JP2009145307A - Surface inspection apparatus and surface inspection method - Google Patents

Surface inspection apparatus and surface inspection method Download PDF

Info

Publication number
JP2009145307A
JP2009145307A JP2007325953A JP2007325953A JP2009145307A JP 2009145307 A JP2009145307 A JP 2009145307A JP 2007325953 A JP2007325953 A JP 2007325953A JP 2007325953 A JP2007325953 A JP 2007325953A JP 2009145307 A JP2009145307 A JP 2009145307A
Authority
JP
Japan
Prior art keywords
polarized light
linearly polarized
angle
pattern
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007325953A
Other languages
Japanese (ja)
Other versions
JP2009145307A5 (en
JP5212779B2 (en
Inventor
Kazuhiko Fukazawa
和彦 深澤
Yuji Kudo
祐司 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007325953A priority Critical patent/JP5212779B2/en
Publication of JP2009145307A publication Critical patent/JP2009145307A/en
Publication of JP2009145307A5 publication Critical patent/JP2009145307A5/ja
Application granted granted Critical
Publication of JP5212779B2 publication Critical patent/JP5212779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface inspection apparatus which enables the surface inspection of high sensitivity. <P>SOLUTION: The surface inspection apparatus 1 is equipped with: an illumination system 30 for irradiating the surface of a wafer 10, which has a predetermined repeated pattern, with first linear polarized light L1; an analyzer 42 for extracting second linear polarized light component L3, which is different from the first linear polarized light L1 in vibration direction, from the oval polarized light L2 produced on the surface of the wafer 10; an imaging camera 44 for detecting a second linear polarized light component L3; a monitor 55 for displaying the shape change of the repeated pattern on the basis of the second linear polarized light component L3 detected by the imaging camera 44; and a rotary drive device 43 for setting the analyzer 42 so that the advance direction of the oval polarized light L2, the direction of an oval short axis within a vertical plane and the vibration direction of the second polarized light component L3 within the vertical plane almost coincide with each other. The analyzer 42 is set according to the repeated pattern. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体ウェハや液晶基板等の表面を検査する表面検査装置および方法に関する。   The present invention relates to a surface inspection apparatus and method for inspecting the surface of a semiconductor wafer, a liquid crystal substrate or the like.

半導体ウェハの表面に形成されたパターンの良否を判断する方法として、走査型電子顕微鏡(SEM)による観察により、断面形状を計測する方法が種々提案されている。SEMによる断面形状の計測は、被検基板上のパターンに照射した電子線をパターンの断面方向に走査し、パターンからの反射電子や二次電子を検出、解析して、走査した部分の断面形状を求める方法で行われる。上記の操作をパターン上の何点かで行い、パターン全体の形状の良否を判断する。   As a method for judging the quality of a pattern formed on the surface of a semiconductor wafer, various methods for measuring a cross-sectional shape by observation with a scanning electron microscope (SEM) have been proposed. Cross-sectional shape measurement by SEM scans the electron beam irradiated to the pattern on the test substrate in the cross-sectional direction of the pattern, detects and analyzes the reflected electrons and secondary electrons from the pattern, and cross-sectional shape of the scanned part It is done by the method to ask for. The above operation is performed at several points on the pattern, and the quality of the entire pattern is judged.

また、パターンの断面形状からパターンを形成した露光プロセスやエッチングのプロセスに不具合がないかどうかや、適切なプロセス条件が選択されているかの判断もなされる。例えば露光プロセスについては露光条件とパターンの断面形状との相関関係をあらかじめ求めておき、検査したパターンの断面形状から露光装置の露光条件の修正の可否を判断し、修正が必要な場合には前述の相関関係に基づいて適切な露光条件を求めている。また、エッチングのプロセスにおいては、ガス種、ガス圧、加速電圧等の条件と、パターンの断面形状との相関関係を予め求めておいて、同様の条件出しが行われる。   It is also determined whether there is a problem in the exposure process or etching process in which the pattern is formed from the cross-sectional shape of the pattern, and whether appropriate process conditions are selected. For example, for the exposure process, a correlation between the exposure condition and the cross-sectional shape of the pattern is obtained in advance, and whether or not the exposure condition of the exposure apparatus can be corrected is determined from the cross-sectional shape of the inspected pattern. Appropriate exposure conditions are obtained based on the correlation. In the etching process, the correlation between the gas type, gas pressure, acceleration voltage, and other conditions and the cross-sectional shape of the pattern is obtained in advance, and the same conditions are determined.

上記の様にSEMによる計測方法は、パターン上に電子線を照射して走査する作業を何回も繰り返し行う為、パターンの形状を求めるのに膨大な時間を要してしまう。また観察倍率が高いため、ウェハ上の全てのパターン形状を求めるのは困難であり、何点かをサンプリングしてウェハ全体の良否を判断する。その結果、サンプリングされたパターン以外の部分に欠陥があっても見逃されてしまう。また、レジストパターンでは、電子線を照射すると加速電圧によって電子線がレジストに吸収、チャージされてパターンの目減りが起こる。場合によっては放電が発生してパターンが倒れてしまい、その後の工程で不都合が生じる為、加速電圧や観察倍率を色々と変えながら最適な観察条件をも求める。それ故、さらに計測に時間を要する。   As described above, the measurement method using the SEM repeatedly performs the operation of irradiating and scanning the pattern with an electron beam many times, and therefore it takes an enormous time to obtain the pattern shape. Further, since the observation magnification is high, it is difficult to obtain all pattern shapes on the wafer, and the quality of the entire wafer is judged by sampling several points. As a result, even if there is a defect in a portion other than the sampled pattern, it is overlooked. In the resist pattern, when the electron beam is irradiated, the electron beam is absorbed and charged by the resist by the acceleration voltage, and the pattern is lost. In some cases, discharge occurs and the pattern collapses, resulting in inconvenience in subsequent processes. Therefore, optimum observation conditions are also obtained while changing the acceleration voltage and the observation magnification in various ways. Therefore, more time is required for measurement.

SEMによる断面形状の計測では、こうした見逃しによって露光装置やエッチャーの不具合を十分に把握出来ないという問題が生じる。また、計測に膨大な時間を要するため、計測結果によって得られた露光装置やエッチャーの不具合を迅速にそれらの装置に反映できない問題も生じる。   In the measurement of the cross-sectional shape by the SEM, there arises a problem that the failure of the exposure apparatus or the etcher cannot be sufficiently grasped due to such oversight. In addition, since enormous amounts of time are required for measurement, there is a problem in that defects in the exposure apparatus and etcher obtained from the measurement results cannot be quickly reflected in those apparatuses.

このような問題を解決するため、レジストパターン、エッチング後のパターンに関わらず、被検基板上のパターン形状の良否を短時間で判別することができる表面検査装置および表面検査方法が考案されている(例えば、特許文献1を参照)。この表面検査装置は、被検基板に形成された周期性を有するレジストパターンの繰り返し方向に対して直線偏光の振動方向を斜めに設定して照明し、被検基板からの正反射光のうち、照明する直線偏光の振動面に垂直な振動面を有する偏光成分を抽出するために検像形成手段を用いて撮像することにより、被検基板上のパターン形状の良否を短時間に処理可能としている。
特開2006−135211号公報
In order to solve such a problem, a surface inspection apparatus and a surface inspection method have been devised that can determine whether a pattern shape on a substrate to be tested is good or not in a short time regardless of a resist pattern or a pattern after etching. (For example, see Patent Document 1). This surface inspection apparatus illuminates by setting the vibration direction of linearly polarized light obliquely with respect to the repeating direction of the resist pattern having periodicity formed on the test substrate, and among the regular reflection light from the test substrate, By picking up an image using the image forming means to extract a polarization component having a vibration plane perpendicular to the vibration plane of the linearly polarized light to be illuminated, the quality of the pattern shape on the test substrate can be processed in a short time. .
JP 2006-135211 A

しかしながら、線幅が50nm以下になると、レジスト厚も薄くなり、被検基板に形成された周期性を有するレジストパターンが有する構造性複屈折によって発生する偏光状態の変化が少なくなる。このため、レジストパターンの繰り返し方向に対して直線偏光の振動方向を斜めに設定して照明したときの被検基板からの正反射光のうち、照明する直線偏光の振動面に垂直な振動面を有する偏光成分も減衰するため、パターン形状変化に対する検出感度が低下する問題があった。   However, when the line width is 50 nm or less, the resist thickness is also reduced, and the change in the polarization state caused by the structural birefringence of the resist pattern having periodicity formed on the test substrate is reduced. For this reason, out of the specularly reflected light from the test substrate when the direction of vibration of the linearly polarized light is set obliquely with respect to the repeating direction of the resist pattern, the vibration surface perpendicular to the surface of the linearly polarized light to be illuminated is selected. Since the polarization component it has also attenuated, there was a problem that the detection sensitivity to the pattern shape change was lowered.

本発明は、このような問題に鑑みてなされたものであり、感度の高い表面検査が可能な表面検査装置および表面検査方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide a surface inspection apparatus and a surface inspection method capable of highly sensitive surface inspection.

このような目的達成のため、本発明に係る表面検査装置は、所定の繰り返しパターンを有する被検基板の表面に第1の直線偏光を照射する照明部と、前記被検基板の表面に照射された前記第1の直線偏光が前記繰り返しパターンで反射する際に前記パターンが有する構造性複屈折によって生じた楕円偏光から前記第1の直線偏光と振動方向が異なる第2の直線偏光成分を抽出する偏光素子と、前記第2の直線偏光成分を検出する検出部と、前記検出部で検出された前記第2の直線偏光成分に基づいて、前記繰り返しパターンの形状変化を表示する表示部と、前記楕円偏光の進行方向と垂直な面内における楕円短軸の向きと前記垂直な面内における前記第2の直線偏光成分の振動方向とが略一致するように前記偏光素子を設定可能な設定部とを備え、前記繰り返しパターンに応じて前記偏光素子を設定するようになっている。   In order to achieve such an object, a surface inspection apparatus according to the present invention irradiates a surface of a test substrate having a predetermined repetitive pattern with a lighting unit that irradiates the surface of the test substrate with a first linearly polarized light. In addition, when the first linearly polarized light is reflected by the repetitive pattern, a second linearly polarized light component having a vibration direction different from that of the first linearly polarized light is extracted from elliptically polarized light generated by the structural birefringence of the pattern. A polarization element; a detection unit that detects the second linearly polarized light component; a display unit that displays a shape change of the repetitive pattern based on the second linearly polarized light component detected by the detection unit; A setting unit capable of setting the polarizing element such that the direction of the minor axis of the ellipse in a plane perpendicular to the traveling direction of the elliptically polarized light and the vibration direction of the second linearly polarized light component in the perpendicular plane substantially coincide with each other; The For example, so as to set the polarization element according to the repeating pattern.

