WO2015050010A1 - Rotor core, rotor, and rotary electric machine - Google Patents

Rotor core, rotor, and rotary electric machine Download PDF

Info

Publication number
WO2015050010A1
WO2015050010A1 PCT/JP2014/074982 JP2014074982W WO2015050010A1 WO 2015050010 A1 WO2015050010 A1 WO 2015050010A1 JP 2014074982 W JP2014074982 W JP 2014074982W WO 2015050010 A1 WO2015050010 A1 WO 2015050010A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor core
rotor
shaft
fitting portion
fitting
Prior art date
Application number
PCT/JP2014/074982
Other languages
French (fr)
Japanese (ja)
Inventor
憲生 竹田
良司 小林
博光 岡本
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2015050010A1 publication Critical patent/WO2015050010A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present invention relates to a rotor core, a rotor, and a rotating electrical machine.
  • the rotor of a rotating electrical machine is mainly composed of a rotor core in which electromagnetic steel plates are laminated in the axial direction and a shaft fastened to the rotor core.
  • Patent Document 1 a plurality of protrusions (press-fit portions 31 in FIG. 6) are formed at predetermined intervals in the circumferential direction of the circumferential surface of the center hole of the rotor core.
  • the cross-sectional shape of the central hole of the rotor core into which the cylindrical shaft is inserted is a square (hole 170 in FIG. 8), a regular triangle (hole 170 in FIG. 19), or the like.
  • a rotor core according to the invention of claim 1 includes a center hole into which a cylindrical shaft is press-fitted, and a plurality of fitting portions formed in the circumferential direction in the center hole. Is brought into contact with the shaft when it is press-fitted into the center hole, and the distal end shape of the fitting portion is characterized in that the circumferential dependency of the pressure due to contact with the shaft is substantially uniform.
  • a rotor according to an eighth aspect of the present invention includes a rotor iron core and a shaft that is press-fitted into a central hole of the rotor iron core, and is provided rotatably on the inner peripheral side of the stator. 8.
  • a rotating electric machine is configured, and a plurality of fitting portions that are fitted to the peripheral surface of the shaft are formed in the center hole of the rotor core, and the rotor core is defined in any one of claims 1 to 7. It is a rotor core as described.
  • a rotating electrical machine according to the invention of claim 9 includes a stator having slots and teeth, and windings wound around the teeth, and a rotor core provided rotatably on the inner peripheral side of the stator.
  • a rotor in which a shaft is press-fitted into the center hole of the rotor, and a plurality of fitting portions that fit into the peripheral surface of the shaft are formed in the center hole of the rotor core. It is a rotor as described in above.
  • the rotor core By using the rotor core according to the present invention, it is possible to provide a rotor core, a rotor, and a rotating electrical machine that achieve both high speed and strength reliability.
  • the figure which shows the structure of the rotary electric machine 100 of this invention The perspective view which shows the rotor 20 of 1st Embodiment. A radial direction sectional view of rotor 20 of a 1st embodiment. A radial direction sectional view of rotor core 2 of a 1st embodiment. Radial direction sectional drawing which shows the part for 45 degrees of circumferential directions among the rotor cores 2 of 1st Embodiment. Radial direction sectional drawing of the fitting part 8 vicinity of the rotor core 2 of 1st Embodiment. The figure which shows the pressure distribution of the front-end
  • FIG. Radial direction sectional drawing of 2 A of rotor cores. Radial direction sectional drawing of the rotor core 2B. The figure which shows the pressure fluctuation of the fitting part 8 by the centrifugal force in 2 A of rotor cores, and the rotor core 2B. Radial direction sectional drawing of the rotor core 2C. The figure which shows the pressure distribution of the fitting part 8 in the rotor core 2A and the rotor core 2C. Radial direction sectional drawing of the rotor core 2 of 2nd Embodiment. It is sectional drawing of the rotor core 2 of 3rd Embodiment.
  • the present invention As an example of the rotating electrical machine according to the present invention, an application example in an 8-pole 12-slot concentrated winding permanent magnet synchronous motor will be described. However, the present invention is not limited to this, and can be applied to other types of motors. The present invention can also be applied to a generator or the like.
  • FIG. 1 is a radial cross-sectional view showing a rotating electrical machine 100 according to the first embodiment.
  • the rotating electrical machine 100 includes a rotor 20 and a stator 30 disposed on the outer peripheral side of the rotor 20.
  • Reference numeral 1 denotes the rotation center of the rotating electrical machine 100, that is, the rotation axis.
  • the rotor 20 is inserted into the rotor core 2, the columnar shaft 5 that is press-fitted into the center hole 6 of the rotor core 2, and the magnet insertion hole 3 that is formed in the circumferential direction on the outer periphery side of the rotor core 2.
  • the permanent magnet 21 is provided.
  • the fitting portions 8 of the center hole 6 of the rotor core 2 are formed in the center hole 6 at equal intervals in the circumferential direction as well shown in FIGS. 3 to 5 and protrude toward the inner peripheral side. Has a shape.
  • the shaft 5 abuts on the tip 9 of the fitting portion 8, and the rotor core 2 and the shaft 5 are fastened.
  • the shaft 5 and the fitting portion 8 abut against each other and elastically deform together, but the fitting portion 8 has a greater degree of elastic deformation than the shaft 5.
  • the lightening holes 4 are formed at equal intervals in the circumferential direction in a region where the influence of the magnetic flux of the rotor core 2 does not reach.
  • the permanent magnet 21 a neodymium magnet, a samarium cobalt magnet, a ferrite magnet, or the like is mainly used, but other than these may be used.
  • the stator 30 includes a tooth 31 formed in the inner circumferential side circumferential direction, a slot 32 formed between the pair of teeth 31, and a winding 33 inserted into the slot 32 and wound around the tooth 31. Yes. Winding 33 is connected to a power converter (not shown).
  • the rotor 20 of the rotating electrical machine 100 is driven to rotate when a three-phase alternating current is applied to the winding 33 of the stator 30 from a power converter (not shown).
  • the stator 30 is the same in various types of rotating electrical machines to which the present invention is applied. Therefore, hereinafter, the description will be made with the stator 30 omitted.
  • FIG. 2 is a perspective view showing the rotor 20.
  • FIG. 3 is a radial cross-sectional view of the rotor 20.
  • FIG. 4 is a radial cross-sectional view of the rotor core 2.
  • the fitting portions 8 of the rotor core 2 are formed in the center hole 6 at equal intervals in the circumferential direction and have a shape protruding toward the inner peripheral side (FIGS. 3 and 4).
  • pressure refers to a radial force per unit area.
  • pressure distribution refers to the circumferential direction dependency of the pressure applied to the tip 9. The same applies to the following.
  • the radius of curvature of the tip 9 of the fitting portion 8 and the radius of the shaft are expressed by the shape before press-fitting. This is because it is convenient when discussing the radius of curvature of the tip 9 of the fitting portion 8 and the radius of the shaft. In the shape after press-fitting, both the fitting portion 8 and the shaft are elastically deformed, and the above discussion becomes difficult.
  • FIG. 5 is an enlarged view of a region 11 surrounded by a broken line shown in FIG. 4, that is, a 45 ° circumferential direction of the rotor core 2.
  • the left end in the figure is point A
  • the right end in the figure is point B
  • the middle point thereof is point C.
  • the shape of the tip 9 of the fitting portion 8 before the shaft 5 is press-fitted is an arc having a curvature radius rc.
  • the radius of the shaft before press-fitting is Rs and the allowance due to press-fitting is ⁇ R
  • the distance from the center C of the arc to the rotation axis 1 is Rs ⁇ R in the state before press-fitting.
  • FIG. 6 is an enlarged view of the vicinity of the fitting portion 8.
  • the fitting portion 8 is formed in the center hole 6 of the rotor core 2 and has a shape protruding toward the inner peripheral side, and has a tip 9 formed on the inner peripheral side and a side surface 15 facing the circumferential direction. .
  • the tip 9 contacts the shaft 5.
  • An arc 10 having a radius Rs ⁇ R is indicated by a broken line.
  • the arc 10 is formed around the rotation axis 1.
  • the radius of curvature rc of the tip 9 of the fitting portion 8 of the rotor core 2 of the first embodiment is larger than Rs ⁇ R. That is, rc> Rs ⁇ R.
  • FIG. 7 shows the pressure applied to the tip 9 of the fitting portion 8 by the magnitude relationship between the radius of curvature rc of the tip 9 of the fitting portion 8 and the distance Rs ⁇ R from the point C of the tip 9 before press-fitting to the rotating shaft 1. It shows how the distribution changes.
  • the vertical axis represents pressure
  • the horizontal axis represents the position of the tip 9 of the fitting portion 8.
  • the rotor core 2 of the first embodiment satisfies rc> Rs ⁇ R.
  • the curvature radius rc of the tip 9 is larger than Rs ⁇ R and set to an appropriate value (rc> Rs ⁇ R), so that the point A of the tip 9 and The pressure generated at point B is reduced, and the pressure can be made substantially uniform at points A, B, and C of the tip 9.
  • T f r (1) f ⁇ N ⁇ p L 1 L 2 (2) p ⁇ y (3)
  • T is the torque
  • f is a frictional force applied to all the fitting portions 8 of the rotor core 2
  • r is the radius of the shaft when pressed into the rotor core 2
  • N is the number of fitting portions 8 (eight in the rotor core 2 of the first embodiment)
  • is the coefficient of static friction
  • p is the radial pressure received from the shaft 5
  • L 1 is the circumferential length of the tip 9 of each fitting portion 8 when elastically deformed by the pressure from the shaft 5
  • L 2 is the thickness of the rotor core 2
  • ⁇ y is the yield stress of the material constituting the rotor core 2, It is.
  • FIG. 8 is a diagram showing the force that the tip 9 of the fitting portion 8 of the rotor core 2 receives from the shaft 5 when the shaft 5 (not shown) is press-fitted into the rotor core 2.
  • f, r, ⁇ , p, L 1 and ⁇ y are shown.
  • the fitting portion 8a is located on the radially inner side of the lightening hole 4a” is an area indicated by an angle ⁇ 1 that is sandwiched between the line segment 41 and the line segment 42 that are in contact with the lightening hole 4a through the rotation axis 1. And it means that the fitting part 8a is located in the area
  • the fitting portion 8 is positioned on the radially inner side of the lightening hole 4. .
  • the radius of curvature rc of the tip 9 is larger than Rs ⁇ R, but in the following, instead of the rotor core 2 of the first embodiment, the tip 9 of the fitting portion 8 A rotor core 2A (FIG. 9), which is a rotor core having the same radius of curvature rc and Rs ⁇ R, is used as a reference.
  • the only difference between the rotor core 2A and the rotor core 2 of the first embodiment is whether or not the radius of curvature rc of the tip 9 is equal to Rs- ⁇ R, and the other configurations are the same.
  • a rotor core 2B (FIG. 10) and a rotor core 2C (FIG. 12) described later are introduced.
  • the fitting portions 8 are formed at equal intervals in the circumferential direction.
  • the lightening holes 4 are also formed at equal intervals in the circumferential direction.
  • the definitions of the points A, B, and C at the tip 9 of the fitting portion 8 are the same as those of the rotor core 2 of the first embodiment. (See FIGS. 5, 9, 10, and 12).
  • FIG. 9 shows the rotor core 2A.
  • FIG. 10 shows the rotor core 2B.
  • the number of the hollow holes 4 and the fitting portions 8 are equal, and each is eight. Needless to say, the specific number of eight is one example in which the number of the lightening holes 4 and the fitting portions 8 are equal. The same applies to the following.
  • the fitting portion 8 is located between the lightening holes 4.
  • the lightening holes 4 b and 4 c which are the lightening holes 4 adjacent to each other of the rotor core 2 shown in FIG. A description will be given by taking a fitting portion 8b which is one of the fitting portions 8 as an example.
  • between the lightening holes 4 means between the lightening holes 4 adjacent to each other (here, between the lightening holes 4b and 4c).
  • the fitting portion 8b is located between the lightening holes 4 means an angle between the line segment 43 passing through the rotation axis 1 and contacting the lightening hole 4b and the line segment 44 contacting the lightening hole 4c. This means that the fitting portion 8b is located in the region indicated by ⁇ 2 and in the region on the inner peripheral side of the lightening holes 4b and 4c. The same applies to the following.
  • the circumferential center 12 of the lightening holes 4 and the circumferential center 13 of the fitting portion do not coincide.
  • the curvature radius rc and Rs ⁇ R of the tip 9 of the fitting portion 8 are set to be equal in the rotor core 2 B as well as the rotor core 2 A.
  • FIG. 11 is a diagram illustrating the circumferential dependence of pressure fluctuations of the fitting portion 8 due to centrifugal force in each of the rotating electrical machine 100 using the rotor core 2A and the rotating electrical machine 100 using the rotor core 2B.
  • the vertical axis represents pressure fluctuation due to centrifugal force
  • the horizontal axis represents the position of the tip 9 of the fitting portion 8.
  • two broken lines are drawn, and the pressure distribution at the tip 9 of the fitting portion 8 of the rotor core 2A (line connecting white circles) and the rotor core 2B (line connecting white squares) is shown. ing.
  • the number of the lightening holes 4 and the fitting portions 8 are equal, and both are eight (see FIG. 4).
  • FIG. 13A two of the eight equivalent fitting portions 8 included in the rotor core 2A shown in FIG. 9 are denoted with the fitting portions 8a and 8b. Reworked.
  • the number of the fitting portions 8 and the number of the hollow holes 4 are different. Specifically, ten fitting portions 8 and eight lightening holes 4 are formed.
  • three of the ten fitting portions 8 included in the rotor core 2C shown in FIG. 12 include three fitting portions 8c, fitting portions 8d, and fitting portions.
  • the code was re-assigned to 8e.
  • the entire fitting portion 8 c is located on the radially inner side of the lightening hole 4.
  • about half of the point A side is located on the radially inner side of the lightening hole 4, and about half of the point B side is located between the lightening holes 4.
  • the entire fitting portion 8 e is located between the lightening holes 4.
  • the non-equivalence of the fitting portions 8c to 8e as described above affects the pressure distribution at the tip 9 of the fitting portion 8 that contacts the shaft 5. Details will be described later with reference to FIG.
  • FIG. 13A shows the pressure distribution at the tip 9 of the fitting portion 8 of the rotor core 2 that contacts the shaft 5 and the pressure distribution in the rotating electrical machine 100 using the rotor core 2A shown in FIG. It is the figure which showed the fitting part dependence.
  • the vertical axis represents pressure
  • the horizontal axis represents the position of the tip 9 of the fitting portion 8.
  • FIG. 13A shows two broken lines. This shows the pressure distribution at the tip 9 of the fitting part 8a (line connecting white circles) and the fitting part 8b (line connecting black circles) which are the fitting parts 8 of the rotor core 2A shown in FIG. Yes.
  • FIG. 13B shows a fitting portion 8c, a fitting portion 8d, which is a fitting portion 8 of the rotor core 2 that comes into contact with the shaft 5, in the rotating electrical machine 100 using the rotor core 2C shown in FIG. It is the figure which showed the pressure distribution in each front-end
  • the vertical axis represents pressure
  • the horizontal axis represents the position of the tip 9 of the fitting portion 8.
  • FIG. 13B shows three broken lines. This includes a fitting portion 8c (line connecting white circles), a fitting portion 8d (line connecting black circles), and a fitting portion 8e (white squares) which are the fitting portions 8 of the rotor core 2C shown in FIG.
  • the pressure distribution at the tip 9 of the connected line is shown. Since the above-mentioned three broken lines indicating the pressure distribution at the respective tips 9 of the fitting portions 8c to 8e do not overlap, it can be seen that the pressure distributions are not equal in the fitting portions 8c to 8e. This is because the number of the fitting portions 8 of the rotor core 2C is different from that of the lightening holes 4 and is formed at equal intervals in the circumferential direction.
  • FIG. 14 is a radial cross-sectional view of the vicinity of the fitting portion 8 of the rotor core 2 of the rotor 20 of the rotating electrical machine 100 of the second embodiment.
  • the tip 9 of the fitting portion 8 is an arc.
  • a notch 14 is formed in the circumferential side surface 15 of the fitting portion 8.
  • the curvature radius rc and the radius Rs ⁇ R of the tip 9 are made equal as described above, and the notch 14 is further provided on the side surface 15.
  • the second embodiment also has the effect of uniformizing the pressure distribution at the tip 9 of the fitting portion 8 of the rotor core 2 in contact with the shaft 5, as in the first embodiment, and is stable over a long period of time. Fastening can be realized.
  • FIG. 15 is a radial cross-sectional view of the vicinity of the fitting portion 8 of the rotor 20 of the rotating electrical machine 100 of the third embodiment.
  • tip 9 of the fitting part 8 is not a circular arc but the spline curve which satisfy
  • a point 16 that divides the tip 9 at equal intervals in the circumferential direction is considered, and the point 16 is moved in the radial direction so that the pressure distribution generated at the tip 9 by press fitting becomes uniform.
  • the tip 9 is formed by a spline curve that smoothly connects the points 16 arranged in this manner.
  • the pressure distribution at the tip 9 of the fitting portion 8 of the rotor core 2 that comes into contact with the shaft 5 is uniformed.
  • a stable fastening can be realized over a long period of time.
  • the fitting portions 8 of the rotor core 2 and the lightening holes 4 are arranged at equal intervals in the circumferential direction, but may be arranged at non-equal intervals as long as they do not contradict the gist of the present invention. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

