)と、が周方向に連続して並ぶ外歯36が形成されている(図4参照)。この外歯36が、ロータコア12のコア内歯30と噛み合って嵌合することで、回転軸16がロータコア12に固定される。すなわち、回転軸16の嵌合突起32が、ロータコア12の嵌合溝34に、また、回転軸16の嵌合溝34が、ロータコア12の嵌合突起32に、それぞれ、嵌合することで、回転軸16がロータコア12に固定される。 The portion of the rotating shaft 16 located in the shaft hole 26 has an involute spline shape. That is, on the outer periphery of the portion of the rotating shaft 16, the fitting protrusion 32 (teeth) protruding outward in the radial direction and the fitting groove 34 (tooth groove) recessing inward in the radial direction are continuous in the circumferential direction. External teeth 36 arranged side by side are formed (see FIG. 4). The rotating shaft 16 is fixed to the rotor core 12 by engaging and fitting the external teeth 36 with the core internal teeth 30 of the rotor core 12. That is, the fitting projection 32 of the rotating shaft 16 is fitted into the fitting groove 34 of the rotor core 12, and the fitting groove 34 of the rotating shaft 16 is fitted into the fitting projection 32 of the rotor core 12, respectively. The rotating shaft 16 is fixed to the rotor core 12.

そして、このように、嵌合突起32と嵌合溝34が嵌合することで、これら嵌合突起32および嵌合溝34を介して、ロータコア12と回転軸16との間で回転力が伝達される。換言すれば、本例によれば、ロータコア12と大径部38との摩擦力が小さくても、ロータコア12と回転軸16との間で回転力が伝達される。そのため、本例によれば、ロータコア12を軸方向に強く締め付けるナットが不要となり、ナットを締め付けるための設備が不要となる。結果として、ロータ10を製造する際のコストを低減できる。なお、本例では、ナットに替えて圧入リング18を設けているが、圧入リング18は、ナットに比べて取り付け工程が簡易であり、また、取り付けるための設備も比較的、安価に構成できる。 Then, by fitting the fitting protrusion 32 and the fitting groove 34 in this way, the rotational force is transmitted between the rotor core 12 and the rotating shaft 16 via the fitting protrusion 32 and the fitting groove 34. Will be done. In other words, according to this example, even if the frictional force between the rotor core 12 and the large diameter portion 38 is small, the rotational force is transmitted between the rotor core 12 and the rotating shaft 16. Therefore, according to this example, a nut for strongly tightening the rotor core 12 in the axial direction is not required, and equipment for tightening the nut is not required. As a result, the cost for manufacturing the rotor 10 can be reduced. In this example, the press-fit ring 18 is provided instead of the nut, but the press-fit ring 18 has a simpler mounting process than the nut, and the equipment for mounting can be configured at a relatively low cost.

ところで、この嵌合突起32と嵌合溝34が嵌合する嵌合部20c,20r(以下嵌合部20cと嵌合部20rを区別しないときは、単に「嵌合部20」という)が、ブリッジ部25の近くに存在すると、当該ブリッジ部25周辺に残留応力が発生しやすい。そして、かかる残留応力は、ブリッジ部25の劣化や損傷を招くことがある。 By the way, the fitting portions 20c and 20r in which the fitting protrusion 32 and the fitting groove 34 are fitted (hereinafter, when the fitting portion 20c and the fitting portion 20r are not distinguished, they are simply referred to as "fitting portion 20"). If it exists near the bridge portion 25, residual stress is likely to occur around the bridge portion 25. Then, such residual stress may cause deterioration or damage of the bridge portion 25.