なお、上述の表面検査装置において、前記設定部は、前記楕円偏光の進行方向と垂直な面内における前記第2の直線偏光成分の振動方向と、前記第1の直線偏光の進行方向と垂直な面内における振動方向とのなす角度を所定角度ずつ変化させることができ、前記角度を前記所定角度ずつ変化させる毎に前記検出部で検出した前記第2の直線偏光成分の輝度に基づいて、前記楕円偏光の進行方向と垂直な面内における楕円短軸の向きと前記垂直な面内における前記第2の直線偏光成分の振動方向とが略一致する前記角度を選択設定することが好ましい。   In the surface inspection apparatus described above, the setting unit includes a vibration direction of the second linearly polarized light component in a plane perpendicular to the traveling direction of the elliptically polarized light and a traveling direction of the first linearly polarized light. An angle formed by an in-plane vibration direction can be changed by a predetermined angle, and based on the luminance of the second linearly polarized light component detected by the detection unit every time the angle is changed by the predetermined angle, It is preferable to select and set the angle at which the direction of the minor axis of the ellipse in the plane perpendicular to the traveling direction of the elliptically polarized light and the vibration direction of the second linearly polarized light component in the perpendicular plane substantially coincide.

また、上述の表面検査装置において、前記検出部で検出された前記第2の直線偏光成分の輝度と予め設定された閾値とを比較して、前記繰り返しパターンの異常を検出する異常検出部をさらに備えることが好ましい。   In the surface inspection apparatus described above, the abnormality detection unit further detects an abnormality of the repetitive pattern by comparing the luminance of the second linearly polarized light component detected by the detection unit with a preset threshold value. It is preferable to provide.

また、上述の表面検査装置において、前記設定部は、前記構造性複屈折によって生じた前記楕円偏光の前記第2の直線偏光成分を最も検出しやすくするように前記偏光素子を設定することが好ましい。   In the surface inspection apparatus described above, it is preferable that the setting unit sets the polarizing element so that the second linearly polarized light component of the elliptically polarized light generated by the structural birefringence is most easily detected. .

また、上述の表面検査装置において、前記設定部は、前記角度が90度以外であって90度近傍の角度となるように前記選択設定を行うことが好ましい。   In the surface inspection apparatus described above, it is preferable that the setting unit performs the selection setting so that the angle is other than 90 degrees and an angle in the vicinity of 90 degrees.

また、本発明に係る表面検査方法は、所定の繰り返しパターンを有する被検基板の表面に第1の直線偏光を照射する照射ステップと、前記被検基板の表面に照射された前記第1の直線偏光が前記繰り返しパターンで反射する際に前記パターンが有する構造性複屈折によって生じた楕円偏光から前記第1の直線偏光と振動方向が異なる第2の直線偏光成分を抽出する抽出ステップと、前記第2の直線偏光成分を検出する検出ステップと、前記検出ステップで検出された前記第2の直線偏光成分に基づいて、前記繰り返しパターンの形状変化を表示する表示ステップと、前記楕円偏光の進行方向と垂直な面内における前記抽出する前記第2の直線偏光成分の振動方向を、前記繰り返しパターンに応じて設定する設定ステップとを有している。   The surface inspection method according to the present invention includes an irradiation step of irradiating the surface of the test substrate having a predetermined repetitive pattern with the first linearly polarized light, and the first straight line irradiated on the surface of the test substrate. An extraction step of extracting a second linearly polarized light component having a vibration direction different from that of the first linearly polarized light from elliptically polarized light generated by the structural birefringence of the pattern when the polarized light is reflected by the repetitive pattern; A detection step for detecting two linearly polarized light components, a display step for displaying a shape change of the repetitive pattern based on the second linearly polarized light component detected in the detecting step, and a traveling direction of the elliptically polarized light, A setting step of setting a vibration direction of the extracted second linearly polarized light component in a vertical plane according to the repetitive pattern.

なお、前記設定ステップにおいて、前記楕円偏光の進行方向と垂直な面内における前記第2の直線偏光成分の振動方向と、前記第1の直線偏光の進行方向と垂直な面内における振動方向とのなす角度を所定角度ずつ変化させ、前記角度を前記所定角度ずつ変化させる毎に検出した前記第2の直線偏光成分の輝度に基づいて、前記楕円偏光の進行方向と垂直な面内における楕円短軸の向きと前記垂直な面内における前記第2の直線偏光成分の振動方向とが略一致する前記角度を選択設定することが好ましい。   In the setting step, a vibration direction of the second linearly polarized light component in a plane perpendicular to the traveling direction of the elliptically polarized light, and a vibration direction in a plane perpendicular to the traveling direction of the first linearly polarized light. An elliptical short axis in a plane perpendicular to the traveling direction of the elliptically polarized light based on the brightness of the second linearly polarized light component detected each time the angle formed is changed by a predetermined angle and the angle is changed by the predetermined angle. It is preferable to select and set the angle at which the orientation of the second linearly polarized light component in the vertical plane substantially coincides with the vibration direction of the second linearly polarized light component.

また、前記設定ステップにおいて、前記角度が90度以外であって90度近傍の角度となるように前記選択設定を行うことが好ましい。   In the setting step, it is preferable that the selection setting is performed so that the angle is other than 90 degrees and an angle close to 90 degrees.

本発明によれば、感度の高い表面検査を行うことができる。   According to the present invention, a highly sensitive surface inspection can be performed.

以下、図面を参照して本発明の好ましい実施形態について説明する。本実施形態の表面検査装置1は、図1に示すように、被検基板である半導体ウェハ10(以下、ウェハ10と称する)を支持するステージ20と、アライメント系25と、照明系30と、受光系40とを備えて構成されている。また、表面検査装置1は、受光系40で撮像された画像の画像処理を行う画像処理部50と、受光系40で撮像された画像や画像処理部50による画像処理結果を表示するモニタ55とを備えている。表面検査装置1は、半導体回路素子の製造工程において、ウェハ10の表面の検査を自動的に行う装置である。ウェハ10は、最上層のレジスト膜への露光・現像後、不図示の搬送系により、不図示のウェハカセットまたは現像装置から運ばれ、ステージ20に吸着保持される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the surface inspection apparatus 1 according to the present embodiment includes a stage 20 that supports a semiconductor wafer 10 (hereinafter, referred to as a wafer 10) that is a substrate to be tested, an alignment system 25, an illumination system 30, And a light receiving system 40. In addition, the surface inspection apparatus 1 includes an image processing unit 50 that performs image processing of an image captured by the light receiving system 40, and a monitor 55 that displays an image captured by the light receiving system 40 and an image processing result by the image processing unit 50. It has. The surface inspection apparatus 1 is an apparatus that automatically inspects the surface of a wafer 10 in a manufacturing process of a semiconductor circuit element. After exposure / development of the uppermost resist film, the wafer 10 is carried from a wafer cassette (not shown) or a developing device by a conveyance system (not shown), and is sucked and held on the stage 20.

ウェハ10の表面には、図2に示すように、複数のチップ領域11がXY方向に配列され、各チップ領域の中に所定の繰り返しパターン12が形成されている。繰り返しパターン12は、図3に示すように、複数のライン部2Aがその短手方向(X方向)に沿って一定のピッチPで配列されたレジストパターン(例えば、配線パターン)である。隣り合うライン部2A同士の間は、スペース部2Bである。なお、ライン部2Aの配列方向(X方向)を「繰り返しパターン12の繰り返し方向」と称する。   As shown in FIG. 2, a plurality of chip regions 11 are arranged in the XY direction on the surface of the wafer 10, and a predetermined repetitive pattern 12 is formed in each chip region. As shown in FIG. 3, the repetitive pattern 12 is a resist pattern (for example, a wiring pattern) in which a plurality of line portions 2A are arranged at a constant pitch P along the short direction (X direction). Between adjacent line parts 2A is a space part 2B. The arrangement direction (X direction) of the line portions 2A is referred to as “repeating direction of the repeating pattern 12”.

ここで、繰り返しパターン12におけるライン部2Aの線幅DAの設計値をピッチPの1/2とする。設計値の通りに繰り返しパターン12が形成された場合、ライン部2Aの線幅DAとスペース部2Bの線幅DBは等しくなり、ライン部2Aとスペース部2Bとの体積比は略1:1になる。これに対して、繰り返しパターン12を形成する際の露光フォーカスが適正値から外れると、ピッチPは変わらないが、ライン部2Aの線幅DAが設計値と異なってしまうとともに、スペース部2Bの線幅DBとも異なってしまい、ライン部2Aとスペース部2Bとの体積比が略1:1から外れる。 Here, the design value of the line width D A of the line portion 2A in the repetitive pattern 12 is set to ½ of the pitch P. If repeated pattern 12 is formed as the design value, the line width D B of the line width D A and the space portion 2B of the line portion 2A are equal, the volume ratio of the line portion 2A and the space portion 2B is substantially 1: 1 In contrast, when the exposure focus at the time of forming the repeating pattern 12 deviates from a proper value, the pitch P does not change, with the line width D A of the line portion 2A becomes different from a design value, of the space portion 2B It becomes different even with the line width D B, the volume ratio of the line portion 2A and the space portion 2B is substantially 1: deviates from 1.

本実施形態の表面検査装置1は、上記のような繰り返しパターン12におけるライン部2Aとスペース部2Bとの体積比の変化を利用して、繰り返しパターン12の欠陥検査を行うものである。説明を簡単にするため、理想的な体積比(設計値)を1:1とする。体積比の変化は、露光フォーカスの適正状態からの外れに起因し、ウェハ10のショット領域ごとに現れる。なお、体積比を断面形状の面積比と言い換えることもできる。   The surface inspection apparatus 1 of the present embodiment performs defect inspection of the repetitive pattern 12 by using the change in the volume ratio between the line portion 2A and the space portion 2B in the repetitive pattern 12 as described above. In order to simplify the explanation, the ideal volume ratio (design value) is 1: 1. The change in the volume ratio is caused by the deviation of the exposure focus from the appropriate state, and appears for each shot area of the wafer 10. The volume ratio can also be referred to as the area ratio of the cross-sectional shape.

また、本実施形態においては、繰り返しパターン12に対する照明光(後述)の波長と比較して繰り返しパターン12のピッチPが十分小さいものとする。このため、繰り返しパターン12から回折光が発生することはなく、繰り返しパターン12の欠陥検査を回折光により行うことはできない。本実施形態における欠陥検査の原理は、以降、表面検査装置の構成(図1)とともに順に説明する。   In the present embodiment, it is assumed that the pitch P of the repeating pattern 12 is sufficiently small compared to the wavelength of illumination light (described later) for the repeating pattern 12. For this reason, diffracted light is not generated from the repetitive pattern 12, and the defect inspection of the repetitive pattern 12 cannot be performed by diffracted light. The principle of defect inspection in the present embodiment will be described in order along with the configuration of the surface inspection apparatus (FIG. 1).