Provided are a rotor core that simultaneously achieves high-speed rotation and strength reliability, a rotor that uses the rotor core, and a rotary electric machine that is equipped with the rotor. This rotary electric machine is equipped with a rotor (20) that has a rotor core (2) and a shaft (5) that is press-fitted to the rotor core (2). The rotor core (2) has fitting parts (8) to be brought into contact with the shaft (5), wherein the fitting parts (8) have a curvature radius (rc), at the tip of the fitting parts (8), that is greater than a value (Rs-ΔR) that is obtained by subtracting a press-fitting interference (ΔR) from the radius (Rs) of the shaft (5).

Description

回転子鉄心、回転子、および、回転電機Rotor core, rotor, and rotating electric machine
 本発明は、回転子鉄心、回転子、および、回転電機に関する。 The present invention relates to a rotor core, a rotor, and a rotating electrical machine.
 回転電機の回転子は、電磁鋼板を軸方向に積層した回転子鉄心と、回転子鉄心と締結されたシャフトによって主に構成されている。回転電機を高速化することで、小型・軽量化が図れる。ただし、高速回転で生じる遠心力によって、回転子鉄心はシャフトから離れる方向に変形するため、回転子鉄心シャフトとの締結部には、締結力が大きく、安定した締結方法を採用しなければならない。 The rotor of a rotating electrical machine is mainly composed of a rotor core in which electromagnetic steel plates are laminated in the axial direction and a shaft fastened to the rotor core. By increasing the speed of the rotating electrical machine, the size and weight can be reduced. However, since the rotor core is deformed in a direction away from the shaft due to the centrifugal force generated by the high-speed rotation, the fastening portion with the rotor core shaft has a large fastening force and a stable fastening method must be employed.
 回転子鉄心とシャフトを焼き嵌めで締結する場合、回転子鉄心の中心に円孔を設け、その円孔に丸棒のシャフトを挿入することで、シャフトの外周面と回転子鉄心が全周にわたって当接した状態での締結が可能である。一方,回転子鉄心にシャフトを圧入して両者を締結する場合、回転子鉄心に形成された円孔の中心孔に、円柱状のシャフトを圧入するには大荷重が必要である。その結果、シャフトと回転子鉄心が全周にわたって当接した状態の締結を圧入で実現するには大規模なプレス装置が必要になる。これを解決するために、回転子鉄心の中心孔とシャフトが部分的に当接するような締結方法が開示されている。 When the rotor core and the shaft are fastened by shrink fitting, a circular hole is provided in the center of the rotor core, and the shaft of the round bar is inserted into the circular hole so that the outer peripheral surface of the shaft and the rotor core extend over the entire circumference. Fastening in the contacted state is possible. On the other hand, when the shaft is press-fitted into the rotor core and fastened together, a large load is required to press-fit the cylindrical shaft into the center hole of the circular hole formed in the rotor core. As a result, a large-scale press device is required to achieve the fastening with the shaft and the rotor iron core in contact with each other by press-fitting. In order to solve this problem, a fastening method is disclosed in which the center hole of the rotor core and the shaft partially abut.
 特許文献1では、回転子鉄心の中心孔の周面の周方向に所定間隔で複数の突起(図6の圧入部31)が形成されている。特許文献2では、円柱状のシャフトを挿入する回転子鉄心の中心孔の断面形状を、正方形(図8の孔170)、正三角形(図19の孔170)等にしている。 In Patent Document 1, a plurality of protrusions (press-fit portions 31 in FIG. 6) are formed at predetermined intervals in the circumferential direction of the circumferential surface of the center hole of the rotor core. In Patent Document 2, the cross-sectional shape of the central hole of the rotor core into which the cylindrical shaft is inserted is a square (hole 170 in FIG. 8), a regular triangle (hole 170 in FIG. 19), or the like.
特開2012-23823号公報JP 2012-23823 A 特開2004-135463号公報JP 2004-135463 A
 シャフトを圧入し、シャフトと回転子鉄心を周方向に沿って部分的に当接させて両者を締結する方法では、シャフトと回転子鉄心の当接する部分(当接部)に圧力が発生するが、当接部の各領域で定義される圧力にばらつきが生じるという問題、すなわち、当接部において圧力分布が生じるという問題があった。 In the method in which the shaft is press-fitted and the shaft and the rotor core are partially brought into contact with each other along the circumferential direction to fasten the two, pressure is generated at the contact portion (contact portion) between the shaft and the rotor core. There is a problem that the pressure defined in each region of the contact part varies, that is, a pressure distribution occurs in the contact part.
(1)請求項1の発明による回転子鉄心は、円柱状のシャフトが圧入される中心孔と、中心孔に周方向に複数形成された嵌合部と、を備え、嵌合部は、シャフトが中心孔に圧入される際にシャフトと当接し、嵌合部の先端形状は、シャフトとの当接による圧力の周方向依存性がほぼ一様となる形状であることを特徴とする。
(2)請求項8の発明による回転子は、回転子鉄心と、回転子鉄心の中心孔に圧入されて一体化されているシャフトとを有し、固定子の内周側に回転可能に設けられて回転電機を構成し、回転子鉄心の中心孔にはシャフトの周面に嵌合する複数個の嵌合部が形成され、回転子鉄心は、請求項1~7のいずれか一項に記載の回転子鉄心であることを特徴とする。
(3)請求項9の発明による回転電機は、スロットとティースを有し、ティースに巻線が巻回されてなる固定子と、固定子の内周側に回転可能に設けられ、回転子鉄心の中心孔にシャフトが圧入されてなる回転子とを有し、回転子鉄心の中心孔にはシャフトの周面に嵌合する複数個の嵌合部が形成され、回転子は、請求項8に記載の回転子であることを特徴とする。
(1) A rotor core according to the invention of claim 1 includes a center hole into which a cylindrical shaft is press-fitted, and a plurality of fitting portions formed in the circumferential direction in the center hole. Is brought into contact with the shaft when it is press-fitted into the center hole, and the distal end shape of the fitting portion is characterized in that the circumferential dependency of the pressure due to contact with the shaft is substantially uniform.
(2) A rotor according to an eighth aspect of the present invention includes a rotor iron core and a shaft that is press-fitted into a central hole of the rotor iron core, and is provided rotatably on the inner peripheral side of the stator. 8. A rotating electric machine is configured, and a plurality of fitting portions that are fitted to the peripheral surface of the shaft are formed in the center hole of the rotor core, and the rotor core is defined in any one of claims 1 to 7. It is a rotor core as described.
(3) A rotating electrical machine according to the invention of claim 9 includes a stator having slots and teeth, and windings wound around the teeth, and a rotor core provided rotatably on the inner peripheral side of the stator. A rotor in which a shaft is press-fitted into the center hole of the rotor, and a plurality of fitting portions that fit into the peripheral surface of the shaft are formed in the center hole of the rotor core. It is a rotor as described in above.
 本発明による回転子鉄心を用いることにより、高速化と強度信頼性を両立する回転子鉄心、回転子、および、回転電機を提供できる。 By using the rotor core according to the present invention, it is possible to provide a rotor core, a rotor, and a rotating electrical machine that achieve both high speed and strength reliability.
本発明の回転電機100の構造を示す図。The figure which shows the structure of the rotary electric machine 100 of this invention. 第1実施形態の回転子20を示す斜視図。The perspective view which shows the rotor 20 of 1st Embodiment. 第1実施形態の回転子20の径方向断面図。A radial direction sectional view of rotor 20 of a 1st embodiment. 第1実施形態の回転子鉄心2の径方向断面図。A radial direction sectional view of rotor core 2 of a 1st embodiment. 第1実施形態の回転子鉄心2のうち、周方向45°分を示す径方向断面図。Radial direction sectional drawing which shows the part for 45 degrees of circumferential directions among the rotor cores 2 of 1st Embodiment. 第1実施形態の回転子鉄心2の嵌合部8付近の径方向断面図。Radial direction sectional drawing of the fitting part 8 vicinity of the rotor core 2 of 1st Embodiment. 嵌合部8の先端9の圧力分布を示す図。The figure which shows the pressure distribution of the front-end | tip 9 of the fitting part 8. FIG. 回転子鉄心2の嵌合部8の先端9がシャフト5から受ける力を示す図。The figure which shows the force which the front-end | tip 9 of the fitting part 8 of the rotor core 2 receives from the shaft 5. FIG. 回転子鉄心2Aの径方向断面図。Radial direction sectional drawing of 2 A of rotor cores. 回転子鉄心2Bの径方向断面図。Radial direction sectional drawing of the rotor core 2B. 回転子鉄心2Aおよび回転子鉄心2Bにおける遠心力による嵌合部8の圧力変動を示す図。The figure which shows the pressure fluctuation of the fitting part 8 by the centrifugal force in 2 A of rotor cores, and the rotor core 2B. 回転子鉄心2Cの径方向断面図。Radial direction sectional drawing of the rotor core 2C. 回転子鉄心2Aおよび回転子鉄心2Cにおける嵌合部8の圧力分布を示す図。The figure which shows the pressure distribution of the fitting part 8 in the rotor core 2A and the rotor core 2C. 第2実施形態の回転子鉄心2の径方向断面図。Radial direction sectional drawing of the rotor core 2 of 2nd Embodiment. 第3実施形態の回転子鉄心2の断面図である。It is sectional drawing of the rotor core 2 of 3rd Embodiment.
 本発明における回転電機の一例として、8極12スロット集中巻の永久磁石同期モータでの適用例を示す。しかし、本発明はこれに限定されるものではなく、他の形式のモータでも適用できる。また、本発明は、発電機などでも適用できる。 As an example of the rotating electrical machine according to the present invention, an application example in an 8-pole 12-slot concentrated winding permanent magnet synchronous motor will be described. However, the present invention is not limited to this, and can be applied to other types of motors. The present invention can also be applied to a generator or the like.
――第1実施形態――
 図1は、第1実施形態における回転電機100を示す径方向断面図である。回転電機100は、回転子20と、回転子20の外周側に配置された固定子30とを備えている。符号1は回転電機100の回転中心、すなわち、回転軸心を示している。
-First embodiment-
FIG. 1 is a radial cross-sectional view showing a rotating electrical machine 100 according to the first embodiment. The rotating electrical machine 100 includes a rotor 20 and a stator 30 disposed on the outer peripheral side of the rotor 20. Reference numeral 1 denotes the rotation center of the rotating electrical machine 100, that is, the rotation axis.
