JP2009153116A - 光通信システム、送信器および受信器 - Google Patents

光通信システム、送信器および受信器 Download PDF

Info

Publication number
JP2009153116A
JP2009153116A JP2008303509A JP2008303509A JP2009153116A JP 2009153116 A JP2009153116 A JP 2009153116A JP 2008303509 A JP2008303509 A JP 2008303509A JP 2008303509 A JP2008303509 A JP 2008303509A JP 2009153116 A JP2009153116 A JP 2009153116A
Authority
JP
Japan
Prior art keywords
optical
light
signal
optical frequency
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008303509A
Other languages
English (en)
Other versions
JP5225045B2 (ja
Inventor
Manabu Yoshino
學 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008303509A priority Critical patent/JP5225045B2/ja
Publication of JP2009153116A publication Critical patent/JP2009153116A/ja
Application granted granted Critical
Publication of JP5225045B2 publication Critical patent/JP5225045B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】PONシステムにおいて、他のONUの開放に伴うOLTの制御に従わないメディアコンバータやLAN機器などの誤接続による妨害光への耐妨害性の高い光通信システムを提供する。
【解決手段】送信器100に、少なくとも1シンボル期間の中で信号光の光周波数を変化させる光周波数変化部130を具備させ、受信器200に、光周波数変化部130の光周波数変化に応じてデータを同期受信する同期受信部210を具備させる。
【選択図】図1

