WO2023207600A1 - 调频连续波激光雷达 - Google Patents

调频连续波激光雷达 Download PDF

Info

Publication number
WO2023207600A1
WO2023207600A1 PCT/CN2023/087861 CN2023087861W WO2023207600A1 WO 2023207600 A1 WO2023207600 A1 WO 2023207600A1 CN 2023087861 W CN2023087861 W CN 2023087861W WO 2023207600 A1 WO2023207600 A1 WO 2023207600A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
optical splitter
local oscillator
unit
Prior art date
Application number
PCT/CN2023/087861
Other languages
English (en)
French (fr)
Inventor
汪敬
朱琳
邱纯鑫
刘乐天
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210464251.XA external-priority patent/CN114791611A/zh
Priority claimed from CN202210464486.9A external-priority patent/CN114779277A/zh
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Publication of WO2023207600A1 publication Critical patent/WO2023207600A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00

Definitions

  • This application relates to the technical field of lidar, and specifically to a frequency modulated continuous wave lidar.
  • Lidar is one of the core sensors widely used in autonomous driving scenarios and can be used to collect three-dimensional information about the external environment.
  • lidar can be mainly divided into two types: time of flight (ToF) and frequency modulated continuous wave (Frequency Modulated Continuous Wave, FMCW).
  • FMCW lidar uses a coherent reception method.
  • signal light and local oscillator light are used for balanced detection, which can effectively reduce the interference of external ambient light on lidar performance and improve lidar ranging performance.
  • FMCW lidar can also provide additional speed measurement information, so it is considered to be the next generation of mainstream lidar technology.
  • FMCW lidar uses a large number of optoelectronic devices, resulting in a more complex system structure.
  • the vast majority of FMCW lidars use discrete devices, which have low integration, high cost, and large size.
  • silicon-based optoelectronics technology multiple discrete devices can be integrated on one chip, thereby effectively reducing the system volume and improving integration.
  • traditional silicon-based optoelectronic platforms use silicon waveguides to transmit optical signals, which are affected by the two-photon absorption effect of silicon and cannot transmit higher-power optical signals.
  • the average output optical power of the frequency modulated light source at the transmitter can reach 100 milliwatts.
  • the frequency modulated light source of the current FMCW lidar is generally connected to an external fiber optic splitter, and is split several times before being connected to the silicon photonic chip.
  • Such a solution involves a large number of optical fiber discrete components, making the system larger and less integrated.
  • One of the purposes of the embodiments of the present application is to provide a frequency modulated continuous wave lidar.
  • a frequency modulated continuous wave lidar which includes a frequency modulated light source, a transceiver module and an optical chip module.
  • the frequency modulated light source is used to emit laser beams.
  • the chip module is connected between the frequency modulation light source and the transceiver module.
  • the chip module includes a light splitting module and a coherent receiving module.
  • the light splitting module is used to divide the received laser beam into at least one detection beam. light and at least one local oscillator light.
  • the transceiver module is used to receive the detection light, shape and collimate the detection light and control it to scan the target object, and is also used to receive the echo signal reflected by the target object, and send the detected light to the target object.
  • the echo signal is transmitted to the optical chip module.
  • the coherent receiving module is connected to the optical splitting module and the transceiver module respectively.
  • the coherent receiving module is used to receive the local oscillator light output by the optical splitting module and the echo signal output by the transceiver module. , combine the local oscillator light and the echo signal and perform coherent beating.
  • the chip module includes a silicon photonic chip.
  • the silicon optical chip is connected between the frequency modulated light source and the transceiver module.
  • the silicon optical chip includes a first waveguide layer and a second waveguide layer arranged in sequence, wherein the first waveguide layer can accommodate light The power is greater than the optical power that the second waveguide layer can accommodate, and two interlayer mode converters are formed between the first waveguide layer and the second waveguide layer, and the first waveguide layer includes the light splitter module, the second waveguide layer includes the coherent receiving module.
  • the light splitting module includes a first light splitting unit.
  • the first light splitting unit is used to divide the received laser beam into at least one detection light and at least one local oscillator light.
  • the optical power of each local oscillator light is less than equal to 50mW.
  • the coherent receiving module is in signal communication with the first spectroscopic unit through the inter-layer mode converter, and is connected to the output end of the transceiver module for outputting echo signals, and is used to combine the local oscillator light and The echo signals are combined and coherently beat.
  • the vertical spacing between the second waveguide layer and the first waveguide layer is greater than 50 nm and less than 400 nm, and the optical signals in the two waveguide layers can pass through the interlayer mode converter. Wave coupling enables interlayer conversion.
  • the portions of the first waveguide layer and the second waveguide layer located within the interlayer mode converter are both tapered;
  • the interlayer mode converter is a tapered waveguide mode converter.
  • the vertical spacing between the second waveguide layer and the first waveguide layer is greater than 1 ⁇ m and less than 4 ⁇ m, and the first waveguide layer and the second waveguide layer are located in the interlayer mode converter.
  • a grating structure is formed on the inner part; the optical signals in the two waveguide layers can achieve inter-layer conversion through the grating structure.
  • the first light splitting unit includes a first light splitter.
  • the input end of the first optical splitter is connected to the output end of the frequency modulated light source, and the first output end of the first optical splitter is connected to the input end of the transceiver module for outputting the detection light.
  • the second output end of the first optical splitter is connected to the corresponding input end of the coherent receiving module through the interlayer mode converter for outputting the local oscillator light.
  • the first light splitting unit includes a first light splitter and a second light splitting unit.
  • the input end of the first optical splitter is connected to the output end of the frequency modulated light source, and the first output end of the first optical splitter is connected to the input end of the transceiver module for outputting the detection light.
  • the second output end of the first optical splitter is connected to the input end of the second optical splitting unit for outputting local oscillator light.
  • the output end of the second optical splitting unit is connected to the coherent receiver through the interlayer mode converter.
  • the corresponding input end of the module is connected for dividing the local oscillator light output by the first optical splitter into multiple beams and outputting them to the coherent receiving module.
  • the second optical splitter unit includes a second optical splitter, the input end of the second optical splitter is connected to the second output end of the first optical splitter, and the two optical splitters of the second optical splitter The output terminals are respectively connected to the corresponding input terminals of the coherent receiving module through the interlayer mode converter; or, the second optical splitting unit includes a second optical splitter and a third optical splitter arranged sequentially along the local oscillator light transmission direction. , the input end of the second optical splitter is connected to the second output end of the first optical splitter, and the first output end of the second optical splitter is connected to the coherent receiving module through the interlayer mode converter.
  • the corresponding input terminals are connected, the second output terminal of the second optical splitter is connected to the input terminal of the third optical splitter, and the two output terminals of the third optical splitter are connected to each other through the interlayer mode converter respectively. Connect the input end of the detection optical path in the coherent receiving module.
  • the transceiver module includes an optical amplification unit, a circulator and a scanning unit connected in sequence.
  • the optical amplification unit is connected to the silicon photonic chip and is used to receive and amplify the detection light.
  • the annular The detector and the scanning unit are used to cooperate with each other to control the amplified detection light to scan the target object, and are also used to cooperate with each other to receive the echo signal reflected back by the target object, and transmit the echo signal to in the coherent receiving module.
  • the coherent receiving module includes a detection light path, and the detection light path includes a third light splitting unit, a mixing unit and a synthesis unit sequentially formed on the second waveguide layer.
  • the third spectroscopic unit is used to receive echo signals and/or local oscillator light of any polarization mode, and decompose the received beam into multiple sub-beams with determined polarization; wherein the sub-beam corresponding to the echo signal is Sub-signal light, the sub-beam corresponding to the local oscillator light is the first sub-local oscillator light.
  • the mixing unit is used to mix the sub-signal light and the first sub-local oscillator light to obtain multiple beams of mixed light.
  • the synthesis unit is used to photoelectrically convert the multiple mixed-frequency lights to obtain and output multiple coherent electrical signals.
  • the coherent receiving module further includes a nonlinear calibration optical path; the nonlinear calibration optical path includes a fourth light splitting unit, a coupler, and a fourth light splitting unit sequentially formed on the second waveguide layer along the propagation direction of the local oscillation light.
  • a first balanced detector, the fourth spectroscopic unit is used to receive the local oscillator light, divide the local oscillator light into two beams of second sub-local oscillator light, and make the two beams of the second sub-local oscillator light The delay is different, the coupler is used to mix the two second sub-local oscillator lights with different delays, and the first balanced detector is used to receive the mixed light output by the coupler and perform balanced detection.
  • a first mode spot conversion unit is also integrated on the first waveguide layer.
  • the first mode spot conversion unit is used to combine the light from the external device of the silicon photonic chip with the first spectroscopic unit. The light is matched to the mode field.
  • the coherent receiving module also includes a second mode spot conversion unit formed on the second waveguide layer. The second mode spot conversion unit is used to convert light from corresponding devices in the transceiver module to the coherent receiving module. The light of the corresponding device in the device is matched with the mode field.
  • the optical chip module includes a PLC chip and a silicon optical chip.
  • the PLC chip includes the light splitting module, the PLC chip is connected between the frequency modulation light source and the transceiver module, the light splitting module includes a first light splitting unit, and the first light splitting unit is used to convert the received
  • the laser beam is divided into at least one beam of detection light and at least one beam of local oscillator light, and the optical power of each beam of local oscillator light is less than or equal to 50Mw;
  • the PLC chip also includes a first mode spot conversion unit, the first mode spot The conversion unit is used to perform mode field matching between the light of the external components of the PLC chip and the light of the internal components of the PLC chip;
  • the silicon optical chip includes the coherent receiving module.
  • the first light splitting unit includes a first light splitter.
  • the input end of the first optical splitter is connected to the output end of the frequency modulated light source through the first mode spot conversion unit, and the first output end of the first optical splitter is connected to the first mode spot conversion unit through the first mode spot conversion unit.
  • the input end of the transceiver module is connected for outputting the detection light
  • the second output end of the first optical splitter is connected with the corresponding input end of the coherent receiving module through the first mode spot conversion unit for outputting the detection light. Output the local oscillator light.
  • the first light splitting unit includes a first light splitter and a second light splitting unit.
  • the input end of the first optical splitter is connected to the output end of the frequency modulated light source through the first mode spot conversion unit, and the first output end of the first optical splitter is connected to the first mode spot conversion unit through the first mode spot conversion unit.
  • the input end of the transceiver module is connected for outputting the detection light
  • the second output end of the first optical splitter is connected with the input end of the second optical splitting unit for outputting local oscillator light
  • the second The output end of the spectroscopic unit is connected to the corresponding input end of the coherent receiving module through the first mode spot conversion unit, and is used to divide the local oscillator light output by the first optical splitter into multiple beams and output them to the in the coherent receiving module.
  • the second optical splitter unit includes a second optical splitter, the input end of the second optical splitter is connected to the second output end of the first optical splitter, and the two optical splitters of the second optical splitter The output terminals are respectively connected to the corresponding input terminals of the coherent receiving module through the first mode spot conversion unit.
  • the second optical splitter unit includes a second optical splitter and a third optical splitter arranged sequentially along the local oscillator light transmission direction, and the input end of the second optical splitter is connected to the second output end of the first optical splitter.
  • the first output end of the second optical splitter is connected to the corresponding input end of the coherent receiving module through the first mode spot conversion unit, and the second output end of the second optical splitter is connected to the third optical splitter.
  • the two output ends of the third optical splitter are connected to the input end of the detection optical path in the coherent receiving module through the first mode spot conversion unit respectively.
  • the second optical splitter unit includes a second optical splitter and a fourth optical splitter arranged sequentially along the local oscillator light transmission direction, and the input end of the second optical splitter is connected to the second output end of the first optical splitter.
  • the first output end of the second optical splitter is connected to the corresponding input end of the coherent receiving module through the first mode spot conversion unit, and the second output end of the second optical splitter is connected to the fourth optical splitter.
  • the first output end of the fourth optical splitter is connected to the corresponding input end of the coherent receiving module through the first mode spot conversion unit, and the second output end is connected through the optical delay line and the The first mode spot conversion unit is connected to the input end of the nonlinear calibration optical path in the coherent receiving module.
  • the second optical splitter unit includes a second optical splitter, a third optical splitter and a fourth optical splitter, the input end of the second optical splitter is connected to the second output end of the first optical splitter, and the third optical splitter
  • the first output end of the second optical splitter is connected to the input end of the third optical splitter, the second output end is connected to the input end of the fourth optical splitter, and the two output ends of the third optical splitter pass through the
  • the first mode spot conversion unit is connected to the input end of the detection optical path in the coherent receiving module, and the first output end of the fourth optical splitter passes through the first mode spot conversion unit and the corresponding input of the coherent receiving module.
  • the second output end is connected to the input end of the nonlinear calibration optical path in the coherent receiving module through the sequentially connected optical delay line and the first mode spot conversion unit.
  • the first mode spot conversion unit includes a first mode spot converter, a second mode spot converter and a fifth mode spot converter.
  • the first mode spot converter is connected between the frequency modulated light source and the first spectroscopic unit, and is used for mode field matching between the frequency modulated light source and the first spectroscopic unit.
  • the second mode spot converter is connected in a one-to-one correspondence between the output end of the first spectroscopic unit for outputting the local oscillator light and the input end of the coherent receiving module for receiving the local oscillator light. between the first spectroscopic unit and the corresponding end of the coherent receiving module for mode field matching.
  • the fifth mode spot converter is connected between the output end of the first spectroscopic unit for outputting the detection light and the input end of the transceiver module, and is used to connect the first spectroscopic unit to the The corresponding ends of the transceiver module perform mode field matching.
  • the transceiver module includes an optical amplification unit, a circulator and a scanning unit connected in sequence.
  • the optical amplification unit is connected to the PLC chip and is used to receive and amplify the detection light.
  • the circulator The scanning unit and the scanning unit are used to cooperate with each other to control the amplified detection light to scan the target object, and are also used to cooperate with each other to receive the echo signal reflected back by the target object, and transmit the echo signal to the target object. in the coherent receiving module.
  • the coherent receiving module includes a detection light path, and the detection light path includes a third light splitting unit, a mixing unit and a synthesis unit connected in sequence;
  • the third spectroscopic unit is used to receive echo signals and/or local oscillator light of any polarization mode, and decompose the received beam into multiple sub-beams with determined polarization; wherein the sub-beam corresponding to the echo signal is Sub-signal light, the sub-beam corresponding to the local oscillator light is the first sub-local oscillator light.
  • the mixing unit is used to mix the sub-signal light and the first sub-local oscillator light to obtain multiple beams of mixed light.
  • the synthesis unit is used to photoelectrically convert the multiple mixed-frequency lights to obtain and output multiple coherent electrical signals.
  • the coherent receiving module further includes a nonlinear calibration optical path.
  • the nonlinear calibration optical path includes a fourth spectroscopic unit, a coupler and a first balanced detector connected in sequence along the local oscillator light propagation direction.
  • the spectroscopic unit is used to receive the local oscillator light, divide the local oscillator light into two second sub-local oscillator lights, and make the delays of the two second sub-local oscillator lights different, and the coupler is used to divide the second sub-local oscillator light into two beams.
  • the nonlinear calibration optical path includes a coupler and a first balanced detector connected in sequence along the propagation direction of the local oscillation light.
  • the coupler is used to delay the two beams with different
  • the local oscillator light is mixed
  • the first balanced detector is used to receive the mixed light output from the coupler and perform balanced detection.
  • the coherent receiving module further includes a second mode spot conversion unit formed in the silicon optical chip.
  • the second mode spot conversion unit is used to combine light from an external device of the silicon optical chip with The light from the internal devices of the silicon photonic chip is subjected to mode field matching.
  • the beneficial effect of the frequency modulated continuous wave lidar provided by the embodiment of the present application is that: the frequency modulated continuous wave lidar provided by the embodiment of the present application is provided with an optical chip module between the frequency modulated light source and the coherent receiving module for connecting the two.
  • the optical chip module has a splitting module for light splitting and a coherent receiving module for coherent detection.
  • the benefits include but are not limited to: it no longer requires a fiber optic splitter to complete the splitting function, but relies on the chip structure.
  • Light splitting can effectively improve system integration and reliability, and reduce system volume and cost.
  • the optical power of the local oscillator light separated by the light splitting module of the optical chip module can be less than or equal to 50mW, the two-photon absorption effect of the silicon layer under high power output can be solved.
  • Figure 1 is a schematic structural diagram of a frequency modulated continuous wave lidar provided by the first embodiment of the present application
  • Figure 2 is a schematic cross-sectional structural diagram of an inter-layer mode converter used in an embodiment of the present application
  • FIG. 3 is a top structural schematic diagram of the interlayer mode converter shown in Figure 2;
  • Figure 4 is a schematic cross-sectional structural diagram of an interlayer mode converter used in another embodiment of the present application.
  • Figure 5 is a top structural schematic diagram of the interlayer mode converter shown in Figure 4.
  • Figure 6 is a schematic structural diagram of a frequency modulated continuous wave lidar provided by the second embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a frequency modulated continuous wave lidar provided by the third embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a frequency modulated continuous wave lidar provided by the fourth embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a frequency modulated continuous wave lidar provided by the fifth embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a frequency modulated continuous wave lidar provided by the sixth embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a frequency modulated continuous wave lidar provided by the seventh embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a frequency modulated continuous wave lidar provided by the eighth embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a frequency modulated continuous wave lidar provided by the ninth embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a frequency modulated continuous wave lidar provided by the tenth embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a frequency modulated continuous wave lidar provided by the eleventh embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a frequency modulated continuous wave lidar provided by the twelfth embodiment of the present application.
  • FM continuous wave lidar 100. FM light source; 200. Transceiver module; 210. Optical amplification unit; 220. Circulator; 230. Scanning unit; 300. Silicon optical chip; 301. First waveguide layer; 302. Chapter Two waveguide layers; 303, interlayer mode converter; 304, substrate layer; 305, buried oxide layer; 306, oxide layer; 307, upper cladding layer; 311, first optical splitter; 312, second optical splitter; 313. Third optical splitter; 314, fourth optical splitter; 315, optical delay line; 321, first mode spot converter; 322, second mode spot converter; 323, third mode spot converter; 330, coherent receiving module ; 331. Coupler; 332. First balance detector; 333. Polarization beam rotator; 334. Mixing unit; 335. Synthesis unit;
  • 1b FM continuous wave lidar; 100b, FM light source; 200b, transceiver module; 210b, optical amplification unit; 220b, circulator; 230b, scanning unit; 300b, PLC chip; 311b, first optical splitter; 312b, second Optical splitter; 313b, third optical splitter; 314b, fourth optical splitter; 315b, optical delay line; 321b, first mode spot converter; 322b, second mode spot converter; 323b, fifth mode spot converter; 400b, coherent receiving module; 410b, silicon optical chip; 421b, coupler; 422b, first balanced detector; 423b, polarization beam rotator; 430b, mixing unit; 440b, synthesis unit; 450b, third mode spot Converter; 460b, fourth mode spot converter.
  • a frequency modulated continuous wave lidar 1 including a frequency modulated light source 100, a transceiver module 200 and an optical chip module.
  • the frequency modulated light source 100 is used to emit laser beams.
  • the optical chip module is connected between the frequency modulation light source and the transceiver module, and includes a light splitting module and a coherent receiving module; the light splitting module is used to divide the received laser beam into at least one beam of detection light and at least one beam of local oscillator light.
  • the transceiver module 200 is used to receive the above-mentioned detection light, shape and collimate the detection light and control it to scan the target object.
  • the coherent receiving module is connected to the optical splitting module and the transceiver module respectively.
  • the coherent receiving module is used to receive the local oscillator light output by the optical splitting module and the echo signal output by the transceiver module, combine the local oscillator light and the echo signal and perform coherent frequency beating. , so that the signal obtained by beating frequency is further transmitted to the external signal processing module.
  • frequency modulated light source 100 please refer to FIG. 1, which is used to emit a laser beam, such as a frequency modulated continuous wave signal.
  • transceiver module 200 may include a light adjustment module for shaping (such as one or more of a light amplification module, an angle reduction module, a beam expansion module, etc.), a lens for collimation Module, circulator 220 and scanning module, etc., can also include optical modules, circulator 220 and scanning modules for shaping and collimation.
  • a light adjustment module for shaping such as one or more of a light amplification module, an angle reduction module, a beam expansion module, etc.
  • a lens for collimation Module circulator 220 and scanning module, etc.
  • circulator 220 and scanning module can also include optical modules, circulator 220 and scanning modules for shaping and collimation.
  • other forms can also be used, as long as the above functions can be achieved, and the specific use can be based on the needs. Flexible options.
  • the optical chip module includes a silicon optical chip 300 connected between the frequency modulated light source 100 and the transceiver module 200 .
  • the silicon photonic chip 300 includes a first waveguide layer 301 and a second waveguide layer 302 arranged in sequence.
  • the optical power that the first waveguide layer 301 can accommodate is greater than the optical power that the second waveguide layer 302 can accommodate, and two interlayer mode converters 303 are formed between the first waveguide layer 301 and the second waveguide layer 302 .
  • the first waveguide layer 301 includes the above-mentioned light splitting module
  • the second waveguide layer 302 includes the above-mentioned coherent receiving module.
  • the above-mentioned light splitting module includes a first light splitting unit, that is, the first light splitting unit is integrated on the first waveguide layer 301 .
  • the first light splitting unit is used to divide the received laser beam into at least one beam of detection light and at least one beam of local oscillator light, and the optical power of each beam of local oscillator light is less than or equal to 50 mW.
  • a coherent receiving module 330 is integrated on the second waveguide layer 302 .
  • the coherent receiving module 330 is in signal communication with the first spectroscopic unit through the inter-layer mode converter 303, and is connected to the output end of the transceiver module 200 for outputting the echo signal, for combining the local oscillator light and the echo signal and performing coherent beat frequency, and transmit the processed signal to an external signal processing module.
  • the first spectroscopic unit includes at least one spectrometer.
  • the number and connection structure of the spectrometer are determined according to the optical power of the final output local oscillator light and/or the amount of the detection light. For example, when the laser beam output by the frequency modulated light source 100 When the optical power is low, the optical power of the local oscillator light after the laser beam entering the silicon optical chip 300 passes through a spectrometer is less than or equal to 50mW. Then the first spectroscopic unit can only include one spectrometer.
  • the frequency modulated light source 100 When the frequency modulated light source 100 outputs When the optical power of the laser beam is high, and the optical power of the local oscillation light of the laser beam entering the silicon optical chip 300 is greater than 50mW after passing through a beam splitter, then the beam splitter can be continued to be added after the beam splitter until the beam splitter outputs If the power of the local oscillator is less than or equal to 50mW, stop adding optical splitters.
  • the silicon photonic chip 300 can be processed through mature semiconductor processing technology.
  • the first light splitting unit, the coherent receiving module 330 and the interlayer mode converter 303 can be manufactured through a CMOS process after the corresponding waveguide layer is formed.
  • the above-mentioned FM light source 100 and transceiver module 200 are not provided on the silicon photonic chip 300, but are discrete devices or modules. Other devices can be placed on the silicon photonic chip 300 in an integrated manner.
  • the interlayer mode converter 303 is used to realize optical transmission between the first waveguide layer 301 and the second waveguide layer 302. After the optical signal is split several times, the optical power no longer stimulates the two-photon absorption effect of the silicon waveguide, and the optical signal can be converted from the first waveguide layer 301 to the second waveguide layer 302 through the interlayer mode converter 303 . This is because the optical device of the second waveguide layer 302 can achieve smaller size, which is conducive to high integration of chips and systems.
  • the output end of the frequency modulated light source 100 is first connected to the input end of the first spectroscopic unit through the first waveguide layer 301, and then the frequency modulated light source 100 emits a laser beam to the first spectroscopic unit, and the laser beam enters the silicon optical chip 300.
  • the first light splitting unit splits the beam into at least one beam of detection light and at least one beam of local oscillator light, and the optical power of each local oscillator light is less than or equal to 50mW, and then the local oscillator light passes through the interlayer mode converter 303 enters the coherent receiving module 330; at the same time, the detection light output silicon optical chip 300 enters the transceiver module 200, and then is shaped and collimated by the transceiver module 200 to scan the target.
  • the echo signal reflected by the target object is then transmitted to the coherent receiving module 330 through the transceiver module 200, mixed with the local oscillator light in the coherent receiving module 330, and then coherently photographed through the balanced detection unit in the coherent receiving module 330.