 回転子20は、回転子鉄心2と、回転子鉄心2の中心孔6に圧入される円柱状のシャフト5と、回転子鉄心2の外周側周方向に形成された磁石挿入孔3に挿入される永久磁石21とを備えている。回転子鉄心2の中心孔6の嵌合部8は、図3~図5によく示されているように、中心孔6に周方向に等間隔に形成されており、内周側に突出した形状を有する。シャフト5が嵌合部8の先端9に当接し、回転子鉄心2とシャフト5が締結されている。回転子鉄心2の中心孔6にシャフト5が圧入されたとき、シャフト5と嵌合部8は互いに当接しともに弾性変形するが、嵌合部8のほうがシャフト5よりも弾性変形の度合いが大きい。回転子20を軽量化するため、回転子鉄心2の磁束の影響が及ばない領域に肉抜き孔4が周方向に等間隔に形成されている。永久磁石21は、ネオジム磁石、サマリウムコバルト磁石、フェライト磁石などが主に用いられるが、これら以外であってもよい。 The rotor 20 is inserted into the rotor core 2, the columnar shaft 5 that is press-fitted into the center hole 6 of the rotor core 2, and the magnet insertion hole 3 that is formed in the circumferential direction on the outer periphery side of the rotor core 2. The permanent magnet 21 is provided. The fitting portions 8 of the center hole 6 of the rotor core 2 are formed in the center hole 6 at equal intervals in the circumferential direction as well shown in FIGS. 3 to 5 and protrude toward the inner peripheral side. Has a shape. The shaft 5 abuts on the tip 9 of the fitting portion 8, and the rotor core 2 and the shaft 5 are fastened. When the shaft 5 is press-fitted into the center hole 6 of the rotor core 2, the shaft 5 and the fitting portion 8 abut against each other and elastically deform together, but the fitting portion 8 has a greater degree of elastic deformation than the shaft 5. . In order to reduce the weight of the rotor 20, the lightening holes 4 are formed at equal intervals in the circumferential direction in a region where the influence of the magnetic flux of the rotor core 2 does not reach. As the permanent magnet 21, a neodymium magnet, a samarium cobalt magnet, a ferrite magnet, or the like is mainly used, but other than these may be used.
 固定子30は、内周側周方向に形成されたティース31と、一対のティース31間に形成されるスロット32と、スロット32に挿入されティース31に巻回される巻線33とを備えている。巻線33は、電力変換装置(不図示)に接続される。回転電機100の回転子20は、電力変換装置(不図示)から3相交流電流が固定子30の巻線33に通電され、回転駆動される。なお、固定子30は、本発明が適用される種々の形態の回転電機において同様である。よって、以降では、固定子30を省略して説明する。 The stator 30 includes a tooth 31 formed in the inner circumferential side circumferential direction, a slot 32 formed between the pair of teeth 31, and a winding 33 inserted into the slot 32 and wound around the tooth 31. Yes. Winding 33 is connected to a power converter (not shown). The rotor 20 of the rotating electrical machine 100 is driven to rotate when a three-phase alternating current is applied to the winding 33 of the stator 30 from a power converter (not shown). The stator 30 is the same in various types of rotating electrical machines to which the present invention is applied. Therefore, hereinafter, the description will be made with the stator 30 omitted.
 図2は、回転子20示す斜視図である。図3は、回転子20の径方向断面図である。図4は、回転子鉄心2の径方向断面図である。回転子鉄心2の嵌合部8は、中心孔6に周方向に等間隔に形成されており、内周側に突出した形状を有する(図3、図4)。そして、円柱状のシャフト5が嵌合部8の先端9に当接し、回転子鉄心2とシャフト5が締結されている(図3)。さらに、磁石挿入孔3に永久磁石21が挿入されて、回転子20が構成される(図2、図3)。 FIG. 2 is a perspective view showing the rotor 20. FIG. 3 is a radial cross-sectional view of the rotor 20. FIG. 4 is a radial cross-sectional view of the rotor core 2. The fitting portions 8 of the rotor core 2 are formed in the center hole 6 at equal intervals in the circumferential direction and have a shape protruding toward the inner peripheral side (FIGS. 3 and 4). And the cylindrical shaft 5 contact | abuts to the front-end | tip 9 of the fitting part 8, and the rotor core 2 and the shaft 5 are fastened (FIG. 3). Further, the permanent magnet 21 is inserted into the magnet insertion hole 3 to constitute the rotor 20 (FIGS. 2 and 3).
 図5~7を用いて、嵌合部8の先端9の曲率半径によって圧力分布が変化することについて述べる。ここで、「圧力」とは、単位面積当たりの径方向の力のことを指す。また、「圧力分布」とは、先端9にかかる圧力の周方向依存性のことを指す。以下においても同様である。以下では、特に断らない限り、嵌合部8の先端9の曲率半径やシャフトの半径を圧入前の形状で表現する。これは、嵌合部8の先端9の曲率半径とシャフトの半径の議論をする際に、都合がよいからである。圧入後の形状では、嵌合部8とシャフトがともに弾性変形しており、上記の議論が難しくなる。 Referring to FIGS. 5 to 7, it will be described that the pressure distribution changes depending on the curvature radius of the tip 9 of the fitting portion 8. Here, “pressure” refers to a radial force per unit area. The “pressure distribution” refers to the circumferential direction dependency of the pressure applied to the tip 9. The same applies to the following. Hereinafter, unless otherwise specified, the radius of curvature of the tip 9 of the fitting portion 8 and the radius of the shaft are expressed by the shape before press-fitting. This is because it is convenient when discussing the radius of curvature of the tip 9 of the fitting portion 8 and the radius of the shaft. In the shape after press-fitting, both the fitting portion 8 and the shaft are elastically deformed, and the above discussion becomes difficult.
 図5は、図4に示す破線で囲われた領域11、すなわち、回転子鉄心2の周方向45°分を拡大した図である。嵌合部8の先端9の3つのポイントについて、図示左端をA点,図示右端をB点、それらの中点をC点とする。以下でも同様の定義とする。第1実施形態では、シャフト5の圧入前の嵌合部8の先端9の形状は、曲率半径rcの円弧となっている。ここで、圧入前のシャフトの半径をRs,圧入による締め代をΔRとすると、圧入前の状態において、円弧の中点であるC点から回転軸心1までの距離はRs-ΔRである。Rs-ΔRというように、シャフト5だけが弾性変形するような表記となっているが、上述のように、シャフト5と嵌合部8はともに弾性変形する。さらに、嵌合部8のほうがシャフト5よりも弾性変形の度合いが大きい。 FIG. 5 is an enlarged view of a region 11 surrounded by a broken line shown in FIG. 4, that is, a 45 ° circumferential direction of the rotor core 2. Regarding the three points of the tip 9 of the fitting portion 8, the left end in the figure is point A, the right end in the figure is point B, and the middle point thereof is point C. The same definition applies below. In the first embodiment, the shape of the tip 9 of the fitting portion 8 before the shaft 5 is press-fitted is an arc having a curvature radius rc. Here, if the radius of the shaft before press-fitting is Rs and the allowance due to press-fitting is ΔR, the distance from the center C of the arc to the rotation axis 1 is Rs−ΔR in the state before press-fitting. Although only the shaft 5 is elastically deformed as Rs−ΔR, as described above, both the shaft 5 and the fitting portion 8 are elastically deformed. Further, the degree of elastic deformation of the fitting portion 8 is greater than that of the shaft 5.
 図6は、嵌合部8付近を拡大した図である。嵌合部8は、回転子鉄心2の中心孔6に形成され、内周側に突出した形状となっており、内周側に形成された先端9と、周方向に対抗する側面15を有する。先端9によってシャフト5と当接する。半径Rs-ΔRの円弧10を破線で示した。この円弧10は、回転軸心1を中心として形成されている。図示されている通り、第1実施形態の回転子鉄心2の嵌合部8の先端9の曲率半径rcは,Rs-ΔRよりも大きい。すなわち、rc>Rs-ΔRである。 FIG. 6 is an enlarged view of the vicinity of the fitting portion 8. The fitting portion 8 is formed in the center hole 6 of the rotor core 2 and has a shape protruding toward the inner peripheral side, and has a tip 9 formed on the inner peripheral side and a side surface 15 facing the circumferential direction. . The tip 9 contacts the shaft 5. An arc 10 having a radius Rs−ΔR is indicated by a broken line. The arc 10 is formed around the rotation axis 1. As shown in the drawing, the radius of curvature rc of the tip 9 of the fitting portion 8 of the rotor core 2 of the first embodiment is larger than Rs−ΔR. That is, rc> Rs−ΔR.
 図7は、嵌合部8の先端9の曲率半径rcと圧入前の先端9のC点から回転軸1までの距離Rs-ΔRとの大小関係によって、嵌合部8の先端9にかかる圧力分布が変化する様子を示している。縦軸は圧力を示し、横軸は嵌合部8の先端9の位置を示す。なお、上述のように、第1実施形態の回転子鉄心2は、rc>Rs-ΔRとなっている。 FIG. 7 shows the pressure applied to the tip 9 of the fitting portion 8 by the magnitude relationship between the radius of curvature rc of the tip 9 of the fitting portion 8 and the distance Rs−ΔR from the point C of the tip 9 before press-fitting to the rotating shaft 1. It shows how the distribution changes. The vertical axis represents pressure, and the horizontal axis represents the position of the tip 9 of the fitting portion 8. As described above, the rotor core 2 of the first embodiment satisfies rc> Rs−ΔR.
 先端9の曲率半径rcが距離Rs-ΔRと等しい場合、すなわち、rc=Rs-ΔRである場合、嵌合部8の先端9における圧力分布は、C点と比較してA点とB点で圧力が高い。これでは、圧入によって高い圧力となるA点、B点付近では、遠心力やトルクの繰返しが原因で材料に劣化が生じるため,長期間安定した締結力を実現できない。 When the radius of curvature rc of the tip 9 is equal to the distance Rs−ΔR, that is, when rc = Rs−ΔR, the pressure distribution at the tip 9 of the fitting portion 8 is at points A and B compared to point C. Pressure is high. In this case, in the vicinity of the points A and B where high pressure is caused by press-fitting, the material is deteriorated due to repeated centrifugal force and torque, so that a stable fastening force cannot be realized for a long time.
 一方、第1実施形態の回転子鉄心2では、先端9の曲率半径rcをRs-ΔRよりも大きく、かつ、適切な値にする(rc>Rs-ΔR)ことで、先端9のA点およびB点で生じる圧力が低くなり、先端9のA点,B点,C点で圧力を概ね一様にすることができる。 On the other hand, in the rotor core 2 of the first embodiment, the curvature radius rc of the tip 9 is larger than Rs−ΔR and set to an appropriate value (rc> Rs−ΔR), so that the point A of the tip 9 and The pressure generated at point B is reduced, and the pressure can be made substantially uniform at points A, B, and C of the tip 9.