Description

本発明は、送信器から受信器に信号光を送信する際に光伝送路に混入する妨害光の影響を軽減する光通信システム、並びに該光通信システムに使用する送信器および受信器に関するものである。
PON(Passive Optical Network)システムを用いた経済的な光サービスの需要の増大が予想される。PONシステムでは、局内のOLT(Optical Line Terminal)の制御により、単一の光ファイバと伝送設備を複数のユーザ宅内機器のONU(Optical Network Unit)で共用する。
ところで、PONシステムの普及に従い、ONUは、電気通信法49条の規定に準じた端末開放の可能性がある。開放により、OLTの制御に従わないメディアコンバータやLAN機器等のPONシステムへの誤接続の可能性が増大する。これらの誤接続機器の出力光は、光ファイバと伝送設備を共用する他ユーザの通信に対する妨害光として作用し、通信途絶の問題を引起しかねない。
そこで、この問題を解決するため、光符号多重(OCDM;Optical Code division multiplexing)技術を適用した妨害光の除去方法が提案されている(例えば、特許文献1参照)。
特開2006−074557号公報
しかしながら、上記従来方法では、妨害光の光周波数に応じて除去対象とする光周波数を変更しなければならず、妨害光の光周波数分布によっては除去が困難となる場合があった。
本発明の目的は、妨害光の光周波数に関係なく妨害光の影響を軽減できるようにして、耐妨害性の高い光通信システムを実現できるようにすることである。
上記目的を達成するために、請求項1にかかる発明は、データに応じて強度変調された信号光を送信する送信器と、該送信器から光伝送路を介して受信した前記信号光を光電変換して前記データを再生する受信器とを備える光通信システムにおいて、前記送信器に、前記データの少なくとも1シンボル期間の中で前記信号光の光周波数を変化させる光周波数変化手段を具備させ、前記受信器に、前記信号光の光周波数の変化に応じて前記データを同期受信する同期受信手段を具備させたことを特徴とする。
請求項2にかかる発明は、請求項1に記載の光通信システムにおいて、前記送信器は、前記光周波数変化手段から出力する信号光に対して当該信号光の光周波数に応じて異なる遅延時間を付与する分散手段を具備し、前記受信器は、前記同期受信手段の前段に、受信した信号光に対して前記分散手段および前記伝送路で付与された光周波数毎の遅延時間と逆の遅延時間を付与する逆分散手段を具備する、ことを特徴とする。
請求項3にかかる発明は、請求項1又は2に記載の光通信システムにおいて、前記受信器を、前記信号光の光周波数の変化に同期して光周波数を変化する局発光を用いてコヒーレント検波する同期受信手段を有する受信器に置き換え、該同期受信手段に前記局発光に対して該局発光の光周波数に応じて異なる遅延時間を付与する局発分散手段を具備させた、ことを特徴とする。
請求項4にかかる発明は、請求項1又は2に記載の光通信システムにおいて、前記受信器を、分散による光周波数に応じて異なる遅延時間を付与された前記信号光の光周波数に応じて前記データを同期受信する同期受信手段を有する受信器に置き換えたことを特徴とする。
請求項5にかかる発明は、データに応じて強度変調された光信号を送信する送信器において、前記データの少なくとも1シンボル期間中で前記信号光の光周波数を変化させる光周波数変化手段を備えたことを特徴とする。
請求項6にかかる発明は、請求項5に記載の送信器において、前記光周波数変化手段は、前記データによって強度変調される際、前、又は後の信号光の光周波数を変化させることを特徴とする。
請求項7にかかる発明は、請求項5に記載の送信器において、前記光周波数変化手段は、前記データを変調した駆動電流を直接レーザダイオードに印加し該レーザダイオードのチャープを用いて前記信号光の光周波数を変化させることを特徴とする。
請求項8にかかる発明は、データの少なくとも1シンボル期間中で光周波数が変化する光信号を受信し光電変換して前記データを再生する受信器であって、前記光周波数の変化に応じて前記データを同期受信する同期受信手段を具備させたことを特徴とする。
請求項9にかかる発明は、請求項8に記載の受信器において、前記同期受信手段は、前記信号光を光周波数に応じて分岐する光分岐手段と、該光分岐手段で分岐した光をそれぞれ検波して電気信号を出力する光検波手段と、該光検波手段の出力電気信号から受信対象とする電気信号を前記光周波数変化手段の光周波数の変化に同期して選択する選択手段とを具備することを特徴とする。
請求項10にかかる発明は、請求項8に記載の受信器において、前記同期受信手段は、前記信号光と前記信号光の光周波数の変化に同期して光周波数を変化する局発光とを混合する第1の混合手段と、該第1の混合手段で得られた混合光を光検波して電気信号を出力する第2の光検波手段と、該第2の光検波手段から出力する電気信号から中間周波数信号を取り出す第1のバンドパスフィルタと、該第1のバンドパスフィルタの出力信号をコヒーレント検波する第1のコヒーレント検波手段とを具備することを特徴とする。
請求項11にかかる発明は、請求項8に記載の受信器において、前記同期受信手段は、前記信号光と前記局発光とを混合する第2の混合手段と、該第2の混合手段で得られた混合光を光検波して電気信号を出力する第3の光検波手段と、前記信号光と前記局発光との光周波数差の変化に同期して電気信号を変化する第1の信号源と、該第1の信号源で発生した電気信号を入力することにより中心周波数が変化し前記第3の光検波手段から出力する電気信号から中間周波数信号を取り出す第2のバンドパスフィルタと、該第2のバンドパスフィルタの出力信号をコヒーレント検波する第2のコヒーレント検波手段とを具備することを特徴とする。
請求項12にかかる発明は、請求項8に記載の受信器において、前記同期受信手段は、前記信号光と前記局発光とを混合する第3の混合手段と、該第3の混合手段で得られた混合光を光検波して電気信号を出力する第4の光検波手段と、前記信号光と前記局発光との光周波数差の変化に同期して出力する電気信号の周波数を変化する第2の信号源と、前記第4の光検波手段から出力する電気信号と前記第2の信号源で発生した電気信号を乗ずることでコヒーレント検波する第3のコヒーレント検波手段とを具備することを特徴とする。
請求項13にかかる発明は、請求項1乃至4のいずれか1つに記載の光通信システムにおいて、前記送信器は、所定の符号を構成する各チップの値に応じた強度又は強度差又は位相又は位相差で符号化された、複数の異なる光周波数の光からなる信号光を送信し、前記受信器の前記同期受信手段は、前記複数の異なる光周波数の光からなる信号光を光周波数毎に分岐し、又は前記複数の異なる光周波数の光からなる信号光を前記符号を構成するチップの値毎に少なくとも分岐する分岐手段を具備し、該分岐手段の出力をそれぞれ前記信号光の光周波数の変化に応じて同期受信して前記データを再生し、前記分岐手段は、それぞれ分岐する複数の光周波数の光同士が、前記光周波数変化手段により変化する光周波数幅以上離れた光を分岐することを特徴とする。
請求項14にかかる発明は、請求項1乃至4のいずれか1つに記載の光通信システムにおいて、前記送信器は、所定の符号を構成する各チップの値に応じた強度又は強度差又は位相又は位相差で符号化された、複数の異なる光周波数の光からなる信号光を送信し、前記受信器の前記同期受信手段は、前記複数の異なる光周波数の光からなる信号光を光周波数毎に分岐し、又は前記複数の異なる光周波数の光からなる信号光を前記符号を構成するチップの値毎に少なくとも分岐する分岐手段を具備し、該分岐手段の出力をそれぞれ少なくともチップの値が等しい光周波数の光を同期受信の対象として前記信号光の光周波数の変化に応じて同期受信して前記データを再生することを特徴とする。
請求項15にかかる発明は、請求項5乃至7のいずれか1つに記載の送信器において、前記周波数変化手段で光周波数が変化する信号光は、所定の符号を構成する各チップの値に応じた強度又は強度差又は位相又は位相差で符号化された複数の異なる光周波数の光からなることを特徴とする。
請求項16にかかる発明は、請求項8に記載の受信器において、前記同期受信手段は、前記複数の異なる光周波数の光からなる信号光を光周波数毎に分岐し、又は前記複数の異なる光周波数の光からなる信号光を前記符号を構成するチップの値毎に少なくとも分岐する分岐手段を具備し、該分岐手段の出力をそれぞれ前記信号光の光周波数の変化に応じて同期受信して前記データを再生し、前記分岐手段は、それぞれ分岐する複数の光周波数の光同士が、前記光周波数変化手段により変化する光周波数幅以上離れた光を分岐することを特徴とする。
請求項17にかかる発明は、請求項8に記載の受信器において、前記同期受信手段は、前記複数の異なる光周波数の光からなる光信号を光周波数毎に分岐し、又は前記複数の異なる光周波数の光からなる信号光を前記符号を構成するチップの値毎に少なくとも分岐する分岐手段を具備し、該分岐手段の出力をそれぞれ少なくともチップの値が等しい光周波数の光を同期受信の対象として前記信号光の光周波数の変化に応じて同期受信して前記データを再生することを特徴とする。
本発明によれば、データの少なくとも1シンボル期間の中で信号光の光周波数を変化させる光周波数変化手段を送信器に備え、信号光の光周波数の変化に応じて前記データを同期受信する同期受信手段を受信器に備えるので、1シンボル時間の中で受信信号光に混入する妨害光の影響を軽減でき、耐妨害性の高い光通信システムを実現することができる。
<実施例1>
図1は本発明の実施例の光通信システムの構成を示すブロック図である。100は送信器(例えば、ONU)、200は受信器(例えば、OLT)、300は光スプリッタ、400は光ファイバ、500は妨害光を出力する不適合器である。