表面検査装置1のステージ20は、ウェハ10を上面で支持して、例えば真空吸着により固定保持する。さらに、ステージ20は、上面の中心における法線A1を中心軸として回転可能である。この回転機構によって、ウェハ10における繰り返しパターン12の繰り返し方向(図2および図3におけるX方向)を、ウェハ10の表面内で回転させることができる。なお、ステージ20は、上面が水平面であり、ウェハ10を常に水平な状態に保つことができる。   The stage 20 of the surface inspection apparatus 1 supports the wafer 10 on the upper surface and fixes and holds the wafer 10 by, for example, vacuum suction. Further, the stage 20 is rotatable about the normal A1 at the center of the upper surface as a central axis. By this rotation mechanism, the repeating direction of the repeating pattern 12 on the wafer 10 (the X direction in FIGS. 2 and 3) can be rotated within the surface of the wafer 10. The stage 20 has a horizontal upper surface, and can always keep the wafer 10 in a horizontal state.

アライメント系25は、ステージ20が回転しているときに、ウェハ10の外縁部を照明し、外縁部に設けられた外形基準(例えばノッチ)の回転方向の位置を検出し、所定位置でステージ20を停止させる。その結果、ウェハ10における繰り返しパターン12の繰り返し方向(図2および図3におけるX方向)を、後述の照明光の入射面A2(図4を参照)に対して、45度の角度に傾けて設定することができる。なお、角度は45度に限らず、22.5度や67.5度など任意角度方向に設定可能である。   The alignment system 25 illuminates the outer edge of the wafer 10 while the stage 20 is rotating, detects the position in the rotation direction of an external reference (for example, a notch) provided on the outer edge, and the stage 20 at a predetermined position. Stop. As a result, the repetitive direction (X direction in FIGS. 2 and 3) of the repetitive pattern 12 on the wafer 10 is set to be inclined at an angle of 45 degrees with respect to an illumination light incident surface A2 (see FIG. 4) described later. can do. The angle is not limited to 45 degrees, and can be set in an arbitrary angle direction such as 22.5 degrees or 67.5 degrees.

照明系30は、光源31と、偏光子32と、照明レンズ33とを有して構成された偏心光学系であり、ステージ20上のウェハ10の繰り返しパターン12を直線偏光L1(第1の直線偏光)により照明する。この直線偏光L1が、繰り返しパターン12に対する照明光である。直線偏光L1は、ウェハ10の表面全体に照射される。   The illumination system 30 is a decentered optical system that includes a light source 31, a polarizer 32, and an illumination lens 33. The illumination system 30 converts the repetitive pattern 12 of the wafer 10 on the stage 20 into linearly polarized light L1 (first linear line L1). Illuminate with polarized light. This linearly polarized light L1 is illumination light for the repeated pattern 12. The linearly polarized light L1 is irradiated on the entire surface of the wafer 10.

直線偏光L1の進行方向(ウェハ10表面上の任意の点に到達する直線偏光L1の主光線の方向)は、ステージ20の中心を通り、ステージ20の法線A1に対して所定の角度θだけ傾けられている。ちなみに、直線偏光L1の進行方向を含み、ステージ20の法線A1に平行な平面が、直線偏光L1の入射面である。図4の入射面A2は、ウェハ10の中心における入射面である。   The traveling direction of the linearly polarized light L1 (the direction of the principal ray of the linearly polarized light L1 reaching an arbitrary point on the surface of the wafer 10) passes through the center of the stage 20 and is a predetermined angle θ with respect to the normal A1 of the stage 20. Tilted. Incidentally, a plane including the traveling direction of the linearly polarized light L1 and parallel to the normal A1 of the stage 20 is an incident surface of the linearly polarized light L1. An incident surface A <b> 2 in FIG. 4 is an incident surface at the center of the wafer 10.

また、本実施形態では、直線偏光L1がp偏光である。直線偏光L1の振動面は、偏光子32の透過軸により規定される。   In the present embodiment, the linearly polarized light L1 is p-polarized light. The vibration plane of the linearly polarized light L <b> 1 is defined by the transmission axis of the polarizer 32.

なお、照明系30の光源31は、安価な放電光源又はLEDである。偏光子32は、光源31の射出端近傍に配置され、その透過軸が所定の方位に設定され、透過軸に応じて光源31からの光を直線偏光L1にする。照明レンズ33は、光源31の射出端と略一致し、後側焦点がウェハ10の表面と略一致するように配置され、偏光子32からの光をウェハ10の表面に導く。すなわち照明系30は、ウェハ10側に対してテレセントリックな光学系である。   The light source 31 of the illumination system 30 is an inexpensive discharge light source or LED. The polarizer 32 is disposed in the vicinity of the emission end of the light source 31, and its transmission axis is set to a predetermined direction, and the light from the light source 31 is converted into linearly polarized light L1 according to the transmission axis. The illumination lens 33 is disposed so that it substantially coincides with the emission end of the light source 31 and the rear focal point substantially coincides with the surface of the wafer 10, and guides light from the polarizer 32 to the surface of the wafer 10. That is, the illumination system 30 is an optical system telecentric with respect to the wafer 10 side.

上記の照明系30において、光源31からの光は、偏光子32および照明レンズ33を介しp偏光の直線偏光L1となって、ウェハ10の表面全体に入射する。ウェハ10の各点における直線偏光L1の入射角度は、平行光束のため互いに同じであり、光軸と法線A1とのなす角度θに相当する。   In the illumination system 30, the light from the light source 31 becomes p-polarized linearly polarized light L <b> 1 through the polarizer 32 and the illumination lens 33 and enters the entire surface of the wafer 10. The incident angle of the linearly polarized light L1 at each point of the wafer 10 is the same because of the parallel light flux, and corresponds to the angle θ formed by the optical axis and the normal line A1.

本実施形態では、ウェハ10に入射する直線偏光L1がp偏光であるため、図4に示すように、繰り返しパターン12の繰り返し方向(X方向)が直線偏光L1の入射面A2(ウェハ10の表面における直線偏光L1の進行方向)に対して45度の角度に設定された場合、ウェハ10の表面における直線偏光L1の振動面の方向(図5におけるV方向)と繰り返しパターン12の繰り返し方向(X方向)とのなす角度も、45度に設定される。   In this embodiment, since the linearly polarized light L1 incident on the wafer 10 is p-polarized light, as shown in FIG. 4, the repeating direction (X direction) of the repeated pattern 12 is the incident surface A2 of the linearly polarized light L1 (the surface of the wafer 10). Is set to an angle of 45 degrees with respect to the linearly polarized light L1 traveling direction), the direction of the vibrating surface of the linearly polarized light L1 on the surface of the wafer 10 (the V direction in FIG. 5) and the repeating direction of the repeating pattern 12 (X The angle formed by (direction) is also set to 45 degrees.

言い換えると、直線偏光L1は、ウェハ10の表面における直線偏光L1の振動面の方向(図5におけるV方向)が繰り返しパターン12の繰り返し方向(X方向)に対して45度傾いた状態で、繰り返しパターン12を斜めに横切るようにして繰り返しパターン12に入射する。   In other words, the linearly polarized light L1 is repeated with the vibration plane direction (V direction in FIG. 5) of the linearly polarized light L1 on the surface of the wafer 10 inclined by 45 degrees with respect to the repeating direction (X direction) of the repeating pattern 12. The light repeatedly enters the pattern 12 so as to cross the pattern 12 diagonally.

このような直線偏光L1と繰り返しパターン12との角度状態は、ウェハ10の表面全体において均一である。なお、45度を135度,225度,315度のいずれかに言い換えても、直線偏光L1と繰り返しパターン12との角度状態は同じである。また、図5の振動面の方向(V方向)と繰り返し方向(X方向)とのなす角度を45度に設定するのは、繰り返しパターン12による偏光状態の変化を最大とするためである。   The angle state between the linearly polarized light L1 and the repeated pattern 12 is uniform over the entire surface of the wafer 10. Note that the angle state between the linearly polarized light L1 and the repetitive pattern 12 is the same even if 45 degrees is replaced with any of 135 degrees, 225 degrees, and 315 degrees. The reason why the angle formed by the direction of the vibration surface (V direction) and the repeat direction (X direction) in FIG. 5 is set to 45 degrees is to maximize the change in the polarization state due to the repeat pattern 12.

そして、上記の直線偏光L1を用いて繰り返しパターン12を照明すると、繰り返しパターン12から正反射方向に楕円偏光L2が発生する。この場合、楕円偏光L2の進行方向が正反射方向に一致する。正反射方向とは、直線偏光L1の入射面A2内に含まれ、ステージ20の法線A1に対して角度θ(直線偏光L1の入射角度θに等しい角度)だけ傾いた方向である。なお、上述の通り、繰り返しパターン12のピッチPが照明波長と比較して十分短いため、繰り返しパターン12から回折光が発生することはない。   When the repeating pattern 12 is illuminated using the linearly polarized light L1, elliptically polarized light L2 is generated from the repeating pattern 12 in the regular reflection direction. In this case, the traveling direction of the elliptically polarized light L2 coincides with the regular reflection direction. The regular reflection direction is a direction that is included in the incident surface A2 of the linearly polarized light L1 and is inclined with respect to the normal A1 of the stage 20 by an angle θ (an angle equal to the incident angle θ of the linearly polarized light L1). As described above, since the pitch P of the repeated pattern 12 is sufficiently shorter than the illumination wavelength, no diffracted light is generated from the repeated pattern 12.

さて、受光系40は、図1に示すように、受光レンズ41と、検光子42と、回転駆動装置43と、撮像カメラ44とを有して構成され、その光軸が、ステージ20の中心を通り、かつ、ステージ20の法線A1に対して角度θだけ傾くように配設される。受光レンズ41は、楕円偏光L2を撮像カメラ44の撮像面に集光する。   As shown in FIG. 1, the light receiving system 40 includes a light receiving lens 41, an analyzer 42, a rotation drive device 43, and an imaging camera 44, and the optical axis thereof is the center of the stage 20. And is arranged so as to be inclined by an angle θ with respect to the normal line A1 of the stage 20. The light receiving lens 41 condenses the elliptically polarized light L <b> 2 on the imaging surface of the imaging camera 44.