そこで、本例では、嵌合突起32と嵌合溝34とが嵌り合う嵌合部20を、ブリッジ部25と周方向に重複しない位置に配している。これについて、具体的に説明する。図4に示す通り、また、上述したとおり、回転軸16の外周面は、インボリュートスプライン形状であり、嵌合突起32(歯)と嵌合溝34(歯溝)が、全周に渡って連続している。一方、ロータコア12の軸孔26の内周面には、図3に示す通り、嵌合突起32および嵌合溝34が、間欠的に形成されている。より具体的には、軸孔26の内周面には、二つの嵌合突起32の間に一つの嵌合溝34が存在する突起と溝のセットが、周方向に間隔を開けて、8つ(すなわち磁極と同数)形成されている。一方、この突起と溝のセットが形成されていない箇所において、軸孔26の内径は、回転軸16の外径よりも大きくなっており、当該箇所において、軸孔26と回転軸16との嵌合は生じていない。したがって、この突起と溝のセットが存在する箇所が、回転軸16の嵌合突起/溝32,34と、軸孔26の嵌合溝/突起34,32と、が嵌合する嵌合部20となる。 Therefore, in this example, the fitting portion 20 in which the fitting protrusion 32 and the fitting groove 34 are fitted is arranged at a position that does not overlap with the bridge portion 25 in the circumferential direction. This will be specifically described. As shown in FIG. 4, and as described above, the outer peripheral surface of the rotating shaft 16 has an involute spline shape, and the fitting protrusion 32 (teeth) and the fitting groove 34 (tooth groove) are continuous over the entire circumference. are doing. On the other hand, as shown in FIG. 3, fitting protrusions 32 and fitting grooves 34 are intermittently formed on the inner peripheral surface of the shaft hole 26 of the rotor core 12. More specifically, on the inner peripheral surface of the shaft hole 26, a set of protrusions and grooves having one fitting groove 34 between the two fitting protrusions 32 is spaced apart in the circumferential direction. One (that is, the same number as the magnetic poles) is formed. On the other hand, in the place where the set of the protrusion and the groove is not formed, the inner diameter of the shaft hole 26 is larger than the outer diameter of the rotating shaft 16, and at that place, the shaft hole 26 and the rotating shaft 16 are fitted. No match has occurred. Therefore, the place where the set of the protrusion and the groove exists is the fitting portion 20 in which the fitting protrusion / groove 32, 34 of the rotating shaft 16 and the fitting groove / protrusion 34, 32 of the shaft hole 26 are fitted. Will be.

この嵌合部20は、図2に示す通り、ブリッジ部25と周方向に重複しない位置に設けられている。より具体的に説明すると、嵌合部20は、周方向に隣接する二つの磁極の間を通るq軸上に設けられている。本例では、全てのq軸上に嵌合部20を設けているため、嵌合部20の数は、磁極の数と同じになる。ただし、嵌合部20は、ブリッジ部25と周方向にズレているのであれば、その個数は、特に限定されない。ただし、嵌合に起因する応力の影響を均等化するためには、嵌合部20は、周方向に均等に配置されることが望ましい。また、嵌合部20の数は、磁極数の約数であることが望ましい。さらに、後述するように、嵌合部20として、周方向に嵌合する周側嵌合部20cと、径方向に嵌合する径側嵌合部20rと、設ける場合、周側嵌合部20cと径方向に嵌合する径側嵌合部20rとは、同数であり、嵌合部20全体の個数は、偶数であることが望ましい。 As shown in FIG. 2, the fitting portion 20 is provided at a position that does not overlap with the bridge portion 25 in the circumferential direction. More specifically, the fitting portion 20 is provided on the q-axis passing between two magnetic poles adjacent to each other in the circumferential direction. In this example, since the fitting portions 20 are provided on all q axes, the number of fitting portions 20 is the same as the number of magnetic poles. However, the number of the fitting portions 20 is not particularly limited as long as they are displaced from the bridge portions 25 in the circumferential direction. However, in order to equalize the influence of stress caused by fitting, it is desirable that the fitting portions 20 are evenly arranged in the circumferential direction. Further, it is desirable that the number of fitting portions 20 is a divisor of the number of magnetic poles. Further, as will be described later, as the fitting portion 20, a peripheral fitting portion 20c that fits in the circumferential direction and a radial fitting portion 20r that fits in the radial direction are provided, and if provided, the peripheral fitting portion 20c. It is desirable that the number of the radial fitting portions 20r to be fitted in the radial direction is the same, and the total number of the fitting portions 20 is an even number.

いずれにしても、嵌合部20を、ブリッジ部25と周方向にズレた位置に設けることで、嵌合部20と、ブリッジ部25との距離が大きくなる。そのため、嵌合に起因して生じる応力が、機械的強度が低下しているブリッジ部25に作用しにくくなる。その結果、ブリッジ部25に残留応力が生じにくく、ロータコア12の強度を高く維持できる。 In any case, by providing the fitting portion 20 at a position deviated from the bridge portion 25 in the circumferential direction, the distance between the fitting portion 20 and the bridge portion 25 becomes large. Therefore, the stress generated by the fitting is less likely to act on the bridge portion 25 whose mechanical strength is reduced. As a result, residual stress is less likely to occur in the bridge portion 25, and the strength of the rotor core 12 can be maintained high.