送信器100は、光源(レーザダイオードその他)110、送信データDINにより光源110からの光を強度変調する強度変調器120、および強度変調された信号光を1シンボル期間で周波数変化させる光周波数変化部130を備える。光周波数変化部130は、送信データDINのビット期間毎に繰り返して同じ周波数変調用の信号を発生させる信号源131と、その信号源131からの信号によって信号光の周波数を昇順、降順、正弦波状、ランプ波形、ランダム等の所定の値で、1ビット期間で連続的に変化させる周波数変調器(例えば、LN等の位相変調器、AO等の周波数変調器等)132からなる。よって、送信データDINの1シンボル期間の信号光は、その光周波数が連続的に変化する。なお、光源110からの光が入力する順序は、強度変調器120→光周波数変化部130の順としているが、両者の変調と変化が同期していれば、光周波数変化部130→強度変調器120の順であってもよい。さらに、光源110と光周波数変化部130を兼ねることも可能である。例えば、後述の検証例のように直接変調レーザダイオード(DML:Directly Modurated Laser)を用いることで可能となる。また、強度変調器120としてアルファーパラメータの大きな強度変調器を用いれば、強度変調器120と周波数変調器132を兼ねることも可能である。兼ねる場合、後述の直接変調レーザダイオードと同様な変調の仕方をしてもよい。
受信器200は、同期受信部210を有する。その同期受信部210は、光ファイバ400から到来する信号光を光周波数に応じて分岐する光分岐器(例えば、プリズム、多層膜フィルタ、AWG等)211、分波された各周波数の信号光を検出して電気信号に変換させる1群の光検波器(例えば、フォトダイオードアレイ等)212、その光検波器212の各出力信号から1個の信号を選択する選択器213、その選択器213の選択動作の制御信号(同期用信号)を前記光周波数変化部130の信号源131の生成信号に同期して生成する信号源214を備える。よって、受信した信号光はその光周波数に応じて取り出され、元の送信データDINに対応した受信データDOUTに再生される。なお、信号源131と信号源214との同期は、例えば、信号光の伝送の開始時のプリアンブルを検出してビット同期することで行われるが、ここでは詳細な説明は省略する。
なお、以上の説明で本実施例では、伝送路分散等によって光周波数毎に異なる伝播遅延を被らない例で提示した。伝送路分散等がある場合は、同期受信部210が伝送路分散等による光周波数毎に異なる伝播遅延を被った後の光周波数に応じて信号を生成する信号源214を用いるか、光分岐器211入力以前に伝送路分散を補償する分散補償器を送信器100あるいは受信器200あるいは伝送路中に具備するか(不図示)、光分岐器211と光検波器212と選択器213の全部又は一部における光周波数毎の伝播時間を調整する等の方法で補償する。以下の実施例においても同様である。
本実施例による妨害光の影響の軽減について、図2を用いて説明する。図2の横軸は時間、縦軸は光周波数を示す。Aは光周波数変化部130により光周波数が変化(ここでは単純化のため直線で近似)する信号光、Bは受信器200におけるその信号光の通過帯域幅(信号を通過させるためには少なくともその信号のナイキスト周波数の通過帯域幅が必要)、Cは妨害光を示す。また、Fsは信号光の光周波数変動幅、Fjは妨害光の光周波数変動幅、Tjは妨害光の検出時間、Tsはビット期間を示す。
まず、図2(a)に示すように、妨害光Cの光周波数変動幅Fjが極めて少ないか無く、且つFsがFjを包含する場合(Fj<B<Fs)の妨害光Cの検出時間Tjは、
Tj≒(B/Fs)×Ts
となり、妨害光Cの検出時間Tjはビット期間Tsに比べて極めて短くなるため、妨害光Cの影響は極めて少なくなり、その抑圧比は、「(通過帯域幅B)/(信号光Aの光周波数変動幅Fs)」となる。例えば、信号光Aの通過帯域幅又は信号光を光検波した後の信号の通過帯域幅Bが100MHz、信号光Aの光周波数変動幅Fsが100GHzとすると、妨害光Cの検出時間Tjはビット期間Tsに比べて1/1000となり、妨害光Cの影響を軽減することができる。
また、図2(b)に示すように、妨害光Cがある程度の光周波数変動幅Fjを有しFsがFjを包含する場合(B<Fj<Fs)の妨害光Cの検出時間Tjは、
Tj≒{(B+Fj)/Fs}×Ts
となる。このときは、検出時間Tjで検出される妨害光Cの強度はB/Fjに軽減される。このため、図2(a)の場合よりも検出時間Tjが長くなるが、妨害光Cの各瞬間の寄与は軽減し、ビット期間全体で図2(a)の場合の{(B+Fj)/Fj}倍となり、抑圧比は、「{(通過帯域幅B)+(妨害光Cの光周波数変動幅Fj)}/(信号光Aの光周波数変動幅Fs)」となる。
さらに、図2(c)に示すように、妨害光Cの光周波数変動幅Fjが信号光Aの光周波数変動幅Fsより大きくFjがFsを包含する場合(B<Fs<Fj)の妨害光Cの検出時間Tjはビット期間Tsとなるが、検出強度はB/Fjに軽減される。よって、妨害光Cの寄与は僅かとなる。
図3に信号光Aの光周波数を送信データDINが「1」のビット期間だけ直線的に増大させたときの動作の波形を示す。Dは受信器200の信号源214で発生させる検出対象(同期用)信号を示す。図3(a)は妨害光Cの光周波数が一定の場合についてであり、図2(a)に示した場合と同様に、妨害成分C1の検出時間はビット期間中の僅かの時間である。図3(b)は妨害光Cの光周波数が周期的に変化する場合についてのものであり、信号光Aの周波数変化と妨害光Cの光周波数変化が一致しない限り、やはり同様に、妨害成分C1の検出時間はビット期間中の僅かの時間である。
なお、以上の説明では、信号光Aの光周波数の変化の周期が送信データDINの「1」のビット期間と同期していることを前提としたが、信号光Aの光周波数は連続的に変化していればよく、かならずしもその周期が送信データDINのビット期間と同期する関係にある必要はない。すなわち、信号光Aの光周波数は、送信データDINのビット周期と無関係に連続的に変調させてもよい。例えば、信号光Aの光周波数の変化の周期が送信データDINのビット周期に対して短ければ、妨害光Cの光周波数が変化するとき、周波数が干渉する可能性が減少する。妨害光Cの光周波数があまり変化しないときは、周波数が干渉する回数が増えるが、干渉成分は1回当りの重なり時間と重なり回数の積であるので、妨害光Cの除去の点からは悪影響は少ない。信号光Aの光周波数の変化の周期が送信データDINのビット周期に対して長ければ、各ビットにおける光周波数の変化量が減少する。また、信号光Aの光周波数の変化は、直線的あるいは正弦波的な変化よりも、ランダムに変化する方が、偶然に直接変調してくる妨害光と一致する可能性が軽減できる。ただし、以上のいずれにおいても、信号光Aの光周波数の変化に対して、受信器200で発生させる検出対象(同期用)信号(信号源214で発生させる信号)は同期させる必要がある。
<実施例2>
図4は送信器100の別の実施例の構成を示すブロック図である。本実施例において、光周波数変化部140は、周波数変調用の信号を発生させる信号源141と、その信号源141からの周波数変調用の信号と送信データDINを混合する混合器142と、混合器142からの変調信号によって直接発振光を変調する直接変調レーザダイオード143とからなる。混合器142は、送信データDINのビット期間中の「1」のデータを信号源141からの信号によって変調させる。この変調は、図3で説明したように、2ビット以上連続する「1」のデータを1ビットずつランプ波等に変調させても、あるいは前記したように、送信データDINのビット周期と無関係に連続的に変調させてもよい。直接変調レーザダイオード143は、印加電流を送信データDINに応じて変調することで、送信データに応じた強度変調を行うが、印加電流と光出力強度により生じるレーザダイオード内のキャリア変動に応じた屈折率変化を主たる原因として、出力光の周波数が変動するチャープが発生する。ここでは、印加電流を変化させることでこのチャープを積極的に発生させ、信号光の光周波数を変化させる。
<実施例3>
図5は送信器100の更なる別の実施例の構成を示すブロック図である。本実施例において、光周波数変化部150は、送信データDINが入力する波形整形器151と直接変調レーザダイオード152とからなる。波形整形器151は、例えば、NRZ(Non Returun Zero)の送信データDINを入力して1ビット期間の最初と最後が零の値に戻るRZ(Returun to Zero)の信号に変換する変換器と、直接変調レーザダイオード152に対する1ビット当りの印加電流が平坦になる部分を無くするために信号を鈍らせるための、伝送帯域の例えば75%の通過帯域幅をもつローパスフィルタとから構成されている。これによって、1ビット当りの時間幅の矩形波が、ガウシアン等で近似できる強度−時間特性となり、信号光の発光が継続する1ビット期間毎に、連続的に光周波数が変化する。
<実施例4>
図6は受信器200の同期受信部210の具体例を示す説明図である。この同期受信部210は、受信した信号光の光周波数に応じて光を分波するプリズム211aと、そのプリズム211aで分波された各光を検出して電気信号に変換する1群の光検出器212aと、その光検出器212aの各出力電気信号を選択する選択器213aとから構成している。選択器213aは、図1の送信器100の信号源131の出力信号、図4の信号源141の出力信号、又は図5の波形整形器151の出力信号の変化に同期して、図1で示した信号源214の出力信号によって、選択動作を行う。なお、プリズム211aは、空間系のプリズムのイメージで記載しているが、ファイバ系や前記した誘電体多層膜あるいはAWG等の構成であってもよい。選択器213aは、メカニカルに選択するイメージで記載しているが、通常では電気的に選択する構成となる。
<実施例5>
図7Aは受信器200の別の実施例のコヒーレント検波方式の同期受信部220の構成を示すブロック図である。本実施例においては、同期受信部220は、局発光の変調用の信号源221、その信号源221の出力信号によって発光する局発光の光周波数が変調される局発光源222、局発光源222から出力する局発光と光ファイバ400から受信した信号光とを混合して出力する混合器223、混合器223の出力光を光電変換する際にその2乗検波特性により局発光と信号光のビート成分が発生する光検波器224、光検波器224から出力する電気信号から中間周波数成分を抽出するバンドパスフィルタ225、およびそのバンドパスフィルタ225の出力信号をコヒーレント検波するコヒーレント検波器226からなる。なお、図では、コヒーレント検波器226は包絡線検波器として示している。