 ただし、曲率半径rcを極めて大きくし、たとえば先端9の形状を直線にした場合(rc≫Rs-ΔR)、圧力は中点であるC点付近で高くなる。また、この場合、周方向端部のA点やB点ではシャフト5と当接しにくくなり、圧力が0に近づく。したがって、先端9を直線で形成することは好ましくない。 However, when the radius of curvature rc is extremely large, for example, when the shape of the tip 9 is a straight line (rc >> Rs−ΔR), the pressure increases near the middle point C. Further, in this case, it becomes difficult to come into contact with the shaft 5 at points A and B at the circumferential end, and the pressure approaches zero. Therefore, it is not preferable to form the tip 9 in a straight line.
 第1実施形態の回転子20のように rc>Rs-ΔR とすることにより、嵌合部8の先端9の圧力分布が一様になれば、高圧力による材料劣化が生じる領域を低減できる。そのため、長期間安定した締結力を有する回転子鉄心2とシャフト5の圧入締結構造が実現できる。 By setting rc> Rs−ΔR as in the rotor 20 of the first embodiment, if the pressure distribution at the tip 9 of the fitting portion 8 becomes uniform, the region where material deterioration due to high pressure occurs can be reduced. Therefore, a press-fit fastening structure between the rotor core 2 and the shaft 5 having a stable fastening force for a long period can be realized.
 回転電機100の高速化を図るためには、回転子20の許容回転速度を上げる必要がある。ロータの許容回転速度を上げるためには、回転子鉄心2とシャフト5の締め代ΔRを大きくするなどして、圧入による回転子鉄心2とシャフト5の当接圧力を高くする必要がある。その際、先端9の曲率半径rcとRs-ΔRが等しいと、先端9の周方向端部A点とB点に生じる圧力が回転子鉄心2に使用される材料の降伏応力を超える可能性があり、容易に圧入時の締め代を大きくできない。これに対し、先端9の曲率半径rcを半径(Rs-ΔR)より大きくして当接による圧力分布を一様にすれば、締め代の増加に伴い、A点、B点、C点の圧力が一様に高くなるため、回転電機100の高速化を目指した締め代ΔRの増加を容易に行える。 In order to increase the speed of the rotating electrical machine 100, it is necessary to increase the allowable rotational speed of the rotor 20. In order to increase the allowable rotational speed of the rotor, it is necessary to increase the contact pressure between the rotor core 2 and the shaft 5 by press-fitting, for example, by increasing the interference ΔR between the rotor core 2 and the shaft 5. At this time, if the curvature radius rc of the tip 9 is equal to Rs−ΔR, the pressure generated at the circumferential end portions A and B of the tip 9 may exceed the yield stress of the material used for the rotor core 2. Yes, it is not possible to easily increase the tightening allowance during press-fitting. On the other hand, if the radius of curvature rc of the tip 9 is made larger than the radius (Rs−ΔR) and the pressure distribution due to contact is made uniform, the pressure at the points A, B, and C increases as the tightening margin increases. Is uniformly increased, it is possible to easily increase the fastening allowance ΔR aimed at speeding up the rotating electrical machine 100.
 以上の内容を数式で示すと、以下の式(1)~(3)となる。
 T = f r            ・・・(1)
 f < N μ p L1 L2       ・・・(2)
 p<σy               ・・・(3)
ここで、
Tは、トルク、
fは、回転子鉄心2のすべての嵌合部8にかかる摩擦力、
rは、回転子鉄心2に圧入されているときのシャフトの半径、
Nは、嵌合部8の数(第1実施形態の回転子鉄心2では、8個)、
μは、静止摩擦係数、
pは、シャフト5から受ける径方向圧力、
1は、シャフト5からの圧力により弾性変形した際の、1個当たりの嵌合部8の先端9の周方向長さ、
2は、回転子鉄心2の積厚、
σyは、回転子鉄心2を構成する材料の降伏応力、
である。
The above contents are expressed by the following equations (1) to (3).
T = f r (1)
f <Nμp L 1 L 2 (2)
p <σ y (3)
here,
T is the torque,
f is a frictional force applied to all the fitting portions 8 of the rotor core 2;
r is the radius of the shaft when pressed into the rotor core 2;
N is the number of fitting portions 8 (eight in the rotor core 2 of the first embodiment),
μ is the coefficient of static friction,
p is the radial pressure received from the shaft 5,
L 1 is the circumferential length of the tip 9 of each fitting portion 8 when elastically deformed by the pressure from the shaft 5;
L 2 is the thickness of the rotor core 2,
σ y is the yield stress of the material constituting the rotor core 2,
It is.
 なお、図8は、シャフト5(不図示)が回転子鉄心2に圧入された時の、回転子鉄心2の嵌合部8の先端9がシャフト5から受ける力を示す図である。上記パラメータのうち、f、r、μ、p、L1、σyが示されている。 FIG. 8 is a diagram showing the force that the tip 9 of the fitting portion 8 of the rotor core 2 receives from the shaft 5 when the shaft 5 (not shown) is press-fitted into the rotor core 2. Of the above parameters, f, r, μ, p, L 1 and σ y are shown.
 上記の式(1)に示されるトルクTは、回転子鉄心2のシャフト5に当接する嵌合部8のすべての領域において、摩擦力fが上記の式(2)の範囲内であれば、回転電機100の最大トルク以上となり、シャフト5が回転子鉄心2に対してすべることはない。さらに、シャフト5から受ける径方向圧力pが、嵌合部8の先端9の当接面の各点において、式(3)に示す降伏応力の範囲内であれば、回転子鉄心2が塑性変形しない。すなわち、シャフト5が嵌合部8に当接による圧力分布を一様にするということは、嵌合部8の先端9の当接面の各点で定義される圧力pの最大値を下げることであり、圧力pの最大値が下がって降伏応力σyから遠ざかるということは塑性変形しにくくなるということである。よって、その分だけ締め代ΔRを容易に増加させることができる。 If the frictional force f is within the range of the above equation (2) in the entire region of the fitting portion 8 that contacts the shaft 5 of the rotor core 2, the torque T shown in the above equation (1) The maximum torque of the rotating electrical machine 100 is exceeded and the shaft 5 does not slide relative to the rotor core 2. Further, if the radial pressure p received from the shaft 5 is within the range of the yield stress shown in Formula (3) at each point of the contact surface of the tip 9 of the fitting portion 8, the rotor core 2 is plastically deformed. do not do. That is, making the pressure distribution due to the shaft 5 abutting against the fitting portion 8 lowers the maximum value of the pressure p defined at each point of the abutting surface of the tip 9 of the fitting portion 8. The fact that the maximum value of the pressure p decreases and moves away from the yield stress σ y means that plastic deformation is difficult. Therefore, the tightening allowance ΔR can be easily increased by that amount.
<嵌合部8と肉抜き孔4に関する検討>
 第1実施形態の回転子20の回転子鉄心2では、図4などに示す通り、嵌合部8は肉抜き孔4の径方向内側に位置しており、かつ、嵌合部8と肉抜き孔4の数は等しい。ここで、「嵌合部8が肉抜き孔4の径方向内側に位置する」ことの意味について、図4に示す回転子鉄心2の肉抜き孔4のひとつである肉抜き孔4aと、嵌合部8のひとつである嵌合部8aを例に取り、説明する。「嵌合部8aが肉抜き孔4aの径方向内側に位置する」とは、回転軸心1を通り肉抜き孔4aと接する線分41と線分42で挟まれる角度θ1で示される領域でかつ肉抜き孔4aより内周側の領域に、嵌合部8aが位置することを意味する。以下においても同様である。なお、図4に示した第1実施形態の回転子鉄心2と同様に、後述の図9に示した回転子鉄心2Aにおいても、嵌合部8が肉抜き孔4の径方向内側に位置する。
<Examination on fitting part 8 and lightening hole 4>
In the rotor core 2 of the rotor 20 of the first embodiment, as shown in FIG. 4 and the like, the fitting portion 8 is located on the radially inner side of the lightening hole 4, and the fitting portion 8 and the lightening are removed. The number of holes 4 is equal. Here, with respect to the meaning of “the fitting portion 8 is located on the radially inner side of the lightening hole 4”, the lightening hole 4 a which is one of the lightening holes 4 of the rotor core 2 shown in FIG. The fitting part 8a which is one of the joint parts 8 will be described as an example. “The fitting portion 8a is located on the radially inner side of the lightening hole 4a” is an area indicated by an angle θ1 that is sandwiched between the line segment 41 and the line segment 42 that are in contact with the lightening hole 4a through the rotation axis 1. And it means that the fitting part 8a is located in the area | region of the inner peripheral side from the lightening hole 4a. The same applies to the following. In addition, similarly to the rotor core 2 of the first embodiment shown in FIG. 4, also in the rotor core 2 </ b> A shown in FIG. 9, which will be described later, the fitting portion 8 is positioned on the radially inner side of the lightening hole 4. .
 以下では、「嵌合部8の肉抜き孔4に対する周方向位置」および「嵌合部8の肉抜き孔4に対する数」がどのような影響を及ぼすかについて述べる。第1実施形態の回転子鉄心2は、先端9の曲率半径rcがRs-ΔRよりも大きいが、以下では、第1実施形態の回転子鉄心2の代わりに、嵌合部8の先端9の曲率半径rcとRs-ΔRが等しい回転子鉄心である、回転子鉄心2A(図9)を基準として用いる。回転子鉄心2Aと第1実施形態の回転子鉄心2との相違点は、先端9の曲率半径rcとRs-ΔRが等しいかどうかだけであり、その他の構成は、同様であるとする。回転子鉄心2Aの比較対象として、後述する回転子鉄心2B(図10),回転子鉄心2C(図12)を導入する。回転子鉄心2A、回転子鉄心2B、回転子鉄心2Cでは、回転子鉄心2と同様に、嵌合部8が周方向に等間隔に形成される。また、肉抜き孔4も、嵌合部8と同様に、周方向に等間隔に形成される。なお、回転子鉄心2A、回転子鉄心2B、回転子鉄心2Cにおいて、嵌合部8の先端9におけるA点、B点、C点の定義については、第1実施形態の回転子鉄心2と同様とする(図5、図9、図10、図12を参照)。 Hereinafter, it will be described how “the circumferential position of the fitting portion 8 with respect to the lightening hole 4” and “the number of the fitting portion 8 with respect to the lightening hole 4” influence. In the rotor core 2 of the first embodiment, the radius of curvature rc of the tip 9 is larger than Rs−ΔR, but in the following, instead of the rotor core 2 of the first embodiment, the tip 9 of the fitting portion 8 A rotor core 2A (FIG. 9), which is a rotor core having the same radius of curvature rc and Rs−ΔR, is used as a reference. The only difference between the rotor core 2A and the rotor core 2 of the first embodiment is whether or not the radius of curvature rc of the tip 9 is equal to Rs-ΔR, and the other configurations are the same. As a comparison object of the rotor core 2A, a rotor core 2B (FIG. 10) and a rotor core 2C (FIG. 12) described later are introduced. In the rotor core 2 </ b> A, the rotor core 2 </ b> B, and the rotor core 2 </ b> C, like the rotor core 2, the fitting portions 8 are formed at equal intervals in the circumferential direction. Further, similarly to the fitting portion 8, the lightening holes 4 are also formed at equal intervals in the circumferential direction. In addition, in the rotor core 2A, the rotor core 2B, and the rotor core 2C, the definitions of the points A, B, and C at the tip 9 of the fitting portion 8 are the same as those of the rotor core 2 of the first embodiment. (See FIGS. 5, 9, 10, and 12).
~嵌合部8の肉抜き孔4に対する周方向位置について~