検光子42は、回転駆動装置43を用いて受光系40の光軸を中心に透過軸の方位(偏光方向)を回転可能に構成されており、検光子42の透過軸の方位は、上述した偏光子32の透過軸に対して90度前後の傾斜角度で傾くように設定される。すなわち、クロスニコル状態を意図的にくずすことを可能にしている。したがって、楕円偏光L2が検光子42を透過するとその偏光成分、すなわち検光子42からの直線偏光L3(第2の直線偏光)が撮像カメラ44の撮像面に集光される。その結果、撮像カメラ44の撮像面には、直線偏光L3によるウェハ10の反射像が形成される。   The analyzer 42 is configured to be able to rotate the azimuth (polarization direction) of the transmission axis around the optical axis of the light receiving system 40 by using the rotation driving device 43. The azimuth of the transmission axis of the analyzer 42 is described above. It is set to be inclined at an inclination angle of about 90 degrees with respect to the transmission axis of the polarizer 32. That is, the crossed Nicols state can be intentionally broken. Therefore, when the elliptically polarized light L2 passes through the analyzer 42, its polarization component, that is, the linearly polarized light L3 (second linearly polarized light) from the analyzer 42 is condensed on the imaging surface of the imaging camera 44. As a result, a reflected image of the wafer 10 by the linearly polarized light L3 is formed on the imaging surface of the imaging camera 44.

撮像カメラ44は、不図示のCCD撮像素子を有するCCDカメラであり、撮像面に形成されたウェハ10の反射像を光電変換して、画像信号を画像処理部50に出力する。ウェハ10の反射像の明暗は、直線偏光L3の光強度に略比例し、繰り返しパターン12の形状に応じて変化する。ウェハ10の反射像が最も明るくなるのは、繰り返しパターン12が理想的な形状の場合である。なお、ウェハ10の反射像の明暗は、ショット領域ごとに現れる。   The imaging camera 44 is a CCD camera having a CCD imaging device (not shown), photoelectrically converts the reflected image of the wafer 10 formed on the imaging surface, and outputs an image signal to the image processing unit 50. The brightness of the reflected image of the wafer 10 is substantially proportional to the light intensity of the linearly polarized light L3 and changes according to the shape of the repeated pattern 12. The reflected image of the wafer 10 is brightest when the repeated pattern 12 has an ideal shape. The brightness of the reflected image of the wafer 10 appears for each shot area.

画像処理部50は、被検基板であるウェハ10の反射画像が入力されると、その輝度情報を予め記憶された良品ウェハの反射画像の輝度情報と比較する。このとき、ウェハ10の反射画像における暗い箇所の輝度値の低下量(輝度変化)に基づいて、繰り返しパターン12の欠陥を検出する。例えば、輝度値の低下量が予め定められた閾値(許容値)より大きければ「欠陥(異常)」と判定し、閾値より小さければ「正常」と判断すればよい。そして、画像処理部50による輝度情報の比較結果およびそのときのウェハ10の反射画像がモニタ55で出力表示される。また、ここで画像処理部50を介さずに撮像カメラ44に撮像されたウェハ10の反射画像をモニタ55で表示させ、目視によりウェハ10における繰り返しパターンの形状変化を確認するようにしてもよい。また、モニタ55の画面を分割して、欠陥(異常)の表示とウェハ10の反射画像の両方を表示してもよい。   When the reflection image of the wafer 10 as the test substrate is input, the image processing unit 50 compares the luminance information with the luminance information of the reflection image of the non-defective wafer stored in advance. At this time, the defect of the repetitive pattern 12 is detected based on the amount of decrease in luminance value (luminance change) in a dark portion in the reflected image of the wafer 10. For example, “defect (abnormal)” may be determined if the amount of decrease in luminance value is greater than a predetermined threshold (allowable value), and “normal” may be determined if it is less than the threshold. Then, the comparison result of the luminance information by the image processing unit 50 and the reflected image of the wafer 10 at that time are output and displayed on the monitor 55. In addition, the reflection image of the wafer 10 captured by the imaging camera 44 without using the image processing unit 50 may be displayed on the monitor 55, and the shape change of the repeated pattern on the wafer 10 may be confirmed visually. Further, the screen of the monitor 55 may be divided to display both a defect (abnormality) display and a reflected image of the wafer 10.

なお、画像処理部50においては、上述のように、良品ウェハの反射画像を予め記憶しておく構成の他、ウェハ10のショット領域の配列データと輝度値の閾値を予め記憶しておく構成でもよい。この場合、ショット領域の配列データに基づいて、取り込まれたウェハ10の反射画像中における各ショット領域の位置が分かるので、各ショット領域の輝度値を求める。そして、その輝度値と記憶されている閾値とを比較することにより、パターンの欠陥を検出する。閾値より輝度値が小さいショット領域を「欠陥(異常)」と判断すればよい。   As described above, the image processing unit 50 has a configuration in which the reflection image of the non-defective wafer is stored in advance and the array data of the shot area of the wafer 10 and the threshold value of the brightness value are stored in advance. Good. In this case, since the position of each shot area in the reflected image of the captured wafer 10 is known based on the array data of the shot area, the luminance value of each shot area is obtained. Then, a pattern defect is detected by comparing the brightness value with a stored threshold value. A shot area having a luminance value smaller than the threshold value may be determined as “defect (abnormal)”.

前述したように、検光子42は、回転駆動装置43を用いて受光系40の光軸を中心に透過軸の方位(偏光方向)を回転可能に構成されており、検光子42の透過軸が偏光子32の透過軸に対して90度から少しずれた傾斜角度だけ傾くように(すなわち、クロスニコル状態を少し崩すように)、検光子42を回転させることで、繰り返しパターン12の形状変化に対する検出感度を向上させることができる。   As described above, the analyzer 42 is configured to be able to rotate the azimuth (polarization direction) of the transmission axis around the optical axis of the light receiving system 40 using the rotation driving device 43, and the transmission axis of the analyzer 42 is By rotating the analyzer 42 so as to be tilted by an inclination angle slightly deviated from 90 degrees with respect to the transmission axis of the polarizer 32 (that is, to slightly break the crossed Nicols state), the shape of the repeated pattern 12 can be changed. Detection sensitivity can be improved.

次にその理由について説明する。図6は、繰り返しパターン12の構造性複屈折により入射直線偏光L1が楕円偏光L2へと変化した状態を表している。図6に示すように、楕円偏光L2は、必ずしも長軸の方位角が直線偏光L1(入射面A2)の角度と一致するわけではなく、繰り返しパターン12の形状や下地構造などに応じて傾いた楕円偏光となる。なお、この傾き量は、実際にはわずか数度程度であるが、図7では誇張して描いている。   Next, the reason will be described. FIG. 6 shows a state in which the incident linearly polarized light L1 is changed to the elliptically polarized light L2 due to the structural birefringence of the repetitive pattern 12. As shown in FIG. 6, the elliptically polarized light L2 does not necessarily have the azimuth angle of the major axis coincident with the angle of the linearly polarized light L1 (incident surface A2), and is inclined according to the shape of the repetitive pattern 12, the ground structure, etc. It becomes elliptically polarized light. The amount of inclination is actually only a few degrees, but is exaggerated in FIG.

図7は、パターンによる偏光状態の変化を良品ショットと不良ショットとで比較した図である。短軸の長い楕円偏光L2Aは良品ショットによって変化した楕円偏光の状態を、短軸の短い楕円偏光L2Bは不良ショットによって変化した楕円偏光の状態を示している。短軸の短い楕円偏光L2Bは、パターンが不良であるために偏光状態の変化が小さく楕円偏光の太り具合(短軸の長さ)が小さくなっている。パターンの良、不良を判定するためには、この楕円の太り具合の差異を見ることが有効である。   FIG. 7 is a diagram comparing a change in polarization state depending on a pattern between a non-defective shot and a defective shot. The long elliptical polarized light L2A with the short axis shows the elliptically polarized state changed by the non-defective shot, and the short elliptical polarized light L2B with the short axis shows the elliptically polarized state changed by the defective shot. The short-axis short elliptically polarized light L2B has a poor pattern, so that the change in the polarization state is small and the elliptical polarized light is less thick (the length of the short axis). In order to determine whether the pattern is good or bad, it is effective to look at the difference in the thickness of the ellipse.

このとき、完全なクロスニコル状態とするために、検光子42の透過軸42aを縦に(直線偏光L1と直交する方向に)配置した時に透過する光について考えて見ると、短軸の長い楕円偏光L2Aからは縦の振動成分B1の振幅の光が、短軸の短い楕円偏光L2Bからは縦の振動成分B2の振幅の光が透過してくることになる。光量は振幅の2乗であるから、このときの光量比は、(B1)2:(B2)2となる。ここで注目すべき点は、B1、B2ともに楕円の太り具合に応じて発生した短軸方向の振動成分だけでなく、楕円の傾きによって発生した長軸方向の振動成分も含んでいるため、B1とB2との差が小さく光量比が1:1に近くなってしまい、パターンの形状変化の検出感度が低くなる。 At this time, in order to obtain a completely crossed Nicol state, when the transmission axis 42a of the analyzer 42 is arranged vertically (in a direction orthogonal to the linearly polarized light L1), the light transmitted through the ellipse has a long short axis. Light having the amplitude of the vertical vibration component B1 is transmitted from the polarized light L2A, and light having the amplitude of the vertical vibration component B2 is transmitted from the short elliptical polarized light L2B having a short axis. Since the light quantity is the square of the amplitude, the light quantity ratio at this time is (B1) 2 : (B2) 2 . What should be noted here is that both B1 and B2 include not only the vibration component in the short axis direction generated according to the thickness of the ellipse but also the vibration component in the long axis direction generated by the inclination of the ellipse. And B2 are small and the light quantity ratio is close to 1: 1, and the detection sensitivity of the pattern shape change is low.

図8は、検光子42の透過軸42aの向きを楕円偏光の短軸の向きと略一致(長軸の向きと略直交)させたときに検光子42を透過する光を説明する図である。図8においては、検光子42の透過軸42aの向きを楕円偏光の短軸の向きと略一致させているため、短軸の長い楕円偏光L2Aからは振動成分C1の振幅の光が、短軸の短い楕円偏光L2Bからは振動成分C2の振幅の光が透過してくることになる。このようにして検光子42を傾けることによって、楕円の傾きによって発生する長軸方向振動成分を透過させることなく、楕円の太り具合の変化に応じた振動成分のみを検出できる。   FIG. 8 is a diagram for explaining light transmitted through the analyzer 42 when the direction of the transmission axis 42a of the analyzer 42 is substantially coincident with the direction of the short axis of elliptically polarized light (substantially orthogonal to the direction of the long axis). . In FIG. 8, since the direction of the transmission axis 42a of the analyzer 42 is substantially coincident with the direction of the short axis of the elliptically polarized light, the light having the amplitude of the vibration component C1 is reflected from the long axis of the elliptically polarized light L2A. The light having the amplitude of the vibration component C2 is transmitted from the short elliptically polarized light L2B. By tilting the analyzer 42 in this way, it is possible to detect only the vibration component corresponding to the change in the ellipse thickness without transmitting the long-axis direction vibration component generated by the inclination of the ellipse.