  • the frequency is then output to the signal processing module located outside the silicon photonic chip 300 through the balanced detection unit. After analysis by the signal processing module, information such as the target distance and speed is obtained.
  • the frequency modulated continuous wave lidar provided by the embodiment of the present application has an optical chip module for connecting the frequency modulated light source 100 and the coherent receiving module 330.
  • the first waveguide layer 301 and the first waveguide layer 301 are formed in the optical chip module.
  • the first waveguide layer 301 has a higher tolerance to optical power than the second waveguide layer 302. Therefore, a suitable first light splitting unit can be made on the first waveguide layer 301 to realize the high-power frequency modulated light source 100.
  • the benefits brought by this connection with the coherent receiving module 330 in the optical chip module include but are not limited to: external discrete devices such as fiber optic splitters are no longer needed to complete the light splitting function, which can effectively improve system integration and reliability and reduce system costs.
  • the interlayer mode converter 303 can be used to conveniently transfer the optical signal of the first waveguide layer 301 to the second waveguide layer 302.
  • the second waveguide layer 302 can be a silicon waveguide layer, so it can be compatible with the original silicon waveguide layer.
  • the advantage of layer devices and because according to the current process, the silicon nitride layer and the silicon layer can be implemented on the same optical chip module, when the first waveguide layer 301 uses a silicon nitride waveguide layer, the second waveguide layer 302 uses a silicon waveguide
  • CMOS Complementary Metal Oxide Semiconductor, the abbreviation of complementary metal oxide semiconductor
  • the optical power of the local oscillator light separated by the first spectroscopic unit in the optical chip module can be less than or equal to 50mW, the two-photon absorption effect of the silicon layer under high power output can be solved.
  • the silicon photonic chip 300 includes a substrate layer 304, a buried oxide layer 305, a second waveguide layer 302, an oxide layer 306, a first waveguide layer 301 and an upper cladding layer arranged in sequence. 307.
  • the buried oxide layer 305, the second waveguide layer 302, the oxide layer 306, the first waveguide layer 301 and the upper cladding layer 307 are formed layer by layer through epitaxial growth technology. It should be noted that the lengths of the first waveguide layer 301 and the second waveguide layer 302 are set as needed, and are generally smaller than the length of the substrate layer 304.
  • the oxide layer 306 and the buried oxide layer 305 is connected; in the area beyond the coverage of the first waveguide layer 301, the upper cladding layer 307 is connected to the oxide layer 306.
  • the first waveguide layer 301 is a silicon nitride waveguide layer
  • the second waveguide layer 302 is a silicon waveguide layer.
  • the silicon waveguide layer is not suitable for transmitting particularly high-power optical signals, but its thermo-optical coefficient is high, which is beneficial to reducing the power consumption of the devices on it.
  • the silicon nitride waveguide can accommodate large optical power, it uses silicon nitride Chips made of waveguides consume more power.
  • the frequency modulated continuous wave lidar provided in this embodiment uses two waveguides with different materials to make two waveguide layers. Then, it avoids the shortcomings of each waveguide layer and makes full use of its excellent characteristics to integrate each device in the silicon photonic chip 300. It is prepared on a more suitable waveguide layer, thereby reducing the process requirements for device fabrication.
  • the silicon nitride waveguide layer is generally above the silicon waveguide layer.
  • the output end of the first waveguide layer 301 and the input end of the second waveguide layer 302 are stacked. This makes the interlayer mode converter 303800 the smallest in size, and the entire silicon photonic chip 300 has a compact structure, which meets its manufacturing requirements.
  • one situation is that the two waveguide layers are close to each other, and in this case the vertical spacing between the two waveguide layers is close to each other.
  • the spacing is in the range of greater than 50nm and less than 400nm; in another case, the two waveguide layers are far apart, in which case the vertical spacing between the two is in the range of greater than 1 ⁇ m and less than 4 ⁇ m.
  • the structure of the inter-layer mode converter 303 will also be changed accordingly.
  • the inter-layer mode converter 303 can be any inter-layer mode converter 303 that can realize evanescent wave coupling, and there is no unique limitation here.
  • the portions of the first waveguide layer 301 and the second waveguide layer 302 located within the interlayer mode converter 303 are both tapered.
  • the interlayer mode converter 303 is a tapered waveguide mode converter.
  • the mode effective refractive index of light in the second waveguide layer 302 decreases as the width decreases, while the mode effective refractive index in the first waveguide layer 301 increases as the width increases, so as long as the two tapered waveguide modes are reasonably designed
  • the width on both sides of the converter can make the mode effective refractive index in the first waveguide layer 301 equal to the mode effective refractive index of the second waveguide layer 302 at a certain position, then as long as the cone If the length of the waveguide mode converter is long enough, the light can be slowly converted from the first waveguide layer 301 to the second waveguide layer 302. The entire conversion process is stable and the technology is mature.
  • the first waveguide layer 301 and the second waveguide layer 302 are relatively far apart.
  • the first waveguide layer 301 and the second waveguide layer 302 are far apart. It is said that there will be a relatively thick oxide layer 306 between the two layers.
  • the light in the first waveguide layer 301 will not undergo evanescent wave coupling with the light in the second waveguide layer 302. This is achieved by using two layers of gratings. Specifically, grating structures are formed on portions of the first waveguide layer 301 and the second waveguide layer 302 located within the interlayer mode converter 303 . The optical signals in the two waveguide layers can be converted between layers through the grating structure.
  • the above grating structure can be fabricated on the corresponding waveguide layer using an etching process.
  • the arrangement of the grating structure destroys the original waveguide structure, allowing light to be emitted or received in a certain direction.
  • the upward or downward emission angle ⁇ of the grating structure can be changed by changing its grating period and duty cycle.
  • the angle ⁇ received by the grating structure from below or from above can be changed by changing the grating period and duty cycle of the grating structure.
  • the above angle ⁇ can be calculated by simulation software before preparing the grating structure.
  • the local oscillator light output by the first spectroscopic unit can enter the grating structure on the second waveguide layer 302 through the grating structure on the first waveguide layer 301 to enter the coherent receiving module 330, and then pass through the second waveguide layer 302 for coherent reception. It is propagated in the module 330 and finally output to the external signal processing module for subsequent processing.
  • the above-mentioned grating structure is arranged in a fan shape to achieve a wide range of signal reception and transmission, ensuring that no signal loss occurs when the optical signal is converted from the first waveguide layer 301 to the second waveguide layer 302, or that the signal loss is reduced to a minimum state.
  • the light emission angle or light reception angle of the grating structure is 0-90°.
  • the specific angle can be determined according to the materials and manufacturing processes of the first waveguide layer 301, the second waveguide layer 302 and the corresponding interlayer mode converter 303, and is not uniquely limited here.
  • the light exit angle or light reception angle of the grating structure is 0-60°. Using this angle range, the range of optional materials is wider.
  • the optical power of the local oscillator light separated by the first spectroscopic unit in the silicon optical chip 300 needs to be less than or equal to 50 mW.
  • the optical power of the laser beams emitted by different frequency modulated light sources 100 has large differences. There are many ways to implement the first light splitting unit.
  • the first implementation method :
  • the optical power of the laser beam emitted by the frequency modulated light source 100 is small. At this time, there is only one optical splitter in the first spectroscopic unit, and the optical power of the local oscillator light can meet the requirements and can be transmitted in the silicon layer. Specifically, please refer to FIG. 1 .
  • the first spectroscopic unit includes a first spectrometer 311 .
  • the input end of the first spectrometer 311 is connected to the output end of the FM light source 100 .
  • the first output end of the first spectrometer 311 is connected to the output end of the FM light source 100 .
  • the input end of the transceiver module 200 is connected to output the detection light
  • the second output end of the first optical splitter 311 is connected to the corresponding input end of the coherent receiving module 330 through the inter-layer mode converter 303 to output the local oscillator light.
  • the first optical splitter 311 has one input end and two output ends, and the splitting ratio is generally between 10:90 and 50:50.
  • the specific splitting ratio can be flexibly selected according to the needs of use, and is not uniquely limited here.
  • the first light splitting unit adopts this structure, which is simple in structure and easy to assemble.
  • the optical power of the laser beam emitted by the frequency modulated light source 100 is relatively large. After being split by a spectrometer, the optical power of the local oscillator light is greater than 50 mW. At this time, if the local oscillator light is directly input into the coherent receiving module 330, the silicon may be excited. Two-photon absorption effect of the layer. In order to avoid the above situation from happening, in an optional embodiment, please refer to FIG. 6 and FIG.
  • the first spectroscopic unit includes a first spectroscope 311 and a second spectroscope unit, and the input end of the first spectroscope 311 is connected to The output end of the frequency modulated light source 100 is connected, the first output end of the first optical splitter 311 is connected to the input end of the transceiver module 200 for outputting detection light, and the second output end of the first optical splitter 311 is connected to the input of the second optical splitting unit.
  • the output end of the second spectroscopic unit is connected to the corresponding input end of the coherent receiving module 330 through the inter-layer mode converter 303 .
  • the structure of the first optical splitter 311 in this embodiment is the same as that of the first optical splitter 311 in the first form, and the splitting ratio is also between 10:90 and 50:50, which can be selected flexibly according to the needs of use.
  • the second optical splitting unit in this embodiment may include one or more optical splitters, which may be determined based on whether the optical power of the split local oscillator light meets the requirements. The specific manifestations are as follows:
  • the local oscillator light separated by the above-mentioned first optical splitter 311 then passes through another optical splitter, and any output local oscillator light can meet the preset requirements (optical power is less than or equal to 50mW).
  • the second optical splitter unit includes a second optical splitter 312.
  • the input end of the second optical splitter 312 is connected to the second output end of the first optical splitter 311.
  • the two output ends of the second optical splitter 312 pass through the interlayer mode converter 303 respectively. It is connected to the input end of the coherent receiving module 330 and is used for dividing the local oscillator light output by the first optical splitter 311 into multiple beams and outputting them to the coherent receiving module 330 .
  • the second optical splitter 312 has two output ends, and the splitting ratio is generally between 1:99 and 50:50.
  • the specific splitting ratio can be flexibly selected according to the needs of use, and is not limited here.
  • the second light splitting unit adopts this structure, which is simple in structure and easy to assemble.
  • the second optical splitter 312 Since the second optical splitter 312 is divided into two branches, one branch is used to transmit local oscillator light to the detection optical path in the receiving module, and the other branch is used to transmit local oscillator light to the nonlinear calibration optical path in the receiving module. .
  • the optical signal power required by the nonlinear calibration optical path is very small. Therefore, in practice, the second optical splitter 312 will split most of the light into the detection optical path in the receiving module as a local oscillator optical signal for subsequent coherent detection.
  • the second light splitting unit can adopt the following form.
  • the second spectroscopic unit includes a second spectrometer 312 and a third spectrometer 313 arranged sequentially along the local oscillator light transmission direction.
  • the input end of the second spectroscope 312 is connected to the second spectrometer of the first spectroscope 311 .
  • the output end is connected.
  • the first output end of the second optical splitter 312 is connected to the input end of the detection optical path in the coherent receiving module 330 through the interlayer mode converter 303.
  • the second output end of the second optical splitter 312 is connected to the third optical splitter 313.
  • the input terminals are connected, and the two output terminals of the third optical splitter 313 are respectively connected to the corresponding input terminals of the coherent receiving module 330 through the inter-layer mode converter 303.
  • the third spectrometer 313 in this embodiment can be one spectrometer or an assembly of multiple spectrometers, and the details can be determined according to the spectroscopic effect, which is not uniquely limited here.
  • the third optical splitter 313 in the above embodiments has two output ends, and the splitting ratios of the two are 50:50 respectively. Adopting this structure facilitates subsequent signal analysis.
  • a first mode spot conversion unit is also integrated on the first waveguide layer 301 , and the first mode spot conversion unit is used to convert light from external devices of the silicon photonic chip 300 to The light of the first light splitting unit is subjected to mode field matching to reduce mode mismatch loss.
  • the first mode spot conversion unit has multiple mode spot converters, and the number of mode spot converters is consistent with the number of connection ports between the silicon photonic chip 300 and external devices.
  • the connection port mentioned here refers to the port used to propagate light.
  • the first mode spot conversion unit includes a first mode spot converter 321 and a third mode spot converter 323 .
  • the first mode spot converter 321 is connected between the frequency modulated light source 100 and the first spectroscopic unit, and is used for mode field matching between the frequency modulated light source 100 and the first spectroscopic unit. Specifically, the input end of the first mode spot converter 321 is connected to the output end of the FM light source 100, and the output end is connected to the input end of the first light splitting unit.
  • the arrangement of the first mode spot converter 321 can reduce the mode mismatch loss in the process of transmitting the light emitted by the frequency modulated light source 100 to the first spectroscopic unit, and at the same time reduce the additional loss caused by the two-photon absorption of the silicon layer. Therefore, the first mode spot converter 321 can be implemented in the first waveguide layer 301.
  • the first waveguide layer 301 can support higher optical power transmission, so even if the output optical power of the external FM light source 100 is as high as 100 milliwatts, it can enter the silicon photonic chip 300 through the first mode spot converter 321.
  • the third mode spot converter 323 is connected between the output end of the first spectroscopic unit for outputting detection light and the input end of the transceiver module 200, and is used to conduct mode field conversion between the corresponding ends of the first spectroscopic unit and the transceiver module 200. Matching to conduct the detection light output by the first spectroscopic unit to the transceiver module 200 .
  • the input end of the third mode spot converter 323 is connected to the output end of the first spectroscopic unit for outputting detection light, and the output end is connected to the input end of the transceiver module 200 .
  • the models of the first mode spot converter 321 and the third mode spot converter 323 can be flexibly selected according to the mode spot size of the devices at both ends of each mode spot converter, and are not uniquely limited here.
  • the first mode spot converter 321 and the third mode spot converter 323 are both prepared on the first waveguide layer 301, the first waveguide layer 301 can tolerate higher optical power. Therefore, compared with preparing the mode on the silicon layer, The spot converters, the first mode spot converter 321 and the third mode spot converter 323 provided in this embodiment, have advantages in terms of process tolerance and alignment tolerance.
  • the first mode spot conversion unit adopts this structure so that devices inside and outside the silicon photonic chip 300 can be flexibly selected without being limited by each other's mode spot sizes, which facilitates design.
  • the transceiver module 200 includes an optical amplification unit 210 , a circulator 220 and a scanning unit 230 connected in sequence.
  • the optical amplification unit 210 is connected to the silicon optical chip 300 for receiving. and amplify the detection light, circulator 220 and
  • the scanning unit 230 is used to cooperate to control the amplified detection light to scan the target object, and is also used to cooperate to receive the echo signal reflected back from the target object, and transmit the echo signal to the coherent receiving module 330 .
  • the optical amplification unit 210 in this embodiment can be any one or a combination of rare earth-doped fiber amplifiers, semiconductor optical amplifiers, and Raman amplifiers, and is mainly used to gain the detection light and output optical signals with higher optical power.
  • the scanning unit 230 in this embodiment may include one or more beam scanning modules. Each beam scanning module may be any one of galvanometers, rotating mirrors, MEMS micro-galvanometers, etc., or may be any of the above methods. The combination is mainly used to realize the shaping, collimation and scanning of the detection light.
  • the circulator 220 in this embodiment is used to allow the amplified laser beam to pass through, and is also used to deflect the received echo beam and emit it toward the coherent receiving module 330 .
  • the detection light is input through the first port of the circulator 220, and then output through the second port of the circulator 220.
  • the light beam can be output from the free space through the scanning unit 230, and emitted to the target object, and then the target object
  • the echo signal reflected by the object can return to the original path through the scanning unit 230, enter through the second port of the circulator 220, and be output to the coherent receiving module 330 through the third port of the circulator 220.
  • the transceiver module 200 adopts this structure, which is simple in structure, easy to assemble and maintain, and has stable working performance.
  • one or more scanning units 230 may be provided.
  • multiple scanning units 230 may be used in order to increase the scanning angle range of the lidar.
  • the number of circulators 220 also needs to be changed accordingly. That is, there are multiple circulators 220 and scanning units 230 respectively, and they are connected in a one-to-one correspondence.
  • the number of circulators 220 and scanning units 230 can be flexibly selected according to usage requirements to meet different ranges of scanning requirements.
  • the coherent receiving module 330 includes a detection optical path.
  • the detection light path includes a third light splitting unit, a mixing unit 334 and a combining unit 335 formed on the second waveguide layer 302 in sequence.
  • the third light splitting unit is used to receive echo signals and/or local light of any polarization mode, and decompose the received light beam into multiple sub-beams with determined polarization.
  • the sub-beam corresponding to the echo signal is called sub-signal light
  • the sub-beam corresponding to the local oscillator light is called the first sub-local oscillator light.
  • the third light splitting unit may include one or more beam splitters, and may also include one or more polarization beam rotators 333, which may be selected according to usage requirements.
  • the polarization beam splitter rotator 333 is generally used to split the echo signal into multiple sub-signal lights; when the local oscillator light needs to be split, an ordinary beam splitter is generally used. That is, the local oscillator light can be divided into multiple first sub-local oscillator lights.
  • the echo If either the signal or the local oscillator light has been split outside the coherent receiving module 330, there is no need to set up a splitting structure of the corresponding light beam in the coherent receiving module 330. Regardless of the setting, as long as the number of the final sub-signal light and the first sub-local oscillator light is the same, a one-to-one correspondence can be achieved to meet the needs of subsequent signal analysis.
  • the mixing unit 334 is used to mix the sub-signal light and the first sub-local oscillator light to obtain multiple beams of mixed light.
  • the mixing unit 334 includes at least two optical mixers, and the number of optical mixers may be determined according to the number of sub-signal lights or first sub-local oscillator lights.
  • the synthesis unit 335 is used to photoelectrically convert multiple mixed beams of light to obtain and output multiple coherent electrical signals.
  • the synthesis unit 335 includes at least two balanced detectors, each of which is connected to the optical mixer in the above-mentioned mixing unit 334 in a one-to-one correspondence to receive the mixed light and process the mixed light to form The corresponding coherent electrical signal can then be output to an external signal processing device for further processing.
  • the coherent receiving module 330 adopts the structure provided by this embodiment, which has a simple and stable structure and is easy to design.
  • the coherent receiving module 330 also includes a nonlinear calibration light path.
  • the nonlinear calibration optical path includes a fourth light splitting unit, a coupler 331 and a first balanced detector 332 sequentially formed on the second waveguide layer 302 along the propagation direction of the local oscillator light.
  • the fourth light splitting unit is used to receive the local oscillator light and convert the local oscillator light.
  • the oscillated light is divided into two second sub-local oscillator lights, and the delays of the two second sub-local oscillator lights are made different.
  • the coupler 331 is used to mix the two second sub-local oscillator lights with different delays.
  • the first The balanced detector 332 is used to receive the mixed light output from the coupler 331 and perform balanced detection.
  • the coupler 331 in this embodiment is generally a 3dB coupler, and other couplers that can achieve the above functions can also be used.
  • the output signal of the first balance detector 332 can be further processed to serve as a basis for calibration of the frequency modulated light source 100 .
  • the frequency modulated light source 100 can be calibrated in real time, so that the operator can find problems in time and adjust them, thereby ensuring the accuracy of the detection results.
  • the coherent receiving module 330 further includes a waveguide formed on the second waveguide layer 302 .
  • the second mode spot conversion unit is used to match the mode field between the light of the corresponding device in the transceiver module 200 and the light of the corresponding device in the coherent receiving module 330 to reduce mode mismatch loss.
  • the second mode spot conversion unit includes a second mode spot converter 322 .
  • the second mode spot converter 322 is connected to the output end of the echo signal in the transceiver module 200 in a one-to-one correspondence to reduce the mode field mismatch loss in this part. Since this part of the optical signal is generally weak and cannot easily stimulate the two-photon absorption effect of the silicon layer, it can be implemented on the second waveguide layer 302 . If implemented on the first waveguide layer 301, an additional subsequent inter-layer mode converter 303 is required, causing additional mode conversion loss, which is not recommended.
  • the coherent receiving module 330 adopts the structure provided by this embodiment, which can realize stable transmission of echo signals, and can make the devices inside and outside the silicon optical chip 300 except the mode spot converter not affected by the mode spot size of other devices during design. influence, thereby facilitating design.
  • the mode spot converter in each of the above embodiments can be any one of a tapered waveguide, a cantilever waveguide, a multi-layer waveguide and other structures, which can be selected flexibly according to the needs of use.
  • the echo signal and the spectroscopic structure required for the local oscillator light into the silicon photonic chip 300, so that a consistent number of sub-devices need to be formed after passing through the first spectroscopic unit and the third spectroscopic unit.
  • the specific structure of the third spectroscopic unit will be described by taking the coherent receiving module 330 including the above-mentioned detection optical path, the above-mentioned nonlinear calibration optical path and the above-mentioned second mode spot conversion unit as an example.
  • the first light splitting unit adopts the first implementation manner, that is, when the first light splitting unit includes the above-mentioned first light splitter 311, the third light splitting unit includes the polarization beam rotator 333, and the above-mentioned second light splitting unit.
  • the second optical splitter 312 is connected to the output end of the first optical splitter 311 for outputting local oscillator light through the third mode spot converter 323 and the second mode spot converter 322; the third optical splitter 313 and the fourth optical splitter 314 are respectively connected to the two output ends of the second optical splitter 312.
  • the third optical splitter 313 decomposes the local oscillator light into a plurality of first sub-local oscillator lights.
  • One of the output ends of the fourth optical splitter 314 is directly connected to the coupler 331. connection, the other output end is connected to the coupler 331 through the optical delay line 315; the polarization split beam rotator 333 is connected to the circulator 220 through the fourth mode spot converter, and is used to divide the echo signal into two sub-signal lights, and The two sub-signal lights are transmitted to the corresponding optical mixer in one-to-one correspondence.
  • the fourth optical splitter 314 is used to split the output light from the second optical splitter 312 into two beams of light according to a certain splitting ratio. One beam of light enters the optical delay line 315, and the other beam of light is directly connected to the coupler 331. .
  • the optical delay line 315 is used to generate a delay for the optical signal, and its output end is connected to the coupler 331.
  • the first spectroscopic unit adopts the first situation in the second implementation manner, that is, the first spectroscopic unit includes a first spectroscope 311 and a second spectroscope 312 , then the third spectroscope unit It includes a polarization beam rotator 333, and the above-mentioned third beam splitter 313 and fourth beam splitter 314.
  • the third light splitting unit includes a polarization beam rotator 333 and the above-mentioned fourth light splitter 314 .
  • the fourth optical splitter 314 is used to split the output light from the second optical splitter 312 into two beams of light according to a certain splitting ratio.
  • One beam of light enters the optical delay line 315, and the other beam of light is directly connected to the coupler 331.
  • the optical delay line 315 is used to generate a delay for the optical signal, and its output end is connected to the coupler 331.
  • the fourth optical splitter in each of the above embodiments has two output ends, and the splitting ratios of the two are 50:50 respectively. Adopting this structure facilitates subsequent signal analysis.
  • the polarization beam rotator is connected to the circulator in a one-to-one correspondence through the fourth mode spot converter.
  • Each polarization beam rotator is used to divide the echo signal of any polarization into two beams of sub-signal light with determined polarization. Its output is connected to the input ends of two optical mixers as signal light input. And the polarization state of the light output by each polarization beam splitter is the same as the polarization state of the light output by the corresponding third beam splitter.
  • the frequency modulated continuous wave lidar includes a frequency modulated light source 100, an optical amplifier, a circulator 220, an interlayer mode converter 303, N scanning units 230, and N circulators 220. , 2N optical mixers, 1 first mode spot converter 321, N second mode spot converters 322, 1 third mode spot converter 323, 2N+1 balanced detectors, N polarization splitters Beam rotator 333, 1 first optical splitter 311, 1 second optical splitter 312, 1 third optical splitter 313 and 1 fourth optical splitter 314, where the optical amplifier has N output ports, and the third optical splitter 313 is 2N output ports.
  • the third ports of the N circulators 220 are connected to the N polarization beam rotators 333 through the second mode spot converters 322 .
  • the interlayer mode converter 303 is located between the first optical splitter 311 and the second optical splitter 312 .
  • the interlayer mode converter 303 in the above-mentioned FM Continuous Wave Lidar It can also be placed between the second optical splitter 312 and the third optical splitter 313, and the second optical splitter 312 and the fourth optical splitter 314.
  • the optical delay line 315 in the above embodiments can be fabricated on the first waveguide layer 301 . Then, the interlayer mode converter 303 can be added between the optical delay line 315 and the 3dB coupler, and the interlayer mode converter 303 can be added between the fourth optical splitter 314 and the 3dB coupler.
  • the optical chip module may also include a relatively separated light splitting chip (ie, light splitting module) and a coherent receiving chip (ie, coherent receiving module).
  • FIG. 11 to 16 illustrate a frequency modulated continuous wave laser radar 1b provided by other embodiments of the present application, which includes a frequency modulated light source 100b, a transceiver module 200b and an optical chip module, and the above frequency modulated continuous wave laser
  • the optical chip module includes a PLC chip 300b and a silicon optical chip 400b.
  • the PLC chip 300b includes a light splitting module
  • the silicon optical chip 400b includes a coherent receiving module.
  • the frequency modulated light source 100b is used to emit a laser beam.
  • the laser beam is a frequency modulated continuous wave signal.
  • the PLC chip 300b is connected between the frequency modulated light source 100b and the transceiver module 200b.
  • the PLC chip 300b includes a light splitting module, which includes a first light splitting unit.
  • the first spectroscopic unit is used to divide the received laser beam into detection light and at least one local oscillator light.
  • the optical power of each local oscillator light is less than or equal to 50mW.