信号源221において、図1の送信器100の信号源131の出力信号、図4の信号源141の出力信号、又は図5の波形整形器151の出力信号の変化に同期し且つ所定の周波数差をもつ受信対象用(同期用)信号を発生させる。例えば、2値データのときは、信号源141又は波形成型器151のデータが「1」の場合の出力信号と同様な電気信号を、到着した信号光に同期して出力させる。局発光源222が図1の送信器100と同様な構成であれば、局発光源222から出力される局発光の光周波数と到着した光信号の光周波数との光周波数差が所定の光周波数差となるように、到着した光信号に同期して出力させる。すると、局発光源222において、直接変調レーザダイオード143,152と同様のチャープ特性を持たせたとき、受信した信号光の光周波数と局発光源222の局発光の光周波数の周波数差が一定となる。よって、光検波器224で、中間周波数が一定の信号光と局発光との間の中間周波数が得られる。この中間周波数信号を含む光検波器224からの電気信号をバンドパスフィルタ225に通過させると、信号光に対応する中間周波数信号はそこを通過するが、妨害光と局発光の光周波数差はバンドパスフィルタ225を通過する所定の値にほとんどないため、妨害光に対応する中間周波数信号のほとんどが、通過せず除去される。
なお、以上の説明で本実施例では、伝送路分散等によって光周波数毎に異なる伝播遅延を被らない例で提示した。伝送路分散等がある場合は、同期受信部220が伝送路分散等による光周波数毎に異なる伝播遅延を被った後の光周波数変化に応じて信号を生成する信号源221を用いるか、混合器223入力以前に伝送路分散を補償する分散補償器を送信器100あるいは受信器200あるいは伝送路中に具備する(不図示)等の方法で補償する。
また、分散が、波形が広がる方向の分散であり、広がった波形が隣接するビット期間まで広がる場合、データのビット同士が干渉(ISI:Inter Symbol Interference)する恐れがある。その場合、ISIを発生しない部分のみを抜き出して、データ信号として取り出すことが望ましい。例えば、信号光の光周波数がビット期間でf1からf2まで単調増加する場合で、分散により波形が広がり、本来のビット期間内に収まる部分の光周波数が、f1’からf2’(f1<f1’<f2’<f2)となるのであれば、局発光を、到着する信号光に同期したビット期間でf1’からf2’に単調増加する局発光とすれば、隣接ビット期間に漏れ込む成分は検波対象とならないため、ISIの発生しない部分のみを抜き出すことができる。
なお、局発光はコヒーレント検波した中間周波数の電気信号がBPFを通過する周波数範囲で同期していればよい。また、図7Aではコヒーレント検波としてヘテロダイン検波の包絡線検波を前提に構成しているが、同期検波を採用してもよいし、中間周波数を0に近似されるホモダイン検波としてもよい。ホモダイン検波の場合は、位相ダイバーシティ型としてもよいし、位相同期ループを具備した同期検波としてもよい。ホモダイン検波を適用した場合は、妨害光の残留分の最大値がへテロダイン検波の場合の最大値の1/2となる効果もある。
実施例1の同期受信部210では、光分波器211の分解能や光検波器212を構成するフォトダイオード数の限界や選択器213の動作速度の限界から、受信対象とする光周波数の変動幅の細かさに限界があるが、本実施例のコヒーレント検波を用いた同期受信部220は、その限界を軽減する効果がある。
なお、局発光源222で発生する局発光の光周波数が、受信した信号光の光周波数と同期せず一定の光周波数の場合でも、本実施例は使用可能である。この場合は、光検波器224から出力する中間周波数信号の中間周波数が変化するので、図7Bに示すように、送信側の光周波数の変化に同期してレベル等が変化する電気信号を発生する信号源221Aからの当該電気信号によって、バンドパスフィルタ225の中心周波数を変化させればよい。これにより中間周波数の信号を検出できる。あるいは、図7Cに示すように、光検波器224から出力する中間周波数信号の中間周波数の変化に連動して、乗算器228において、送信側の光周波数の変化に同期した電気信号を発生する信号源221Bからの当該電気信号によって乗算することで、コヒーレント検波してもよい。なお、図7B、図7Cともに局発光の光周波数が一定の場合について示したが、信号光と局発光の光周波数差の変化に同期してバンドパスフィルタ225の通過する中心周波数や信号源221Bの出力する電気信号の周波数を変化できれば、局発光の周波数が変動してもかまわない。
<実施例6>
図8は別の実施例の光通信システムの構成を示す図である。本実施例が実施例1の光通信システムと異なる点は、送信器100側の光周波数変化部130の後段に分散器160を配置し、受信器200の同期受信部210の前段に逆分散器230を配置した点である。分散器160および逆分散器230は、伝送中の信号光の時間−光周波数変化の特性を変化させ、光周波数に対する伝播時間を変化させる。例えば、高周波数ほど遅延の大きくなる分散を付与するときは、1ビット期間に信号光の光周波数が低周波数側から高周波数側に変化する場合、1ビットの信号は時間方向に伸張されることになる。これに対し、いずれかが逆であれば、逆に1ビットの信号は時間方向に短縮されることになる。例えば、高周波数ほど遅延の小さくなる分散を付与するときは、1ビット期間に信号光の光周波数が低周波数側から高周波数側に変化する場合、1ビットの信号は時間方向に短縮されることになる。
本実施例によれば、信号光の1ビット期間が時間方向に伸張あるいは短縮されて光ファイバ400内を伝送されるので、妨害光と信号光の光周波数が干渉する確率が大幅に低減される。また、分散器160と光ファイバ400で付与される分散の総合分散特性と、逆分散器230で付与される「分散特性の合計の分散が概ね零になる」ように分散器160と逆分散器230の分散特性を設定すれば、遅延時間の和が信号光の光周波数によらず一定となるので、送信器100の信号源131の信号の変化と受信器200の信号源214の信号の変化が一致し、受信器200では送信データDINに正確に対応した受信データDOUTを再生することができる。
受信器200を、図7Aで説明したコヒーレント検波方式の同期受信部220で構成した場合であっても、信号光と局発光の周波数関係は図8の動作と同じとなる。このとき、光周波数による遅延時間の和の誤差分は、中間周波数信号を通過させるバンドパスフィルタ225の通過周波数以下に収まることが望ましい。2値データの場合で、伝送速度をBbit/sとすると、バンドパスフィルタ225の通過帯域幅はBHz以上必要となるが、ホモダインではバンドパスフィルタ(この場合、通常、DCブロックとローパスフィルタの組み合わせ)の通過帯域幅は、0.5BHzで済む。従って、妨害光の残留成分は、概ね半分となる。図7B,7Cで説明したコヒーレント検波方式の同期受信部220で構成した場合であっても、信号光と局発光の周波数関係は図8の動作と同じとなる。
なお、前記した「分散特性の合計の分散が概ね零になる」とは、ある時刻における信号光の光周波数が同期受信部の検出対象(同期用)周波数の範囲に含まれていることを意味する。図1、図8の同期受信部210であれば、ある時刻における信号光の光周波数が、選択器213により選択されている光検出器に分波される光周波数であることであり、図7Aの同期受信部220であれば、局発光と信号光の光周波数差である中間周波数の信号成分が、バンドパスフィルタ225の通過域に含まれていることである。
本実施例は、妨害光の光周波数が時間に対して変化する場合に特に有効である。例えば、妨害光と信号光の時刻tにおける光周波数の差が、同期受信部の受信対象(同期用)周波数の幅(図2のBに相当)以下である場合に有効となる。このような妨害光としては、信号光と同一シンボルレートの妨害光があり、その妨害光を発生する直接変調レーザダイオードのチャープ特性が信号光を発生する直接変調レーザダイオードのチャープ特性と同一の場合に起こりうる。実施例1〜5では、このような場合に、妨害光の影響を除去することができなかった。しかし、本実施例では、逆分散器230によって、妨害光の時間に対する光周波数の変調が変化するので、妨害光と信号光の時刻tにおける光周波数の差を、同期受信部210の受信対象(同期用)周波数の幅(図2のBに相当)以上とすることができる。
また、分散器160によって伸張し又は短縮したビット期間は、既存の機器で用いられているような「ビット期間に一致しない」ことが望ましい。例えば、155Mbit/sと622Mbit/sの伝送速度(シンボルレート)を考えると、155Mbit/sの伝送速度の信号光のビットが4倍に伸張する分散を与えてしまうと、622Mbit/sの妨害光と偶然一致する可能性が出てくる。逆に、622Mbit/sの伝送速度の信号光のビットが1/4倍に短縮する分散を与えてしまうと、155Mbit/sの妨害光と偶然一致する可能性が出てくる。このため、分散器160によって、既存の機器では用いられていないようなビット期間に伸張又は短縮するような分散を与えることが望ましい。
ここで、「ビット期間に一致しない」とは、ある時刻における妨害光の光周波数が、同期受信部の検出対象(同期用)周波数に含まれていないことである。図1、図8の同期受信部210であれば、選択器213により選択されている光検波器に分波される光周波数に含まれていないことであり、図7Aの同期受信部220であれば、局発光と信号光の光周波数差である中間周波数の信号成分が、バンドパスフィルタ225の通過域に含まれていないことである。このように、分散量を決定することが望ましい。
なお、逆分散器230により妨害光の実時間波形が拡大する方向に遅延時間を付与する場合、徐々に各シンボル同士が重なり合い、同時に複数の光周波数の妨害光が存在することになり、その極限としては、妨害光として一定の値に近づく恐れがあるため、逆分散器230では、妨害光の実時間波形が短縮する方向に遅延時間を付与することが望ましい。
また、以上では、分散器160や逆分散器230として、通常の伝送路分散を補償する分散補償器と同様に、光周波数に対する遅延時間が一様に増加するか減少する単調変化の分散や逆分散を前提に説明したが、光周波数に対する遅延時間がランダムに変化する分散を用いることも可能であり、この場合は、信号光と妨害光の光周波数が一致する可能性がより低くなるので、より好ましい。