ところで、本例では、嵌合部20として、主に周方向に嵌り合う周側嵌合部20cと、主に径方向に嵌り合う径側嵌合部20rと、を設けている。図2において、破線の楕円で囲った箇所は、周側嵌合部20cであり、破線の矩形で囲った箇所が径側嵌合部20rである。この周側嵌合部20cおよび径側嵌合部20rの構成について図5、図6を参照して説明する。 By the way, in this example, as the fitting portion 20, a peripheral fitting portion 20c that mainly fits in the circumferential direction and a radial fitting portion 20r that mainly fits in the radial direction are provided. In FIG. 2, the portion surrounded by the broken line ellipse is the peripheral side fitting portion 20c, and the portion surrounded by the broken line rectangle is the radial side fitting portion 20r. The configuration of the peripheral fitting portion 20c and the radial fitting portion 20r will be described with reference to FIGS. 5 and 6.

図5は、周側嵌合部20cを説明する図である。図5においてハッチング範囲は、回転軸16を示している。図5の例では、回転軸16に、径方向外側に突出した嵌合突起32が、軸孔26に、径方向外側に陥没した嵌合溝34が形成されている。この嵌合突起32の径方向寸法は、嵌合溝34の径方向寸法と同じか、僅かに小さくなっている。一方、嵌合突起32の周方向寸法は、嵌合溝34の周方向寸法に比べて、僅かに大きくなっている。その結果、嵌合突起32と嵌合溝34は、周方向に密着しており、嵌合突起32と嵌合溝34との間で、周方向の動き、すなわち、回転が伝わるようになっている。このように嵌合突起32の周方向寸法が、嵌合溝34の周方向寸法より大きい周側嵌合部20cを設けることで、回転トルクが確実に伝達される。 FIG. 5 is a diagram illustrating a peripheral fitting portion 20c. In FIG. 5, the hatching range indicates the rotation axis 16. In the example of FIG. 5, the rotating shaft 16 is formed with a fitting projection 32 protruding outward in the radial direction, and the shaft hole 26 is formed with a fitting groove 34 recessed outward in the radial direction. The radial dimension of the fitting projection 32 is the same as or slightly smaller than the radial dimension of the fitting groove 34. On the other hand, the circumferential dimension of the fitting protrusion 32 is slightly larger than the circumferential dimension of the fitting groove 34. As a result, the fitting protrusion 32 and the fitting groove 34 are in close contact with each other in the circumferential direction, and the movement in the circumferential direction, that is, the rotation is transmitted between the fitting protrusion 32 and the fitting groove 34. There is. By providing the peripheral fitting portion 20c whose circumferential dimension of the fitting projection 32 is larger than the circumferential dimension of the fitting groove 34 in this way, the rotational torque is reliably transmitted.

図6は、径側嵌合部20rを説明する図である。図6においても、ハッチング箇所が回転軸16を示しており、回転軸16に、嵌合突起32が、軸孔26に、嵌合溝34が形成されている。径側嵌合部20rでは、嵌合突起32の周方向寸法は、嵌合溝34の周方向寸法と同じか、僅かに小さくなっている。一方、嵌合突起32の径方向寸法は、嵌合溝34の径方向寸法よりも、僅かに大きくなっている。その結果、嵌合突起32と嵌合溝34は、周方向に密着することになる。かかる径側嵌合部20rを、周方向に2以上、より望ましくは3以上設けることで、容易に回転軸16の芯出しができる。 FIG. 6 is a diagram illustrating a diameter-side fitting portion 20r. Also in FIG. 6, the hatched portion indicates the rotating shaft 16, the fitting projection 32 is formed in the rotating shaft 16, and the fitting groove 34 is formed in the shaft hole 26. In the radial fitting portion 20r, the circumferential dimension of the fitting projection 32 is the same as or slightly smaller than the circumferential dimension of the fitting groove 34. On the other hand, the radial dimension of the fitting projection 32 is slightly larger than the radial dimension of the fitting groove 34. As a result, the fitting protrusion 32 and the fitting groove 34 are in close contact with each other in the circumferential direction. By providing 2 or more, more preferably 3 or more, such radial fitting portions 20r in the circumferential direction, the rotating shaft 16 can be easily centered.