このときの光量比は、C1とC2は長さが2倍程度違うことから、(B1)2:(B2)2の値は4:1程度となり、2つの楕円偏光L2A,L2Bにはその太り具合において大きな差があることがわかり、パターンの形状変化をより高感度に検出可能することができる。 The light quantity ratio at this time is that C1 and C2 are about twice as long, so the value of (B1) 2 : (B2) 2 is about 4: 1 and the two elliptically polarized lights L2A and L2B are thicker. It can be seen that there is a large difference in condition, and a change in the shape of the pattern can be detected with higher sensitivity.

以上に述べたように、パターンの形状変化をそのパターンによる偏光状態の変化から検出する光学系においては、必ずしも完全なクロスニコル系が最良の形態ではなく、楕円偏光の傾きに応じて検光子の角度をわずかに傾けることが有効である。   As described above, in an optical system that detects a change in the shape of a pattern from a change in the polarization state due to the pattern, a perfect crossed Nicol system is not necessarily the best form, and the analyzer has a function depending on the inclination of elliptically polarized light. It is effective to slightly tilt the angle.

そこで、本実施形態の表面検査装置1を用いた表面検査方法について、図9に示すフローチャートを参照しながら説明する。まず、ウェハの表面検査の前に、レシピ作成作業を実施する。これは、ウェハの表面検査において、最適な検査を実施するため検査条件を決める必要があるからである。そこで、予め露光機のフォーカス量およびドーズ量をショット毎に振った(変化させた)条件で露光し、現像したウェハをステージ20へ搬送する(ステップS101)。   Therefore, a surface inspection method using the surface inspection apparatus 1 of the present embodiment will be described with reference to the flowchart shown in FIG. First, a recipe creation operation is performed before the wafer surface inspection. This is because it is necessary to determine an inspection condition in order to perform an optimal inspection in the wafer surface inspection. Therefore, the exposure is performed under the condition that the focus amount and the dose amount of the exposure device are previously shaken (changed) for each shot, and the developed wafer is transferred to the stage 20 (step S101).

このような条件振りウェハ10f(図10を参照)は、基準となる最適なフォーカス量およびドーズ量によるベストショット(良品ショット)が存在するように作成する。この際、条件振りウェハ10fに限らず、不作為による欠陥が存在するウェハでもよい。条件振りウェハ10fの搬送後、繰り返しパターン12の繰り返し方向が照明方向(ウェハ10の表面における直線偏光L1の進行方向)に対して45度だけ傾くようにアライメントを行う。なお、アライメントの角度は45度に限らず、67.5度あるいは22.5度であってもよい。   Such a conditionally adjusted wafer 10f (see FIG. 10) is prepared so that there is a best shot (non-defective shot) with an optimum focus amount and dose amount as a reference. At this time, the wafer is not limited to the conditionally adjusted wafer 10f but may be a wafer having defects due to omission. Alignment is performed so that the repeating direction of the repeated pattern 12 is inclined by 45 degrees with respect to the illumination direction (the traveling direction of the linearly polarized light L1 on the surface of the wafer 10) after the condition-wafer 10f is conveyed. The alignment angle is not limited to 45 degrees, and may be 67.5 degrees or 22.5 degrees.

条件振りウェハ10fの搬送およびアライメントを行った後、条件振りウェハ10fの表面に第1の直線偏光L1を照射し、条件振りウェハ10fの表面で反射した正反射光(楕円偏光L2)を検光子42を介して撮像カメラ44で検出し撮像する(ステップS102)。このとき、光源31からの光が偏光子32および照明レンズ33を介し直線偏光L1となって、条件振りウェハ10fの表面に照射される。そして、条件振りウェハ10fの表面で反射した正反射光(楕円偏光L2)が受光レンズ41により集光され、検光子42で第2の直線偏光L3に変換されて撮像カメラ44の撮像面上に結像され、撮像カメラ44は、撮像面上に形成された第2の直線偏光L3による条件振りウェハ10fの反射像を光電変換して画像信号を生成し、画像信号を画像処理部50に出力する。   After transporting and aligning the conditioned wafer 10f, the surface of the conditioned wafer 10f is irradiated with the first linearly polarized light L1, and the specularly reflected light (elliptical polarized light L2) reflected by the surface of the conditioned wafer 10f is analyzed. The image is detected and imaged by the imaging camera 44 via 42 (step S102). At this time, the light from the light source 31 becomes the linearly polarized light L1 through the polarizer 32 and the illumination lens 33, and is irradiated on the surface of the conditioned wafer 10f. Then, the specularly reflected light (elliptical polarized light L2) reflected by the surface of the conditioned wafer 10f is collected by the light receiving lens 41, converted into the second linearly polarized light L3 by the analyzer 42, and then on the imaging surface of the imaging camera 44. The image is formed, and the imaging camera 44 photoelectrically converts the reflected image of the condition-controlled wafer 10f by the second linearly polarized light L3 formed on the imaging surface to generate an image signal, and outputs the image signal to the image processing unit 50 To do.

第2の直線偏光L3による条件振りウェハ10fの画像信号が画像処理部50に入力されると、画像処理部50の内部メモリ(図示せず)に記憶される(ステップS103)。   When the image signal of the conditionally adjusted wafer 10f by the second linearly polarized light L3 is input to the image processing unit 50, it is stored in an internal memory (not shown) of the image processing unit 50 (step S103).

前述したように、検光子42は、回転駆動装置43を用いて透過軸の方位(偏光方向)を回転可能に構成されており、検光子42の透過軸の方位を偏光子32の透過軸に対して90度−3度(87度)から90度+3度(93度)の傾斜角度まで0.2度ずつ回転させながら(ステップS104〜S105)、ステップS102の撮像およびステップS103の画像記憶を繰り返し、このとき、撮像した画像から基準ショット(ベスト良品ショット)位置の輝度を計算し、一定の輝度になるように毎回照明光量を調整する。これにより、基準ショットが同一輝度値で検光子42の透過軸の方位が異なる30枚の画像が記憶される。   As described above, the analyzer 42 is configured to be able to rotate the azimuth (polarization direction) of the transmission axis using the rotation driving device 43, and the azimuth of the transmission axis of the analyzer 42 is set to the transmission axis of the polarizer 32. On the other hand, while rotating by 90 degrees from 90 degrees to 3 degrees (87 degrees) to an inclination angle of 90 degrees +3 degrees (93 degrees) (steps S104 to S105), the imaging in step S102 and the image storage in step S103 are performed. Repeatedly, at this time, the brightness of the reference shot (best quality shot) position is calculated from the captured image, and the amount of illumination light is adjusted each time so that the brightness is constant. As a result, 30 images with the same brightness value as the reference shot and different orientations of the transmission axes of the analyzer 42 are stored.

検光子42の透過軸の方位が異なる30枚の画像を撮像取得すると、条件振りウェハ10fを回収する(ステップS104〜S106)。そして、画像処理部50は、30枚の画像を内部メモリから読み出し、基準ショットの輝度とフォーカス量およびドーズ量を振った(変化させた)ショットの輝度との差が最も大きい画像を画像処理により求める(ステップS107)。この処理により、露光機または膜厚の異常時に発生するフォーカスの不良(デフォーカス)を検出するための、不良ショットと良品ショットとの間の輝度変化が最も大きくなる(すなわち、透過軸の向きが楕円偏光L2の短軸の向きと略一致した)検光子42の透過軸の方位を求めることができる。また、ドーズの不良についても、不良ショットと良品ショットとの間の輝度変化が最も大きくなる検光子42の透過軸の方位を求めることができ、フォーカスの不良およびドーズの不良を検出する時の最適条件がそれぞれ決定される。なお、同一の条件の場合は1条件となる。この際、求めた検光子42の透過軸の方位をそのときの照明光量と合わせてレシピに登録する。   When 30 images with different transmission axis orientations of the analyzer 42 are captured and acquired, the conditionally adjusted wafer 10f is recovered (steps S104 to S106). Then, the image processing unit 50 reads 30 images from the internal memory, and performs image processing on an image having the largest difference between the luminance of the reference shot and the luminance of the shot with the focus amount and the dose amount changed (changed). Obtained (step S107). This process maximizes the luminance change between a defective shot and a non-defective shot for detecting a focus failure (defocus) that occurs when the exposure machine or film thickness is abnormal (ie, the direction of the transmission axis is the same). The direction of the transmission axis of the analyzer 42 (substantially coincident with the direction of the short axis of the elliptically polarized light L2) can be obtained. In addition, regarding the defect of the dose, the direction of the transmission axis of the analyzer 42 in which the luminance change between the defective shot and the non-defective shot becomes the largest can be obtained, which is optimum when detecting the focus defect and the dose defect. Each condition is determined. In the case of the same condition, there is one condition. At this time, the orientation of the obtained transmission axis of the analyzer 42 is registered in the recipe together with the illumination light quantity at that time.

レシピ作成後、被検基板であるウェハ10の表面検査を行う(ステップS108)。このとき、先のステップで決定した検光子42の透過軸の方位および照明光量により、ウェハ10の表面に第1の直線偏光L1を照射し、ウェハ10の表面で反射した正反射光(楕円偏光L2)を検光子42を介して撮像カメラ44で検出し撮像する。そのため、撮像カメラ44で撮像された第2の直線偏光L3によるウェハ10の反射像は、フォーカスの不良およびドーズの不良がある場合、不良ショットと良品ショットとの間の輝度変化が大きくなるため、画像処理部50が当該輝度変化に基づいて繰り返しパターン12の欠陥を検出することで、感度の高い繰り返しパターン12の検査が可能となる。   After the recipe is created, the surface of the wafer 10 that is the test substrate is inspected (step S108). At this time, the first linearly polarized light L1 is irradiated on the surface of the wafer 10 according to the direction of the transmission axis of the analyzer 42 determined in the previous step and the amount of illumination light, and the specularly reflected light (elliptical polarized light) reflected on the surface of the wafer 10 is irradiated. L2) is detected by the imaging camera 44 via the analyzer 42 and imaged. Therefore, in the reflected image of the wafer 10 by the second linearly polarized light L3 imaged by the imaging camera 44, when there is a focus defect and a dose defect, the luminance change between the defective shot and the non-defective shot increases. Since the image processing unit 50 detects a defect in the repeated pattern 12 based on the luminance change, it is possible to inspect the repeated pattern 12 with high sensitivity.