また、分散付与の違いを、光周波数領域の符号として用いれば、光符号多重用の符号として用いることも可能となる。この場合、多元接続干渉(MAI)は、ある時刻における他符号光の光周波数が、同期受信部の検出対象(同期用)周波数の範囲に含まれてることから発生する。図1、図8の同期受信部210であれば、選択器213により選択されている光検出器に分波される光周波数に含まれていることであり、図7Aの同期受信部220であれば、局発光と信号光の光周波数差である中間周波数の信号成分が、バンドパスフィルタ225の通過帯域に含まれていることである。許容範囲となるMAIに収まるように信号光の光周波数変化や分散を付与する。信号光の光周波数変化の仕方(傾きや変化幅等)と分散器の分散付与の組み合わせにより符号を構成すれば、より符号数が増大する。
<実施例7>
図9は受信器の別の実施例の構成を示すブロック図である。本実施例では、受信した信号光に逆分散を与える逆分散器230に代えて、コヒーレント検波型の同期受信部220において、局発分散器227を配置している。この局発分散器227は、信号光と同期して光周波数が変化する局発光源222で発生した局発光に対して、その光周波数に応じて異なる遅延時間を付与する。本実施例では、送信器100側の分散器160と局発分散器227は、光検波器224で得られる中間周波数だけずれた光周波数に同じ遅延時間を付与する。このため、信号光と局発光の周波数関係は図7Aの受信器200を使用する場合と同様となる。
従って、局発分散器227の分散は、伝送路分散に分散器160の分散を加えた分散から、局発分散器227の分散を減じた分散特性の合計の分散が概ね零となるようにする。また、実施例1の送信器100と組み合わせて、伝送路分散がある場合の分散補償器の代わりに、本局発分散器227を用いることも可能である。この場合、伝送路分散から、局発分散手段の分散を減じた分散特性の合計の分散が概ね零となるようにする。なお、本実施例では、分散器160および局発分散器227の分散は波形が広がる方向の分散であり、広がった波形が隣接するビット期間まで広がる場合、ISIが発生するため、波形が狭まる方向に分散を加えることが望ましい。又はISIを発生しない部分のみを抜き出してデータ信号として取り出すことが望ましい。
<実施例8>
以上では送信器100に分散器160を設置し、受信器200に逆分散器230や局発分散器227を設置したが、送信器100に分散器160を設置するのみでも、信号光と妨害光の光周波数が偶然一致する可能性の軽減を高めることができる。この場合は、受信器200において、送信器100の分散器160および光ファイバ400で分散が付与された遅延時間をもつビットの信号光の光周波数に応じた時間−周波数特性に対応して検出対象(同期用)周波数を変化させてデータを同期受信する同期受信部を使用すればよい。
従って、同期受信部は、伝送路分散に分散器160の分散を加えた分散による光周波数毎に異なる伝播遅延を被った後の光周波数変化に応じて同期受信する。また、実施例1の送信器100と組み合わせて、伝送路分散がある場合の分散補償器の代わりに、局発分散器227を用いることも可能である。この場合、伝送路分散による光周波数毎に異なる伝播遅延を被った後の光周波数変化に応じて同期受信する。また、実施例6の受信器に本同期受信部を組み合わせてもよい。この場合、伝送路分散に分散器160の分散と逆分散器230の分散を加えた分散による光周波数毎に異なる伝播遅延を被った後の光周波数変化に応じて同期受信する。更に、実施例7の受信器に本同期受信部を組み合わせてもよい。この場合、伝送路分散に分散器160の分散を加えた分散から、局発分散器227の分散を減じた分散による光周波数毎に異なる伝播遅延を被った後の光周波数変化に応じて同期受信する。これらの実施例6や実施例7の受信器に本同期受信部を組み合わせることで、分散補償の不足分や、信号光と局発光の光周波数変化の違いを補償することが可能である。なお、本実施例でも、実施例7と同様に、波形が広がる方向に分散があるときISIの恐れがあるので、波形が狭まる方向に分散を加えるか、ISIを発生しない部分のみを抜き出してデータ信号として取り出すことが望ましい。
<実施例9>
本実施例が他の実施例と違うところは、スペクトル領域の光符号分割多重信号に特化したところにある。本実施例で特徴的なのは、スペクトル領域の光符号分割多重信号を構成する各光周波数のスペクトルチップは、光周波数変化部による光周波数の変化幅以上離れていることである。
以下、本実施例では図7Aに対応する同期受信部に即して説明するが、図6、図7B、図7Cに示したいずれの同期受信部の構成であってもよい。本実施例の送信器と受信器の構成を図10に示す。以下、送信器、受信器の順に説明する。
本実施例の送信器100は、所定の符号に応じた複数の異なる光周波数の光からなる信号光を送信する送信器である。具体的には、多波長光源110Aと強度変調器120Aと光周波数変化部130Aと符号器170から構成される。多波長光源110Aは、送信器100の送信する、所定の符号に応じた複数の異なる光周波数の光からなる信号光を構成する複数の光周波数の光を少なくとも出力する多波長光源である。図10の多波長光源110Aでは、4チップからなる符号語の各チップに対応するf1、f2,f3,f4の4つの光周波数の光を出力する場合を例示している。
ここでは、4チップの符号語なので、4つの光周波数の光を出力するとしているが、用いる符号がたとえば、「1100」であれば、光を出力するチップに相当する2つの光周波数分だけ出力すればよい。符号器170は用いる符号に応じた符号化を送信器100が出力する信号光に施す。図10に示すように「1100」の符号化においては、符号語を構成するチップの前から順に、光周波数の添字の昇順に対応するとすれば、f1とf2を導通する。
ここでは、「1」と「0」の2値のスペクトル領域強度符号としているので、導通、非導通で符号化しているが、異なる強度で符号化してもよいし、位相あるいは位相差によりスペクトル領域位相符号で符号化してもよいし、2以上の多値で符号化してもよい。送信器100は、多波長光源110A、強度変調器120A、光周波数変化部130A、符号器170の順で示したが、その強度変調器120A、光周波数変化部130A、符号器170の順番は変更してもよいし、組み合わせてもよい。例えば、図1に示した光源110と強度変調器120と光周波数変化部130を組み合わせた構成の出力光を、変調サイドバンドやFWM等の非線形現象を用いて多波長化する多波長化部といった構成としてもよい。
また、図10の下に示す送信器100Aのように、多波長光源、強度変調器、光周波数変化部、符号器を組み合わせた光周波数変化部兼変調器兼符号器180の構成としてもよい。181は波形整形器、182A,182Bは直接変調レーザダイオード、183は光スプリッタである。この構成では、多波長化は、複数の直接変調レーザダイオードを用いることで実現する。用いる符号が、たとえば「1010」であれば、符号化は、その符号「1010」に対応する光周波数f1、f3の光周波数の直接変調レーザダイオードを選択し、その出力を光スプリッタ183で合波し符号することで実現する。データでの強度変調と光周波数変化は、波形整形器181を経由した直接変調レーザダイオード182A,182Bの強度変調により実現する。
次に、受信器について説明する。以下、図7Aに即して説明するが、本発明に示す他の構成に適用してもよい。本実施例の図10に示す受信器200の同期受信部220では、受信した信号光を、信号源221Aで変調される局発光源222Aからの局発光と混合器223で混合する。混合器223で混合した信号光と局発光は、符号に対応してスペクトルチップを分波する復号器2201により、それぞれ分波される。このような復号器は、AWGやAWGの出力を符号に応じて合波する光スプリッタとの組み合わせや、BGを符号に応じて配置したFBGなどで実現できる。
復号器2201は、図10では、符号「1100」に対応して、信号光f1,f2と局発光f1’,f2’を上側に、信号光f3,f4と局発光f3’,f4’を下側に分波している。ここで、光周波数変化部130Aによる光周波数変化よりも、スペクトルチップの光周波数間隔が離れているため、AWGやFBGといった受動素子により、それぞれスペクトルチップ毎に分波することが可能である。
分波された信号光と局発光は、それぞれ異なる光検波器224A,224Bで光検波される。光検波した信号は、加減算器229により加減算される。図10では、光検波器224Aの出力を加算し、光検波器224Bの出力を減算しているが、構成により逆でもよい。2つの光検波器224A,224Bと加減算器229は、1つの差動光検出器により置き換えてもよい。
加減算器229の出力は、所定の中間周波数に対応するバンドパスフィルタ225に入力し、そこで中間周波数成分が抜き出され、包絡線検波器226によりデータが復調される。なお、バンドパスフィルタ225は加減算器229の後に設置しているが、光検波器224A,224Bと包絡線検波器226の間であればどこでもよい。例えば、各光検波器224A,224Bの後にそれぞれバンドパスフィルタを設置し、それぞれのバンドパスフィルタの出力を加減算器229に入力するとしてもい。
また、復号器2201、2つの光検波器224A,224B、加減算器229については、復号器2201はスペクトルチップ毎に分波する分波器であり、それぞれの出力を光検波器で光検波し、光検波器の出力を符号語に応じてそれぞれ加減算する加減算器としてもよい。
なお、図10では、信号光と局発光を混合器223に入力後に復号器2201に入力したが、混合前に信号光又は局発光の一方又はその両方をそれぞれ復号器に入力した後に、混合器で混合して、光検波器224Aと光検波器224Bにそれぞれ入力するとしてもよい。この場合、混合器は光検波器224Aと光検波器224Bとに対応して2つ必要となる。図7Bと図7Cに即した構成の場合も同様である。
また、局発光は信号光を構成しうる光周波数からなる多波長光として、説明を加えているが、単一の光周波数の光であってもよい。この場合、復号器2201は光検波器224Aと光検波器224Bの両方に局発光を入力する復号器である必要がある。この場合、信号光を復号器に入力した後に、その出力をそれぞれ混合器で局発光と混合して、光検波器224Aと光検波器224Bに入力する構成が適している。