  • the PLC chip 300b also includes a first mode spot conversion unit, which is used to perform mode field matching between the light of the external device of the PLC chip 300b and the light of the internal device of the PLC chip 300b; that is, the PLC chip 300b integrates a first light splitting unit and a first mode spot conversion unit.
  • the first spectroscopic unit includes at least one spectrometer.
  • the number and connection structure of the spectrometer are determined according to the optical power of the final output local oscillator light and/or the amount of detection light, such as when the laser beam output by the frequency modulated light source 100b When the optical power is low, the optical power of the local oscillator light after the laser beam entering the PLC chip 300b passes through a spectrometer is less than or equal to 50mW. Then the first spectroscopic unit can only include one spectrometer.
  • the beam splitter can be continued to be added after the beam splitter until the local oscillator output by the beam splitter is When the light power is less than or equal to 50mW, stop adding optical splitters.
  • the first mode spot conversion unit has a plurality of mode spot converters, and the number of mode spot converters is consistent with the number of connection ports between the PLC chip 300b and external devices.
  • the connection port mentioned here refers to the port used to propagate light.
  • the transceiver module 200b is used to receive the detection light output by the PLC chip 300b, shape and collimate the detection light and control it to scan the target object. It is also used to receive the echo signal reflected by the target object, and send the echo signal to the target object. Transported to silicon photonic chip 400b.
  • the transceiver module 200b may include a light adjustment module for shaping (such as one or more of a light amplification module, an angle reduction module, a beam expansion module, etc.), a lens module for collimation, a circulator, and a scanning module. etc. It can also include optical modules, circulators and scanning modules for shaping and collimation. Of course, other forms can also be used, as long as the above functions can be achieved, and the specific selection can be flexibly based on the needs of use.
  • a light adjustment module for shaping such as one or more of a light amplification module, an angle reduction module, a beam expansion module, etc.
  • a lens module for collimation such as one or more of a light amplification module, an angle reduction module, a beam expansion module, etc.
  • a lens module for collimation such as one or more of a light amplification module, an angle reduction module, a beam expansion module, etc.
  • a lens module for collimation such as one or more of a light
  • the silicon photonic chip 400b is connected to the PLC chip 300b and the transceiver module 200b respectively.
  • the coherent receiving module in the coherent receiving module 400b is used to receive the local oscillator light output by the PLC chip 300b and the echo signal output by the transceiver module 200b, combine the local oscillator light and the echo signal and perform coherent beating, and finally convert the signal transmitted to the external signal processing module.
  • the above-mentioned FM light source 100b and transceiver module 200b are not provided on the chip, but are discrete devices or modules. Wherein, the output end of the frequency modulated light source 100b is connected to the input end of the first mode spot conversion unit in the PLC chip 300b.
  • the frequency modulated light source 100b emits a laser beam.
  • the laser beam enters the first spectroscopic unit through at least one mode spot converter in the first speckle conversion unit, and is split into at least one detection light and at least one detection light through the first spectrometry unit.
  • a beam of local oscillator light, and the optical power of each beam of local oscillator light is less than or equal to 50mW, and then the local oscillator light is output through the corresponding mode spot converter in the first mode spot conversion unit and enters the silicon photonic chip 400b; at the same time, the detection The light is output through the corresponding mode spot converter in the first mode spot conversion unit and enters the transceiver module 200b, and then is shaped and collimated by the transceiver module 200b to scan the target object.
  • the echo signal reflected by the target object is then transmitted to the silicon optical chip 400b through the transceiver module 200b, and mixed with the local oscillator light in the coherent receiving module, and then coherently beats through the balanced detection unit in the coherent receiving module. Then it is output to the position through the balanced detection unit In the signal processing module outside the silicon photonic chip 400b, information such as target distance and speed is obtained through analysis by the signal processing module.
  • the frequency modulated continuous wave lidar includes a PLC chip 300b and a silicon photonic chip 400b.
  • the PLC chip 300b can use a large-section silicon nitride waveguide, which has a higher tolerance for optical power, so it can be used on the PLC chip 300b.
  • the appropriate optical splitter structure and mode spot converter structure are made above to serve as the connection chip between the high-power FM laser and the silicon optical chip 400b; the silicon optical chip 400b is used to receive the local oscillator optical signal and the echo signal, thereby making the two The person performs coherent beat frequency.
  • the benefits brought by this include but are not limited to: external discrete devices such as fiber optic splitters are no longer needed to complete the light splitting function, which can effectively improve system integration and reliability, reduce system volume and cost; in addition, it is similar to making pattern spots on silicon chips.
  • the PLC chip 300b provided by the embodiment of the present application has more advantages in terms of process tolerance and alignment tolerance; the PLC chip 300b can integrate a variety of passive components such as a beam splitter, a mode spot converter, and an optical delay line 315b. device, and the use of PLC waveguide can realize longer optical delay line 315b and reduce loss.
  • the optical power of the local oscillator light separated by the first spectroscopic unit in the PLC chip 300b is less than or equal to 50 mW, the two-photon absorption effect of the silicon layer under high power output conditions can be solved.
  • the PLC chip 300b in this embodiment can support higher optical power transmission, so even if the output optical power of the external frequency modulated light source 100b is as high as 100b milliwatts, it can enter the PLC chip 300b through the first mode spot conversion unit, making this
  • the frequency modulated continuous wave lidar provided by the embodiment has a wider application range.
  • the optical power of the local oscillator light separated by the first spectroscopic unit in the PLC chip 300b needs to be less than or equal to 50mW, but the optical power of the laser beam emitted by different frequency modulated light sources 100b varies greatly. is small, so there are many ways to implement the first light splitting unit.
  • the first implementation method :
  • the optical power of the laser beam emitted by the frequency modulated light source 100b is small. At this time, there is only one optical splitter in the first spectroscopic unit, and the optical power of the local oscillator light can meet the requirements and can be transmitted in the silicon layer. Specifically, please refer to Figure 11.
  • the first spectroscopic unit includes a first spectrometer 311b. The input end of the first spectrometer 311b is connected to the output end of the frequency modulation light source 100b through the first mode spot conversion unit.
  • the first spectrometer 311b The first output end of 311b is connected to the input end of the transceiver module 200b through the first mode spot conversion unit for outputting detection light, and the second output end of the first spectrometer 311b is connected to the coherent receiving module through the first mode spot conversion unit.
  • the corresponding input terminal is connected to output the local oscillator light.
  • the first optical splitter 311b has one input end and two output ends, and the splitting ratio is generally between 10:90 and 50:50.
  • the specific splitting ratio can be flexibly selected according to the needs of use, and is not uniquely limited here.
  • the first light splitting unit adopts this structure, which is simple in structure and easy to assemble.
  • the optical power of the laser beam emitted by the frequency modulated light source 100b is relatively large. After being split by a spectrometer, the optical power of the local oscillator light is greater than 50mW. At this time, if the local oscillator light is directly input into the coherent receiving module, the silicon layer may be excited. The two-photon absorption effect. In order to avoid the above situation, in an optional embodiment, please refer to Figures 12 to 15.
  • the first light splitting unit includes a first light splitter 311b and a second light splitting unit. The input end of the first light splitter 311b passes through The first mode spot conversion unit is connected to the output end of the frequency modulated light source 100b.
  • the first output end of the first spectrometer 311b is connected to the input end of the transceiver module 200b through the first mode spot conversion unit for outputting detection light.
  • the first spectrometer The second output end of the detector 311b is connected to the input end of the second spectroscopic unit for outputting local oscillator light.
  • the output end of the second spectroscopic unit is connected to the corresponding input end of the coherent receiving module through the first mode spot conversion unit.
  • the structure of the first optical splitter 311b in this embodiment is the same as that of the first optical splitter 311b in the first form, and the splitting ratio is also between 10:90 and 50:50, which can be selected flexibly according to the needs of use.
  • the second optical splitting unit in this embodiment may include one or more optical splitters, which may be determined based on whether the optical power of the split local oscillator light meets the requirements. The specific manifestations are as follows:
  • the local oscillator light separated by the first optical splitter 311b is then passed through another optical splitter, and any output local oscillator light can meet the preset requirements (optical power is less than or equal to 50mW).
  • the second optical splitter unit includes a second optical splitter 312b.
  • the input end of the second optical splitter 312b is connected to the second output end of the first optical splitter 311b.
  • the two output ends of the second optical splitter 312b pass through the first mode spot conversion unit respectively.
  • the corresponding mode spot converter in is connected to the input end of the coherent receiving module, and is used to divide the local oscillator light output by the first optical splitter 311b into multiple beams and output them to the coherent receiving module.
  • the second optical splitter 312b has two output terminals, and the splitting ratio is generally between 1:99 and 50:50. It can be selected flexibly according to the needs of use, and is not limited here.
  • the second light splitting unit adopts this structure, which is simple in structure and easy to assemble.
  • the second optical splitter 312b is divided into two branches, one of the branches is used to transmit the current to the detection optical path in the receiving module 400b. Oscillation light, the other branch is used to deliver local oscillation light to the nonlinear calibration optical path in the receiving module 400b.
  • the optical signal power required by the nonlinear calibration optical path is very small, so in practice, the second optical splitter will split most of the light into the detection optical path in the receiving module 400b as a local oscillator optical signal for subsequent coherent detection.
  • the second spectroscopic unit can adopt the following form.
  • the second spectroscopic unit includes a second spectrometer 312b and a third spectrometer 313b arranged sequentially along the local oscillator light transmission direction.
  • the input end of the second spectroscope 312b is connected to the second spectrometer of the first spectrometer 311b.
  • the output end is connected.
  • the first output end of the second optical splitter 312b is connected to the input end of the detection optical path in the coherent receiving module through the first mode spot conversion unit.
  • the second output end of the second optical splitter 312b is connected to the input end of the third optical splitter 313b.
  • the input terminals are connected, and the two output terminals of the third optical splitter 313b are respectively connected to the corresponding input terminals of the coherent receiving module through the first mode spot conversion unit.
  • the third spectrometer 313b in this embodiment can be one spectrometer or an assembly of multiple spectrometers, and the details can be determined according to the spectroscopic effect, which is not uniquely limited here.
  • the output end of the second optical splitter 312b is used to transmit local oscillator light to the nonlinear calibration optical path in the coherent receiving module.
  • the second spectroscopic unit includes A second optical splitter 312b and a fourth optical splitter 314b are arranged sequentially along the local oscillator light transmission direction.
  • the input end of the second optical splitter 312b is connected to the second output end of the first optical splitter 311b.
  • the first optical splitter 314b of the second optical splitter 312b The output end is connected to the corresponding input end of the coherent receiving module through the first mode spot conversion unit, the second output end of the second optical splitter 312b is connected to the input end of the fourth optical splitter 314b, and the first output end of the fourth optical splitter 314b
  • the first mode spot conversion unit is connected to the corresponding input end of the coherent receiving module, and the second output end is connected to the input end of the nonlinear calibration optical path in the coherent receiving module through the sequentially connected optical delay line 315b and the first mode spot conversion unit.
  • the fourth spectrometer 314b can be one spectrometer or a combination of multiple spectrometers, and the details can be determined according to the spectroscopic effect, which is not uniquely limited here.
  • the second optical splitter unit may include a second optical splitter 312b, a third optical splitter 313b and The input end of the fourth optical splitter 314b and the second optical splitter 312b are connected to the second output end of the first optical splitter 311b.
  • the first output end of the second optical splitter 312b is connected to the input end of the third optical splitter 313b.
  • the output end is connected to the input end of the fourth optical splitter 314b.
  • the two output ends of the third optical splitter 313b are respectively connected to the input end of the detection optical path in the coherent receiving module through the first mode spot conversion unit.
  • An output end is connected to the corresponding input end of the coherent receiving module through the first mode spot conversion unit, and the second output end is connected to the input of the nonlinear calibration optical path in the coherent receiving module through the optical delay line 315b and the first mode spot conversion unit in sequence. end connection.
  • the above-mentioned third spectrometer 313b and the fourth spectrometer 314b can be one spectrometer or an assembly of multiple spectrometers respectively.
  • the details can be determined according to the spectroscopic effect, which is not uniquely limited here.
  • the third optical splitter 313b and the fourth optical splitter 314b in the above embodiments respectively have two output ends, and the splitting ratios of the two are 50:50 respectively. Adopting this structure facilitates subsequent signal analysis.
  • the first mode spot conversion unit includes a first mode spot converter 321b, a second mode spot converter 322b, and a fifth mode spot converter 323b.
  • the first mode spot converter 321b is connected between the frequency modulated light source 100b and the first spectroscopic unit, and is used to perform mode field matching between the frequency modulated light source 100b and the first spectroscopic unit, so as to conduct the light emitted by the frequency modulated light source 100b to the first spectroscopic unit. In the process, the mode mismatch loss is reduced. Specifically, the input end of the first mode spot converter 321b is connected to the output end of the frequency modulated light source 100b, and the output end is connected to the input end of the first light splitting unit.
  • the second mode spot converter 322b is connected in a one-to-one correspondence between the output end of the first spectroscopic unit for outputting local oscillator light and the corresponding input end of the coherent receiving module, and is used to connect the first spectroscopic unit and the coherent receiving module. Mode field matching is performed at the corresponding end to reduce mode mismatch loss in the process of transmitting the local oscillator light output from the first spectroscopic unit to the coherent receiving module.
  • the second mode spot converter 322b, the output end of the first spectroscopic unit for outputting local oscillator light, and the input end of the coherent receiving module for receiving local oscillator light are arranged in one-to-one correspondence.
  • the input end of each second mode spot converter 322b is connected to one of the output ends of the first spectroscopic unit for outputting local oscillator light, and the output end is connected to one of the input ends of the coherent receiving module.
  • the fifth mode spot converter 323b is connected between the output end of the first spectroscopic unit for outputting the detection light and the input end of the transceiver module 200b, and is used to perform mode field operation on the corresponding ends of the first spectroscopic unit and the transceiver module 200b. matched to the detection of the first spectroscopic unit output In the process of transmitting light to the transceiver module 200b, the mode mismatch loss is reduced.
  • the input end of the fifth mode spot converter 323b is connected to the output end of the first spectroscopic unit for outputting the detection light, and the output end is connected to the input end of the transceiver module 200b.
  • the models of the first mode spot converter 321b, the second mode spot converter 322b and the fifth mode spot converter 323b can be flexibly selected according to the mode spot size of the devices at both ends of each mode spot converter, and are not uniquely limited here.
  • the first mode spot conversion unit adopts this structure so that devices inside and outside the PLC chip 300b can be flexibly selected without being limited by each other's mode spot sizes, which facilitates design.
  • the transceiver module 200b includes an optical amplification unit 210b, a circulator 220b and a scanning unit 230b connected in sequence.
  • the optical amplification unit 210b is connected to the PLC chip 300b.
  • the circulator 220b and the scanning unit 230b are used to cooperate with each other to control the amplified detection light to scan the target object, and are also used to cooperate with each other to receive the echo signal reflected back from the target object, and send the echo signal to transmitted to the coherent receiving module.
  • the optical amplification unit 210b in this embodiment can be any one or a combination of rare earth-doped fiber amplifiers, semiconductor optical amplifiers, and Raman amplifiers. It is mainly used to gain the detection light and output optical signals with higher optical power.
  • the scanning unit 230b in this embodiment may include one or more beam scanning modules. Each beam scanning module may be any one of a galvanometer, a rotating mirror, a MEMS micro-galvanometer, etc., or may be any of the above methods. The combination is mainly used to realize the shaping, collimation and scanning of the detection light.
  • the circulator 220b in this embodiment is used to allow the amplified laser beam to pass through, and is also used to deflect the received echo beam and emit it toward the coherent receiving module.
  • the detection light is input through the first port of the circulator 220b, and then output through the second port of the circulator 220b.
  • the light beam can be output from the free space through the scanning unit 230b and emitted to the target object, and then the target
  • the echo signal reflected back from the object can return to the original path through the scanning unit 230b, enter through the second port of the circulator 220b, and be output to the coherent receiving module through the third port of the circulator 220b.
  • the transceiver module 200b adopts this structure, which is simple in structure, easy to assemble and maintain, and has stable working performance.
  • one or more scanning units 230b may be provided.
  • multiple scanning units 230b can be used in order to increase the scanning angle range of the lidar.
  • the number of circulators 220b also needs to be changed accordingly. That is, there are multiple circulators 220b and scanning units 230b respectively, and they are connected in one-to-one correspondence.
  • the number of circulators 220b and scanning units 230b can be flexibly selected according to usage requirements to meet different ranges of scanning requirements.
  • the coherent receiving module includes a detection light path formed in the silicon optical chip 410b.
  • the detection optical path includes a third light splitting unit, a mixing unit 430b and a combining unit 440b which are connected in sequence.
  • the third light splitting unit is used to receive echo signals and/or local light of any polarization mode, and decompose the received light beam into multiple sub-beams with determined polarization.
  • the sub-beam corresponding to the echo signal is called sub-signal light
  • the sub-beam corresponding to the local oscillator light is called the first sub-local oscillator light.
  • the third light splitting unit may include one or more beam splitters, and may also include one or more polarization beam rotators 423b, which may be selected according to usage requirements.
  • the polarization beam splitter rotator 423b is generally used to split the echo signal into multiple sub-signal lights; when the local oscillator light needs to be split, an ordinary beam splitter is generally used. That is, the local oscillator light can be divided into multiple first sub-local oscillator lights.
  • the mixing unit 430b is used to mix the sub-signal light and the first sub-local oscillator light to obtain multiple beams of mixed light.
  • the mixing unit 430b includes at least two optical mixers, and the number of optical mixers may be determined according to the number of sub-signal lights or first sub-local oscillator lights.
  • the synthesis unit 440b is used to photoelectrically convert multiple mixed beams of light to obtain and output multiple coherent electrical signals.
  • the synthesis unit 440b includes at least two balanced detectors, each of which is connected to the optical mixer in the above-mentioned mixing unit 430b in a one-to-one correspondence to receive the mixed light and process the mixed light to form The corresponding coherent electrical signal can then be output to an external signal processing device for further processing.
  • the coherent receiving module adopts the structure provided in this embodiment, which has a simple and stable structure and is easy to design.
  • the coherent receiving module also includes a nonlinear calibration optical path formed in the silicon optical chip 410b.
  • the nonlinear calibration optical path includes a fourth spectroscope unit, a coupler 421b and a first balanced detector 422b sequentially connected along the local oscillator light propagation direction.
  • the fourth spectroscope unit is In order to receive the local oscillator light and divide the local oscillator light into two second sub-local oscillator lights, and make the delays of the two second sub-local oscillator lights different, the coupler 421b is used to divide the two second sub-local oscillator lights with different delays. vibrate The light is mixed, and the first balanced detector 422b is used to receive the mixed light output from the coupler 421b and perform balanced detection.
  • the nonlinear calibration optical path includes a coupler 421b and a first balanced detector 422b connected in sequence along the propagation direction of the local oscillation light.
  • the coupler 421b is used to delay the two beams with different The local oscillator light is mixed, and the first balanced detector 422b is used to receive the mixed light output from the coupler 421b and perform balanced detection.
  • the coupler 421b in this embodiment is generally a 3dB coupler, and other couplers that can achieve the above functions can also be used.
  • the output signal of the first balance detector 422b can be further processed to serve as a basis for calibration of the frequency modulated light source 100b.
  • the frequency modulated light source 100b can be calibrated in real time, so that the operator can find problems in time and adjust them, thereby ensuring the accuracy of the detection results.
  • the coherent receiving module further includes a second mode spot conversion unit formed in the silicon photonic chip 410b, and the second mode spot conversion unit is used to convert the silicon photonic chip into The light from the external devices of the chip 410b is mode field matched with the light from the internal devices of the silicon photonic chip 410b.
  • the second mode spot conversion unit includes a third mode spot converter 450b and a fourth mode spot converter 460b, where the third mode spot converter 450b is connected to the second mode spot converter 322b in a one-to-one correspondence for converting
  • the light from the internal devices of the silicon photonic chip 410b is mode field matched with the light from outside the silicon photonic chip 410b.
  • the above-mentioned light outside the silicon photonic chip 410b refers to the light output by the second mode spot converter 322b in the PLC chip 300b.
  • the mode fields of the second mode spot converter 322b and the third mode spot converter 450b can be designed to be close to each other.
  • the fourth mode spot converter 460b is connected to the echo signal output end in the transceiver module 200b in a one-to-one correspondence to reduce the mode field mismatch loss in this part.
  • the coherent receiving module adopts the structure provided by this embodiment, which can realize stable transmission of light inside and outside the silicon optical chip 410b, and can make the devices inside and outside the silicon optical chip 410b, except the mode spot converter, not affected by the mode spots of other devices during design. size, thereby facilitating design.
  • the mode spot converter in each of the above embodiments can be any one of a tapered waveguide, a cantilever waveguide, a multi-layer waveguide and other structures, which can be selected flexibly according to the needs of use.
  • the spectroscopic structure required for the echo signal and local oscillator light into the PLC chip 300b and the silicon photonic chip 410b, so that the first spectroscopic unit and the third spectroscopic unit need to be formed
  • the number of sub-signal lights and the first sub-local oscillator light is the same, and since there are multiple implementation methods for the above-mentioned first light splitting unit, there are also multiple implementation methods for the third light splitting unit in the above embodiments, and the third light splitting unit
  • the implementation method of will change with the change of the implementation method of the first light splitting unit.
  • the third spectroscopic unit will be described by taking the coherent receiving module including the above-mentioned detection light path, the above-mentioned nonlinear calibration light path and the above-mentioned second mode spot conversion unit as an example.
  • the first light splitting unit adopts the first implementation manner, that is, when the first light splitting unit includes the above-mentioned first light splitter 311b, the third light splitting unit includes the polarization beam rotator 423b, and the above-mentioned second light splitter.
  • the second optical splitter 312b is connected to the output end of the first optical splitter 311b for outputting local oscillator light through the third mode spot converter 450b and the second mode spot converter 322b;
  • the third optical splitter 313b and the fourth optical splitter 314b are respectively connected to the two output terminals of the second optical splitter 312b.
  • the third optical splitter 313b decomposes the local oscillator light into a plurality of first sub-local oscillator lights.
  • One of the output terminals of the fourth optical splitter 314b is directly connected to the coupler 421b. connection, the other output end is connected to the coupler 421b through the optical delay line 315b; the polarization beam rotator 423b is connected to the circulator 220b through the fourth mode spot converter 460b, and is used to divide the echo signal into two sub-signal lights, And transmit the two sub-signal lights to the corresponding optical mixer in one-to-one correspondence.
  • the fourth optical splitter 314b is used to split the output light from the second optical splitter 312b into two beams of light according to a certain splitting ratio.
  • One beam of light enters the optical delay line 315b, and the other beam of light is directly connected to the coupler 421b.
  • the optical delay line 315b is used to generate a delay for the optical signal, and its output end is connected to the coupler 421b.
  • the first spectroscopic unit adopts the first situation in the second implementation manner, that is, the first spectroscopic unit includes a first spectroscope 311b and a second spectroscope 312b.
  • the third spectroscope unit It includes a polarization beam rotator 423b, and the above-mentioned third beam splitter 313b and fourth beam splitter 314b.
  • the third light splitting unit includes a polarization beam rotator 423b and the above-mentioned fourth light splitter 314b.
  • the fourth optical splitter 314b is used to split the output light from the second optical splitter 312b into two beams of light according to a certain splitting ratio.
  • One beam of light enters the optical delay line 315b, and the other beam of light is directly connected to the coupler 421b.
  • the optical delay line 315b is used to generate a delay for the optical signal, and its output end is connected to the coupler 421b.
  • the third light splitting unit includes a polarization beam rotator 423b and the above-mentioned third light splitter 313b.
  • the third light splitting unit includes a polarization beam rotator 423b.
  • the polarization beam rotator 423b is connected to the circulator 220b in a one-to-one correspondence through the fourth mode spot converter 460b.
  • Each polarization beam rotator 423b is used to divide the echo signal of any polarization into two polarization-determined beams.
  • the sub-signal light, its output is connected to the input ends of the two optical mixers as the signal light input.
  • the polarization state of the light output by each polarization beam splitter rotator 423b is the same as the polarization state of the light output by the corresponding third beam splitter 313b.
  • the frequency modulated continuous wave lidar includes a frequency modulated light source 100b, an optical amplifier, a circulator 220b, N scanning units 230b, N circulators 220b, and 2N optical mixers. , 1 first mode spot converter 321b, 1 second mode spot converter 322b, 1 third mode spot converter 450b, N fourth mode spot converters 460b, 2N+1 balanced detectors, N A polarization beam rotator 423b, a first optical splitter 311b, a second optical splitter 312b, a third optical splitter 313b and a fourth optical splitter 314b, where the optical amplifier has N output ports, and the The optical splitter 313b has 2N output ports.
  • the third ports of the N circulators 220b are connected to the N polarization beam rotators 423b through the fourth mode converter.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本申请公开一种调频连续波激光雷达(1b),包括调频光源(100b)、收发模块(200b)以及光芯片模组。调频光源(100b)用于发出激光束;光芯片模组连接于调频光源(100b)和收发模块(200b)之间,其包括分光模块与相干接收模块(400b),分光模块用于将接收到的激光束分为至少一束探测光和至少一束本振光;收发模块(200b)用于接收探测光,并将探测光整形、准直后控制其对目标物进行扫描,同时还用于接收经目标物反射的回波信号,并将回波信号输送至光芯片模组;相干接收模块(400b)分别与分光模块和收发模块(200b)连接,相干接收模块(400b)用于接收分光模块输出的本振光,以及收发模块(200b)输出的回波信号,将本振光和回波信号合束以及进行相干拍频。本申请提供的调频连续波激光雷达(1b)体积小,集成度高。