この結果、本実施形態の表面検査装置1および方法によれば、第2の直線偏光L3の進行方向と垂直な面内における振動方向(検光子42の透過軸の向き)が楕円偏光L2の進行方向と垂直な面内における楕円短軸の向きと略一致するように設定を行うため、感度の高い表面検査を行うことができる。   As a result, according to the surface inspection apparatus 1 and method of the present embodiment, the vibration direction (the direction of the transmission axis of the analyzer 42) in the plane perpendicular to the traveling direction of the second linearly polarized light L3 is the traveling of the elliptically polarized light L2. Since the setting is made so as to substantially coincide with the direction of the minor axis of the ellipse in a plane perpendicular to the direction, a highly sensitive surface inspection can be performed.

また、前述のように、検光子42の透過軸の傾斜角度を所定角度(0.2度)ずつ変化させる毎に撮像カメラ44で検出した第2の直線偏光L3の輝度に基づいて、第2の直線偏光L3の振動方向(検光子42の透過軸の向き)が楕円偏光L2の楕円短軸の向きと略一致する検光子42の傾斜角度を選択設定するようにすることで、簡便な構成で感度の高い表面検査を行うことができる。   Further, as described above, the second time based on the brightness of the second linearly polarized light L3 detected by the imaging camera 44 every time the tilt angle of the transmission axis of the analyzer 42 is changed by a predetermined angle (0.2 degrees). By simply setting and setting the inclination angle of the analyzer 42 in which the vibration direction of the linearly polarized light L3 (the direction of the transmission axis of the analyzer 42) substantially coincides with the direction of the elliptical short axis of the elliptically polarized light L2, Can perform highly sensitive surface inspection.

このとき、検光子42の傾斜角度が90度近傍の角度となるように選択設定を行うことで、構造性複屈折の影響を受けずに正反射する光を低減させる条件で比較的短時間に検光子42の設定を行うことができる。   At this time, by selecting and setting so that the inclination angle of the analyzer 42 is an angle in the vicinity of 90 degrees, it is possible in a relatively short period of time to reduce light that is regularly reflected without being affected by structural birefringence. The analyzer 42 can be set.

続いて、本実施形態の表面検査装置1を用いた表面検査方法の変形例について、図11に示すフローチャートを参照しながら説明する。まず、ウェハの表面検査の前に、レシピ作成作業を実施する。これは、ウェハの表面検査において、最適な検査を実施するため検査条件を決める必要があるからである。そこで、基準となる最適なフォーカス量およびドーズ量によるベストショット(良品ショット)で露光し、現像した良品ウェハをステージ20へ搬送する(ステップS201)。なお、良品ウェハはウェハの製造工程毎に用意する。そして、良品ウェハの搬送後、繰り返しパターン12の繰り返し方向が照明方向(ウェハ10の表面における直線偏光L1の進行方向)に対して45度だけ傾くようにアライメントを行う。なお、アライメントの角度は45度に限らず、67.5度あるいは22.5度であってもよい。   Next, a modification of the surface inspection method using the surface inspection apparatus 1 of the present embodiment will be described with reference to the flowchart shown in FIG. First, a recipe creation operation is performed before the wafer surface inspection. This is because it is necessary to determine an inspection condition in order to perform an optimal inspection in the wafer surface inspection. Therefore, exposure is performed with the best shot (non-defective shot) based on the optimum focus amount and dose as a reference, and the developed non-defective wafer is transferred to the stage 20 (step S201). A non-defective wafer is prepared for each wafer manufacturing process. Then, after the non-defective wafer is transferred, alignment is performed such that the repeating direction of the repeating pattern 12 is inclined by 45 degrees with respect to the illumination direction (the traveling direction of the linearly polarized light L1 on the surface of the wafer 10). The alignment angle is not limited to 45 degrees, and may be 67.5 degrees or 22.5 degrees.

良品ウェハの搬送およびアライメントを行った後、良品ウェハの表面に第1の直線偏光L1を照射し、良品ウェハの表面で反射した正反射光(楕円偏光L2)を検光子42を介して撮像カメラ44で検出し撮像する(ステップS202)。このとき、光源31からの光が偏光子32および照明レンズ33を介し直線偏光L1となって、良品ウェハの表面に照射される。そして、良品ウェハの表面で反射した正反射光(楕円偏光L2)が受光レンズ41により集光され、検光子42で第2の直線偏光L3に変換されて撮像カメラ44の撮像面上に結像され、撮像カメラ44は、撮像面上に形成された第2の直線偏光L3による良品ウェハの反射像を光電変換して画像信号を生成し、画像信号を画像処理部50に出力する。   After transporting and aligning the non-defective wafer, the first linearly polarized light L1 is irradiated on the surface of the non-defective wafer, and the specularly reflected light (elliptical polarized light L2) reflected by the surface of the non-defective wafer is imaged through the analyzer 42. The image is detected and imaged at 44 (step S202). At this time, the light from the light source 31 becomes linearly polarized light L1 through the polarizer 32 and the illumination lens 33, and is irradiated on the surface of the non-defective wafer. Then, the specularly reflected light (elliptical polarized light L2) reflected by the surface of the non-defective wafer is collected by the light receiving lens 41, converted into the second linearly polarized light L3 by the analyzer 42, and formed on the imaging surface of the imaging camera 44. Then, the imaging camera 44 photoelectrically converts the reflected image of the non-defective wafer formed by the second linearly polarized light L3 formed on the imaging surface to generate an image signal, and outputs the image signal to the image processing unit 50.

第2の直線偏光L3による良品ウェハの画像信号が画像処理部50に入力されると、画像処理部50の内部メモリ(図示せず)に記憶される(ステップS203)。   When the image signal of the non-defective wafer by the second linearly polarized light L3 is input to the image processing unit 50, it is stored in an internal memory (not shown) of the image processing unit 50 (step S203).

また、上述の実施形態の場合と同様に、検光子42の透過軸の方位を偏光子32の透過軸に対して90度−3度(87度)から90度+3度(93度)の傾斜角度まで0.2度ずつ回転させながら(ステップS204〜S205)、ステップS202の撮像およびステップS203の画像記憶を繰り返し、このとき、撮像した画像から基準ショット(ベスト良品ショット)位置の輝度を計算し、一定の輝度になるように毎回照明光量を調整する。これにより、基準ショットが同一輝度値で検光子42の透過軸の方位が異なる30枚の画像が記憶される。   Similarly to the above-described embodiment, the orientation of the transmission axis of the analyzer 42 is inclined from 90 degrees to 3 degrees (87 degrees) to 90 degrees +3 degrees (93 degrees) with respect to the transmission axis of the polarizer 32. While rotating by 0.2 degrees to the angle (steps S204 to S205), the imaging in step S202 and the image storage in step S203 are repeated, and at this time, the luminance of the reference shot (best shot) position is calculated from the captured image. The amount of illumination light is adjusted every time so that the brightness is constant. As a result, 30 images with the same brightness value as the reference shot and different orientations of the transmission axes of the analyzer 42 are stored.

検光子42の透過軸の方位が異なる30枚の画像を撮像取得すると、良品ウェハを回収する(ステップS204〜S206)。そして、画像処理部50は、30種類ある検光子42の透過軸の方位とそのときの照明光量とをそれぞれレシピに登録する(ステップS207)。   When 30 images with different transmission axis orientations of the analyzer 42 are captured and acquired, the non-defective wafers are collected (steps S204 to S206). Then, the image processing unit 50 registers the orientation of the transmission axis of the thirty kinds of analyzers 42 and the amount of illumination light at that time in the recipe (step S207).

レシピ作成後、被検基板であるウェハ10の表面検査を行う(ステップS208)。このとき、先のステップで登録した30種類の検光子42の透過軸の方位および照明光量によりそれぞれ、ウェハ10の表面に第1の直線偏光L1を照射し、ウェハ10の表面で反射した正反射光(楕円偏光L2)を検光子42を介して撮像カメラ44で検出し撮像する。そして、画像処理部50は、撮像カメラ44で撮像した30枚のウェハ10の画像を、同じ条件で撮像した30枚の良品ウェハの画像とそれぞれ比較し、輝度変化が所定の閾値より大きい場合に、繰り返しパターン12に欠陥があると判定する。これにより、検光子42を0.2度ずつ回転させて撮像した30枚のウェハ10の画像は、フォーカスの不良およびドーズの不良がある場合に不良ショットと良品ショットとの間の輝度変化が大きくなる条件の画像を含むことになるため、感度の高い繰り返しパターン12の検査が可能となる。   After the recipe is created, the surface of the wafer 10 that is the test substrate is inspected (step S208). At this time, the first linearly polarized light L1 is irradiated on the surface of the wafer 10 and reflected by the surface of the wafer 10 according to the azimuth of the transmission axis of the 30 kinds of analyzers 42 registered in the previous step and the amount of illumination light, respectively. Light (elliptical polarization L2) is detected by the imaging camera 44 via the analyzer 42 and imaged. Then, the image processing unit 50 compares the images of the 30 wafers 10 captured by the imaging camera 44 with the images of 30 non-defective wafers captured under the same conditions, and when the luminance change is larger than a predetermined threshold value. It is determined that the repeated pattern 12 has a defect. As a result, in the 30 wafers 10 images picked up by rotating the analyzer 42 by 0.2 degrees, the luminance change between the defective shot and the non-defective shot is large when there is a focus defect and a dose defect. Therefore, it is possible to inspect the repetitive pattern 12 with high sensitivity.

この結果、変形例に係る表面検査方法(および装置)によっても、上述の実施形態の場合と同様の効果を得ることができる。   As a result, the surface inspection method (and apparatus) according to the modification can obtain the same effects as those of the above-described embodiment.