更に、単一の光周波数からなる局発光の場合、図7B及び図7Cに即した構成では、光段でチップ毎またチップの値毎に分岐する復号器2201の代わりに、光検波器で光検波後の電気信号を電気のバンドパスフィルタにてチップ毎またチップの値毎に分岐することで復号することが可能である。この場合、復号器による光の分岐がないため、光検波器は図7B図7Cと同様に単一でよい。また加減算は、図7Bに即した構成であれば、チップ毎またチップの値毎の各バンドパスフィルタ225の出力を、チップの値に応じて、図10の加減算器229と同様に加減算することになる。図7Cに即した構成であれば、チップに応じた中間周波数の電気信号を信号源221Bから出力して乗算器で乗算後に加減算する。ここで乗算器での乗算は、加減算するために少なくともチップの値毎に分けて乗することになる。なお、図7Bに即した構成であれば、対応するチップに応じた透過帯域を有するそれぞれのバンドパスフィルタ225と、復号器となる電気のバンドパスフルタとを一体構成としてもよい。
また、図1及び図6に即した受信器の場合、復号器2201と光分岐器211又は211aを一体とすることも可態である。すなわち、チップ毎またチップの値毎に分岐するチップ間の粗い分岐と、同期検波のための単一チップ内での細かい分岐を同一の素子で実現してもよい。その他は本発明の他の実施例と同様である。
以上述べたように、本実施例ではスペクトル領域の光符号分割多重に適用することが可能である。
<実施例10>
本実施例が実施例9と違うところは、本実施例では、光スペクトルチップの光周波数の間隔が、光周波数変化部130Aでの光周波数変化以下であってもよいことにある。すなわち、実施例9では図12(a)に示すように、スペクトルチップの光周波数間隔が光周波数変化よりも離れていることが必要であったが、本実施例では図12(b)に示すように、スペクトルチップの光周波数間隔が光周波数変化以下であってもよい。このために、本実施例では、実施例9よりもスペクトル利用効率が向上でき、かつスペクトルチップ同士の使用する光周波数を時間を違えて重ね合わせることで、光レイヤでの秘匿性を向上できる効果がある。
これを実現するために、本実施例の送信器100は、符号化による光周波数変化部による光周波数変化を妨げないようにする。具体的には、多波長光源110A、強度変調器120A、光周波数変化部130A、符号器170の内、光周波数変化部130Aを最後に配置するか、図10の下に示した送信器100Aの信号光に含まれるスペクトルチップを送信する直接変調レーザダイオードから構成すればよい。
図11に本実施例の受信器200を示す。以下、図7Aに即して説明するが、本発明に示す他の構成に適用してもよい。なお、図11では図10と同様にスペクトルチップ毎の光周波数は重ならないように記載しているが、前記のように図12(b)に示すように重なっていてもよい。
本実施例の受信器200の同期受信部220では、受信した信号光は光分岐器2202によって、分岐される、分岐された信号光は、それぞれ異なる局発光源222AA、222BBからの局発光と混合器223A,223Bにより混合される。用いる符号がたとえば「1100」であれば、分岐した一方の信号光は、符号語の「1」に相当するスペクトルチップf1,f2に対応する局発光f1’,f2’と混合され、分岐した他方の信号光は、符号語の「0」に相当するスペクトルチップf3,f4に対応する局発光f3’,f4’と混合される。異なる混合器223A,223Bにより混合された信号光と局発光の組は、それぞれ別の光検波器224A,224Bに入力されそれぞれ検波される。
なお、ここで光分岐器2202は符号語の値の数(「1」、「0」の2個)だけ分岐し、対応するチップの値が等しいチップをまとめて局発光と混合したが、実施例9で示したのと同様に、スペクトルチップ数(ここでは、4個)だけ分岐して、対応する局発光とそれぞれ混合してもよい。
本実施例では、スペクトルチップの符号の値毎に局発光を分けている。この局発光は、符号光の時間に対する光周波数変化に対応して光周波数が変化するので、異なる時間でスペクトルチップ同士の使用する光周波数が重なっていたとしても、それぞれの符号の値に応じた光検波器でのみコヒーレント検波することができる。
なお、本実施例では、スペクトルチップの符号の値毎の局発光を分けたが、スペクトルチップ毎に分けて、それぞれ検波器で光検波し、スペクトルチップの符号の値に応じて加減算するとしても良い。
また、図11では、異なる局発光を出力する局発光源222AAと局発光源222BBを用いたが、同一の局発光源と図10と同様の復号器を用いた局発光源であってもよい。但し、同期検波のための周波数変化を妨げないような構成とする必要がある。具体的には、復号器を透過後に、局発光の光周波数変化を行えばよい。
また、局発光は信号光を構成しうる光周波数からなる多波長光として、説明を加えているが、図7B及び図7Cに即した構成の場合は、単一の光周波数の光であってもよい。この場合、局発光毎に光を分岐しないため、光検波器は図7B、図7Cと同様に単一でよい。図7Bに即した構成であれば、チップ毎またチップの値毎の各バンドパスフィルタ225の出力を、チップの値に応じて、図10の加減算器229と同様に加減算することになる。図7Cに即した構成であれば、チップに応じた中間周波数の電気信号を信号源221Bから出力して乗算器で乗算後に加減算する。ここで、乗算器での乗算は、加減算するために、少なくともチップの値毎に分けて乗算することになる。その他は本発明の他の実施例と同様である。
以上述べたように、本実施例では、信号光を構成するスペクトルチップの使用する光周波数を時間を違えて重ね合わせることが可能であるので、実施例9よりもスペクトル利用効率が向上でき、かっスペクトルチップ同士の、光レイヤでの秘匿性を向上できる効果がある。
<検証例>
ここで、本発明の光通信システムの1つの検証例を図13に示す。送信器100において、直接変調レーザダイオード171をパルスパターン発生器172で駆動し、その直接変調レーザダイオード171の出力光を強度変調器181において別のパルスパターン発生器182で変調することで信号光を作成する。周波数変化部170は、直接変調レーザダイオード171とパルスパターン発生器172で構成される。また、受信器200において、局発光源としての直接変調レーザダイオード241を光周波数変化部170のパルスパターン発生器172で駆動し、その直接変調レーザダイオード241から出力する局発光を信号光と混合器242で混合し、混合器242で得られた混合光を光検波器243で光電変換し、光検波器243の出力する電気信号からバンドパスフィルタ244で中間周波数fIFの電気信号を抽出し、包絡線検波器246に入力させる同期受信部240を備えさせた。さらに、不適合器500として、レーザダイオード501、パルスパターン発生器502、そのパルスパターン発生器502で発生したNRZ信号(データ相当)によってレーザ501の出力光を強度変調する強度変調器503を用いた。
この検証用の光通信システムの構成では、同型同程度の電流を注入した直接変調レーザダイオード171と241が同じパルスパターン発生器172で駆動されているので、送信器100から送信される信号光の光周波数と受信器200の局発光の光周波数とは、周波数差が一定となる。この周波数差fIFを2.5GHzとなるように設定する。なお、パルスパターン発生器172で発生する変調信号は、10パターンであり、パルスパターン発生器182で発生するデータ信号は1Gbit/sの27の擬似ランダムパターンである。不適合器500から出力する妨害光の光周波数は変化せず一定である。信号光の中心周波数(無変調時周波数)と妨害光の光周波数は同一である。受信器200のバンドパスフィルタ244の通過周波数は1.5GHz〜3.5GHzである。
信号光の光周波数変化幅を20GHzとしたときの局発光と妨害光の光スペクトルを図11に、信号光と妨害光のアイパターンを図15に示す。図14に示すように、妨害光と局発光は一部重なった周波数範囲を有する。このため、図15(c)に示すように、信号光の光周波数変化に同期せずに検出しているときは、妨害光のアイ開口が観測できる。しかし、信号光の光周波数に同期して検出したときは、図15(a)に示すように信号光のアイ開口は観測できるが、図15(b)に示すようにこのときの妨害光のアイ開口は抑圧されている。
信号光の光周波数変化幅に対する妨害光の抑圧比を図16に示す。バンドパスフィルタ244の通過幅が前記したように1.5GHz〜3.5GHzと2GHzの場合の通過抑圧比の計算値(=通過帯域幅/光周波数変動幅)と概ね一致した測定値の抑圧比が得られている。ここで、局発光のスペクトルがフラットであるため、簡易計算の前提である各光周波数成分に対する受信感度が概ね等しいことが成り立っている。
本発明の実施例1の光通信システムの構成を示すブロック図である。 図1の光通信システムの作用説明図である。 図1の光通信システムの動作波形図である。 本発明の実施例2の送信器の構成を示すブロック図である。 本発明の実施例3の送信器の構成を示すブロック図である。 図1の受信器の具体的構成を示す実施例4の説明図である。 本発明の実施例5の受信器の構成を示すブロック図である。 本発明の実施例5の受信器の変形例の構成を示すブロック図である。 本発明の実施例5の受信器の変形例の構成を示すブロック図である。 本発明の実施例6の光通信システムの構成を示すブロック図である。 本発明の実施例7の受信器の構成を示すブロック図である。 本発明の実施例9の光通信システムの構成を示すブロック図である。 本発明の実施例10の受信器の構成を示すブロック図である。 スペクトルチップの光周波数変化の説明図である。 検証用の光通信システムの構成を示すブロック図である。 図10の光通信システムの局発光と妨害光の光スペクトル特性図である。 図10の光通信システムのアイパターンの特性図である。 図10の光通信システムの通過抑圧比の周波数特性図である。
符号の説明
100,100A:送信器、110:光源、110A:多波長光源、120,120A:強度変調器、130,130A,140,150:光周波数変化部、160:分散器、170:符号器、180:光周波数変化部兼変調器兼符号器
200:受信器、210,220,240:同期受信部、230:逆分散器

