WO2023181918A1 - Defect inspection device and defect inspection method - Google Patents

Defect inspection device and defect inspection method Download PDF

Info

Publication number
WO2023181918A1
WO2023181918A1 PCT/JP2023/008619 JP2023008619W WO2023181918A1 WO 2023181918 A1 WO2023181918 A1 WO 2023181918A1 JP 2023008619 W JP2023008619 W JP 2023008619W WO 2023181918 A1 WO2023181918 A1 WO 2023181918A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
defect
difference
chip
optical
Prior art date
Application number
PCT/JP2023/008619
Other languages
French (fr)
Japanese (ja)
Inventor
康之 久世
Original Assignee
東レエンジニアリング株式会社
東レエンジニアリング先端半導体Miテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社, 東レエンジニアリング先端半導体Miテクノロジー株式会社 filed Critical 東レエンジニアリング株式会社
Publication of WO2023181918A1 publication Critical patent/WO2023181918A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Definitions

  • the present invention relates to a defect inspection apparatus and a defect inspection method that inspect defects in chips formed on a wafer.
  • Semiconductor devices are manufactured by repeatedly forming multiple semiconductor device circuits (chips) in a matrix on a single semiconductor wafer, cutting them into individual chips, and packaging the diced chips. be done.
  • the inspection image and the reference image are compared pixel by pixel while sequentially imaging the external pattern of each chip formed on the wafer, and the brightness of the contrasted pixels is determined. Defects within the chip are detected based on differences in values (for example, Patent Document 1).
  • Defect inspection inside the chip is performed while taking an image of the chip with an optical microscope, but it is necessary to set the optical conditions of the optical microscope so that the defects can be clearly seen.
  • the defect can be detected by moving the optical microscope to the area containing the defect, changing the optical conditions, and visually checking the inspection image. We are searching for optical conditions that will allow us to see clearly.
  • the present invention has been made in view of the above problems, and its main purpose is to provide a defect inspection apparatus that uses an optical microscope to inspect defects in chips formed on a wafer in a simple manner.
  • An object of the present invention is to provide a defect inspection device and a defect inspection method that can automatically detect the optimum optical conditions for imaging a region including a defect.
  • the defect inspection apparatus is a defect inspection apparatus that inspects defects in chips formed on a wafer, and includes an optical microscope equipped with an imaging unit that takes an image of the chip, and an optical microscope that uses the optical microscope to take an image of the chip.
  • the imaging section includes a control section that controls optical conditions for imaging the defect, and a storage section that stores the position of a defect detected in advance in the chip. A first image of the stored defect-containing region and a second image of the defect-free region in the same region as the defect-containing region are captured, and the feature amount of the first image and the second image are captured.
  • the apparatus is equipped with a detection means for detecting optimal optical conditions for imaging a region including a defect by comparing the feature amount of the image.
  • a defect inspection device that uses an optical microscope to inspect defects in chips formed on a wafer, optimal optical conditions for imaging a region containing defects can be automatically determined in a simple manner. It is possible to provide a defect inspection device and a defect inspection method capable of detecting defects.
  • FIG. 1 is a diagram schematically showing the configuration of a defect inspection apparatus 1 according to a first embodiment of the present invention.
  • 2 is a flowchart showing a method for detecting optimal optical conditions for imaging a region including a defect using the defect inspection apparatus according to the first embodiment.
  • (A) to (C) are diagrams illustrating a method for detecting optimal optical conditions for imaging a region including a defect, according to the flowchart shown in FIG. 2.
  • FIG. 7 is a diagram illustrating a method of detecting optimal optical conditions in a modification of the first embodiment.
  • (A) to (C) are diagrams illustrating a method for creating learning data for a plurality of non-defective chips in the second embodiment of the present invention.
  • (A) and (B) are diagrams showing the brightness value gi and sensitivity value Ai of each pixel in the defective area A.
  • (A) and (B) are diagrams showing the luminance value g'i and sensitivity value A'i of each pixel in the non-defective area B.
  • FIG. 1 is a diagram schematically showing the configuration of a defect inspection apparatus 1 according to a first embodiment of the present invention.