Description

调频连续波激光雷达
本申请要求于2022年04月29日在中国专利局提交的、申请号为202210464251.X、发明名称为“调频连续波激光雷达”的中国专利申请的优先权,以及于2022年04月29日在中国专利局提交的、申请号为202210464486.9、发明名称为“调频连续波激光雷达”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及激光雷达技术领域,具体涉及一种调频连续波激光雷达。
背景技术
激光雷达是广泛用于自动驾驶场景中的核心传感器之一,可以用于收集外部环境的三维信息。激光雷达按照探测机制,主要可以分成飞行时间(Time of Flight,ToF)和调频连续波(Frequency Modulated Continuous Wave,FMCW)这2种激光雷达。FMCW激光雷达采用相干接收的方式,在接收端通过信号光与本振光进行平衡探测的方式,可以有效地减少外界环境光对激光雷达性能的干扰,提升激光雷达测距性能。同时,FMCW激光雷达在提供了空间坐标信息以外,还可以额外提供测速信息,因此被认为是下一代主流的激光雷达技术。
但是,FMCW激光雷达与ToF激光雷达相比,使用了大量的光电器件,导致系统构成比较复杂。目前绝大多数的FMCW激光雷达采用了分立器件的方式,集成度很低,成本很高,体积很大。采用硅基光电子技术可以将多个分立器件集成在一个芯片上,从而有效降低系统体积,提升集成度。但是传统的硅基光电平台采用硅波导方式传输光信号,受到硅的双光子吸收效应的影响,不能传输较大功率的光信号。而在FMCW激光雷达的系统架构中,发射端的调频光源平均输出光功率可达100毫瓦。如果将调频光源与硅光芯片进行直接耦合,会激申请显的双光子吸收效应,导致额外的损耗,甚至有可能烧断硅波导,导致整个芯片失效。因此,目前的FMCW激光雷达的调频光源一般与外部的光纤分光器相连,并进行若干次分光,才会和硅光芯片相连。这样的方案存在大量的光纤分立器件,使系统体积较大,集成度较低。
技术问题
本申请实施例的目的之一在于:提供一种调频连续波激光雷达。
技术解决方案
本申请实施例采用的技术方案是:
第一方面,提供了一种调频连续波激光雷达,其包括调频光源、收发模块以及光芯片模组。所述调频光源用于发出激光束。所述芯片模组连接于所述调频光源和所述收发模块之间,所述芯片模组包括分光模块与相干接收模块,所述分光模块用于将接收到的激光束分为至少一束探测光和至少一束本振光。所述收发模块用于接收所述探测光,并将所述探测光整形、准直后控制其对目标物进行扫描,同时还用于接收经所述目标物反射的回波信号,并将所述回波信号输送至所述光芯片模组。所述相干接收模块分别与所述分光模块和所述收发模块连接,所述相干接收模块用于接收所述分光模块输出的所述本振光,以及所述收发模块输出的所述回波信号,将所述本振光和所述回波信号合束以及进行相干拍频。
在一个实施例中,所述芯片模组包括硅光芯片。所述硅光芯片连接于所述调频光源和所述收发模块之间,所述硅光芯片包括依次设置的第一波导层以及第二波导层,其中,所述第一波导层能够容纳的光功率大于所述第二波导层能够容纳的光功率,且所述第一波导层和所述第二波导层之间形成有两个层间模式转换器,所述第一波导层包括所述分光模块,所述第二波导层包括所述相干接收模块。所述分光模块包括第一分光单元,所述第一分光单元用于将接收到的激光束分为至少一束探测光和至少一束本振光,每束所述本振光的光功率小于等于50mW。所述相干接收模块通过所述层间模式转换器与所述第一分光单元信号连通,并与所述收发模块中用于输出回波信号的输出端连接,用于将所述本振光和所述回波信号合束以及进行相干拍频。
在一个实施例中,所述第二波导层与所述第一波导层之间的垂直间距大于50nm小于400nm,两个波导层内的光信号能够在所述层间模式转换器内通过倏逝波耦合实现层间转换。
在一个实施例中,所述第一波导层和所述第二波导层位于所述层间模式转换器内的部分均为锥形; 所述层间模式转换器为锥形波导模式转换器。
在一个实施例中,所述第二波导层与所述第一波导层之间的垂直间距大于1μm小于4μm,所述第一波导层和所述第二波导层位于所述层间模式转换器内的部分上均形成有光栅结构;两个波导层内的光信号能够通过所述光栅结构实现层间转换。
在一个实施例中,所述第一分光单元包括第一分光器。所述第一分光器的输入端与所述调频光源的输出端连接,所述第一分光器的第一输出端与所述收发模块的输入端连接、用于输出所述探测光,所述第一分光器的第二输出端通过所述层间模式转换器与所述相干接收模块的相应输入端连接、用于输出所述本振光。
在一个实施例中,所述第一分光单元包括第一分光器和第二分光单元。
所述第一分光器的输入端与所述调频光源的输出端连接,所述第一分光器的第一输出端与所述收发模块的输入端连接、用于输出所述探测光,所述第一分光器的第二输出端与所述第二分光单元的输入端连接、用于输出本振光,所述第二分光单元的输出端通过所述层间模式转换器与所述相干接收模块的相应输入端连接、用于将所述第一分光器输出的所述本振光分成多束并输出至所述相干接收模块中。
在一个实施例中,所述第二分光单元包括第二分光器,所述第二分光器的输入端与所述第一分光器的第二输出端连接,所述第二分光器的两个输出端分别通过所述层间模式转换器与所述相干接收模块的相应输入端连接;或者,所述第二分光单元包括沿本振光传输方向依次设置的第二分光器和第三分光器,所述第二分光器的输入端与所述第一分光器的第二输出端连接,所述第二分光器的第一输出端通过所述层间模式转换器与所述相干接收模块的相应输入端连接,所述第二分光器的第二输出端与所述第三分光器的输入端连接,所述第三分光器的两个输出端分别通过所述层间模式转换器与所述相干接收模块中探测光路的输入端连接。
在一个实施例中,所述收发模块包括依次连接的光放大单元、环形器和扫描单元,所述光放大单元与所述硅光芯片连接,用于接收并放大所述探测光,所述环形器和所述扫描单元用于相互配合控制放大后的所述探测光对目标物进行扫描,还用于相互配合接收所述目标物反射回来的回波信号,并将所述回波信号传输至所述相干接收模块中。
在一个实施例中,所述环形器和所述扫描单元分别设有多个,且一一对应连接。
在一个实施例中,所述相干接收模块包括探测光路,所述探测光路包括依次形成于所述第二波导层上的第三分光单元、混频单元和合成单元。所述第三分光单元用于接收任意偏振模式的回波信号和/或本振光,并将接收到的光束分解为偏振确定的多束子光束;其中,所述回波信号对应的子光束为子信号光,所述本振光对应的子光束为第一子本振光。所述混频单元用于将所述子信号光和所述第一子本振光进行混频,得到多束混频光。所述合成单元用于将所述多束混频光进行光电转换得到输出多个相干电信号。
在一个实施例中,所述相干接收模块还包括非线性校准光路;所述非线性校准光路包括沿本振光传播方向依次形成于所述第二波导层上的第四分光单元、耦合器和第一平衡探测器,所述第四分光单元用于接收所述本振光,将所述本振光分为两束第二子本振光,并使两束所述第二子本振光的延迟不同,所述耦合器用于将两束延迟不同的所述第二子本振光进行混频,所述第一平衡探测器用于接收所述耦合器输出的混频光并进行平衡探测。
在一个实施例中,所述第一波导层上还集成有第一模斑转换单元,所述第一模斑转换单元用于将所述硅光芯片外部器件的光与所述第一分光单元的光进行模场匹配。所述相干接收模块还包括形成于所述第二波导层上的第二模斑转换单元,所述第二模斑转换单元用于将所述收发模块内相应器件的光与所述相干接收模块内相应器件的光进行模场匹配。
在一个实施例中,所述光芯片模组包括PLC芯片与硅光芯片。所述PLC芯片包括所述分光模块,所述PLC芯片连接于所述调频光源和所述收发模块之间,所述分光模块包括第一分光单元,所述第一分光单元用于将接收到的激光束分为至少一束探测光和至少一束本振光,每束所述本振光的光功率小于等于50Mw;所述PLC芯片还包括第一模斑转换单元,所述第一模斑转换单元用于将所述PLC芯片外部器件的光与所述PLC芯片内部器件的光进行模场匹配;所述硅光芯片包括所述相干接收模块。
在一个实施例中,所述第一分光单元包括第一分光器。所述第一分光器的输入端通过所述第一模斑转换单元与所述调频光源的输出端连接,所述第一分光器的第一输出端通过所述第一模斑转换单元与所 述收发模块的输入端连接、用于输出所述探测光,所述第一分光器的第二输出端通过所述第一模斑转换单元与所述相干接收模块的相应输入端连接、用于输出所述本振光。
在一个实施例中,所述第一分光单元包括第一分光器和第二分光单元。所述第一分光器的输入端通过所述第一模斑转换单元与所述调频光源的输出端连接,所述第一分光器的第一输出端通过所述第一模斑转换单元与所述收发模块的输入端连接、用于输出所述探测光,所述第一分光器的第二输出端与所述第二分光单元的输入端连接、用于输出本振光,所述第二分光单元的输出端通过所述第一模斑转换单元与所述相干接收模块的相应输入端连接、用于将所述第一分光器输出的所述本振光分成多束并输出至所述相干接收模块中。
在一个实施例中,所述第二分光单元包括第二分光器,所述第二分光器的输入端与所述第一分光器的第二输出端连接,所述第二分光器的两个输出端分别通过所述第一模斑转换单元与所述相干接收模块的相应输入端连接。或者,所述第二分光单元包括沿本振光传输方向依次设置的第二分光器和第三分光器,所述第二分光器的输入端与所述第一分光器的第二输出端连接,所述第二分光器的第一输出端通过所述第一模斑转换单元与所述相干接收模块的相应输入端连接,所述第二分光器的第二输出端与所述第三分光器的输入端连接,所述第三分光器的两个输出端分别通过所述第一模斑转换单元与所述相干接收模块中探测光路的输入端连接。或者,所述第二分光单元包括沿本振光传输方向依次设置的第二分光器和第四分光器,所述第二分光器的输入端与所述第一分光器的第二输出端连接,所述第二分光器的第一输出端通过所述第一模斑转换单元与所述相干接收模块的相应输入端连接,所述第二分光器的第二输出端与所述第四分光器的输入端连接,所述第四分光器的第一输出端通过所述第一模斑转换单元与所述相干接收模块的相应输入端连接,第二输出端通过依次连接的光延迟线和所述第一模斑转换单元与所述相干接收模块中非线性校准光路的输入端连接。或者,所述第二分光单元包括第二分光器、第三分光器和第四分光器,所述第二分光器的输入端与所述第一分光器的第二输出端连接,所述第二分光器的第一输出端与所述第三分光器的输入端连接,第二输出端与所述第四分光器的输入端连接,所述第三分光器的两个输出端分别通过所述第一模斑转换单元与所述相干接收模块中探测光路的输入端连接,所述第四分光器的第一输出端通过所述第一模斑转换单元与所述相干接收模块的相应输入端连接,第二输出端通过依次连接的光延迟线和所述第一模斑转换单元与所述相干接收模块中非线性校准光路的输入端连接。
在一个实施例中,所述第一模斑转换单元包括第一模斑转换器、第二模斑转换器和第五模斑转换器。所述第一模斑转换器连接于所述调频光源和所述第一分光单元之间,用于将所述调频光源和所述第一分光单元进行模场匹配。所述第二模斑转换器一一对应的连接于所述第一分光单元中用于输出所述本振光的输出端与所述相干接收模块中用于接收所述本振光的输入端之间,用于将所述第一分光单元与所述相干接收模块的相应端部进行模场匹配。所述第五模斑转换器连接于所述第一分光单元中用于输出所述探测光的输出端与所述收发模块的输入端之间,用于将所述第一分光单元与所述收发模块的相应端部进行模场匹配。
在一个实施例中,所述收发模块包括依次连接的光放大单元、环形器和扫描单元,所述光放大单元与所述PLC芯片连接,用于接收并放大所述探测光,所述环形器和所述扫描单元用于相互配合控制放大后的所述探测光对目标物进行扫描,还用于相互配合接收所述目标物反射回来的回波信号,并将所述回波信号传输至所述相干接收模块中。
在一个实施例中,所述相干接收模块包括探测光路,所述探测光路包括依次连接的第三分光单元、混频单元和合成单元;
所述第三分光单元用于接收任意偏振模式的回波信号和/或本振光,并将接收到的光束分解为偏振确定的多束子光束;其中,所述回波信号对应的子光束为子信号光,所述本振光对应的子光束为第一子本振光。所述混频单元用于将所述子信号光和所述第一子本振光进行混频,得到多束混频光。所述合成单元用于将所述多束混频光进行光电转换得到输出多个相干电信号。
在一个实施例中,所述相干接收模块还包括非线性校准光路。当所述第一分光单元中不包括第四分光器时,所述非线性校准光路包括沿本振光传播方向依次连接的第四分光单元、耦合器和第一平衡探测器,所述第四分光单元用于接收所述本振光,将所述本振光分为两束第二子本振光,并使两束所述第二子本振光的延迟不同,所述耦合器用于将两束延迟不同的所述第二子本振光进行混频,所述第一平衡探 测器用于接收所述耦合器输出的混频光并进行平衡探测。当所述第一分光单元中包括第四分光器时,所述非线性校准光路包括沿本振光传播方向依次连接的耦合器和第一平衡探测器,所述耦合器用于将两束延迟不同的所述本振光进行混频,所述第一平衡探测器用于接收所述耦合器输出的混频光并进行平衡探测。
在一个实施例中,所述相干接收模块还包括形成于所述硅光芯片内的第二模斑转换单元,所述第二模斑转换单元用于将所述硅光芯片外部器件的光与所述硅光芯片内部器件的光进行模场匹配。
有益效果
本申请实施例提供的调频连续波激光雷达的有益效果在于:本申请实施例提供的调频连续波激光雷达,在调频光源和相干接收模块之间设置了用于连接二者的光芯片模组,该光芯片模组具有用于分光的分光模块,以及用于相干探测的相干接收模块,如此带来的益处包括但不限于:不再需要如光纤分光器完成分光功能,而是依靠芯片结构进行分光,可有效提升系统集成度和可靠性,降低系统体积和成本。又由于经光芯片模组的分光模块分出的本振光的光功率可以小于等于50mW,可以解决大功率输出情况下的硅层双光子吸收效应。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请第一实施例提供的调频连续波激光雷达的结构示意图;
图2是本申请一实施例所采用的层间模式转换器的剖视结构示意图;
图3是图2所示层间模式转换器的俯视结构示意图;
图4是本申请另一实施例所采用的层间模式转换器的剖视结构示意图;
图5是图4所示层间模式转换器的俯视结构示意图;
图6是本申请第二实施例提供的调频连续波激光雷达的结构示意图;
图7是本申请第三实施例提供的调频连续波激光雷达的结构示意图;
图8是本申请第四实施例提供的调频连续波激光雷达的结构示意图;
图9是本申请第五实施例提供的调频连续波激光雷达的结构示意图;
图10是本申请第六实施例提供的调频连续波激光雷达的结构示意图;
图11是本申请第七实施例提供的调频连续波激光雷达的结构示意图;
图12是本申请第八实施例提供的调频连续波激光雷达的结构示意图;
图13是本申请第九实施例提供的调频连续波激光雷达的结构示意图;
图14是本申请第十实施例提供的调频连续波激光雷达的结构示意图;
图15是本申请第十一实施例提供的调频连续波激光雷达的结构示意图;
图16是本申请第十二实施例提供的调频连续波激光雷达的结构示意图。
附图标记说明:
1、调频连续波激光雷达;100、调频光源;200、收发模块;210、光放大单元;220、环形器;230、扫描单元;300、硅光芯片;301、第一波导层;302、第二波导层;303、层间模式转换器;304、衬底层;305、埋氧层;306、氧化层;307、上包层;311、第一分光器;312、第二分光器;313、第三分光器;314、第四分光器;315、光延迟线;321、第一模斑转换器;322、第二模斑转换器;323、第三模斑转换器;330、相干接收模块;331、耦合器;332、第一平衡探测器;333、偏振分束旋转器;334、混频单元;335、合成单元;
1b、调频连续波激光雷达;100b、调频光源;200b、收发模块;210b、光放大单元;220b、环形器;230b、扫描单元;300b、PLC芯片;311b、第一分光器;312b、第二分光器;313b、第三分光器;314b、第四分光器;315b、光延迟线;321b、第一模斑转换器;322b、第二模斑转换器;323b、第五模斑转换器;400b、相干接收模块;410b、硅光芯片;421b、耦合器;422b、第一平衡探测器;423b、偏振分束旋转器;430b、混频单元;440b、合成单元;450b、第三模斑转换器;460b、第四模斑转换器。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所提供的技术方案,以下结合具体附图及实施例进行详细说明。
请参照图1所示,在本申请实施例中,提供一种调频连续波激光雷达1,包括调频光源100、收发模块200以及光芯片模组。调频光源100用于发出激光束。光芯片模组连接于调频光源和收发模块之间,其包括分光模块与相干接收模块;分光模块用于将接收到的激光束分为至少一束探测光和至少一束本振光。收发模块200用于接收上述探测光,并将探测光整形、准直后控制其对目标物进行扫描,同时还用于接收经目标物反射的回波信号,并将回波信号输送至光芯片模组。相干接收模块分别与分光模块和收发模块连接,相干接收模块用于接收分光模块输出的本振光,以及收发模块输出的回波信号,将本振光和回波信号合束以及进行相干拍频,从而使拍频得到的信号进一步传输至外接的信号处理模块。
对于上述调频光源100,请参阅图1,其用于发出激光束,例如调频连续波信号。
对于上述收发模块200,请继续参阅图1,其可以包括用于整形的光调整模块(如光放大模块、缩角模块、扩束模块等中的一个或者多个)、用于准直的透镜模块、环形器220以及扫描模块等,也可以包括用于整形和准直的光学模块、环形器220以及扫描模块,当然还可以采用其他形式,只要能实现上述功能即可,具体可以根据使用需要灵活选择。
在一些实施例中,光芯片模组包括硅光芯片300,该硅光芯片300连接于调频光源100和收发模块200之间。硅光芯片300包括依次设置的第一波导层301以及第二波导层302。其中,第一波导层301能够容纳的光功率大于第二波导层302能够容纳的光功率,且第一波导层301和第二波导层302之间形成有两个层间模式转换器303。第一波导层301包括上述分光模块,第二波导层302包括上述相干接收模块。
具体地,上述分光模块包括第一分光单元,即第一波导层301上集成有第一分光单元。该第一分光单元用于将接收到的激光束分为至少一束探测光和至少一束本振光,每束本振光的光功率小于等于50mW。第二波导层302上集成有相干接收模块330。相干接收模块330通过层间模式转换器303与第一分光单元信号连通,并与收发模块200中用于输出回波信号的输出端连接,用于将本振光和回波信号合束以及进行相干拍频,以及将处理后的信号传输至外接信号处理模块。
具体的,第一分光单元包括至少一个分光器,分光器的数量和连接结构根据最终输出本振光的光功率大小和/或探测光的束量而定,如当调频光源100输出的激光束的光功率较低时,进入硅光芯片300中的激光束经过一个分光器后本振光的光功率即小于等于50mW,则第一分光单元可仅包括一个分光器,当调频光源100输出的激光束的光功率较高时,进入硅光芯片300中的激光束经过一个分光器后本振光的光功率大于50mW,则可在该分光器后继续增加分光器,直至经分光器输出的本振光的功率小于等于50mW,停止增加分光器。
硅光芯片300可以通过成熟的半导体加工工艺加工而成。第一分光单元、相干接收模块330以及层间模式转换器303可在相应波导层成型后经过CMOS工艺制得。
上述调频光源100和收发模块200不设置在硅光芯片300上,为分立器件或者模组。其他器件可以通过集成的方式,放置在硅光芯片300上面。其中,层间模式转换器303用于实现第一波导层301和第二波导层302之间的光传输。当光信号经过若干次分光之后,光功率不再激发硅波导的双光子吸收效应,可以通过层间模式转换器303将光信号从第一波导层301转换到第二波导层302中。这是因为第二波导层302的光器件可以实现更小的尺寸,有利于芯片和系统的高度集成。
本申请实施例提供的调频连续波激光雷达的工作原理如下:
探测时,先将调频光源100的输出端通过第一波导层301与第一分光单元的输入端连通,之后调频光源100向第一分光单元发出激光束,该激光束进入硅光芯片300中的第一分光单元,经第一分光单元分束为至少一束探测光和至少一束本振光,且每束本振光的光功率均小于等于50mW,之后本振光经层间模式转换器303进入相干接收模块330;与此同时,探测光输出硅光芯片300进入收发模块200,再经收发模块200整形、准直对目标物进行扫描。
之后经目标物反射的回波信号再经收发模块200输送至相干接收模块330中,与本振光在相干接收模块330中实现混频,之后通过相干接收模块330中的平衡探测单元进行相干拍频,再经平衡探测单元输出至位于硅光芯片300外的信号处理模块内,经信号处理模块分析得出目标距离和速度等信息。
本申请实施例提供的调频连续波激光雷达,在调频光源100和相干接收模块330之间设置了用于连接二者的光芯片模组,光芯片模组内形成有第一波导层301和第二波导层302,其中第一波导层301对光功率的容耐度高于第二波导层302,因此可以在第一波导层301上面制作合适的第一分光单元,以实现大功率调频光源100和光芯片模组中相干接收模块330之间的连接,如此带来的益处包括但不限于:不再需要外部分立器件如光纤分光器完成分光功能,可有效提升系统集成度和可靠性,降低系统体积和成本;同时利用层间模式转换器303,可以方便地将第一波导层301的光信号转移到第二波导层302,其中第二波导层302可采用硅波导层,因此能够兼容原本硅层器件的优势;又由于根据目前的工艺氮化硅层和硅层可以在同一块光芯片模组上面实现,当第一波导层301采用氮化硅波导层,第二波导层302采用硅波导层时,可实现超高密度集成,且工艺CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体的缩写)兼容,具备极高的量产性。又由于经光芯片模组中的第一分光单元分出的本振光的光功率可以小于等于50mW,可以解决大功率输出情况下的硅层双光子吸收效应。