Claims (17)

  1. データに応じて強度変調された信号光を送信する送信器と、該送信器から光伝送路を介して受信した前記信号光を光電変換して前記データを再生する受信器とを備える光通信システムにおいて、
    前記送信器に、前記データの少なくとも1シンボル期間の中で前記信号光の光周波数を変化させる光周波数変化手段を具備させ、
    前記受信器に、前記信号光の光周波数の変化に応じて前記データを同期受信する同期受信手段を具備させたことを特徴とする光通信システム。
  2. 請求項1に記載の光通信システムにおいて、
    前記送信器は、前記光周波数変化手段から出力する信号光に対して当該信号光の光周波数に応じて異なる遅延時間を付与する分散手段を具備し、
    前記受信器は、前記同期受信手段の前段に、受信した信号光に対して前記分散手段および前記伝送路で付与された光周波数毎の遅延時間と逆の遅延時間を付与する逆分散手段を具備する、
    ことを特徴とする光通信システム。
  3. 請求項1又は2に記載の光通信システムにおいて、
    前記受信器を、前記信号光の光周波数の変化に同期して光周波数を変化する局発光を用いてコヒーレント検波する同期受信手段を有する受信器に置き換え、該同期受信手段に前記局発光に対して該局発光の光周波数に応じて異なる遅延時間を付与する局発分散手段を具備させた、
    ことを特徴とする光通信システム。
  4. 請求項1又は2に記載の光通信システムにおいて、
    前記受信器を、分散による光周波数に応じて異なる遅延時間を付与された前記信号光の光周波数に応じて前記データを同期受信する同期受信手段を有する受信器に置き換えたことを特徴とする光通信システム。
  5. データに応じて強度変調された光信号を送信する送信器において、前記データの少なくとも1シンボル期間中で前記信号光の光周波数を変化させる光周波数変化手段を備えたことを特徴とする送信器。
  6. 請求項5に記載の送信器において、
    前記光周波数変化手段は、前記データによって強度変調される際、前、又は後の信号光の光周波数を変化させることを特徴とする送信器。
  7. 請求項5に記載の送信器において、
    前記光周波数変化手段は、前記データを変調した駆動電流を直接レーザダイオードに印加し該レーザダイオードのチャープを用いて前記信号光の光周波数を変化させることを特徴とする送信器。
  8. データの少なくとも1シンボル期間中で光周波数が変化する光信号を受信し光電変換して前記データを再生する受信器であって、前記光周波数の変化に応じて前記データを同期受信する同期受信手段を具備させたことを特徴とする受信器。
  9. 請求項8に記載の受信器において、
    前記同期受信手段は、前記信号光を光周波数に応じて分岐する光分岐手段と、該光分岐手段で分岐した光をそれぞれ検波して電気信号を出力する第1の光検波手段と、該第1の光検波手段の出力電気信号から受信対象とする電気信号を前記信号光の光周波数の変化に同期して選択する選択手段とを具備することを特徴とする受信器。
  10. 請求項8に記載の受信器において、
    前記同期受信手段は、前記信号光と前記信号光の光周波数の変化に同期して光周波数を変化する局発光とを混合する第1の混合手段と、該第1の混合手段で得られた混合光を光検波して電気信号を出力する第2の光検波手段と、該第2の光検波手段から出力する電気信号から中間周波数信号を取り出す第1のバンドパスフィルタと、該第1のバンドパスフィルタの出力信号をコヒーレント検波する第1のコヒーレント検波手段とを具備することを特徴とする受信器。
  11. 請求項8に記載の受信器において、
    前記同期受信手段は、前記信号光と局発光とを混合する第2の混合手段と、該第2の混合手段で得られた混合光を光検波して電気信号を出力する第3の光検波手段と、前記信号光と前記局発光との光周波数差の変化に同期して電気信号を変化する第1の信号源と、該第1の信号源で発生した電気信号を入力することにより中心周波数が変化し前記第3の光検波手段から出力する電気信号から中間周波数信号を取り出す第2のバンドパスフィルタと、該第2のバンドパスフィルタの出力信号をコヒーレント検波する第2のコヒーレント検波手段とを具備することを特徴とする受信器。
  12. 請求項8に記載の受信器において、
    前記同期受信手段は、前記信号光と局発光とを混合する第3の混合手段と、該第3の混合手段で得られた混合光を光検波して電気信号を出力する第4の光検波手段と、前記信号光と前記局発光との光周波数差の変化に同期して出力する電気信号の周波数を変化する第2の信号源と、前記第4の光検波手段から出力する電気信号と前記第2の信号源で発生した電気信号を乗ずることでコヒーレント検波する第3のコヒーレント検波手段とを具備することを特徴とする受信器。
  13. 請求項1乃至4のいずれか1つに記載の光通信システムにおいて、
    前記送信器は、所定の符号を構成する各チップの値に応じた強度又は強度差又は位相又は位相差で符号化された、複数の異なる光周波数の光からなる信号光を送信し、
    前記受信器の前記同期受信手段は、前記複数の異なる光周波数の光からなる信号光を光周波数毎に分岐し、又は前記複数の異なる光周波数の光からなる信号光を前記符号を構成するチップの値毎に少なくとも分岐する分岐手段を具備し、該分岐手段の出力をそれぞれ前記信号光の光周波数の変化に応じて同期受信して前記データを再生し、
    前記分岐手段は、それぞれ分岐する複数の光周波数の光同士が、前記光周波数変化手段により変化する光周波数幅以上離れた光を分岐することを特徴とする光通信システム。
  14. 請求項1乃至4のいずれか1つに記載の光通信システムにおいて、
    前記送信器は、所定の符号を構成する各チップの値に応じた強度又は強度差又は位相又は位相差で符号化された、複数の異なる光周波数の光からなる信号光を送信し、
    前記受信器の前記同期受信手段は、前記複数の異なる光周波数の光からなる信号光を光周波数毎に分岐し、又は前記複数の異なる光周波数の光からなる信号光を前記符号を構成するチップの値毎に少なくとも分岐する分岐手段を具備し、該分岐手段の出力をそれぞれ少なくともチップの値が等しい光周波数の光を同期受信の対象として前記信号光の光周波数の変化に応じて同期受信して前記データを再生することを特徴とする光通信システム。
  15. 請求項5乃至7のいずれか1つに記載の送信器において、
    前記周波数変化手段で光周波数が変化する信号光は、所定の符号を構成する各チップの値に応じた強度又は強度差又は位相又は位相差で符号化された複数の異なる光周波数の光からなることを特徴とする送信器。
  16. 請求項8に記載の受信器において、
    前記同期受信手段は、前記複数の異なる光周波数の光からなる信号光を光周波数毎に分岐し、又は前記複数の異なる光周波数の光からなる信号光を前記符号を構成するチップの値毎に少なくとも分岐する分岐手段を具備し、該分岐手段の出力をそれぞれ前記信号光の光周波数の変化に応じて同期受信して前記データを再生し、
    前記分岐手段は、それぞれ分岐する複数の光周波数の光同士が、前記光周波数変化手段により変化する光周波数幅以上離れた光を分岐する、
    ことを特徴とする受信器。
  17. 請求項8に記載の受信器において、
    前記同期受信手段は、前記複数の異なる光周波数の光からなる光信号を光周波数毎に分岐し、又は前記複数の異なる光周波数の光からなる信号光を前記符号を構成するチップの値毎に少なくとも分岐する分岐手段を具備し、該分岐手段の出力をそれぞれ少なくともチップの値が等しい光周波数の光を同期受信の対象として前記信号光の光周波数の変化に応じて同期受信して前記データを再生することを特徴とする受信器。
JP2008303509A 2007-11-30 2008-11-28 光通信システムおよび受信器 Active JP5225045B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008303509A JP5225045B2 (ja) 2007-11-30 2008-11-28 光通信システムおよび受信器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007310624 2007-11-30
JP2007310624 2007-11-30
JP2008303509A JP5225045B2 (ja) 2007-11-30 2008-11-28 光通信システムおよび受信器