 ここでは、肉抜き孔4と嵌合部8の数が等しいときに、嵌合部8の肉抜き孔4に対する位置が、遠心力による嵌合部8の圧力変動に及ぼす効果について述べる。嵌合部8とシャフト5が当接する際の圧力は、遠心力によって回転子鉄心2が外径側に力を受けることで変動する。この圧力変動に対しても、嵌合部8とシャフト5が当接している部分(当接部)が安定して締結力を発揮するためには、当接部の圧力分布が概ね一様であることが望ましい。
-About the circumferential position of the fitting part 8 with respect to the lightening hole 4-
Here, the effect of the position of the fitting portion 8 relative to the lightening hole 4 on the pressure fluctuation of the fitting portion 8 due to centrifugal force when the number of the lightening holes 4 and the fitting portions 8 is equal will be described. The pressure when the fitting portion 8 and the shaft 5 come into contact with each other varies when the rotor core 2 receives a force on the outer diameter side due to centrifugal force. In order for the portion where the fitting portion 8 and the shaft 5 are in contact with each other (pressure contact portion) to stably exhibit the fastening force even with this pressure fluctuation, the pressure distribution in the contact portion is substantially uniform. It is desirable to be.
 図9に、回転子鉄心2Aを示す。また、図10に回転子鉄心2Bを示す。回転子鉄心2A、回転子鉄心2Bにおいて、肉抜き孔4と嵌合部8の数は等しく、それぞれ8個である。当然ながら、この8個という具体的な数は、肉抜き孔4と嵌合部8の数が等しいという例のひとつであることは言うまでもない。以下でも同様である。 FIG. 9 shows the rotor core 2A. FIG. 10 shows the rotor core 2B. In the rotor core 2 </ b> A and the rotor core 2 </ b> B, the number of the hollow holes 4 and the fitting portions 8 are equal, and each is eight. Needless to say, the specific number of eight is one example in which the number of the lightening holes 4 and the fitting portions 8 are equal. The same applies to the following.
 図9に示す回転子鉄心2Aでは、肉抜き孔4の周方向中心12と嵌合部の周方向中心13が概ね一致するように配置されている。一方、図10に示す回転子鉄心2Bでは、嵌合部8が肉抜き孔4の間に位置している。ここで、「嵌合部8が肉抜き孔4の間に位置する」ことの意味ついて、図10に示す回転子鉄心2の互いに隣り合う肉抜き孔4である肉抜き孔4b、4cと、嵌合部8のひとつである嵌合部8bを例に取り、説明する。まず、「肉抜き孔4の間」とは、互いに隣り合う肉抜き孔4の間(ここでは、肉抜き孔4bと4cの間)のことを意味する。そのうえで、「嵌合部8bが肉抜き孔4の間に位置する」とは、回転軸心1を通り肉抜き孔4bと接する線分43と肉抜き孔4cと接する線分44で挟まれる角度θ2で示される領域でかつ肉抜き孔4bおよび4cよりも内周側の領域に、嵌合部8bが位置することを意味する。以下においても同様である。 In the rotor core 2 </ b> A shown in FIG. 9, the circumferential center 12 of the lightening hole 4 and the circumferential center 13 of the fitting portion are arranged so as to substantially coincide. On the other hand, in the rotor core 2 </ b> B shown in FIG. 10, the fitting portion 8 is located between the lightening holes 4. Here, regarding the meaning of “the fitting portion 8 is located between the lightening holes 4”, the lightening holes 4 b and 4 c which are the lightening holes 4 adjacent to each other of the rotor core 2 shown in FIG. A description will be given by taking a fitting portion 8b which is one of the fitting portions 8 as an example. First, “between the lightening holes 4” means between the lightening holes 4 adjacent to each other (here, between the lightening holes 4b and 4c). In addition, “the fitting portion 8b is located between the lightening holes 4” means an angle between the line segment 43 passing through the rotation axis 1 and contacting the lightening hole 4b and the line segment 44 contacting the lightening hole 4c. This means that the fitting portion 8b is located in the region indicated by θ2 and in the region on the inner peripheral side of the lightening holes 4b and 4c. The same applies to the following.
 当然ながら、上述の嵌合部8が肉抜き孔4の間に位置する位置関係では、肉抜き孔4の周方向中心12と嵌合部の周方向中心13が一致しない。また、嵌合部8の配置の影響だけを調べるため、回転子鉄心2A同様、回転子鉄心2Bにおいても、嵌合部8の先端9の曲率半径rcとRs-ΔRは等しく設定している。 Naturally, in the positional relationship in which the above-described fitting portion 8 is located between the lightening holes 4, the circumferential center 12 of the lightening holes 4 and the circumferential center 13 of the fitting portion do not coincide. Further, in order to examine only the influence of the arrangement of the fitting portion 8, the curvature radius rc and Rs−ΔR of the tip 9 of the fitting portion 8 are set to be equal in the rotor core 2 B as well as the rotor core 2 A.
 図11は、回転子鉄心2Aを用いた回転電機100と回転子鉄心2Bを用いた回転電機100のそれぞれにおける、遠心力による嵌合部8の圧力変動の周方向依存性を示した図である。縦軸は遠心力による圧力変動を示し、横軸は嵌合部8の先端9の位置を示す。図には、2つの折れ線が描かれており、回転子鉄心2A(白丸を結んだ線)と回転子鉄心2B(白四角を結んだ線)の嵌合部8の先端9における圧力分布を示している。先端9のほとんどすべての領域において、回転子鉄心2Bの圧力分布を示す折れ線のほうが、回転子鉄心2Aのそれよりも遠心力による圧力変動が高くなっている。このことから、肉抜き孔4の径方向内側に嵌合部8を形成することにより、遠心力による嵌合部8の圧力変動が小さくなることがわかる。なお、先端9の曲率半径rcをRs-ΔRよりも大きくした第1実施形態の回転子鉄心2においても、上述した比較をした場合、同様の結果が得られている。 FIG. 11 is a diagram illustrating the circumferential dependence of pressure fluctuations of the fitting portion 8 due to centrifugal force in each of the rotating electrical machine 100 using the rotor core 2A and the rotating electrical machine 100 using the rotor core 2B. . The vertical axis represents pressure fluctuation due to centrifugal force, and the horizontal axis represents the position of the tip 9 of the fitting portion 8. In the figure, two broken lines are drawn, and the pressure distribution at the tip 9 of the fitting portion 8 of the rotor core 2A (line connecting white circles) and the rotor core 2B (line connecting white squares) is shown. ing. In almost all regions of the tip 9, the broken line indicating the pressure distribution of the rotor core 2B has a higher pressure fluctuation due to centrifugal force than that of the rotor core 2A. From this, it can be seen that by forming the fitting portion 8 on the radially inner side of the lightening hole 4, the pressure fluctuation of the fitting portion 8 due to centrifugal force is reduced. In the rotor core 2 of the first embodiment in which the radius of curvature rc of the tip 9 is larger than Rs−ΔR, the same result is obtained when the above comparison is made.
~嵌合部8の肉抜き孔4に対する数について~
 ここでは、嵌合部8の肉抜き孔4に対する数が、シャフト5と当接する嵌合部8の先端9における圧力分布に及ぼす効果について述べる。回転子鉄心2Aでは、肉抜き孔4と嵌合部8の数が等しく、両者ともに8個である(図4を参考のこと)。後述する図13(a)の説明のため、図9に示す回転子鉄心2Aが有する8個の等価な嵌合部8のうちの2個に嵌合部8a、嵌合部8bと符号を付し直した。
-About the number of the fitting part 8 for the lightening hole 4-
Here, the effect of the number of the fitting portions 8 with respect to the lightening holes 4 on the pressure distribution at the tip 9 of the fitting portion 8 that abuts the shaft 5 will be described. In the rotor core 2A, the number of the lightening holes 4 and the fitting portions 8 are equal, and both are eight (see FIG. 4). For the description of FIG. 13A to be described later, two of the eight equivalent fitting portions 8 included in the rotor core 2A shown in FIG. 9 are denoted with the fitting portions 8a and 8b. Reworked.
 図12に示す回転子鉄心2Cでは、嵌合部8と肉抜き孔4の数が異なるものになっている。具体的には、嵌合部8が10個、肉抜き孔4が8個形成されている。なお、後述する図13(b)の説明のため、図12に示す回転子鉄心2Cが有する10個の嵌合部8のうちの3個に嵌合部8c、嵌合部8d、嵌合部8eと符号を付し直した。嵌合部8cは、全体が肉抜き孔4の径方向内側に位置している。嵌合部8dは、A点側の約半分が肉抜き孔4の径方向内側に位置しており、B点側の約半分が肉抜き孔4の間に位置している。嵌合部8eは、全体が肉抜き孔4の間に位置している。以上のような嵌合部8c~8eの非等価性が、シャフト5と当接する嵌合部8の先端9における圧力分布に影響する。詳細は図13(b)を用いて後述する。 In the rotor core 2C shown in FIG. 12, the number of the fitting portions 8 and the number of the hollow holes 4 are different. Specifically, ten fitting portions 8 and eight lightening holes 4 are formed. For the description of FIG. 13B described later, three of the ten fitting portions 8 included in the rotor core 2C shown in FIG. 12 include three fitting portions 8c, fitting portions 8d, and fitting portions. The code was re-assigned to 8e. The entire fitting portion 8 c is located on the radially inner side of the lightening hole 4. In the fitting portion 8 d, about half of the point A side is located on the radially inner side of the lightening hole 4, and about half of the point B side is located between the lightening holes 4. The entire fitting portion 8 e is located between the lightening holes 4. The non-equivalence of the fitting portions 8c to 8e as described above affects the pressure distribution at the tip 9 of the fitting portion 8 that contacts the shaft 5. Details will be described later with reference to FIG.
 図13(a)は、図9に示す回転子鉄心2Aを用いた回転電機100において、シャフト5と当接する、回転子鉄心2の嵌合部8の先端9における圧力分布、およびその圧力分布の嵌合部依存性を示した図である。縦軸は圧力を示し、横軸は嵌合部8の先端9の位置を示す。図13(a)には、2本の折れ線が示されている。これは、図9に示す回転子鉄心2Aの嵌合部8である嵌合部8a(白丸を結んだ線)と嵌合部8b(黒丸を結んだ線)の先端9における圧力分布を示している。嵌合部8a、嵌合部8bのそれぞれの先端9における圧力分布を示す上述の2本の折れ線はほぼ重なり、同様の圧力分布を示すことが分かる。これは、回転子鉄心2Aの嵌合部8が、肉抜き孔4と数が等しく、かつ、周方向に等間隔に形成されているため、嵌合部8aと嵌合部8bが肉抜き孔4の位置に対して等価となっているからである。 FIG. 13A shows the pressure distribution at the tip 9 of the fitting portion 8 of the rotor core 2 that contacts the shaft 5 and the pressure distribution in the rotating electrical machine 100 using the rotor core 2A shown in FIG. It is the figure which showed the fitting part dependence. The vertical axis represents pressure, and the horizontal axis represents the position of the tip 9 of the fitting portion 8. FIG. 13A shows two broken lines. This shows the pressure distribution at the tip 9 of the fitting part 8a (line connecting white circles) and the fitting part 8b (line connecting black circles) which are the fitting parts 8 of the rotor core 2A shown in FIG. Yes. It can be seen that the above-mentioned two broken lines showing the pressure distribution at the respective tips 9 of the fitting portion 8a and the fitting portion 8b almost overlap and show the same pressure distribution. This is because the fitting portions 8 of the rotor core 2A have the same number as the lightening holes 4 and are formed at equal intervals in the circumferential direction, so that the fitting portions 8a and the fitting portions 8b are the lightening holes. This is because it is equivalent to the position of 4.