本例では、図2に示す通り、周側嵌合部20c(破線楕円部)と径側嵌合部20r(破線矩形部)を、周方向に交互に配している。このように、2種類の嵌合部20を、交互に配することで、ロータコア12のかかる応力を均等に分散でき、ロータコア12にかかる負荷を軽減できる。 In this example, as shown in FIG. 2, the peripheral side fitting portion 20c (broken line elliptical portion) and the radial side fitting portion 20r (broken line rectangular portion) are alternately arranged in the circumferential direction. By alternately arranging the two types of fitting portions 20 in this way, the stress applied to the rotor core 12 can be evenly distributed, and the load applied to the rotor core 12 can be reduced.

なお、これまで説明した構成は、一例であり、回転軸16の外周および軸孔26の内周の一方に形成された嵌合突起32が他方に形成された嵌合溝34に嵌合する嵌合部20が、ブリッジ部25と周方向に重複しない位置に設けられているのであれば、その他の構成は、適宜、変更されてもよい。例えば、本例では、回転軸16の外歯36を、嵌合突起32と嵌合溝34が連続して並ぶ歯車状(インボリュートスプライン状)としている。しかし、回転軸16の外歯36も、ロータコア12のコア内歯30と同様に、また、図7に示すように、嵌合突起32および/または嵌合溝34が、間欠的に並ぶ形状としてもよい。また、回転軸16の外歯36を、嵌合突起32および/または嵌合溝34が間欠的に並ぶ形状にするとともに、ロータコア12のコア内歯30を、嵌合突起32および嵌合溝34が連続的に並ぶ歯車状としてもよい。ただし、本例のように、回転軸16を歯車状とし、コア内歯30を突起/溝が間欠的に並ぶ形状としたほうが、1種類の回転軸16を、ブリッジ部25の位置や個数が異なる複数種類のロータコア12に適用することができる。 The configuration described so far is an example, and the fitting projection 32 formed on one of the outer periphery of the rotating shaft 16 and the inner circumference of the shaft hole 26 is fitted into the fitting groove 34 formed on the other. If the joint portion 20 is provided at a position that does not overlap with the bridge portion 25 in the circumferential direction, other configurations may be appropriately changed. For example, in this example, the external teeth 36 of the rotating shaft 16 have a gear shape (involute spline shape) in which the fitting protrusion 32 and the fitting groove 34 are continuously arranged. However, the external teeth 36 of the rotating shaft 16 also have the same shape as the core internal teeth 30 of the rotor core 12, and as shown in FIG. 7, the fitting projections 32 and / or the fitting grooves 34 are arranged intermittently. May be good. Further, the outer teeth 36 of the rotating shaft 16 are shaped so that the fitting protrusions 32 and / or the fitting grooves 34 are intermittently arranged, and the core internal teeth 30 of the rotor core 12 are formed with the fitting protrusions 32 and the fitting grooves 34. May be in the shape of a gear in which is continuously arranged. However, as in this example, if the rotating shaft 16 has a gear shape and the core internal teeth 30 have a shape in which protrusions / grooves are intermittently arranged, one type of rotating shaft 16 can have the position and number of bridge portions 25. It can be applied to a plurality of different types of rotor cores 12.

また、これまでの説明では、第一磁石孔22aと、第一磁束漏れ防止孔24aとの間に、ブリッジ部25が形成されるロータコア12を例に挙げた。しかし、ロータコア12は、周方向に近接して隣接する磁極用孔(磁石孔22および磁束漏れ防止孔24)の間に微小間隙であるブリッジ部25が形成されるのであれば、他の形態であってもよい。例えば、ロータコア12は、磁束漏れ防止孔を有さず、略V字状に配された二つの磁石孔を有する形態でもよい。この場合、一つの磁石孔の径方向内側端部と、隣接する磁石孔22a,22bの径方向内側端部と、の間の微小間隙がブリッジ部となる。また、これまでの説明では、嵌合突起および嵌合溝を、いずれも、略台形としているが、これらの形状は、適宜、変更されてもよい。 Further, in the description so far, the rotor core 12 in which the bridge portion 25 is formed between the first magnet hole 22a and the first magnetic flux leakage prevention hole 24a is taken as an example. However, the rotor core 12 has another form as long as the bridge portion 25, which is a minute gap, is formed between the magnetic pole holes (magnet hole 22 and the magnetic flux leakage prevention hole 24) adjacent to each other in the circumferential direction. There may be. For example, the rotor core 12 may have a form in which it does not have a magnetic flux leakage prevention hole and has two magnet holes arranged in a substantially V shape. In this case, the minute gap between the radial inner end of one magnet hole and the radial inner end of the adjacent magnet holes 22a and 22b becomes the bridge portion. Further, in the description so far, the fitting protrusion and the fitting groove are both substantially trapezoidal, but these shapes may be changed as appropriate.