  • a defect inspection apparatus 1 is a defect inspection apparatus that inspects defects in chips formed on a wafer, and includes an optical microscope 10 and an optical microscope 10 for capturing an image of the chip.
  • a control unit 20 that controls optical conditions, a storage unit 25 that stores the position of a defect detected in advance in the chip, and an optical microscope 10 that detect the optimal optical conditions for imaging a region containing a defect.
  • Means 40 is provided.
  • the optical microscope 10 includes a stage 11 on which a wafer 30 is placed, a microscope main body 12 that holds the stage 11, an illumination section 13 that irradiates illumination light L onto the wafer 30, and an imaging section that captures an image of a chip. It is equipped with 14.
  • the illumination light L emitted from the illumination unit 13 is focused by the condenser lens 15, then deflected by the half mirror 16 along the optical axis of the objective lens 17, and is irradiated onto the surface of the wafer 30.
  • the reflected light from the wafer 30 passes through the objective lens 17, the half mirror 16, and the coupling lens 18, and then enters the image sensor 19.
  • the image captured by the image sensor 19 is subjected to image processing by the image processing section 35.
  • the detection means 40 detects optimal optical conditions for imaging a region including a defect based on the image information of the chip imaged by the imaging unit 14.
  • the control unit 20 sets the optical microscope 10 to the optimal optical conditions detected by the detection means 40, images the chip, and detects defects in the wafer 30.
  • the optical conditions of the optical microscope 10 controlled by the control unit 20 include the magnification of the objective lens 17, the type (coaxial, oblique, transmitted) and brightness of the illumination light L, and a differential interference filter (not shown).
  • the position of the illumination light L, the filter of the illumination light L (not shown), etc. are diverse.
  • FIG. 2 is a flowchart showing a method for detecting optimal optical conditions for imaging a region containing a defect using the defect inspection apparatus 1 according to the present embodiment.
  • a chip 31 formed on a wafer 30 is imaged in advance with an optical microscope 10 to detect defects within the chip 31.
  • the position is registered in the storage unit 25 (step S101).
  • control unit 20 changes the optical conditions of the optical microscope 10 (step S102), and changes the image (first image) of the area (defect area) A including the defect 50. ) is imaged (step S103).
  • an image (second image) of an area (good product area) of the chip 31b that is the same area as the area A that includes the defect 50 and does not include the defect 50 is created.
  • the defective area A and the non-defective area B are the same area within the chip.
  • the brightness value (feature value) of the image (first image) of the defective area A is compared with the brightness value (feature value) of the image (second image) of the non-defective area B (step S105).
  • step S106 if the search for the optimal optical conditions has not been completed (No in step S106), the optical conditions of the optical microscope 10 are changed (step S102), and steps S103 to S105 are repeated. If the search for the optimal optical conditions has been completed (Ys in step S106), the optical microscope 10 is set to the optimal optical conditions to detect defects within the wafer 30.
  • Table 1 shows the brightness value (A) of defective area A obtained by changing the optical conditions four times and capturing an image of defective area A and an image of non-defective area B under each optical condition. This is a table illustrating the brightness value of B (B) and the difference between the two brightness values (BA). Note that the numerical values of the brightness values indicate arbitrary units.
  • the difference (BA) between the brightness value (A) of the defective area A and the brightness value (B) of the non-defective area B is an evaluation value for determining the optimal optical conditions.
  • optical condition 2 has the largest difference (BA) in luminance value between the two. Therefore, in this case, optical condition 2 can be said to be the most suitable optical condition.
  • the area containing the defect is determined.
  • the optimal optical conditions for imaging can be detected. This allows a margin for the threshold value when detecting a defect, so that it is possible to improve the detection accuracy when detecting a defect within a chip.
  • the optimal optical conditions were determined from the difference (B-A) between the brightness value (A) of defective area A and the brightness value (B) of non-defective area B, but the brightness value of defective area A (A) and the brightness value (B) of the non-defective area B may be compared using the ratio (B/A) between the two, as shown in Table 2.
  • optical condition 2 has the largest ratio (B/A) of both luminance values. Therefore, in this case, optical condition 2 can be said to be the most suitable optical condition.
  • the brightness value of the image of the defective area A is compared with the brightness value of the image of the non-defective area B (second image) to image the area including the defect.