 図13(b)は、図12に示す回転子鉄心2Cを用いた回転電機100において、シャフト5と当接する、回転子鉄心2の嵌合部8である嵌合部8c、嵌合部8d、嵌合部8eのそれぞれの先端9における圧力分布、およびその圧力分布の嵌合部依存性を示した図である。縦軸は圧力を示し、横軸は嵌合部8の先端9の位置を示す。図13(b)には、3本の折れ線が示されている。これは、図12に示す回転子鉄心2Cの嵌合部8である嵌合部8c(白丸を結んだ線)、嵌合部8d(黒丸を結んだ線)、嵌合部8e(白四角を結んだ線)の先端9における圧力分布を示している。嵌合部8c~8eのそれぞれの先端9における圧力分布を示す上述の3本の折れ線が重なっていないことから、嵌合部8c~8eで圧力分布が等しくないことがわかる。これは、回転子鉄心2Cの嵌合部8が、肉抜き孔4と数が異なり、かつ、周方向に等間隔に形成されているためである。 FIG. 13B shows a fitting portion 8c, a fitting portion 8d, which is a fitting portion 8 of the rotor core 2 that comes into contact with the shaft 5, in the rotating electrical machine 100 using the rotor core 2C shown in FIG. It is the figure which showed the pressure distribution in each front-end | tip 9 of the fitting part 8e, and the fitting part dependence of the pressure distribution. The vertical axis represents pressure, and the horizontal axis represents the position of the tip 9 of the fitting portion 8. FIG. 13B shows three broken lines. This includes a fitting portion 8c (line connecting white circles), a fitting portion 8d (line connecting black circles), and a fitting portion 8e (white squares) which are the fitting portions 8 of the rotor core 2C shown in FIG. The pressure distribution at the tip 9 of the connected line) is shown. Since the above-mentioned three broken lines indicating the pressure distribution at the respective tips 9 of the fitting portions 8c to 8e do not overlap, it can be seen that the pressure distributions are not equal in the fitting portions 8c to 8e. This is because the number of the fitting portions 8 of the rotor core 2C is different from that of the lightening holes 4 and is formed at equal intervals in the circumferential direction.
 このように、回転子鉄心2Aでは嵌合部8のそれぞれの間で圧力に差がなく、長期的に信頼性の高い回転子鉄心2とシャフト5の締結が実現される。なお、先端9の曲率半径rcをRs-ΔRよりも大きくした回転子鉄心である、第1実施形態の回転子鉄心2において、上述した比較をした場合でも、同様の結果が得られている。 Thus, in the rotor core 2A, there is no difference in pressure between each of the fitting portions 8, and the rotor core 2 and the shaft 5 that are highly reliable in the long term are realized. In the rotor core 2 of the first embodiment, which is the rotor core having the radius of curvature rc of the tip 9 larger than Rs−ΔR, similar results are obtained even when the above-described comparison is made.
 上述した「嵌合部8の肉抜き孔4に対する周方向位置が、嵌合部8における圧力変動に及ぼす効果」や、「嵌合部8の肉抜き孔4に対する数が、シャフト5と当接する回転子鉄心2の嵌合部8の先端9における圧力分布に及ぼす効果」は、以下に示す第2実施形態や第3実施形態においても同様に奏することができる。 As described above, “the effect of the circumferential position of the fitting portion 8 with respect to the lightening hole 4 on the pressure fluctuation in the fitting portion 8” and “the number of the fitting portion 8 with respect to the lightening hole 4 abuts on the shaft 5. The “effect on the pressure distribution at the tip 9 of the fitting portion 8 of the rotor core 2” can be similarly achieved in the second and third embodiments described below.
――第2実施形態――
 図14は、第2実施形態の回転電機100の回転子20の回転子鉄心2の嵌合部8付近の径方向断面図である。第2実施形態においても嵌合部8の先端9は円弧であるが、第1実施形態とは異なり、円弧の曲率半径rcは、半径Rs-ΔR(図5、図6を参考のこと)と等しい。すなわち、rc=Rs-ΔRである。そして、嵌合部8の周方向側面15に切欠き14が形成されている。上述のように、先端9の曲率半径rcをRs-ΔRと等しくした場合、シャフト5と当接する先端9の端部A点とB点における圧入による圧力が中点のC点より高くなる。そこで、第2実施形態では、先端9の曲率半径rcと半径Rs-ΔRを上述のように等しくしたうえで、さらに、切欠き14を側面15に設けた。これにより、端部A点とB点付近における嵌合部8の剛性が低減されるため、シャフト5の圧入時における端部A点、B点での圧力上昇が低減される。このように、第2実施形態でも第1実施形態と同様に、シャフト5と当接する回転子鉄心2の嵌合部8の先端9における圧力分布を一様化する効果があり、長期にわたって安定した締結を実現できる。
-Second embodiment-
FIG. 14 is a radial cross-sectional view of the vicinity of the fitting portion 8 of the rotor core 2 of the rotor 20 of the rotating electrical machine 100 of the second embodiment. Also in the second embodiment, the tip 9 of the fitting portion 8 is an arc. However, unlike the first embodiment, the radius of curvature rc of the arc is a radius Rs−ΔR (see FIGS. 5 and 6). equal. That is, rc = Rs−ΔR. A notch 14 is formed in the circumferential side surface 15 of the fitting portion 8. As described above, when the radius of curvature rc of the tip 9 is equal to Rs−ΔR, the pressure due to the press-fitting at the end A point and the B point of the tip 9 contacting the shaft 5 becomes higher than the C point at the middle point. Therefore, in the second embodiment, the curvature radius rc and the radius Rs−ΔR of the tip 9 are made equal as described above, and the notch 14 is further provided on the side surface 15. Thereby, since the rigidity of the fitting part 8 in the vicinity of the end A point and the B point is reduced, a pressure increase at the end A point and the B point when the shaft 5 is press-fitted is reduced. As described above, the second embodiment also has the effect of uniformizing the pressure distribution at the tip 9 of the fitting portion 8 of the rotor core 2 in contact with the shaft 5, as in the first embodiment, and is stable over a long period of time. Fastening can be realized.
――第3実施形態――
 図15は、第3実施形態の回転電機100の回転子20の嵌合部8付近の径方向断面図である。第3実施形態では、嵌合部8の先端9の形状は円弧ではなく、以下のような条件を満たすスプライン曲線となっている。例えば、図15のように、先端9を周方向に等間隔に分割する点16を考え、圧入によって先端9に生じる圧力分布が一様となるように点16を径方向に移動させる。このようにして配置した点16を滑らかにつなぐスプライン曲線によって、先端9が形成される。これによって、第3実施形態でも第1実施形態や第2実施形態と同様に、シャフト5と当接する回転子鉄心2の嵌合部8の先端9における圧力分布を一様化する効果を奏し、長期にわたって安定した締結を実現できる。
-Third embodiment-
FIG. 15 is a radial cross-sectional view of the vicinity of the fitting portion 8 of the rotor 20 of the rotating electrical machine 100 of the third embodiment. In 3rd Embodiment, the shape of the front-end | tip 9 of the fitting part 8 is not a circular arc but the spline curve which satisfy | fills the following conditions. For example, as shown in FIG. 15, a point 16 that divides the tip 9 at equal intervals in the circumferential direction is considered, and the point 16 is moved in the radial direction so that the pressure distribution generated at the tip 9 by press fitting becomes uniform. The tip 9 is formed by a spline curve that smoothly connects the points 16 arranged in this manner. As a result, in the third embodiment as well, as in the first and second embodiments, the pressure distribution at the tip 9 of the fitting portion 8 of the rotor core 2 that comes into contact with the shaft 5 is uniformed. A stable fastening can be realized over a long period of time.
 以上の実施形態においては、回転子鉄心2の嵌合部8や、肉抜き孔4を周方向に等間隔に配置したが、本発明の趣旨に反しない範囲で等間隔でない配置にすることも可能である。 In the above embodiment, the fitting portions 8 of the rotor core 2 and the lightening holes 4 are arranged at equal intervals in the circumferential direction, but may be arranged at non-equal intervals as long as they do not contradict the gist of the present invention. Is possible.
 以上の実施形態における回転電機としてモータの例を示したが、本発明は発電機などにおいても適用できる。 Although an example of a motor has been shown as the rotating electrical machine in the above embodiment, the present invention can also be applied to a generator or the like.
 以上の説明はあくまで一例であり、発明は、以上の実施形態に何ら限定されるものではない。 The above description is merely an example, and the invention is not limited to the above embodiment.
1…回転軸、 2…回転子鉄心、 3…永久磁石の挿入孔、 4…肉抜き孔、
5…シャフト、 6…回転子鉄心の中心孔、 
8…回転子鉄心とシャフトの嵌合部、 9…嵌合部の先端、
10…半径Rs-ΔRの円弧、 11…回転子鉄心の周方向45゜分の領域、
12…肉抜き孔の周方向中心、 13…嵌合部の周方向中心、
14…嵌合部側面の切欠き、 15…嵌合部の側面、 16…嵌合部先端の分割点、
20…回転子(ロータ)、 21…永久磁石、 30…固定子(ステータ)、
31…ティース、 32…スロット、 33…巻線、 100…回転電機、
T…トルク、 f…摩擦力、 r…圧入時のシャフトの半径、
N…嵌合部8の数、 μ…静止摩擦係数、 p…圧力、
1…嵌合部先端の周方向長さ、 L2…積厚、 σy…降伏応力
DESCRIPTION OF SYMBOLS 1 ... Rotating shaft, 2 ... Rotor core, 3 ... Permanent magnet insertion hole, 4 ... Meat removal hole,
5 ... Shaft 6 ... Center hole of rotor core,
8: The fitting portion of the rotor core and the shaft, 9 ... The tip of the fitting portion,
10: Arc of radius Rs-ΔR, 11: Area of 45 ° in the circumferential direction of the rotor core,
12 ... Center in the circumferential direction of the hole, 13 ... Center in the circumferential direction of the fitting portion,
14 ... Notch on the side surface of the fitting part, 15 ... Side surface of the fitting part, 16 ... Division point at the tip of the fitting part,
20 ... Rotor (rotor), 21 ... Permanent magnet, 30 ... Stator (stator),
31 ... Teeth, 32 ... Slot, 33 ... Winding, 100 ... Rotating electric machine,
T: Torque, f: Friction force, r ... Shaft radius when press-fitted,
N: number of fitting portions 8, μ: coefficient of static friction, p: pressure,
L 1 ... Circumferential length at the tip of the fitting part, L 2 ... Thickness, σ y ... Yield stress