10 ロータ、12 ロータコア、14 永久磁石、16 回転軸、18 圧入リング、20 嵌合部、22 磁石孔、24 磁束漏れ防止孔、25 ブリッジ部、26 軸孔、28 カシメ部、30 コア内歯、32 嵌合突起、34 嵌合溝、36 外歯、38 大径部。

10 rotor, 12 rotor core, 14 permanent magnet, 16 rotating shaft, 18 press-fit ring, 20 fitting part, 22 magnet hole, 24 magnetic flux leakage prevention hole, 25 bridge part, 26 shaft hole, 28 caulking part, 30 core internal teeth, 32 fitting protrusions, 34 fitting grooves, 36 external teeth, 38 large diameter parts.

Claims (1)

回転電機のロータであって、
中心に延びる軸孔と、複数の磁極用孔と、を有するロータコアと、
前記磁極用孔に挿入された永久磁石と、
前記軸孔に挿通されて、複数の嵌合部を介して前記軸孔に固定された回転軸と、
を備え、
前記嵌合部では、前記回転軸の外周面および前記軸孔の内周面の一方に設けられるとともに径方向に陥没する嵌合溝と、前記回転軸の外周面および前記軸孔の内周面の他方に設けられるとともに径方向に突出した嵌合突起と、が互いに嵌り合っており、
周方向に近接する二つの磁極用孔間には、微小間隙部であるブリッジ部が存在し、
前記嵌合部は、前記ブリッジ部と周方向に重複しない位置に配されており、
複数の前記嵌合部は
記嵌合突起の周方向寸法が前記嵌合溝の周方向寸法より大きい周側嵌合部と
前記周側嵌合部と異なる嵌合部であって、前記嵌合突起の径方向寸法が前記嵌合溝の径方向寸法より大きい径側嵌合部と、を有する、
ことを特徴とする回転電機のロータ。
It is a rotor of a rotary electric machine,
A rotor core having a centrally extending shaft hole and a plurality of magnetic pole holes,
The permanent magnet inserted in the magnetic pole hole and
A rotating shaft inserted through the shaft hole and fixed to the shaft hole via a plurality of fitting portions,
Equipped with
In the fitting portion, a fitting groove provided on one of the outer peripheral surface of the rotating shaft and the inner peripheral surface of the shaft hole and recessed in the radial direction, and the outer peripheral surface of the rotating shaft and the inner peripheral surface of the shaft hole. The fitting protrusions provided on the other side of the above and protruding in the radial direction are fitted to each other.
There is a bridge part, which is a minute gap, between the two magnetic pole holes that are close to each other in the circumferential direction.
The fitting portion is arranged at a position that does not overlap with the bridge portion in the circumferential direction.
The plurality of fitting portions are
A peripheral fitting portion whose circumferential dimension of the fitting protrusion is larger than the circumferential dimension of the fitting groove ,
It has a fitting portion that is different from the peripheral fitting portion and has a radial fitting portion in which the radial dimension of the fitting protrusion is larger than the radial dimension of the fitting groove.
A rotor of a rotary electric machine characterized by that.
JP2018009882A 2018-01-24 2018-01-24 Rotating machine rotor Active JP7063637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018009882A JP7063637B2 (en) 2018-01-24 2018-01-24 Rotating machine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018009882A JP7063637B2 (en) 2018-01-24 2018-01-24 Rotating machine rotor

Publications (2)

Publication Number Publication Date
JP2019129601A JP2019129601A (en) 2019-08-01
JP7063637B2 true JP7063637B2 (en) 2022-05-09

Family

ID=67471461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018009882A Active JP7063637B2 (en) 2018-01-24 2018-01-24 Rotating machine rotor