在一个具体的实施例中,如图2所示,硅光芯片300包括依次设置的衬底层304、埋氧层305、第二波导层302、氧化层306、第一波导层301以及上包层307。具体的,埋氧层305、第二波导层302、氧化层306、第一波导层301以及上包层307通过外延生长技术逐层制得。需要说明的是,第一波导层301和第二波导层302的长度根据需要设定,一般小于衬底层304的长度,在超出第二波导层302覆盖范围的区域内氧化层306与埋氧层305相连;在超出第一波导层301覆盖范围的区域中,上包层307与氧化层306相连。第一波导层301为氮化硅波导层,第二波导层302为硅波导层。
其中,硅波导层不适合传输特别大功率的光信号,但热光系数较高,有利于降低其上器件的功耗;氮化硅波导虽然能够容纳较大的光功率,但采用氮化硅波导制作的芯片的功耗较大。本实施例提供的调频连续波激光雷达,采用了两个材质不同的波导制作了两个波导层,之后避开各波导层的缺点,充分利用其优异特性,将硅光芯片300中的各器件制备于更加适于的波导层上,从而降低了器件制作的工艺要求。由于目前业界可以获得质量良好的商用SOI晶圆,因此氮化硅波导层一般在硅波导层上方。同时,为降低层间模式转换器303的体积,第一波导层301的输出端与第二波导层302的输入端层叠设置。这样使得层间模式转换器303800体积最小,整个硅光芯片300结构紧凑,符合其制造要求。
基于现有的芯片制备工艺,第二波导层302和第一波导层301之间的垂直间距一般存在两种情况:一种情况是,两个波导层距离较近,此时两者间的垂直间距处于大于50nm小于400nm的范围内;另一种情况是,两个波导层距离较远,此时两者间的垂直间距处于大于1μm小于4μm的范围内。针对这两种情况,层间模式转换器303的结构也会发生相应改变。
具体的,请参照图2及图3,当第二波导层302与第一波导层301之间的垂直间距大于50nm小于400nm时,此时第一波导层301和第二波导层302间距较近,一般来说两层之间会有一层比较薄的氧化层306,使得两个波导层内的光信号能够在层间模式转换器303内通过倏逝波耦合实现层间转换,进而实现两个波导层之间的低损耗光传播,且便于设计和加工。本实施例中层间模式转换器303可采用能够实现倏逝波耦合的任一款层间模式转换器303,这里不做唯一限定。
请参照图3,在一个可选的实施例中,第一波导层301和第二波导层302位于层间模式转换器303内的部分均为锥形。层间模式转换器303为锥形波导模式转换器。
光在第二波导层302中的模式有效折射率随着宽度降低而降低,而在第一波导层301中的模式有效折射率随着宽度增加而增加,因此只要合理设计两个锥形波导模式转换器两侧的宽度,就可以在某一个位置处,使第一波导层301中的模式有效折射率等于第二波导层302的模式有效折射率,那么只要锥 形波导模式转换器的长度足够长,就可以使光从第一波导层301缓慢转换到第二波导层302中。整个转换过程稳定,且技术成熟。
请参照图4及图5,当第二波导层302与第一波导层301之间的垂直间距大于1μm小于4μm时,此时第一波导层301和第二波导层302间距较远,一般来说两层之间会有一层比较厚的氧化层306。这样在各层间模式转换器303中,第一波导层301中的光不会和第二波导层302中的光发生倏逝波耦合,这里采用两层光栅来实现。具体表现在,第一波导层301和第二波导层302位于层间模式转换器303内的部分上均形成有光栅结构。两个波导层内的光信号能够通过光栅结构实现层间转换。
具体的,上述光栅结构可以利用刻蚀工艺在相应波导层上制得。光栅结构的设置破坏了原有的波导结构,使光可以沿某一个方向发射或者接收。制备时,可通过改变其光栅周期和占空比改变该光栅结构向上或向下发射的角度θ。同理,通过改变光栅结构的光栅周期和占空比可以改变该光栅结构从下方或从上方接收的角度θ。上述角度θ可在制备光栅结构前经过仿真软件计算得出,这样可以确保制得的光栅结构符合要求,进而使得光信号可以经过相对设置的两个光栅结构实现两个波导段之间的层间转换。这样经第一分光单元输出的本振光可经第一波导层301上的光栅结构进入第二波导层302上的光栅结构,以进入相干接收模块330,之后通过第二波导层302在相干接收模块330内传播,最终输出至外接信号处理模块中,进行后续处理。
上述光栅结构呈扇形设置,以实现较大范围的信号接收和发射,保证光信号由第一波导层301转换至第二波导层302时不会发生信号损失,或将信号损失降低到最小状态。
在上述光信号传输过程中,光栅结构的光线出射角度或光线接收角度为0-90°。具体角度,可根据第一波导层301、第二波导层302和相应层间模式转换器303的材质及制备工艺决定,这里不做唯一限定。
在一些实施例中,光栅结构的光线出射角度或光线接收角度为0-60°。采用这一角度范围,可选材的范围更宽泛一些。
为避免硅层双光子吸收效应的发生,经硅光芯片300中的第一分光单元分出的本振光的光功率需要小于等于50mW,但不同调频光源100发出的激光束的光功率有大有小,因此第一分光单元也存在多种实现方式。
第一种实现方式:
调频光源100发出的激光束的光功率较小,此时第一分光单元中仅设一个分光器,分出的本振光的光功率便可满足要求,可以在硅层传输。具体表现为,请参照图1所示,第一分光单元包括第一分光器311,第一分光器311的输入端与调频光源100的输出端连接,第一分光器311的第一输出端与收发模块200的输入端连接、用于输出探测光,第一分光器311的第二输出端通过层间模式转换器303与相干接收模块330的相应输入端连接、用于输出本振光。本实施例中第一分光器311具有一个输入端和两个输出端,分光比例一般为10:90到50:50之间,具体可以根据使用需要灵活选择,这里不做唯一限定。第一分光单元采用这一结构,结构简单,便于组装。
第二种实现方式:
调频光源100发出的激光束的光功率较大,经一个分光器分光后,分出的本振光的光功率大于50mW,此时若直接将本振光输入相干接收模块330,可能会激发硅层的双光子吸收效应。为避免上述情况发生,在一个可选的实施例中,请参照图6及图7所示,第一分光单元包括第一分光器311和第二分光单元,第一分光器311的输入端与调频光源100的输出端连接,第一分光器311的第一输出端与收发模块200的输入端连接、用于输出探测光,第一分光器311的第二输出端与第二分光单元的输入端连接、用于输出本振光,第二分光单元的输出端通过层间模式转换器303与相干接收模块330的相应输入端连接。
本实施例中第一分光器311的结构与第一种形式中的第一分光器311的结构相同,且分光比例也在10:90到50:50之间,具体可以根据使用需要灵活选择,这里不做唯一限定。本实施例中的第二分光单元可以包括一个或者多个分光器,具体可以根据分出的本振光的光功率是否满足要求而定。具体表现为如下几种情况:
第一种情况:
经上述第一分光器311分出的本振光再经一个分光器,输出的任一束本振光便可满足预设要求(光功率小于等于50mW),请参照图6所示,此时第二分光单元包括第二分光器312,第二分光器312的输入端与第一分光器311的第二输出端连接,第二分光器312的两个输出端分别通过层间模式转换器303与相干接收模块330的输入端连接、用于将第一分光器311输出的本振光分成多束并输出至相干接收模块330中。本实施例中第二分光器312具有两个输出端,分光比一般在1:99到50:50之间,具体可以根据使用需要灵活选择,这里不做唯一限定。第二分光单元采用这一结构,结构简单,便于组装。
第二种情况:
由于第二分光器312分成的两个支路,其中一个支路用于向接收模块中的探测光路输送本振光,另一个支路用于向接收模块中的非线性校准光路输送本振光。而非线性校准光路需要的光信号功率很小,因此实际中第二分光器312会将绝大部分的光分到接收模块中的探测光路中,作为后续相干探测的本振光信号。那么当调频光源100输出的激光束的光功率较大时,很有可能第二分光器312中用于向相干接收模块330中的探测光路输送本振光的输出端,输出的本振光的光功率大于50mW,此时为避免硅层的双光子吸收效应发生,第二分光单元可采用以下形式。请参照图7所示,第二分光单元包括沿本振光传输方向依次设置的第二分光器312和第三分光器313,第二分光器312的输入端与第一分光器311的第二输出端连接,第二分光器312的第一输出端通过层间模式转换器303与相干接收模块330中探测光路的输入端连接,第二分光器312的第二输出端与第三分光器313的输入端连接,第三分光器313的两个输出端分别通过层间模式转换器303与相干接收模块330的相应输入端连接。具体的,本实施例中的第三分光器313可以为一个分光器或者多个分光器的组合件,具体可根据分光效果而定,这里不做唯一限定。
在一个可选的实施例中,上述各实施例中的第三分光器313具有两个输出端,且两者的分光比分别为50:50。采用这一结构便于后续信号分析。
在一个可选的实施例中,请参照图1所示,第一波导层301上还集成有第一模斑转换单元,第一模斑转换单元用于将硅光芯片300外部器件的光与第一分光单元的光进行模场匹配,以减小模式失配损耗。
具体的,第一模斑转换单元中具有多个模斑转换器,模斑转换器的数量与硅光芯片300与外部器件的连接端口数量一致。这里所说的连接端口是指用于传播光的端口。
在一个具体的实施例中,请参照图1所示,第一模斑转换单元包括第一模斑转换器321以及第三模斑转换器323。
第一模斑转换器321连接于调频光源100和第一分光单元之间,用于将调频光源100和第一分光单元进行模场匹配。具体表现为,第一模斑转换器321的输入端与调频光源100的输出端连接,输出端与第一分光单元的输入端连接。第一模斑转换器321的设置,可减小调频光源100发出的光线传导至第一分光单元的过程中的模式失配损耗,同时减小因为硅层双光子吸收所引起的额外损耗。因此,第一模斑转换器321可以在第一波导层301实现。第一波导层301可以支持更高的光功率传输,因此即使外部调频光源100的输出光功率高达100毫瓦,也能够经过第一模斑转换器321进入硅光芯片300。
第三模斑转换器323连接于第一分光单元中用于输出探测光的输出端与收发模块200的输入端之间,用于将第一分光单元与收发模块200的相应端部进行模场匹配,以将第一分光单元输出的探测光传导至收发模块200。具体表现为,第三模斑转换器323的输入端与第一分光单元中用于输出探测光的输出端连接,输出端与收发模块200的输入端连接。
具体的,第一模斑转换器321和第三模斑转换器323的型号可根据各模斑转换器两端的器件的模斑尺寸灵活选择,这里不做唯一限定。同时由于第一模斑转换器321和第三模斑转换器323均制备于第一波导层301上,第一波导层301又能够容耐更高的光功率,因此相较在硅层制备模斑转换器,本实施例提供的第一模斑转换器321和第三模斑转换器323,在工艺容差和对准容差方面具备优势。同时,第一模斑转换单元采用这一结构可使得硅光芯片300内外的器件均可灵活选择,无需受到彼此模斑尺寸的限制,便于设计。
请参照图1所示,在一个可选的实施例中,收发模块200包括依次连接的光放大单元210、环形器220和扫描单元230,光放大单元210与硅光芯片300连接,用于接收并放大探测光,环形器220和 扫描单元230用于相互配合控制放大后的探测光对目标物进行扫描,还用于相互配合接收目标物反射回来的回波信号,并将回波信号传输至相干接收模块330中。
本实施例中的光放大单元210可以为掺稀土光纤放大器、半导体光放大器、喇曼放大器中的任一种或者多种组合,主要用于对探测光进行增益,输出光功率更高的光信号。本实施例中的扫描单元230可以包括一个或者多个光束扫描模组,每个光束扫描模组可以为振镜、转镜、MEMS微振镜等中的任一个,也可以是上述几种方式的组合,主要用于实现探测光的整形、准直和扫描。
本实施例中的环形器220用于供放大后的激光束穿过,还用于偏转接收到的回波光束并射向相干接收模块330。具体的,使用时探测光由环形器220的第一端口输入,后经环形器220的第二端口输出,之后该光束可通过扫描单元230从自由空间输出,并发射至目标物上,之后目标物反射回来的回波信号可通过扫描单元230原路返回,由环形器220的第二端口进入,由环形器220的第三端口输出至相干接收模块330中。收发模块200采用这一结构,结构简单,便于组装和维护,且工作性能稳定。
上述实施例中,扫描单元230可以设置一个或多个。当扫描单元230仅设置一个时,由于单个扫描单元230的扫描角度范围有限,无法实现大角度的扫描范围,那么为了提高激光雷达的扫描角度范围,可以采用多个扫描单元230。此时环形器220的数量也需要随之改变。即环形器220和扫描单元230分别设有多个,且一一对应连接。环形器220和扫描单元230的数量可根据使用需要灵活选择,以满足不同范围的扫描需要。
在上述各实施例的基础上,请参照图1所示,相干接收模块330包括探测光路。探测光路包括依次形成于第二波导层302上的第三分光单元、混频单元334和合成单元335。
第三分光单元用于接收任意偏振模式的回波信号和/或本振光,并将接收到的光束分解为偏振确定的多束子光束。为便于描述,下文将回波信号对应的子光束称为子信号光,将本振光对应的子光束称为第一子本振光。具体的,第三分光单元中可以包括一个或多个分光器,还可以包括一个或多个偏振分束旋转器333,具体可根据使用需要进行选择。具体的,当需要对回波信号进行分束时,一般通过偏振分束旋转器333,以将回波信号分成多束子信号光;当需要对本振光进行分束时,一般通过普通分束器即可,以将本振光分成多束第一子本振光。本实施例中的回波信号和本振光均存在两种设置形式,第一种是在相干接收模块330外完成分束,另一种是在相干接收模块330内完成分束,当回波信号和本振光中的任一种在相干接收模块330外已完成分束,则在相干接收模块330内不需要再设置相应光束的分光结构。无论如何设置,只要最终子信号光和第一子本振光数量一致,能够实现一一对应,满足后续信号分析所需即可。
混频单元334用于将子信号光和第一子本振光进行混频,得到多束混频光。具体的,混频单元334包括至少两个光混频器,光混频器的数量可根据子信号光或者第一子本振光的数量而定。
合成单元335用于将多束混频光进行光电转换得到输出多个相干电信号。具体的,合成单元335包括至少两个平衡探测器,每个平衡探测器与上述混频单元334中的光混频器一一对应连接,以接收混频光并对混频光进行处理,形成相应的相干电信号,之后该相干电信号可被输出至外接信号处理装置中,以进行进一步处理。
相干接收模块330采用本实施例提供的结构,结构简单、稳定,便于设计。
在一个可选的实施例中,请参照图1所示,相干接收模块330除上述探测光路外,还包括非线性校准光路。
非线性校准光路包括沿本振光传播方向依次形成于第二波导层302上的第四分光单元、耦合器331和第一平衡探测器332,第四分光单元用于接收本振光,将本振光分为两束第二子本振光,并使两束第二子本振光的延迟不同,耦合器331用于将两束延迟不同的第二子本振光进行混频,第一平衡探测器332用于接收耦合器331输出的混频光并进行平衡探测。
本实施例中的耦合器331一般为3dB耦合器,还可采用能够实现上述功能的其他耦合器。使用时,可将第一平衡探测器332的输出信号进行进一步处理,以作为调频光源100校准的依据。采用本实施例提供的调频连续波激光雷达,可实时对调频光源100进行校准,以便操作人员及时发现问题对其进行调整,进而保证检测结果的准确性。
在一个可选的实施例中,请参照图1所示,相干接收模块330还包括形成于第二波导层302上的 第二模斑转换单元,第二模斑转换单元用于将收发模块200内相应器件的光与相干接收模块330内相应器件的光进行模场匹配,减小模式失配损耗。
具体的,第二模斑转换单元包括第二模斑转换器322。第二模斑转换器322与收发模块200中回波信号的输出端一一对应连接,以减小这部分的模场失配损耗。由于这部分光信号一般较弱,不容易激发硅层的双光子吸收效应,因此可以在第二波导层302上面实现。如果在第一波导层301上面实现,则需要后续额外的层间模式转换器303,引起额外的模式转换损耗,并不推荐。
相干接收模块330采用本实施例提供的结构,可实现回波信号的稳定传输,且可使得硅光芯片300内外器件中除模斑转换器以外的器件在设计时不受其他器件模斑尺寸的影响,进而便于设计。
上述各实施例中的模斑转换器均可以是锥形波导、悬臂梁波导、多层波导等结构中的任一种,具体可以根据使用需要灵活选择。
为降低调频连续波激光雷达的体积,我们优选将回波信号和本振光所需的分光结构集成于硅光芯片300中,如此经过第一分光单元和第三分光单元需要形成数量一致的子信号光和第一子本振光,又由于上述第一分光单元存在多种实现方式,因此上述各实施例中的第三分光单元也存在多种实现方式,且第三分光单元的实现方式会随第一分光单元的实现方式的改变而改变。为便于理解,现以相干接收模块330包括上述探测光路、上述非线性校准光路和上述第二模斑转换单元为例,对第三分光单元的具体结构进行说明。
请参照图1所示,当第一分光单元采用第一种实现方式时,即第一分光单元包括上述第一分光器311时,第三分光单元包括偏振分束旋转器333,以及上述第二分光器312、第三分光器313和第四分光器314。其中,第二分光器312通过第三模斑转换器323和第二模斑转换器322与第一分光器311用于输出本振光的输出端连接;第三分光器313和第四分光器314分别连接于第二分光器312的两个输出端,第三分光器313将本振光分解为多个第一子本振光,第四分光器314的其中一个输出端直接与耦合器331连接,另一输出端通过光延迟线315与耦合器331连接;偏振分束旋转器333通过第四模斑转换器与环形器220连接,并用于将回波信号分为两束子信号光,并将两个子信号光一一对应的传输至相应光混频器中。此时,第四分光器314用于将来自第二分光器312的输出光按成一定的分光比分成两束光,一束光进入光延迟线315,另一束光直接与耦合器331相连。光延迟线315用于对光信号产生一段延迟,它的输出端与耦合器331相连。
请参照图6所示,当第一分光单元采用第二种实现方式中的第一种情况时,即第一分光单元包括第一分光器311和第二分光器312,此时第三分光单元包括偏振分束旋转器333,以及上述第三分光器313和第四分光器314。
请参照图7所示,当第一分光单元采用第二种实现方式中的第二种情况时,此时第三分光单元包括偏振分束旋转器333以及上述第四分光器314。此时,第四分光器314用于将来自第二分光器312的输出光按成一定的分光比分成两束光,一束光进入光延迟线315,另一束光直接与耦合器331相连。光延迟线315用于对光信号产生一段延迟,它的输出端与耦合器331相连。
在一个可选的实施例中,上述各实施例中的第四分光器具有两个输出端,且两者的分光比分别为50:50。采用这一结构便于后续信号分析。
上述各实施例中偏振分束旋转器通过第四模斑转换器与环形器一一对应连接,每个偏振分束旋转器用于将任意偏振的回波信号分成两束偏振确定的子信号光,它的输出与2个光混频器的输入端相连,作为信号光输入。且每个偏振分束旋转器输出的光的偏振态均与相应第三分光器输出的光的偏振态相同。
请参照图8所示,在一个具体的实施例中,调频连续波激光雷达包括调频光源100、光放大器、环形器220、层间模式转换器303、N个扫描单元230、N个环形器220、2N个光混频器、1个第一模斑转换器321、N个第二模斑转换器322、1个第三模斑转换器323、2N+1个平衡探测器、N个偏振分束旋转器333、1个第一分光器311、1个第二分光器312、1个第三分光器313和1个第四分光器314,其中光放大器为N个输出端口,第三分光器313为2N个输出端口。N个环形器220的第三端口都通过第二模斑转换器322与N个偏振分束旋转器333相连。层间模式转换器303位于第一分光器311和第二分光器312之间。
请参照图9所示,如果通道数很多,也就是说进入第三分光器313的光变多,导致光功率超过了硅波导要求,那么上述调频连续波激光雷达中的层间模式转换器303还可以放置于第二分光器312和第三分光器313、以及第二分光器312和第四分光器314之间。
请参照图10所示,为了实现长度更长、损耗更小的光延迟线315,可以将上述各实施例中的光延迟线315制作于第一波导层301上。那么,可以在光延迟线315和3dB耦合器之间增加层间模式转换器303,在第四分光器314和3dB耦合器之间增加层间模式转换器303。
值得一提的是,即使上述实施例是以光芯片模组为包括一体集成分光模块与相干接收模块的硅光芯片300为例进行说明,但应当理解,本申请并不局限于此。在本申请的其他实施例中,光芯片模组还可以是包括相对分离设置的分光芯片(即分光模块)与相干接收芯片(即相干接收模块)。
例如,请参阅图11至图16,其示出了本申请其中另一些实施例提供的调频连续波激光雷达1b,其包括调频光源100b、收发模块200b和光芯片模组,与上述调频连续波激光雷达1不同的是:本实施例中,光芯片模组包括PLC芯片300b和硅光芯片400b,PLC芯片300b包括分光模块,硅光芯片400b包括相干接收模块。接下来,对该调频连续波激光雷达1b作详细说明。
调频光源100b用于发出激光束。具体的,该激光束为调频连续波信号。
PLC芯片300b连接于调频光源100b和收发模块200b之间。PLC芯片300b包括分光模块,该分光模块包括第一分光单元。其中,第一分光单元用于将接收到的激光束分为探测光和至少一束本振光。每束本振光的光功率小于等于50mW。此外,该PLC芯片300b还包括第一模斑转换单元,第一模斑转换单元用于将PLC芯片300b外部器件的光与PLC芯片300b内部器件的光进行模场匹配;即是说,PLC芯片300b集成有第一分光单元和第一模斑转换单元。