Claims (9)

  1.  円柱状のシャフトが圧入される中心孔と、
     前記中心孔に周方向に複数形成された嵌合部と、を備え、
     前記嵌合部は、前記シャフトが前記中心孔に圧入される際に前記シャフトと当接する回転子鉄心において、
     前記嵌合部の先端形状は、前記シャフトとの当接による圧力の周方向依存性がほぼ一様となる形状である回転子鉄心。
    A central hole into which a cylindrical shaft is press-fitted, and
    A plurality of fitting portions formed in the circumferential direction in the center hole,
    In the rotor core that contacts the shaft when the shaft is press-fitted into the center hole,
    The front end shape of the fitting portion is a rotor core having a shape in which the circumferential dependency of pressure due to contact with the shaft is substantially uniform.
  2.  請求項1に記載の回転子鉄心において、
     前記嵌合部の先端形状は、円弧であり、
     前記円弧の半径は、前記シャフトの半径から前記圧入の締め代を引いた値よりも大きい回転子鉄心。
    The rotor core according to claim 1,
    The tip shape of the fitting portion is an arc,
    The radius of the circular arc is a rotor core larger than a value obtained by subtracting the press-fit interference from the radius of the shaft.
  3.  請求項1に記載の回転子鉄心において、
     前記嵌合部の先端形状は、円弧であり、
     前記円弧の半径は、前記シャフトの半径から前記圧入の締め代を引いた値と等しく、
     前記嵌合部は、周方向の両側面に切り欠きを有する回転子鉄心。
    The rotor core according to claim 1,
    The tip shape of the fitting portion is an arc,
    The radius of the arc is equal to the value obtained by subtracting the press-fit interference from the radius of the shaft,
    The fitting portion is a rotor core having notches on both side surfaces in the circumferential direction.
  4.  請求項1に記載の回転子鉄心において、
     前記嵌合部の先端形状は、前記シャフトからの圧力の周方向依存性がほぼ一様になるようなスプライン曲線で定められた回転子鉄心。
    The rotor core according to claim 1,
    The tip shape of the fitting portion is a rotor core defined by a spline curve in which the circumferential dependency of the pressure from the shaft is substantially uniform.
  5.  請求項1~4のいずれか一項に記載の回転子鉄心において、
     周方向に形成された複数の肉抜き孔をさらに備え、
     前記嵌合部は、前記肉抜き孔の径方向内側に形成される回転子鉄心。
    In the rotor core according to any one of claims 1 to 4,
    It further comprises a plurality of lightening holes formed in the circumferential direction,
    The fitting portion is a rotor core formed on the radially inner side of the lightening hole.
  6.  請求項5に記載の回転子鉄心において、
     前記嵌合部および前記肉抜き孔は、前記肉抜き孔と前記嵌合部の周方向中心が概ね一致するように形成される回転子鉄心。
    In the rotor core according to claim 5,
    The fitting portion and the lightening hole are rotor cores formed so that a center in a circumferential direction of the lightening hole and the fitting portion substantially coincides with each other.
  7.  請求項1~4のいずれか一項に記載の回転子鉄心において、
     周方向に形成され、前記嵌合部と同数の肉抜き孔をさらに備え、
     前記嵌合部は、前記肉抜き孔の径方向内側に形成される回転子鉄心。
    In the rotor core according to any one of claims 1 to 4,
    Formed in the circumferential direction, further comprising the same number of lightening holes as the fitting portion,
    The fitting portion is a rotor core formed on the radially inner side of the lightening hole.
  8.  回転子鉄心と、前記回転子鉄心の中心孔に圧入されて一体化されているシャフトとを有し、固定子の内周側に回転可能に設けられて回転電機を構成し、前記回転子鉄心の中心孔には前記シャフトの周面に嵌合する複数個の嵌合部が形成されている回転子において、
     前記回転子鉄心は、請求項1~7のいずれか一項に記載の回転子鉄心である回転子。
    A rotor iron core and a shaft that is press-fitted into and integrated with a central hole of the rotor iron core, and is rotatably provided on the inner peripheral side of the stator to constitute a rotating electric machine; In the rotor in which a plurality of fitting portions that are fitted to the peripheral surface of the shaft are formed in the center hole of
    The rotor according to any one of claims 1 to 7, wherein the rotor core is a rotor core.
  9.  スロットとティースを有し、ティースに巻線が巻回されてなる固定子と、
     前記固定子の内周側に回転可能に設けられ、回転子鉄心の中心孔にシャフトが圧入されてなる回転子とを有し、前記回転子鉄心の中心孔には前記シャフトの周面に嵌合する複数個の嵌合部が形成されている回転電機において、
     前記回転子は、請求項8に記載の回転子である回転電機。
    A stator having slots and teeth, and windings wound around the teeth;
    A rotor provided rotatably on the inner peripheral side of the stator and having a shaft press-fitted into a center hole of the rotor core, and fitted into a peripheral surface of the shaft in the center hole of the rotor core. In a rotating electrical machine in which a plurality of mating portions are formed,
    The rotating electric machine according to claim 8, wherein the rotor is a rotor according to claim 8.
PCT/JP2014/074982 2013-10-03 2014-09-22 Rotor core, rotor, and rotary electric machine WO2015050010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-208266 2013-10-03
JP2013208266A JP6189699B2 (en) 2013-10-03 2013-10-03 Rotor core, rotor, and rotating electric machine