Publications (2)

Publication Number Publication Date
JP2009153116A true JP2009153116A (ja) 2009-07-09
JP5225045B2 JP5225045B2 (ja) 2013-07-03

Family

ID=40921645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303509A Active JP5225045B2 (ja) 2007-11-30 2008-11-28 光通信システムおよび受信器

Country Status (1)

Country Link
JP (1) JP5225045B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244478A (ja) * 2011-05-20 2012-12-10 Nippon Telegr & Teleph Corp <Ntt> 受信器及び光通信システム
WO2023207600A1 (zh) * 2022-04-29 2023-11-02 深圳市速腾聚创科技有限公司 调频连续波激光雷达

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151139A (ja) * 1988-12-02 1990-06-11 Nippon Telegr & Teleph Corp <Ntt> 光伝送装置
JP2001067703A (ja) * 1999-08-26 2001-03-16 Asahi Optical Co Ltd 高周波重畳回路
JP2001156720A (ja) * 1999-11-22 2001-06-08 Toshiba Corp 光伝送システムおよび光伝送方法
JP2006060658A (ja) * 2004-08-23 2006-03-02 Oki Electric Ind Co Ltd 光符号多重通信方法、光符号多重通信システム、符号化装置、及び復号装置
JP2006157204A (ja) * 2004-11-26 2006-06-15 Oki Electric Ind Co Ltd 光符号分割多重送受信方法及び光符号分割多重送受信装置
JP2006238118A (ja) * 2005-02-25 2006-09-07 Oki Electric Ind Co Ltd 光分割多重送受信方法及び光分割多重送受信装置
WO2007007389A1 (ja) * 2005-07-11 2007-01-18 Mitsubishi Denki Kabushiki Kaisha スペックル除去光源および照明装置
JP2007081910A (ja) * 2005-09-15 2007-03-29 Oki Electric Ind Co Ltd 光パルス時間拡散器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151139A (ja) * 1988-12-02 1990-06-11 Nippon Telegr & Teleph Corp <Ntt> 光伝送装置
JP2001067703A (ja) * 1999-08-26 2001-03-16 Asahi Optical Co Ltd 高周波重畳回路
JP2001156720A (ja) * 1999-11-22 2001-06-08 Toshiba Corp 光伝送システムおよび光伝送方法
JP2006060658A (ja) * 2004-08-23 2006-03-02 Oki Electric Ind Co Ltd 光符号多重通信方法、光符号多重通信システム、符号化装置、及び復号装置
JP2006157204A (ja) * 2004-11-26 2006-06-15 Oki Electric Ind Co Ltd 光符号分割多重送受信方法及び光符号分割多重送受信装置
JP2006238118A (ja) * 2005-02-25 2006-09-07 Oki Electric Ind Co Ltd 光分割多重送受信方法及び光分割多重送受信装置
WO2007007389A1 (ja) * 2005-07-11 2007-01-18 Mitsubishi Denki Kabushiki Kaisha スペックル除去光源および照明装置
JP2007081910A (ja) * 2005-09-15 2007-03-29 Oki Electric Ind Co Ltd 光パルス時間拡散器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244478A (ja) * 2011-05-20 2012-12-10 Nippon Telegr & Teleph Corp <Ntt> 受信器及び光通信システム
WO2023207600A1 (zh) * 2022-04-29 2023-11-02 深圳市速腾聚创科技有限公司 调频连续波激光雷达

Also Published As

Publication number Publication date
JP5225045B2 (ja) 2013-07-03

Similar Documents

Publication Publication Date Title
CN109247063B (zh) 光纤通信系统和方法
US9860013B2 (en) Time division multiplexed orbital angular momentum based communication
US7200342B2 (en) Direct-sequence spread-spectrum optical-frequency-shift-keying code-division-multiple-access communication system
Shah Optical code division multiple access
US8909048B2 (en) Reflective optical networks
Ahn et al. A symmetric-structure CDMA-PON system and its implementation
Brès et al. Scalable asynchronous incoherent optical CDMA
JP5116619B2 (ja) 光通信システム
JP2000286825A (ja) 光伝送システムおよびその送信機と受信機
JP5225045B2 (ja) 光通信システムおよび受信器
JP5334718B2 (ja) 光符号分割多重用送信回路及び光符号分割多重用受信回路
CN104363532B (zh) 在光接入网络中使用无色无光光网络单元的方法和系统
JP2007208746A (ja) 光アクセスネットワークシステム
JP2004228925A (ja) 波長多重光伝送装置
KR101069977B1 (ko) 통신 장치 및 통신 방법
US20060098986A1 (en) Optical receiver for reducing optical beat interference and optical network including the optical receiver
JP5507341B2 (ja) 光符号分割多重用送信回路及び光符号分割多重用受信回路
Salgals et al. Research of M-PAM and duobinary modulation formats for use in high-speed WDM-PON systems
JP2011130504A (ja) 光ofcdm伝送システム
JP5722703B2 (ja) 受信器及び光通信システム
JP4646773B2 (ja) 局側終端装置及び光送信機並びに加入者側終端装置
Toliver et al. Optical network compatibility demonstration of O-CDMA based on hyperfine spectral phase coding
JP5414354B2 (ja) 光データ通信システム、ならびに通信装置および通信方法
RU2124812C1 (ru) Способ передачи сигналов синхронных цифровых волоконно-оптических систем методом спектрально-кодового мультиплексирования и устройство для его осуществления
Singh et al. Design and Performance investigation of multiuser OCDMA network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R150 Certificate of patent or registration of utility model

Ref document number: 5225045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350