具体的,第一分光单元包括至少一个分光器,分光器的数量和连接结构根据最终输出本振光的光功率大小和/或探测光的束量而定,如当调频光源100b输出的激光束的光功率较低时,进入PLC芯片300b中的激光束经过一个分光器后本振光的光功率即小于等于50mW,则第一分光单元可仅包括一个分光器,当调频光源100b输出的激光束的光功率较高时,进入PLC芯片300b中的激光束经过一个分光器后本振光的光功率大于50mW,则可在该分光器后继续增加分光器,直至经分光器输出的本振光的功率小于等于50mW,停止增加分光器。
第一模斑转换单元中具有多个模斑转换器,模斑转换器的数量与PLC芯片300b与外部器件的连接端口数量一致。这里所说的连接端口是指用于传播光的端口。
收发模块200b用于接收PLC芯片300b输出的探测光,并将探测光整形、准直后控制其对目标物进行扫描,同时还用于接收经目标物反射的回波信号,并将回波信号输送至硅光芯片400b。
具体的,收发模块200b可以包括用于整形的光调整模块(如光放大模块、缩角模块、扩束模块等中的一个或者多个)、用于准直的透镜模块、环形器以及扫描模块等,也可以包括用于整形和准直的光学模块、环形器以及扫描模块,当然还可以采用其他形式,只要能实现上述功能即可,具体可以根据使用需要灵活选择。
硅光芯片400b与PLC芯片300b和收发模块200b分别连接。相干接收模块400b中的相干接收模块用于接收PLC芯片300b输出的本振光,以及收发模块200b输出的回波信号,将本振光和回波信号合束以及进行相干拍频,最终将信号传输至外接信号处理模块。
上述调频光源100b和收发模块200b不设置在芯片上,为分立器件或者模组。其中,调频光源100b的输出端与PLC芯片300b中的第一模斑转换单元的输入端连接。
本申请实施例提供的调频连续波激光雷达的工作原理如下:
探测时,调频光源100b发出激光束,该激光束经过第一模斑转换单元中的至少一个模斑转换器进入第一分光单元,经第一分光单元分束为至少一束探测光和至少一束本振光,且每束本振光的光功率均小于等于50mW,之后本振光经第一模斑转换单元中的相应模斑转换器输出并进入硅光芯片400b;与此同时,探测光经过第一模斑转换单元中的相应模斑转换器输出并进入收发模块200b,再经收发模块200b整形、准直对目标物进行扫描。
之后经目标物反射的回波信号再经收发模块200b输送至硅光芯片400b中,与本振光在相干接收模块中实现混频,之后通过相干接收模块中的平衡探测单元进行相干拍频,再经平衡探测单元输出至位 于硅光芯片400b外的信号处理模块内,经信号处理模块分析得出目标距离和速度等信息。
本申请实施例提供的调频连续波激光雷达包括PLC芯片300b和硅光芯片400b,PLC芯片300b可采用大截面的氮化硅波导,对光功率的容耐度更高,因此可以在PLC芯片300b上面制作合适的分光器结构和模斑转换器结构,作为大功率调频激光器和硅光芯片400b之间的连接芯片;硅光芯片400b则用于接收本振光信号和回波信号,从而使两者进行相干拍频。如此带来的益处包括但不限于:不再需要外部分立器件如光纤分光器完成分光功能,可有效提升系统集成度和可靠性,降低系统体积和成本;另外,与在硅芯片上制作模斑转换器相比,本申请实施例提供的PLC芯片300b在工艺容差和对准容差方面更具优势;PLC芯片300b可以集成分光器、模斑转换器、光延迟线315b等多种无源器件,而且采用PLC波导可以实现更长的光延迟线315b,降低损耗。又由于经PLC芯片300b中的第一分光单元分出的本振光的光功率均小于等于50mW,可以解决大功率输出情况下的硅层双光子吸收效应。另外,本实施例中的PLC芯片300b可以支持更高的光功率传输,因此即使外部调频光源100b的输出光功率高达100b毫瓦,也能够经过第一模斑转换单元进入PLC芯片300b,使得本实施例提供的调频连续波激光雷达的适用范围更广。
为避免硅层双光子吸收效应的发生,经PLC芯片300b中的第一分光单元分出的本振光的光功率需要小于等于50mW,但不同调频光源100b发出的激光束的光功率有大有小,因此第一分光单元也存在多种实现方式。
第一种实现方式:
调频光源100b发出的激光束的光功率较小,此时第一分光单元中仅设一个分光器,分出的本振光的光功率便可满足要求,可以在硅层传输。具体表现为,请参照图11所示,第一分光单元包括第一分光器311b,第一分光器311b的输入端通过第一模斑转换单元与调频光源100b的输出端连接,第一分光器311b的第一输出端通过第一模斑转换单元与收发模块200b的输入端连接、用于输出探测光,第一分光器311b的第二输出端通过第一模斑转换单元与相干接收模块的相应输入端连接、用于输出本振光。本实施例中第一分光器311b具有一个输入端和两个输出端,分光比例一般为10:90到50:50之间,具体可以根据使用需要灵活选择,这里不做唯一限定。第一分光单元采用这一结构,结构简单,便于组装。
第二种实现方式:
调频光源100b发出的激光束的光功率较大,经一个分光器分光后,分出的本振光的光功率大于50mW,此时若直接将本振光输入相干接收模块,可能会激发硅层的双光子吸收效应。为避免上述情况发生,在一个可选的实施例中,请参照图12至图15所示,第一分光单元包括第一分光器311b和第二分光单元,第一分光器311b的输入端通过第一模斑转换单元与调频光源100b的输出端连接,第一分光器311b的第一输出端通过第一模斑转换单元与收发模块200b的输入端连接、用于输出探测光,第一分光器311b的第二输出端与第二分光单元的输入端连接、用于输出本振光,第二分光单元的输出端通过第一模斑转换单元与相干接收模块的相应输入端连接。
本实施例中第一分光器311b的结构与第一种形式中的第一分光器311b的结构相同,且分光比例也在10:90到50:50之间,具体可以根据使用需要灵活选择,这里不做唯一限定。本实施例中的第二分光单元可以包括一个或者多个分光器,具体可以根据分出的本振光的光功率是否满足要求而定。具体表现为如下几种情况:
第一种情况:
经上述第一分光器311b分出的本振光再经一个分光器,输出的任一束本振光便可满足预设要求(光功率小于等于50mW),请参照图12所示,此时第二分光单元包括第二分光器312b,第二分光器312b的输入端与第一分光器311b的第二输出端连接,第二分光器312b的两个输出端分别通过第一模斑转换单元中的相应模斑转换器与相干接收模块的输入端连接、用于将第一分光器311b输出的本振光分成多束并输出至相干接收模块中。本实施例中第二分光器312b具有两个输出端,分光比一般在1:99到50:50之间,具体可以根据使用需要灵活选择,这里不做唯一限定。第二分光单元采用这一结构,结构简单,便于组装。
第二种情况:
由于第二分光器312b分成的两个支路,其中一个支路用于向接收模块400b中的探测光路输送本 振光,另一个支路用于向接收模块400b中的非线性校准光路输送本振光。而非线性校准光路需要的光信号功率很小,因此实际中第二分光器会将绝大部分的光分到接收模块400b中的探测光路中,作为后续相干探测的本振光信号。那么当调频光源100b输出的激光束的光功率较大时,很有可能第二分光器312b中用于向相干接收模块中的探测光路输送本振光的输出端,输出的本振光的光功率大于50mW,此时为避免硅层的双光子吸收效应发生,第二分光单元可采用以下形式。请参照图13所示,第二分光单元包括沿本振光传输方向依次设置的第二分光器312b和第三分光器313b,第二分光器312b的输入端与第一分光器311b的第二输出端连接,第二分光器312b的第一输出端通过第一模斑转换单元与相干接收模块中探测光路的输入端连接,第二分光器312b的第二输出端与第三分光器313b的输入端连接,第三分光器313b的两个输出端分别通过第一模斑转换单元与相干接收模块的相应输入端连接。具体的,本实施例中的第三分光器313b可以为一个分光器或者多个分光器的组合件,具体可根据分光效果而定,这里不做唯一限定。
第三种情况:
第二分光器312b中用于向相干接收模块中的非线性校准光路输送本振光的输出端,输出的本振光的光功率大于50mW时,请参照图14所示,第二分光单元包括沿本振光传输方向依次设置的第二分光器312b和第四分光器314b,第二分光器312b的输入端与第一分光器311b的第二输出端连接,第二分光器312b的第一输出端通过第一模斑转换单元与相干接收模块的相应输入端连接,第二分光器312b的第二输出端与第四分光器314b的输入端连接,第四分光器314b的第一输出端通过第一模斑转换单元与相干接收模块的相应输入端连接,第二输出端通过依次连接的光延迟线315b和第一模斑转换单元与相干接收模块中非线性校准光路的输入端连接。具体的,上述第四分光器314b可以为一个分光器或者多个分光器的组合件,具体可根据分光效果而定,这里不做唯一限定。
第四种情况:
经第二分光器312b的两个输出端输出的本振光的光功率均大于50mW,请参照图15所示,此时第二分光单元可包括第二分光器312b、第三分光器313b和第四分光器314b,第二分光器312b的输入端与第一分光器311b的第二输出端连接,第二分光器312b的第一输出端与第三分光器313b的输入端连接,第二输出端与第四分光器314b的输入端连接,第三分光器313b的两个输出端分别通过第一模斑转换单元与相干接收模块中探测光路的输入端连接,第四分光器314b的第一输出端通过第一模斑转换单元与相干接收模块的相应输入端连接,第二输出端通过依次连接的光延迟线315b和第一模斑转换单元与相干接收模块中非线性校准光路的输入端连接。
具体的,上述第三分光器313b和第四分光器314b可以分别为一个分光器或者多个分光器的组合件,具体可根据分光效果而定,这里不做唯一限定。
在一个可选的实施例中,上述各实施例中的第三分光器313b和第四分光器314b分别具有两个输出端,且两者的分光比分别为50:50。采用这一结构便于后续信号分析。
上述各实施例中,请参照图11至图16所示,第一模斑转换单元包括第一模斑转换器321b、第二模斑转换器322b和第五模斑转换器323b。
第一模斑转换器321b连接于调频光源100b和第一分光单元之间,用于将调频光源100b和第一分光单元进行模场匹配,以在调频光源100b发出的光线传导至第一分光单元的过程中,减小模式失配损耗。具体表现为,第一模斑转换器321b的输入端与调频光源100b的输出端连接,输出端与第一分光单元的输入端连接。
第二模斑转换器322b一一对应的连接于第一分光单元中用于输出本振光的输出端与相干接收模块的相应输入端之间,用于将第一分光单元与相干接收模块的相应端部进行模场匹配,以在第一分光单元输出的本振光传导至相干接收模块的过程中,减小模式失配损耗。具体表现为,第二模斑转换器322b、第一分光单元中用于输出本振光的输出端、以及相干接收模块中用于接收本振光的输入端一一对应设置。每个第二模斑转换器322b的输入端与第一分光单元中用于输出本振光的其中一个输出端连接,输出端与相干接收模块的其中一个输入端连接。
第五模斑转换器323b连接于第一分光单元中用于输出探测光的输出端与收发模块200b的输入端之间,用于将第一分光单元与收发模块200b的相应端部进行模场匹配,以在第一分光单元输出的探测 光传导至收发模块200b的过程中,减小模式失配损耗。具体表现为,第五模斑转换器323b的输入端与第一分光单元中用于输出探测光的输出端连接,输出端与收发模块200b的输入端连接。
具体的,第一模斑转换器321b、第二模斑转换器322b和第五模斑转换器323b的型号可根据各模斑转换器两端的器件的模斑尺寸灵活选择,这里不做唯一限定。第一模斑转换单元采用这一结构可使得PLC芯片300b内外的器件均可灵活选择,无需受到彼此模斑尺寸的限制,便于设计。
请参照图11至图16所示,在一个可选的实施例中,收发模块200b包括依次连接的光放大单元210b、环形器220b和扫描单元230b,光放大单元210b与PLC芯片300b连接,用于接收并放大探测光,环形器220b和扫描单元230b用于相互配合控制放大后的探测光对目标物进行扫描,还用于相互配合接收目标物反射回来的回波信号,并将回波信号传输至相干接收模块中。
本实施例中的光放大单元210b可以为掺稀土光纤放大器、半导体光放大器、喇曼放大器中的任一种或者多种组合,主要用于对探测光进行增益,输出光功率更高的光信号。本实施例中的扫描单元230b可以包括一个或者多个光束扫描模组,每个光束扫描模组可以为振镜、转镜、MEMS微振镜等中的任一个,也可以是上述几种方式的组合,主要用于实现探测光的整形、准直和扫描。
本实施例中的环形器220b用于供放大后的激光束穿过,还用于偏转接收到的回波光束并射向相干接收模块。具体的,使用时探测光由环形器220b的第一端口输入,后经环形器220b的第二端口输出,之后该光束可通过扫描单元230b从自由空间输出,并发射至目标物上,之后目标物反射回来的回波信号可通过扫描单元230b原路返回,由环形器220b的第二端口进入,由环形器220b的第三端口输出至相干接收模块中。收发模块200b采用这一结构,结构简单,便于组装和维护,且工作性能稳定。
上述实施例中,扫描单元230b可以设置一个或多个。当扫描单元230b仅设置一个时,由于单个扫描单元230b的扫描角度范围有限,无法实现大角度的扫描范围,那么为了提高激光雷达的扫描角度范围,可以采用多个扫描单元230b。此时环形器220b的数量也需要随之改变。即环形器220b和扫描单元230b分别设有多个,且一一对应连接。环形器220b和扫描单元230b的数量可根据使用需要灵活选择,以满足不同范围的扫描需要。
在上述各实施例的基础上,请参照图11至图16所示,相干接收模块包括形成于硅光芯片410b内的探测光路。探测光路包括依次连接的第三分光单元、混频单元430b和合成单元440b。
第三分光单元用于接收任意偏振模式的回波信号和/或本振光,并将接收到的光束分解为偏振确定的多束子光束。为便于描述,下文将回波信号对应的子光束称为子信号光,将本振光对应的子光束称为第一子本振光。具体的,第三分光单元中可以包括一个或多个分光器,还可以包括一个或多个偏振分束旋转器423b,具体可根据使用需要进行选择。具体的,当需要对回波信号进行分束时,一般通过偏振分束旋转器423b,以将回波信号分成多束子信号光;当需要对本振光进行分束时,一般通过普通分束器即可,以将本振光分成多束第一子本振光。本实施例中的回波信号和本振光均存在两种设置形式,第一种是在硅光芯片410b外完成分束,另一种是在硅光芯片410b内完成分束,当回波信号和本振光中的任一种在硅光芯片410b外已完成分束,则在硅光芯片410b内不需要再设置相应光束的分光结构。无论如何设置,只要最终子信号光和第一子本振光数量一致,能够实现一一对应,满足后续信号分析所需即可。
混频单元430b用于将子信号光和第一子本振光进行混频,得到多束混频光。具体的,混频单元430b包括至少两个光混频器,光混频器的数量可根据子信号光或者第一子本振光的数量而定。
合成单元440b用于将多束混频光进行光电转换得到输出多个相干电信号。具体的,合成单元440b包括至少两个平衡探测器,每个平衡探测器与上述混频单元430b中的光混频器一一对应连接,以接收混频光并对混频光进行处理,形成相应的相干电信号,之后该相干电信号可被输出至外接信号处理装置中,以进行进一步处理。
相干接收模块采用本实施例提供的结构,结构简单、稳定,便于设计。
在一个可选的实施例中,请参照图11至图16所示,相干接收模块除上述探测光路外,还包括形成于硅光芯片410b内的非线性校准光路。
当第一分光单元中不包括第四分光器314b时,非线性校准光路包括沿本振光传播方向依次连接的第四分光单元、耦合器421b和第一平衡探测器422b,第四分光单元用于接收本振光,将本振光分为两束第二子本振光,并使两束第二子本振光的延迟不同,耦合器421b用于将两束延迟不同的第二子本振 光进行混频,第一平衡探测器422b用于接收耦合器421b输出的混频光并进行平衡探测。
当第一分光单元中包括第四分光器314b时,非线性校准光路包括沿本振光传播方向依次连接的耦合器421b和第一平衡探测器422b,耦合器421b用于将两束延迟不同的本振光进行混频,第一平衡探测器422b用于接收耦合器421b输出的混频光并进行平衡探测。
本实施例中的耦合器421b一般为3dB耦合器,还可采用能够实现上述功能的其他耦合器。使用时,可将第一平衡探测器422b的输出信号进行进一步处理,以作为调频光源100b校准的依据。采用本实施例提供的调频连续波激光雷达,可实时对调频光源100b进行校准,以便操作人员及时发现问题对其进行调整,进而保证检测结果的准确性。
在一个可选的实施例中,请参照图11至图16所示,相干接收模块还包括形成于硅光芯片410b内的第二模斑转换单元,第二模斑转换单元用于将硅光芯片410b外部器件的光与硅光芯片410b内部器件的光进行模场匹配。
具体的,第二模斑转换单元包括第三模斑转换器450b和第四模斑转换器460b,其中第三模斑转换器450b与第二模斑转换器322b一一对应连接,用于将硅光芯片410b内部器件的光与硅光芯片410b外部的光进行模场匹配。上述硅光芯片410b外部的光是指PLC芯片300b中的第二模斑转换器322b输出的光。为保证本振光可由硅光芯片410b外稳定传输至硅光芯片410b内,可将第二模斑转换器322b和第三模斑转换器450b的模场设计为接近。第四模斑转换器460b与收发模块200b中的回波信号输出端一一对应连接,以减小这部分的模场失配损耗。
相干接收模块采用本实施例提供的结构,可实现硅光芯片410b内外光的稳定传输,且可使得硅光芯片410b内外器件中除模斑转换器以外的器件在设计时不受其他器件模斑尺寸的影响,进而便于设计。
上述各实施例中的模斑转换器均可以是锥形波导、悬臂梁波导、多层波导等结构中的任一种,具体可以根据使用需要灵活选择。
为降低调频连续波激光雷达的体积,我们优选将回波信号和本振光所需的分光结构集成于PLC芯片300b和硅光芯片410b中,如此经过第一分光单元和第三分光单元需要形成数量一致的子信号光和第一子本振光,又由于上述第一分光单元存在多种实现方式,因此上述各实施例中的第三分光单元也存在多种实现方式,且第三分光单元的实现方式会随第一分光单元的实现方式的改变而改变。为便于理解,现以相干接收模块包括上述探测光路、上述非线性校准光路和上述第二模斑转换单元为例,对第三分光单元的具体结构进行说明。
请参照图11所示,当第一分光单元采用第一种实现方式时,即第一分光单元包括上述第一分光器311b时,第三分光单元包括偏振分束旋转器423b,以及上述第二分光器312b、第三分光器313b和第四分光器314b。其中,第二分光器312b通过第三模斑转换器450b和第二模斑转换器322b与第一分光器311b用于输出本振光的输出端连接;第三分光器313b和第四分光器314b分别连接于第二分光器312b的两个输出端,第三分光器313b将本振光分解为多个第一子本振光,第四分光器314b的其中一个输出端直接与耦合器421b连接,另一输出端通过光延迟线315b与耦合器421b连接;偏振分束旋转器423b通过第四模斑转换器460b与环形器220b连接,并用于将回波信号分为两束子信号光,并将两个子信号光一一对应的传输至相应光混频器中。此时,第四分光器314b用于将来自第二分光器312b的输出光按成一定的分光比分成两束光,一束光进入光延迟线315b,另一束光直接与耦合器421b相连。光延迟线315b用于对光信号产生一段延迟,它的输出端与耦合器421b相连。
请参照图12所示,当第一分光单元采用第二种实现方式中的第一种情况时,即第一分光单元包括第一分光器311b和第二分光器312b,此时第三分光单元包括偏振分束旋转器423b,以及上述第三分光器313b和第四分光器314b。
请参照图13所示,当第一分光单元采用第二种实现方式中的第二种情况时,此时第三分光单元包括偏振分束旋转器423b以及上述第四分光器314b。此时,第四分光器314b用于将来自第二分光器312b的输出光按成一定的分光比分成两束光,一束光进入光延迟线315b,另一束光直接与耦合器421b相连。光延迟线315b用于对光信号产生一段延迟,它的输出端与耦合器421b相连。
请参照图14所示,当第一分光单元采用第二种实现方式中的第三种情况时,此时第三分光单元包括偏振分束旋转器423b以及上述第三分光器313b。
请参照图15所示,当第一分光单元采用第二种实现方式中的第四种情况时,此时第三分光单元包括偏振分束旋转器423b。
上述各实施例中偏振分束旋转器423b通过第四模斑转换器460b与环形器220b一一对应连接,每个偏振分束旋转器423b用于将任意偏振的回波信号分成两束偏振确定的子信号光,它的输出与2个光混频器的输入端相连,作为信号光输入。且每个偏振分束旋转器423b输出的光的偏振态均与相应第三分光器313b输出的光的偏振态相同。
请参照图16所示,在一个具体的实施例中,调频连续波激光雷达包括调频光源100b、光放大器、环形器220b、N个扫描单元230b、N个环形器220b、2N个光混频器、1个第一模斑转换器321b、1个第二模斑转换器322b、1个第三模斑转换器450b、N个第四模斑转换器460b、2N+1个平衡探测器、N个偏振分束旋转器423b、1个第一分光器311b、1个第二分光器312b、1个第三分光器313b和1个第四分光器314b,其中光放大器为N个输出端口,第三分光器313b为2N个输出端口。N个环形器220b的第三端口都通过第四模式转换器与N个偏振分束旋转器423b相连。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (22)