  • the optimum optical conditions may also be detected by adding the difference in brightness values between images of different non-defective areas to the evaluation value.
  • an area of the chip 31c that does not include the defect 50 is the same area as the area A that includes the defect 50 shown in FIG. 3(B), and is different from the chip 31b shown in FIG. (non-defective area) B' image (second image) is captured.
  • the defective area A and the non-defective area B' are the same area within the chip.
  • the brightness value (B2) is compared.
  • Table 3 shows the brightness value (A) of the defective area A, the brightness value (B1) of the first good area B, and the brightness value of the second good area
  • the difference (B1-B2) between the brightness values of the non-defective areas also serves as an evaluation value for determining the optimal optical conditions.
  • the difference between the brightness value (A) of defective area A and the brightness value (B1) of non-defective area B (first brightness value difference: D1), and the difference in brightness value between non-defective areas B and B' (
  • the difference (D1 ⁇ D2) from the second brightness value difference (D2) is an evaluation value for determining more optimal optical conditions.
  • optical condition 2 has the largest difference in brightness values (D1-D2). Therefore, in this case, optical condition 2 can be said to be the most suitable optical condition.
  • optical condition 2 can be said to be the most suitable optical condition.
  • by reducing the difference in brightness values between non-defective areas it is possible to suppress the detection of false defects that would cause non-defective products to be considered defects.
  • the brightness values of images captured in the non-defective area and the defective area were used as the feature values that serve as evaluation values for determining the optimal optical conditions. It may also be used as
  • DSI Die-to-Statistical Image
  • FIG. 5 is a diagram illustrating a method for creating learning data for a plurality of non-defective chips.
  • a plurality of non-defective chips are imaged to obtain an image of the same area as the non-defective area B shown in FIG. 3(C).
  • the number of pixels P in area B is 12 (3 ⁇ 4).
  • the sensitivity value Ai at each pixel in the defective area A and non-defective area B shown in FIGS. 3(B) and (C) is calculated for the wafer to be inspected. Calculated based on the following formula (1).
  • gi indicates the brightness value at each pixel.
  • FIG. 6(A) shows the luminance value gi of each pixel in the defective area A
  • FIG. 6(B) shows the sensitivity value Ai of each pixel calculated using equation (1).
  • FIG. 7(A) shows the luminance value g'i of each pixel in the non-defective area B
  • FIG. 7(B) shows the sensitivity value A'i of each pixel calculated using equation (1). show.
  • the sensitivity value Ai of each pixel in the defect area A and the sensitivity value A'i of each pixel in the non-defective area B are obtained while changing the optical conditions of the optical microscope.
  • the maximum value Amax of the sensitivity value Ai of each pixel in the defective area A is compared with the maximum value A'max of the sensitivity value Ai of each pixel in the non-defective area B.
  • Table 4 shows the sensitivity value of defective area A (Amax), the sensitivity value of non-defective area B (A'max), and the difference between the two sensitivity values under each optical condition after changing the optical conditions four times. This is a table illustrating (A'maxB-Amax). Note that the numerical value of the sensitivity value indicates an arbitrary unit.
  • the difference (Amax-A'max) between the sensitivity value (Amax) of the defective area A and the sensitivity value (A'max) of the non-defective area B is an evaluation value for determining the optimal optical conditions.
  • the sensitivity value is a threshold value for detecting a target defect during inspection. Therefore, since the evaluation value is similar to that of an actual inspection, more accurate evaluation is possible than using a "luminance value.”
  • optical condition 2 has the largest difference in luminance value (A'max-Amax) between the two. Therefore, in this case, optical condition 2 can be said to be the most suitable optical condition.
  • the optimal optical conditions were determined from the difference (A'max - Amax) between the sensitivity value (Amax) of defective area A and the sensitivity value (A'max) of non-defective area B.
  • the sensitivity value (Amax) of A and the sensitivity value (A'max) of non-defective area B may be compared based on the ratio of the two (A'max/Amax).