Publications (1)

Publication Number Publication Date
WO2015050010A1 true WO2015050010A1 (en) 2015-04-09

Family

ID=52778603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074982 WO2015050010A1 (en) 2013-10-03 2014-09-22 Rotor core, rotor, and rotary electric machine

Country Status (2)

Country Link
JP (1) JP6189699B2 (en)
WO (1) WO2015050010A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150035390A1 (en) * 2013-08-05 2015-02-05 Nidec Sr Drives Ltd. Rotor for an electrical machine
WO2023119404A1 (en) * 2021-12-21 2023-06-29 三菱電機株式会社 Rotor, motor, compressor, and refrigeration cycle device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018007380A (en) * 2016-06-30 2018-01-11 アイシン精機株式会社 Rotary electric machine
JPWO2019123952A1 (en) * 2017-12-18 2020-12-03 日本電産株式会社 Rotor and motor
WO2019123950A1 (en) * 2017-12-18 2019-06-27 日本電産株式会社 Rotor and motor
CN108134491B (en) * 2017-12-22 2019-11-12 上海电机系统节能工程技术研究中心有限公司 A kind of permanent-magnetic synchronous motor rotor Core Design method
CN110661349A (en) * 2018-06-29 2020-01-07 长城汽车股份有限公司 Silicon steel sheet and permanent magnet motor
FR3129791B1 (en) 2021-11-26 2024-05-31 Nidec Psa Emotors Rotor of rotating electric machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846236U (en) * 1981-09-24 1983-03-29 株式会社日立製作所 electric motor rotor
JP2001186701A (en) * 1999-12-27 2001-07-06 Matsushita Electric Ind Co Ltd Permanent magnet rotor of motor and enclosed compressor using it
US6265802B1 (en) * 1996-04-15 2001-07-24 Warner Electric Technology, Inc. Laminated rotor assembly and method for a dynamoelectric machine
JP2001346346A (en) * 2000-03-30 2001-12-14 Asmo Co Ltd Rotor and motor
US20070132336A1 (en) * 2005-12-08 2007-06-14 Ionel Dan M Rotor assembly for an electric machine including a vibration damping member and method of manufacturing same
JP2008278597A (en) * 2007-04-26 2008-11-13 Mitsubishi Electric Corp Rotor core
JP2010142095A (en) * 2008-12-15 2010-06-24 Mitsuba Corp Electric motor
JP2012023823A (en) * 2010-07-13 2012-02-02 Mitsuba Corp Rotor of rotary electric machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112839A (en) * 1980-02-08 1981-09-05 Takashi Namiki Thin steel plate for rotor core of motor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846236U (en) * 1981-09-24 1983-03-29 株式会社日立製作所 electric motor rotor
US6265802B1 (en) * 1996-04-15 2001-07-24 Warner Electric Technology, Inc. Laminated rotor assembly and method for a dynamoelectric machine
JP2001186701A (en) * 1999-12-27 2001-07-06 Matsushita Electric Ind Co Ltd Permanent magnet rotor of motor and enclosed compressor using it
JP2001346346A (en) * 2000-03-30 2001-12-14 Asmo Co Ltd Rotor and motor
US20070132336A1 (en) * 2005-12-08 2007-06-14 Ionel Dan M Rotor assembly for an electric machine including a vibration damping member and method of manufacturing same
JP2008278597A (en) * 2007-04-26 2008-11-13 Mitsubishi Electric Corp Rotor core
JP2010142095A (en) * 2008-12-15 2010-06-24 Mitsuba Corp Electric motor
JP2012023823A (en) * 2010-07-13 2012-02-02 Mitsuba Corp Rotor of rotary electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150035390A1 (en) * 2013-08-05 2015-02-05 Nidec Sr Drives Ltd. Rotor for an electrical machine
WO2023119404A1 (en) * 2021-12-21 2023-06-29 三菱電機株式会社 Rotor, motor, compressor, and refrigeration cycle device

Also Published As

Publication number Publication date
JP2015073387A (en) 2015-04-16
JP6189699B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6189699B2 (en) Rotor core, rotor, and rotating electric machine
US8729760B2 (en) Rotor of electric motor having structure for attaching magnet securely to outer circumferential surface of rotor core and manufacturing method thereof
CN102782989B (en) Rotating electrical machine rotor
US9419481B2 (en) Rotary electric machine
CN102957231B (en) Stator and motor
JP5902563B2 (en) Rotor and rotating electric machine using the same
US9385567B2 (en) Rotating electric machine
JP6349140B2 (en) Rotor, rotor manufacturing method, and rotating electric machine provided with rotor
CN104702003A (en) Rotor and dynamo-electric machine having the same
CN107852045B (en) Rotary motor
WO2015093157A1 (en) Rotating electric machine
JPWO2017141361A1 (en) Rotating electric machine and method of manufacturing rotating electric machine
JP5500360B2 (en) Rotating electrical machine rotor
JP2012115124A (en) Stator of rotary electric machine
JP6137521B2 (en) Rotating electric machine
CN112119572B (en) Rotor of rotating electrical machine and rotor core support structure of rotating electrical machine
JP2019129601A (en) Rotor for rotary electric machine
WO2017077789A1 (en) Rotating electric machine
US20150015110A1 (en) Electric Rotating Machine
JP2011172353A (en) Stator split core
JP2009177907A (en) Stator of rotary electric machine, and rotary electric machine with the same
JP5495045B2 (en) Rotating electrical machine rotor
WO2019123952A1 (en) Rotor and motor
JP5837147B1 (en) Rotating electric machine
JP2012044789A (en) Rotary electric machine and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851294

Country of ref document: EP

Kind code of ref document: A1