  1. 一种调频连续波激光雷达,其特征在于,包括调频光源、收发模块以及光芯片模组;
    所述调频光源用于发出激光束;
    所述光芯片模组连接于所述调频光源和所述收发模块之间,所述芯片模组包括分光模块与相干接收模块,所述分光模块用于将接收到的激光束分为至少一束探测光和至少一束本振光;
    所述收发模块用于接收所述探测光,并将所述探测光整形、准直后控制其对目标物进行扫描,同时还用于接收经所述目标物反射的回波信号,并将所述回波信号输送至所述光芯片模组;
    所述相干接收模块分别与所述分光模块和所述收发模块连接,所述相干接收模块用于接收所述分光模块输出的所述本振光,以及所述收发模块输出的所述回波信号,将所述本振光和所述回波信号合束以及进行相干拍频。
  2. 如权利要求1所述的调频连续波激光雷达,其特征在于,所述芯片模组包括硅光芯片;
    所述硅光芯片连接于所述调频光源和所述收发模块之间,所述硅光芯片包括依次设置的第一波导层以及第二波导层,其中,所述第一波导层能够容纳的光功率大于所述第二波导层能够容纳的光功率,且所述第一波导层和所述第二波导层之间形成有两个层间模式转换器,所述第一波导层包括所述分光模块,所述第二波导层包括所述相干接收模块;
    所述分光模块包括第一分光单元,所述第一分光单元用于将接收到的激光束分为至少一束探测光和至少一束本振光,每束所述本振光的光功率小于等于50mW;
    所述相干接收模块通过所述层间模式转换器与所述第一分光单元信号连通,并与所述收发模块中用于输出回波信号的输出端连接,用于将所述本振光和所述回波信号合束以及进行相干拍频。
  3. 如权利要求2所述的调频连续波激光雷达,其特征在于,所述第二波导层与所述第一波导层之间的垂直间距大于50nm小于400nm,两个波导层内的光信号能够在所述层间模式转换器内通过倏逝波耦合实现层间转换。
  4. 如权利要求3所述的调频连续波激光雷达,其特征在于,所述第一波导层和所述第二波导层位于所述层间模式转换器内的部分均为锥形;所述层间模式转换器为锥形波导模式转换器。
  5. 如权利要求2所述的调频连续波激光雷达,其特征在于,所述第二波导层与所述第一波导层之间的垂直间距大于1μm小于4μm,所述第一波导层和所述第二波导层位于所述层间模式转换器内的部分上均形成有光栅结构;两个波导层内的光信号能够通过所述光栅结构实现层间转换。
  6. 如权利要求2所述的调频连续波激光雷达,其特征在于,所述第一分光单元包括第一分光器;
    所述第一分光器的输入端与所述调频光源的输出端连接,所述第一分光器的第一输出端与所述收发模块的输入端连接、用于输出所述探测光,所述第一分光器的第二输出端通过所述层间模式转换器与所述相干接收模块的相应输入端连接、用于输出所述本振光。
  7. 如权利要求2所述的调频连续波激光雷达,其特征在于,所述第一分光单元包括第一分光器和第二分光单元;
    所述第一分光器的输入端与所述调频光源的输出端连接,所述第一分光器的第一输出端与所述收发模块的输入端连接、用于输出所述探测光,所述第一分光器的第二输出端与所述第二分光单元的输入端连接、用于输出本振光,所述第二分光单元的输出端通过所述层间模式转换器与所述相干接收模块的相应输入端连接、用于将所述第一分光器输出的所述本振光分成多束并输出至所述相干接收模块中。
  8. 如权利要求7所述的调频连续波激光雷达,其特征在于,所述第二分光单元包括第二分光器,所述第二分光器的输入端与所述第一分光器的第二输出端连接,所述第二分光器的两个输出端分别通过所述层间模式转换器与所述相干接收模块的相应输入端连接;
    或者,所述第二分光单元包括沿本振光传输方向依次设置的第二分光器和第三分光器,所述第二分光器的输入端与所述第一分光器的第二输出端连接,所述第二分光器的第一输出端通过所述层间模式转换器与所述相干接收模块的相应输入端连接,所述第二分光器的第二输出端与所述第三分光器的输入端连接,所述第三分光器的两个输出端分别通过所述层间模式转换器与所述相干接收模块中探测光路的输 入端连接。
  9. 如权利要求2-8任一项所述的调频连续波激光雷达,其特征在于,所述收发模块包括依次连接的光放大单元、环形器和扫描单元,所述光放大单元与所述硅光芯片连接,用于接收并放大所述探测光,所述环形器和所述扫描单元用于相互配合控制放大后的所述探测光对目标物进行扫描,还用于相互配合接收所述目标物反射回来的回波信号,并将所述回波信号传输至所述相干接收模块中。
  10. 如权利要求9所述的调频连续波激光雷达,其特征在于,所述环形器和所述扫描单元分别设有多个,且一一对应连接。
  11. 如权利要求2-8任一项所述的调频连续波激光雷达,其特征在于,所述相干接收模块包括探测光路,所述探测光路包括依次形成于所述第二波导层上的第三分光单元、混频单元和合成单元;
    所述第三分光单元用于接收任意偏振模式的回波信号和/或本振光,并将接收到的光束分解为偏振确定的多束子光束;其中,所述回波信号对应的子光束为子信号光,所述本振光对应的子光束为第一子本振光;
    所述混频单元用于将所述子信号光和所述第一子本振光进行混频,得到多束混频光;
    所述合成单元用于将所述多束混频光进行光电转换得到输出多个相干电信号。
  12. 如权利要求11所述的调频连续波激光雷达,其特征在于,所述相干接收模块还包括非线性校准光路;
    所述非线性校准光路包括沿本振光传播方向依次形成于所述第二波导层上的第四分光单元、耦合器和第一平衡探测器,所述第四分光单元用于接收所述本振光,将所述本振光分为两束第二子本振光,并使两束所述第二子本振光的延迟不同,所述耦合器用于将两束延迟不同的所述第二子本振光进行混频,所述第一平衡探测器用于接收所述耦合器输出的混频光并进行平衡探测。
  13. 如权利要求11所述的调频连续波激光雷达,其特征在于,所述第一波导层上还集成有第一模斑转换单元,所述第一模斑转换单元用于将所述硅光芯片外部器件的光与所述第一分光单元的光进行模场匹配;
    所述相干接收模块还包括形成于所述第二波导层上的第二模斑转换单元,所述第二模斑转换单元用于将所述收发模块内相应器件的光与所述相干接收模块内相应器件的光进行模场匹配。
  14. 如权利要求1所述的调频连续波激光雷达,其特征在于,所述光芯片模组包括PLC芯片与硅光芯片;
    所述PLC芯片包括所述分光模块,所述PLC芯片连接于所述调频光源和所述收发模块之间,所述分光模块包括第一分光单元,所述第一分光单元用于将接收到的激光束分为至少一束探测光和至少一束本振光,每束所述本振光的光功率小于等于50Mw;
    所述PLC芯片还包括第一模斑转换单元,所述第一模斑转换单元用于将所述PLC芯片外部器件的光与所述PLC芯片内部器件的光进行模场匹配;
    所述硅光芯片包括所述相干接收模块。
  15. 如权利要求14所述的调频连续波激光雷达,其特征在于,所述第一分光单元包括第一分光器;
    所述第一分光器的输入端通过所述第一模斑转换单元与所述调频光源的输出端连接,所述第一分光器的第一输出端通过所述第一模斑转换单元与所述收发模块的输入端连接、用于输出所述探测光,所述第一分光器的第二输出端通过所述第一模斑转换单元与所述相干接收模块的相应输入端连接、用于输出所述本振光。
  16. 如权利要求14所述的调频连续波激光雷达,其特征在于,所述第一分光单元包括第一分光器和第二分光单元;
    所述第一分光器的输入端通过所述第一模斑转换单元与所述调频光源的输出端连接,所述第一分光器的第一输出端通过所述第一模斑转换单元与所述收发模块的输入端连接、用于输出所述探测光,所述第一分光器的第二输出端与所述第二分光单元的输入端连接、用于输出本振光,所述第二分光单元的输出端通过所述第一模斑转换单元与所述相干接收模块的相应输入端连接、用于将所述第一分光器输出的所述本振光分成多束并输出至所述相干接收模块中。
  17. 如权利要求16所述的调频连续波激光雷达,其特征在于,所述第二分光单元包括第二分光器, 所述第二分光器的输入端与所述第一分光器的第二输出端连接,所述第二分光器的两个输出端分别通过所述第一模斑转换单元与所述相干接收模块的相应输入端连接;
    或者,所述第二分光单元包括沿本振光传输方向依次设置的第二分光器和第三分光器,所述第二分光器的输入端与所述第一分光器的第二输出端连接,所述第二分光器的第一输出端通过所述第一模斑转换单元与所述相干接收模块的相应输入端连接,所述第二分光器的第二输出端与所述第三分光器的输入端连接,所述第三分光器的两个输出端分别通过所述第一模斑转换单元与所述相干接收模块中探测光路的输入端连接;
    或者,所述第二分光单元包括沿本振光传输方向依次设置的第二分光器和第四分光器,所述第二分光器的输入端与所述第一分光器的第二输出端连接,所述第二分光器的第一输出端通过所述第一模斑转换单元与所述相干接收模块的相应输入端连接,所述第二分光器的第二输出端与所述第四分光器的输入端连接,所述第四分光器的第一输出端通过所述第一模斑转换单元与所述相干接收模块的相应输入端连接,第二输出端通过依次连接的光延迟线和所述第一模斑转换单元与所述相干接收模块中非线性校准光路的输入端连接;
    或者,所述第二分光单元包括第二分光器、第三分光器和第四分光器,所述第二分光器的输入端与所述第一分光器的第二输出端连接,所述第二分光器的第一输出端与所述第三分光器的输入端连接,第二输出端与所述第四分光器的输入端连接,所述第三分光器的两个输出端分别通过所述第一模斑转换单元与所述相干接收模块中探测光路的输入端连接,所述第四分光器的第一输出端通过所述第一模斑转换单元与所述相干接收模块的相应输入端连接,第二输出端通过依次连接的光延迟线和所述第一模斑转换单元与所述相干接收模块中非线性校准光路的输入端连接。
  18. 如权利要求13-17任一项所述的调频连续波激光雷达,其特征在于,所述第一模斑转换单元包括第一模斑转换器、第二模斑转换器和第五模斑转换器;
    所述第一模斑转换器连接于所述调频光源和所述第一分光单元之间,用于将所述调频光源和所述第一分光单元进行模场匹配;
    所述第二模斑转换器一一对应的连接于所述第一分光单元中用于输出所述本振光的输出端与所述相干接收模块中用于接收所述本振光的输入端之间,用于将所述第一分光单元与所述相干接收模块的相应端部进行模场匹配;
    所述第五模斑转换器连接于所述第一分光单元中用于输出所述探测光的输出端与所述收发模块的输入端之间,用于将所述第一分光单元与所述收发模块的相应端部进行模场匹配。
  19. 如权利要求14-17任一项所述的调频连续波激光雷达,其特征在于,所述收发模块包括依次连接的光放大单元、环形器和扫描单元,所述光放大单元与所述PLC芯片连接,用于接收并放大所述探测光,所述环形器和所述扫描单元用于相互配合控制放大后的所述探测光对目标物进行扫描,还用于相互配合接收所述目标物反射回来的回波信号,并将所述回波信号传输至所述相干接收模块中。
  20. 如权利要求13-17任一项所述的调频连续波激光雷达,其特征在于,所述相干接收模块包括探测光路,所述探测光路包括依次连接的第三分光单元、混频单元和合成单元;
    所述第三分光单元用于接收任意偏振模式的回波信号和/或本振光,并将接收到的光束分解为偏振确定的多束子光束;其中,所述回波信号对应的子光束为子信号光,所述本振光对应的子光束为第一子本振光;
    所述混频单元用于将所述子信号光和所述第一子本振光进行混频,得到多束混频光;
    所述合成单元用于将所述多束混频光进行光电转换得到输出多个相干电信号。
  21. 如权利要求20所述的调频连续波激光雷达,其特征在于,所述相干接收模块还包括非线性校准光路;
    当所述第一分光单元中不包括第四分光器时,所述非线性校准光路包括沿本振光传播方向依次连接的第四分光单元、耦合器和第一平衡探测器,所述第四分光单元用于接收所述本振光,将所述本振光分为两束第二子本振光,并使两束所述第二子本振光的延迟不同,所述耦合器用于将两束延迟不同的所述第二子本振光进行混频,所述第一平衡探测器用于接收所述耦合器输出的混频光并进行平衡探测;
    当所述第一分光单元中包括第四分光器时,所述非线性校准光路包括沿本振光传播方向依次连接的 耦合器和第一平衡探测器,所述耦合器用于将两束延迟不同的所述本振光进行混频,所述第一平衡探测器用于接收所述耦合器输出的混频光并进行平衡探测。
  22. 如权利要求20所述的调频连续波激光雷达,其特征在于,所述相干接收模块还包括形成于所述硅光芯片内的第二模斑转换单元,所述第二模斑转换单元用于将所述硅光芯片外部器件的光与所述硅光芯片内部器件的光进行模场匹配。
PCT/CN2023/087861 2022-04-29 2023-04-12 调频连续波激光雷达 WO2023207600A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210464251.X 2022-04-29
CN202210464486.9 2022-04-29
CN202210464251.XA CN114791611A (zh) 2022-04-29 2022-04-29 调频连续波激光雷达
CN202210464486.9A CN114779277A (zh) 2022-04-29 2022-04-29 调频连续波激光雷达