なお、上述の実施形態において、検光子42は、回転駆動装置43を用いて受光系40の光軸を中心に透過軸の方位を回転可能に構成されているが、これに限られるものではない。例えば、図12に示すように、受光レンズ41と検光子42との間に1/2λ板45を配置し、1/2λ板45の遅相軸の方位を、回転駆動装置49を用いて受光系40の光軸を中心に回転させるようにしてもよい。例えば1/2λ板45は、図13において遅相軸45aが縦方向となるよう配置されている、このような1/2λ板45に楕円偏光46が入射すると、通過する光は遅相軸45aに対して対称な形の楕円偏光47に変換される。この現象を利用して、検光子42の前に1/2λ板45を配置し、その遅相軸45aの角度を適切に設定すれば、楕円偏光の短軸の方位を検光子42の透過軸の方位と略一致させることができるため、検光子42を傾けたのと同様の効果を得ることができる。また、遅相軸45aの回転角の2倍の角度だけ楕円偏光を回転させることができるため、検光子42を直接回転させるのと比較して高速な回転制御が可能になる。   In the above-described embodiment, the analyzer 42 is configured to be able to rotate the azimuth of the transmission axis around the optical axis of the light receiving system 40 using the rotation driving device 43, but is not limited thereto. . For example, as shown in FIG. 12, a ½λ plate 45 is disposed between the light receiving lens 41 and the analyzer 42, and the direction of the slow axis of the ½λ plate 45 is received using a rotary drive device 49. It may be rotated about the optical axis of the system 40. For example, the 1 / 2λ plate 45 is arranged so that the slow axis 45a is in the vertical direction in FIG. 13. When elliptically polarized light 46 is incident on such a 1 / 2λ plate 45, the light passing therethrough is the slow axis 45a. Is converted into elliptically polarized light 47 having a symmetrical shape. Utilizing this phenomenon, if the 1 / 2λ plate 45 is arranged in front of the analyzer 42 and the angle of the slow axis 45a is appropriately set, the orientation of the minor axis of the elliptically polarized light is changed to the transmission axis of the analyzer 42. Therefore, it is possible to obtain the same effect as the analyzer 42 is tilted. Further, since the elliptically polarized light can be rotated by an angle twice the rotation angle of the slow axis 45a, the rotation control can be performed at a higher speed than when the analyzer 42 is directly rotated.

なおこのとき、良品ショットの楕円偏光と不良ショットの楕円偏光の長軸方位角は一致しない場合もあるが、その場合はそれらの中間的な角度と検光子42の透過軸の方位を略直交させる(短軸方位角の中間的な角度と略一致させる)のがよいと考えられるが、より現実的には、実際に検光子42の角度を少しずつ変えて測定を行い、検光子42を通過する良品ショットと不良ショットの輝度変化が最も大きくなる角度を探し出し、その角度に設定することが好ましい。   In this case, the major axis azimuth angle of the elliptically polarized light of the non-defective shot and the elliptically polarized light of the defective shot may not match. In this case, the intermediate angle between them and the direction of the transmission axis of the analyzer 42 are substantially orthogonal. It is considered that it is preferable to make it substantially coincide with the intermediate angle of the short axis azimuth, but more realistically, the angle of the analyzer 42 is actually changed little by little, and the measurement passes through the analyzer 42. It is preferable to find an angle at which the luminance change between the non-defective shot and the defective shot to be maximized is found and set to that angle.

また、本実施形態の表面検査装置1では、照明波長と比較して繰り返しパターン12のピッチPが十分小さい場合に限らず、構造性複屈折が生じれば、繰り返しパターン12のピッチPが照明波長と同程度でも、照明波長より大きい場合でも、同様に繰り返しパターン12の欠陥検査を行うことができる。すなわち、繰り返しパターン12のピッチPに拘わらず、確実に欠陥検査を行うことができる。繰り返しパターン12による直線偏光L1の楕円化は、繰り返しパターン12のライン部2Aとスペース部2Bとの体積比に依存して変化するからである。   Moreover, in the surface inspection apparatus 1 of this embodiment, the pitch P of the repeating pattern 12 is not limited to the case where the pitch P of the repeating pattern 12 is sufficiently small compared to the illumination wavelength. The defect inspection of the repeated pattern 12 can be performed in the same manner, even when it is equal to or larger than the illumination wavelength. That is, the defect inspection can be surely performed regardless of the pitch P of the repeated pattern 12. This is because the ellipticalization of the linearly polarized light L1 by the repeating pattern 12 changes depending on the volume ratio between the line portion 2A and the space portion 2B of the repeating pattern 12.

また、上述の実施形態において、画像処理部50を用いずに、撮像カメラ44に撮像されたウェハ10の反射画像をモニタ55で表示して、目視によりウェハ10における繰り返しパターン12の欠陥を検出するようにしてもよい。このようにしても、上述の実施形態と同様の効果を得ることができる。   In the above-described embodiment, the reflection image of the wafer 10 captured by the imaging camera 44 is displayed on the monitor 55 without using the image processing unit 50, and the defect of the repeated pattern 12 on the wafer 10 is detected visually. You may do it. Even if it does in this way, the effect similar to the above-mentioned embodiment can be acquired.

また、上述の実施形態において、直線偏光L1がp偏光である例を説明したが、これに限定されるものではない。例えば、p偏光ではなくs偏光にしてもよい。s偏光とは、入射光と反射光の両方が含まれる仮想平面に対して垂直な成分を持つ直線偏光である。このため、図4に示すように、ウェハ10における繰り返しパターン12の繰り返し方向(X方向)が、s偏光である直線偏光L1の入射面A2に対して45度の角度に設定された場合、ウェハ10の表面におけるs偏光の振動面の方向と繰り返しパターン12の繰り返し方向(X方向)とのなす角度も、45度に設定される。なお、p偏光は、繰り返しパターン12のライン部2Aのエッジ形状に拘わる欠陥情報を取得するのに有利である。また、s偏光は、ウェハ10の表面の欠陥情報を効率よく捉えて、SN比を向上させるのに有利である。   In the above-described embodiment, the example in which the linearly polarized light L1 is p-polarized light has been described. However, the present invention is not limited to this. For example, s-polarized light instead of p-polarized light may be used. The s-polarized light is linearly polarized light having a component perpendicular to a virtual plane including both incident light and reflected light. For this reason, as shown in FIG. 4, when the repetitive direction (X direction) of the repetitive pattern 12 on the wafer 10 is set at an angle of 45 degrees with respect to the incident surface A2 of the linearly polarized light L1 that is s-polarized light, The angle formed by the direction of the vibrating surface of the s-polarized light on the surface 10 and the repeating direction (X direction) of the repeating pattern 12 is also set to 45 degrees. The p-polarized light is advantageous for acquiring defect information related to the edge shape of the line portion 2A of the repeated pattern 12. Further, the s-polarized light is advantageous for efficiently capturing defect information on the surface of the wafer 10 and improving the SN ratio.

さらに、p偏光やs偏光に限らず、振動面が入射面に対して任意の傾きを持つような直線偏光でも構わない。この場合、繰り返しパターン12の繰り返し方向(X方向)を直線偏光L1の入射面に対して45度以外の角度に設定し、ウェハ10の表面における直線偏光L1の振動面の方向と繰り返しパターン12の繰り返し方向(X方向)とのなす角度を、45度に設定することが好ましい。   Furthermore, not only p-polarized light and s-polarized light, but also linearly polarized light whose vibration surface has an arbitrary inclination with respect to the incident surface may be used. In this case, the repetitive direction (X direction) of the repetitive pattern 12 is set to an angle other than 45 degrees with respect to the incident surface of the linearly polarized light L1, and the direction of the vibration surface of the linearly polarized light L1 on the surface of the wafer 10 and the repetitive pattern 12 It is preferable to set the angle formed by the repeat direction (X direction) to 45 degrees.

また、上述の実施形態では、光源31と偏光子32を利用して、直線偏光L1を作り出すように構成されているが、これに限られるものではなく、直線偏光レーザを光源として使用すれば偏光子32は必要ない。   In the above embodiment, the light source 31 and the polarizer 32 are used to generate the linearly polarized light L1. However, the present invention is not limited to this. If a linearly polarized laser is used as the light source, the light is polarized. The child 32 is not necessary.

本発明に係る表面検査装置の全体構成を示す図である。It is a figure showing the whole surface inspection device composition concerning the present invention. 半導体ウェハの表面の外観図である。It is an external view of the surface of a semiconductor wafer. 繰り返しパターンの凹凸構造を説明する斜視図である。It is a perspective view explaining the uneven structure of a repeating pattern. 直線偏光の入射面と繰り返しパターンの繰り返し方向との傾き状態を説明する図である。It is a figure explaining the inclination state of the entrance plane of a linearly polarized light and the repeating direction of a repeating pattern. 直線偏光の振動面の方向と繰り返しパターンの繰り返し方向との傾き状態を説明する図である。It is a figure explaining the inclination state of the direction of the vibration surface of linearly polarized light, and the repeating direction of a repeating pattern. パターンの構造性複屈折により入射直線偏光が楕円偏光へと変化した状態を示す図である。It is a figure which shows the state which the incident linearly polarized light changed to the elliptically polarized light by the structural birefringence of the pattern. パターンによる偏光状態の変化を良品ショットと不良ショットで比較した図である。It is the figure which compared the change of the polarization state by a pattern with a non-defective shot and a defective shot. 検光子の透過軸の向きを楕円偏光の短軸の向きと略一致させたときに検光子を透過する光を説明する図である。It is a figure explaining the light which permeate | transmits an analyzer when the direction of the transmission axis of an analyzer is made to correspond substantially with the direction of the short axis of elliptically polarized light. 本発明に係る表面検査方法を示すフローチャートである。It is a flowchart which shows the surface inspection method which concerns on this invention. 条件振りウェハを示す模式図である。It is a schematic diagram which shows a condition swing wafer. 表面検査方法の変形例を示すフローチャートである。It is a flowchart which shows the modification of a surface inspection method. 表面検査装置の変形例を示す図である。It is a figure which shows the modification of a surface inspection apparatus. 1/2λ板を示す模式図である。It is a schematic diagram which shows a 1/2 (lambda) board.