  • the brightness value and sensitivity value of images captured in a non-defective area and a defect area are used as an example of feature values that are evaluation values for determining the optimal optical conditions of an optical microscope, but the invention is not limited to this. Instead, other feature quantities may be used, such as a variance value or a brightness value after edge enhancement filter processing, as long as the feature quantity changes depending on the sharpness of the image.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

Provided is a defect inspection device making it possible, with a simple method, to automatically detect optimum optical conditions for imaging a region that includes a defect. A defect inspection device 1 comprises: an optical microscope 10 provided with an imaging unit 14 for capturing an image of a chip 31; a control unit 20 for controlling optical conditions for capturing the image of the chip; and a storage unit 25 for storing the location of a defect in the chip that has been detected in advance. The imaging unit is provided with a detecting means for: capturing, while changing the optical conditions, a first image of a region that includes the defect stored in the storage unit as well as a second image of a region that does not include the defect in the same region as the region that includes the defect; and detecting the optimum optical conditions for imaging the region that includes the defect by comparing a feature amount of the first image and a feature amount of the second image.

Description

欠陥検査装置及び欠陥検査方法Defect inspection equipment and defect inspection method
 本発明は、ウェハ上に形成されたチップ内の欠陥を検査する欠陥検査装置、及び欠陥検査方法に関する。 The present invention relates to a defect inspection apparatus and a defect inspection method that inspect defects in chips formed on a wafer.
 半導体デバイスは、1枚の半導体ウェハ上に、複数の半導体デバイス回路(チップ)をマトリクス状に繰り返し形成した後、個々のチップに個片化して、個片化したチップをパッケージングすることにより製造される。 Semiconductor devices are manufactured by repeatedly forming multiple semiconductor device circuits (chips) in a matrix on a single semiconductor wafer, cutting them into individual chips, and packaging the diced chips. be done.
 個々のチップが個片化される前に、ウェハ上に形成された各チップの外観パターンを逐次撮像しながら、検査画像と基準画像とを、画素単位で比較して、対比した画素同士の輝度値の差などに基づいて、チップ内の欠陥を検出している(例えば、特許文献1)。 Before each chip is separated into pieces, the inspection image and the reference image are compared pixel by pixel while sequentially imaging the external pattern of each chip formed on the wafer, and the brightness of the contrasted pixels is determined. Defects within the chip are detected based on differences in values (for example, Patent Document 1).
特開2007-155610号公報Japanese Patent Application Publication No. 2007-155610
 チップ内の欠陥検査は、光学顕微鏡でチップの画像を撮像しながら行われるが、欠陥がはっきり見えるような光学顕微鏡の光学条件を設定する必要がある。 Defect inspection inside the chip is performed while taking an image of the chip with an optical microscope, but it is necessary to set the optical conditions of the optical microscope so that the defects can be clearly seen.
 人が手動で光学条件を設定する場合、欠陥の位置が分かっていても、光学顕微鏡を欠陥を含む領域に移動して、光学条件を変更して、検査画像を目視で確認することで、欠陥がはっきり見える光学条件を探索している。 When a person manually sets the optical conditions, even if the location of the defect is known, the defect can be detected by moving the optical microscope to the area containing the defect, changing the optical conditions, and visually checking the inspection image. We are searching for optical conditions that will allow us to see clearly.
 しかしながら、光学条件は多数あるため、人が全ての光学条件を探索することは難しく、また、人が目視で判断しているため、人によって欠陥の検出にばらつきが生じるおそれがある。 However, since there are many optical conditions, it is difficult for humans to search for all optical conditions, and since humans make visual judgments, there is a risk that defect detection may vary depending on the person.
 本発明は、かかる点に鑑みてなされたもので、その主な目的は、ウェハ上に形成されたチップ内の欠陥を、光学顕微鏡を用いて検査する欠陥検査装置において、簡単な方法で、欠陥を含む領域を撮像するための最適な光学条件を自動で検出することができる欠陥検査装置、及び欠陥検査方法を提供することにある。 The present invention has been made in view of the above problems, and its main purpose is to provide a defect inspection apparatus that uses an optical microscope to inspect defects in chips formed on a wafer in a simple manner. An object of the present invention is to provide a defect inspection device and a defect inspection method that can automatically detect the optimum optical conditions for imaging a region including a defect.