Country Status (1)

Country Link
JP (1) JP7063637B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021045007A (en) * 2019-09-13 2021-03-18 アイシン・エィ・ダブリュ株式会社 Rotor
JP2021045011A (en) * 2019-09-13 2021-03-18 アイシン・エィ・ダブリュ株式会社 Rotor
WO2022059199A1 (en) * 2020-09-18 2022-03-24 株式会社 東芝 Rotor
DE102021205713A1 (en) 2021-05-31 2022-12-01 Valeo Eautomotive Germany Gmbh Rotor for an electric machine
DE102021210755A1 (en) 2021-09-27 2023-03-30 Siemens Energy Global GmbH & Co. KG Rotor for electric rotating machine, electric rotating machine, nacelle propulsion and watercraft
CN118199317B (en) * 2024-05-16 2024-08-02 中山大洋电机股份有限公司 Gear tooth type rotor and motor capable of reducing axial structure resonance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005192288A (en) 2003-12-24 2005-07-14 Okuma Corp Rotor of reluctance motor
JP2006217770A (en) 2005-02-07 2006-08-17 Oriental Motor Co Ltd Fastening structure of rotor core to shaft of motor
JP2009153230A (en) 2007-12-18 2009-07-09 Yaskawa Electric Corp Method of manufacturing rotor core, rotor core manufactured by the manufacturing method, rotor core, embedded magnet type dynamo-electric machine having the rotor, vehicle, lift and working machine each using the dynamo-electric machine
JP2011147310A (en) 2010-01-18 2011-07-28 Toyota Motor Corp Rotor, and method and apparatus for manufacturing the same
JP2014072904A (en) 2012-09-27 2014-04-21 Denso Corp Dynamo-electric machine
JP2015104176A (en) 2013-11-22 2015-06-04 トヨタ自動車株式会社 Rotary electric machine rotor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005192288A (en) 2003-12-24 2005-07-14 Okuma Corp Rotor of reluctance motor
JP2006217770A (en) 2005-02-07 2006-08-17 Oriental Motor Co Ltd Fastening structure of rotor core to shaft of motor
JP2009153230A (en) 2007-12-18 2009-07-09 Yaskawa Electric Corp Method of manufacturing rotor core, rotor core manufactured by the manufacturing method, rotor core, embedded magnet type dynamo-electric machine having the rotor, vehicle, lift and working machine each using the dynamo-electric machine
JP2011147310A (en) 2010-01-18 2011-07-28 Toyota Motor Corp Rotor, and method and apparatus for manufacturing the same
JP2014072904A (en) 2012-09-27 2014-04-21 Denso Corp Dynamo-electric machine
JP2015104176A (en) 2013-11-22 2015-06-04 トヨタ自動車株式会社 Rotary electric machine rotor

Also Published As

Publication number Publication date
JP2019129601A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
JP7063637B2 (en) Rotating machine rotor
US9472984B2 (en) Rotor for rotating electric machine
JP6654902B2 (en) Rotary motor
JP2009095087A (en) Axial gap motor
JP2007028868A (en) Stator for rotary electric machine
JP2007104819A (en) Rotating electric machine
US20120200189A1 (en) Rotating electrical machine
JP2011130530A (en) Axial gap motor and manufacturing method of rotor of the same
JP2013093985A (en) Stator fixing structure
US10418867B2 (en) Switched reluctance motor
JP2012222969A (en) Rotor of rotary electric machine
JP4516392B2 (en) Brushless motor rotor, brushless motor, and motor for power steering device
JP4605480B2 (en) Axial gap type motor
JP2011125212A (en) Rotor of permanent-magnet-type rotary electric machine
WO2015068846A1 (en) Rotary electrical machine
JP6190905B1 (en) Rotating electric machine and manufacturing method thereof
JP2009130945A (en) Motor
JP2010017010A (en) Axial gap motor
JP2014126048A (en) Gear and electric motor using gear
JP2010017009A (en) Axial gap motor
US11063483B2 (en) Electric motor
JPH0421331A (en) Motor
JP2014096869A (en) Rotor of magnet embedded type motor
JP2014057456A (en) Rotor for electric motor
WO2020250647A1 (en) Rotor and rotating electric machine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220421

R151 Written notification of patent or utility model registration

Ref document number: 7063637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151