符号の説明Explanation of symbols

1 表面検査装置
10 ウェハ(被検基板) 12 繰り返しパターン
30 照明系(照明部)
40 受光系 42 検光子(偏光素子)
43 回転駆動装置(設定部) 44 撮像カメラ(検出部)
45 1/2λ板(設定部の変形例) 49 回転駆動装置(設定部の変形例)
50 画像処理部(異常検出部) 55 モニタ(表示部)
L1 第1の直線偏光 L2 楕円偏光
L3 第2の直線偏光
DESCRIPTION OF SYMBOLS 1 Surface inspection apparatus 10 Wafer (board to be tested) 12 Repeat pattern 30 Illumination system (illumination part)
40 Light receiving system 42 Analyzer (polarizing element)
43 Rotation Drive Device (Setting Unit) 44 Imaging Camera (Detection Unit)
45 1 / 2λ plate (modified example of setting unit) 49 Rotation drive device (modified example of setting unit)
50 Image processing unit (abnormality detection unit) 55 Monitor (display unit)
L1 First linearly polarized light L2 Elliptical polarized light L3 Second linearly polarized light

Claims (8)

所定の繰り返しパターンを有する被検基板の表面に第1の直線偏光を照射する照明部と、
前記被検基板の表面に照射された前記第1の直線偏光が前記繰り返しパターンで反射する際に前記パターンが有する構造性複屈折によって生じた楕円偏光から前記第1の直線偏光と振動方向が異なる第2の直線偏光成分を抽出する偏光素子と、
前記第2の直線偏光成分を検出する検出部と、
前記検出部で検出された前記第2の直線偏光成分に基づいて、前記繰り返しパターンの形状変化を表示する表示部と、
前記楕円偏光の進行方向と垂直な面内における楕円短軸の向きと前記垂直な面内における前記第2の直線偏光成分の振動方向とが略一致するように前記偏光素子を設定可能な設定部とを備え、
前記繰り返しパターンに応じて前記偏光素子を設定することを特徴とする表面検査装置。
An illumination unit that irradiates the surface of the test substrate having a predetermined repeating pattern with the first linearly polarized light;
The vibration direction of the first linearly polarized light is different from the elliptically polarized light generated by the structural birefringence of the pattern when the first linearly polarized light irradiated on the surface of the test substrate is reflected by the repetitive pattern. A polarizing element for extracting a second linearly polarized light component;
A detector for detecting the second linearly polarized light component;
A display unit that displays a shape change of the repetitive pattern based on the second linearly polarized light component detected by the detection unit;
A setting unit capable of setting the polarizing element such that the direction of the minor axis of the ellipse in a plane perpendicular to the traveling direction of the elliptically polarized light and the vibration direction of the second linearly polarized light component in the perpendicular plane substantially coincide with each other. And
A surface inspection apparatus, wherein the polarizing element is set according to the repetitive pattern.
前記設定部は、前記楕円偏光の進行方向と垂直な面内における前記第2の直線偏光成分の振動方向と、前記第1の直線偏光の進行方向と垂直な面内における振動方向とのなす角度を所定角度ずつ変化させることができ、
前記角度を前記所定角度ずつ変化させる毎に前記検出部で検出した前記第2の直線偏光成分の輝度に基づいて、前記楕円偏光の進行方向と垂直な面内における楕円短軸の向きと前記垂直な面内における前記第2の直線偏光成分の振動方向とが略一致する前記角度を選択設定することを特徴とする請求項1に記載の表面検査装置。
The setting unit includes an angle formed by a vibration direction of the second linearly polarized light component in a plane perpendicular to the traveling direction of the elliptically polarized light and a vibration direction in a plane perpendicular to the traveling direction of the first linearly polarized light. Can be changed by a predetermined angle,
Based on the luminance of the second linearly polarized light component detected by the detection unit every time the angle is changed by the predetermined angle, the direction of the elliptical short axis in the plane perpendicular to the traveling direction of the elliptically polarized light and the vertical The surface inspection apparatus according to claim 1, wherein the angle at which the vibration direction of the second linearly polarized light component substantially coincides with the vibration direction is selected and set.
前記検出部で検出された前記第2の直線偏光成分の輝度と予め設定された閾値とを比較して、前記繰り返しパターンの異常を検出する異常検出部をさらに備えることを特徴とする請求項1もしくは請求項2に記載の表面検査装置。   2. The apparatus according to claim 1, further comprising: an abnormality detecting unit that detects an abnormality of the repetitive pattern by comparing the brightness of the second linearly polarized light component detected by the detecting unit with a preset threshold value. Or the surface inspection apparatus of Claim 2. 前記設定部は、前記構造性複屈折によって生じた前記楕円偏光の前記第2の直線偏光成分を最も検出しやすくするように前記偏光素子を設定することを特徴とする請求項1から請求項3のうちいずれか一項に記載の表面検査装置。   The said setting part sets the said polarizing element so that the said 2nd linearly polarized light component of the said elliptically polarized light produced by the said structural birefringence may be detected most easily. The surface inspection apparatus as described in any one of these. 前記設定部は、前記角度が90度以外であって90度近傍の角度となるように前記選択設定を行うことを特徴とする請求項2に記載の表面検査装置。   The surface setting apparatus according to claim 2, wherein the setting unit performs the selection setting so that the angle is other than 90 degrees and an angle close to 90 degrees. 所定の繰り返しパターンを有する被検基板の表面に第1の直線偏光を照射する照射ステップと、
前記被検基板の表面に照射された前記第1の直線偏光が前記繰り返しパターンで反射する際に前記パターンが有する構造性複屈折によって生じた楕円偏光から前記第1の直線偏光と振動方向が異なる第2の直線偏光成分を抽出する抽出ステップと、
前記第2の直線偏光成分を検出する検出ステップと、
前記検出ステップで検出された前記第2の直線偏光成分に基づいて、前記繰り返しパターンの形状変化を表示する表示ステップと、
前記楕円偏光の進行方向と垂直な面内における前記抽出する前記第2の直線偏光成分の振動方向を、前記繰り返しパターンに応じて設定する設定ステップとを有することを特徴とする表面検査方法。
An irradiation step of irradiating the surface of the test substrate having a predetermined repeating pattern with the first linearly polarized light;
The vibration direction of the first linearly polarized light is different from the elliptically polarized light generated by the structural birefringence of the pattern when the first linearly polarized light irradiated on the surface of the test substrate is reflected by the repetitive pattern. An extraction step of extracting a second linearly polarized component;
A detecting step for detecting the second linearly polarized light component;
A display step for displaying a change in shape of the repetitive pattern based on the second linearly polarized light component detected in the detection step;
A surface inspection method comprising: setting a vibration direction of the extracted second linearly polarized light component in a plane perpendicular to the traveling direction of the elliptically polarized light according to the repetitive pattern.
前記設定ステップにおいて、前記楕円偏光の進行方向と垂直な面内における前記第2の直線偏光成分の振動方向と、前記第1の直線偏光の進行方向と垂直な面内における振動方向とのなす角度を所定角度ずつ変化させ、
前記角度を前記所定角度ずつ変化させる毎に検出した前記第2の直線偏光成分の輝度に基づいて、前記楕円偏光の進行方向と垂直な面内における楕円短軸の向きと前記垂直な面内における前記第2の直線偏光成分の振動方向とが略一致する前記角度を選択設定することを特徴とする請求項6に記載の表面検査方法。
In the setting step, an angle formed by a vibration direction of the second linearly polarized light component in a plane perpendicular to the traveling direction of the elliptically polarized light and a vibration direction in a plane perpendicular to the traveling direction of the first linearly polarized light. Is changed by a predetermined angle,
Based on the brightness of the second linearly polarized light component detected each time the angle is changed by the predetermined angle, the direction of the minor axis of the ellipse in the plane perpendicular to the traveling direction of the elliptically polarized light and the perpendicular plane The surface inspection method according to claim 6, wherein the angle at which the vibration direction of the second linearly polarized light component substantially matches is selectively set.
前記設定ステップにおいて、前記角度が90度以外であって90度近傍の角度となるように前記選択設定を行うことを特徴とする請求項7に記載の表面検査方法。   8. The surface inspection method according to claim 7, wherein in the setting step, the selection setting is performed so that the angle is other than 90 degrees and is an angle close to 90 degrees.
JP2007325953A 2007-12-18 2007-12-18 Surface inspection apparatus and surface inspection method Active JP5212779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007325953A JP5212779B2 (en) 2007-12-18 2007-12-18 Surface inspection apparatus and surface inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007325953A JP5212779B2 (en) 2007-12-18 2007-12-18 Surface inspection apparatus and surface inspection method

Publications (3)

Publication Number Publication Date
JP2009145307A true JP2009145307A (en) 2009-07-02
JP2009145307A5 JP2009145307A5 (en) 2011-05-19
JP5212779B2 JP5212779B2 (en) 2013-06-19

Family

ID=40916047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007325953A Active JP5212779B2 (en) 2007-12-18 2007-12-18 Surface inspection apparatus and surface inspection method

Country Status (1)

Country Link
JP (1) JP5212779B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099822A (en) * 2009-11-09 2011-05-19 Nikon Corp Surface inspection method and surface inspection device
CN109856155A (en) * 2019-01-18 2019-06-07 北京兆维电子(集团)有限责任公司 A kind of liquid crystal display surface detection apparatus and method based on polarised light
CN112912775A (en) * 2018-11-28 2021-06-04 索尼半导体解决方案公司 Sensor and control method
WO2023181918A1 (en) * 2022-03-25 2023-09-28 東レエンジニアリング株式会社 Defect inspection device and defect inspection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135211A (en) * 2004-11-09 2006-05-25 Nikon Corp Surface inspection apparatus, surface inspection method, and exposure system
JP2006343102A (en) * 2004-06-16 2006-12-21 Nikon Corp Surface inspection device and surface inspection method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343102A (en) * 2004-06-16 2006-12-21 Nikon Corp Surface inspection device and surface inspection method
JP2006135211A (en) * 2004-11-09 2006-05-25 Nikon Corp Surface inspection apparatus, surface inspection method, and exposure system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099822A (en) * 2009-11-09 2011-05-19 Nikon Corp Surface inspection method and surface inspection device
CN112912775A (en) * 2018-11-28 2021-06-04 索尼半导体解决方案公司 Sensor and control method
CN109856155A (en) * 2019-01-18 2019-06-07 北京兆维电子(集团)有限责任公司 A kind of liquid crystal display surface detection apparatus and method based on polarised light
WO2023181918A1 (en) * 2022-03-25 2023-09-28 東レエンジニアリング株式会社 Defect inspection device and defect inspection method

Also Published As

Publication number Publication date
JP5212779B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5489003B2 (en) Evaluation apparatus and evaluation method
JP4802481B2 (en) Surface inspection apparatus, surface inspection method, and exposure system
JP5201350B2 (en) Surface inspection device
JP4548385B2 (en) Surface inspection device
JP5585615B2 (en) Inspection apparatus and inspection method
JP2013083672A (en) Observation device, inspection device, and inspection method
JP4692892B2 (en) Surface inspection device
JP5212779B2 (en) Surface inspection apparatus and surface inspection method
US8223328B2 (en) Surface inspecting apparatus and surface inspecting method
JP4595881B2 (en) Surface inspection device
JP2007303903A (en) Surface inspection device
JP4605089B2 (en) Surface inspection device
JP4696607B2 (en) Surface inspection device
JP2007309874A (en) Surface inspection device
JP2007327796A (en) Surface inspection device
JP5354362B2 (en) Surface inspection device
JP5299764B2 (en) Evaluation apparatus and evaluation method
JP5201443B2 (en) Surface inspection apparatus and surface inspection method
JP2009068892A (en) Inspection device
JP2010249843A (en) Method and apparatus for defect inspection
JP2009216648A (en) Method and apparatus for defect inspection
JP2008281502A (en) Surface inspection apparatus
JP2010002274A (en) Surface inspection device and control method for quantity-of-light of illumination light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R150 Certificate of patent or registration of utility model

Ref document number: 5212779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250