Publications (1)

Publication Number Publication Date
WO2023207600A1 true WO2023207600A1 (zh) 2023-11-02

Family

ID=88517304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087861 WO2023207600A1 (zh) 2022-04-29 2023-04-12 调频连续波激光雷达

Country Status (1)

Country Link
WO (1) WO2023207600A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153116A (ja) * 2007-11-30 2009-07-09 Nippon Telegr & Teleph Corp <Ntt> 光通信システム、送信器および受信器
CN102495411A (zh) * 2011-10-18 2012-06-13 中国科学院上海技术物理研究所 亚毫米级线性调谐激光测距系统及信号处理方法
CN102654575A (zh) * 2012-03-28 2012-09-05 中国科学院上海技术物理研究所 THz级大带宽激光合成孔径雷达成像系统
CN107589415A (zh) * 2017-09-06 2018-01-16 南京航空航天大学 微波光子宽带雷达成像芯片、系统
CN109991582A (zh) * 2019-03-13 2019-07-09 上海交通大学 硅基混合集成激光雷达芯片系统
CN111007483A (zh) * 2019-12-24 2020-04-14 联合微电子中心有限责任公司 一种基于硅光芯片的激光雷达
CN111880190A (zh) * 2020-08-24 2020-11-03 国科光芯(海宁)科技股份有限公司 一种相干激光测距芯片及其系统
CN114779277A (zh) * 2022-04-29 2022-07-22 深圳市速腾聚创科技有限公司 调频连续波激光雷达
CN114791611A (zh) * 2022-04-29 2022-07-26 深圳市速腾聚创科技有限公司 调频连续波激光雷达
CN115639543A (zh) * 2022-12-14 2023-01-24 深圳市速腾聚创科技有限公司 调频连续波激光雷达及自动驾驶设备
CN115932873A (zh) * 2021-08-17 2023-04-07 光子集成科技香港有限公司 一种调频连续波激光雷达

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153116A (ja) * 2007-11-30 2009-07-09 Nippon Telegr & Teleph Corp <Ntt> 光通信システム、送信器および受信器
CN102495411A (zh) * 2011-10-18 2012-06-13 中国科学院上海技术物理研究所 亚毫米级线性调谐激光测距系统及信号处理方法
CN102654575A (zh) * 2012-03-28 2012-09-05 中国科学院上海技术物理研究所 THz级大带宽激光合成孔径雷达成像系统
CN107589415A (zh) * 2017-09-06 2018-01-16 南京航空航天大学 微波光子宽带雷达成像芯片、系统
CN109991582A (zh) * 2019-03-13 2019-07-09 上海交通大学 硅基混合集成激光雷达芯片系统
CN111007483A (zh) * 2019-12-24 2020-04-14 联合微电子中心有限责任公司 一种基于硅光芯片的激光雷达
CN111880190A (zh) * 2020-08-24 2020-11-03 国科光芯(海宁)科技股份有限公司 一种相干激光测距芯片及其系统
CN115932873A (zh) * 2021-08-17 2023-04-07 光子集成科技香港有限公司 一种调频连续波激光雷达
CN114779277A (zh) * 2022-04-29 2022-07-22 深圳市速腾聚创科技有限公司 调频连续波激光雷达
CN114791611A (zh) * 2022-04-29 2022-07-26 深圳市速腾聚创科技有限公司 调频连续波激光雷达
CN115639543A (zh) * 2022-12-14 2023-01-24 深圳市速腾聚创科技有限公司 调频连续波激光雷达及自动驾驶设备

Similar Documents

Publication Publication Date Title
CN114779277A (zh) 调频连续波激光雷达
US20230027271A1 (en) Silicon photonics chip-based lidar
CN115639543B (zh) 调频连续波激光雷达及自动驾驶设备
CN109991582B (zh) 硅基混合集成激光雷达芯片系统
US12025739B1 (en) Frequency modulated continuous wave LiDAR and autonomous driving device
CN116087914B (zh) 激光雷达及可移动设备
CN114791611A (zh) 调频连续波激光雷达
CN115656975B (zh) 波导转换芯片、调频连续波激光雷达及自动驾驶设备
CN115291194B (zh) 光收发模组、激光雷达、自动驾驶系统及可移动设备
CN116593996B (zh) 激光雷达及可移动设备
CN115542345A (zh) Fmcw激光雷达、自动驾驶系统及可移动设备
CN114325639A (zh) 可用于雷达的光学组件及硅光芯片
CN116243279B (zh) 光芯片及激光雷达
CN115685141A (zh) 激光雷达、自动驾驶系统和可移动设备
US20240272287A1 (en) Fmcw lidar, light path converter module thereof, and detection method therefor
WO2023207600A1 (zh) 调频连续波激光雷达
WO2024045550A1 (zh) 激光雷达的发射模块、收发装置和激光雷达
CN111740786B (zh) 一种集成光波导波束赋形装置
CN218445969U (zh) 光收发系统与激光雷达
WO2024078364A1 (zh) 激光雷达
CN219892605U (zh) 保偏光纤放大器及fmcw激光雷达
CN116719044B (zh) 一种调频连续波激光雷达
CN116840972B (zh) 光芯片、激光雷达及可移动设备
CN220043424U (zh) 一种利用波分复用器的收发共轴紧凑激光收发装置
CN116931002B (zh) 激光雷达及可移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795033

Country of ref document: EP

Kind code of ref document: A1