 本発明に係る欠陥検査装置は、ウェハ上に形成されたチップ内の欠陥を検査する欠陥検査装置であって、チップの画像を撮像する撮像部を備えた光学顕微鏡と、光学顕微鏡でチップの画像を撮像するための光学条件を制御する制御部と、予め検出されたチップ内における欠陥の位置が記憶された記憶部とを備え、撮像部は、制御部で光学条件を変えながら、記憶部に記憶された欠陥を含む領域の第1の画像、及び、欠陥を含む領域と同じ領域で、欠陥を含まない領域の第2の画像を撮像し、第1の画像の特徴量と、第2の画像の特徴量とを比較することにより、欠陥を含む領域を撮像するための最適な光学条件を検出する検出手段を備えている。 The defect inspection apparatus according to the present invention is a defect inspection apparatus that inspects defects in chips formed on a wafer, and includes an optical microscope equipped with an imaging unit that takes an image of the chip, and an optical microscope that uses the optical microscope to take an image of the chip. The imaging section includes a control section that controls optical conditions for imaging the defect, and a storage section that stores the position of a defect detected in advance in the chip. A first image of the stored defect-containing region and a second image of the defect-free region in the same region as the defect-containing region are captured, and the feature amount of the first image and the second image are captured. The apparatus is equipped with a detection means for detecting optimal optical conditions for imaging a region including a defect by comparing the feature amount of the image.
 本発明によれば、ウェハ上に形成されたチップ内の欠陥を、光学顕微鏡を用いて検査する欠陥検査装置において、簡単な方法で、欠陥を含む領域を撮像するための最適な光学条件を自動で検出することができる欠陥検査装置、及び欠陥検査方法を提供することができる。 According to the present invention, in a defect inspection device that uses an optical microscope to inspect defects in chips formed on a wafer, optimal optical conditions for imaging a region containing defects can be automatically determined in a simple manner. It is possible to provide a defect inspection device and a defect inspection method capable of detecting defects.
本発明の第1の実施形態における欠陥検査装置1の構成を模式的に示した図である。1 is a diagram schematically showing the configuration of a defect inspection apparatus 1 according to a first embodiment of the present invention. 第1の実施形態における欠陥検査装置を用いて、欠陥を含む領域を撮像するための最適な光学条件を検出する方法を示したフローチャートである。2 is a flowchart showing a method for detecting optimal optical conditions for imaging a region including a defect using the defect inspection apparatus according to the first embodiment. (A)~(C)は、図2に示したフローチャートに従って、欠陥を含む領域を撮像するための最適な光学条件を検出する方法を説明した図である。(A) to (C) are diagrams illustrating a method for detecting optimal optical conditions for imaging a region including a defect, according to the flowchart shown in FIG. 2. 第1の実施形態の変形例における最適な光学条件を検出する方法を説明した図である。FIG. 7 is a diagram illustrating a method of detecting optimal optical conditions in a modification of the first embodiment. (A)~(C)は、本発明の第2の実施形態において、複数の良品チップについて、学習データを作成する方法を説明した図である。(A) to (C) are diagrams illustrating a method for creating learning data for a plurality of non-defective chips in the second embodiment of the present invention. (A)及び(B)は、欠陥領域Aにおける各画素の輝度値gi、及び感度値Aiを示した図である。(A) and (B) are diagrams showing the brightness value gi and sensitivity value Ai of each pixel in the defective area A. (A)及び(B)は、良品領域Bにおける各画素の輝度値g'i、及び感度値A'iを示した図である。(A) and (B) are diagrams showing the luminance value g'i and sensitivity value A'i of each pixel in the non-defective area B.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。
(第1の実施形態)
 図1は、本発明の第1の実施形態における欠陥検査装置1の構成を模式的に示した図である。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the following embodiments. Further, changes can be made as appropriate without departing from the range in which the effects of the present invention can be achieved.
(First embodiment)
FIG. 1 is a diagram schematically showing the configuration of a defect inspection apparatus 1 according to a first embodiment of the present invention.
 図1に示すように、本実施形態における欠陥検査装置1は、ウェハ上に形成されたチップ内の欠陥を検査する欠陥検査装置であって、光学顕微鏡10と、チップの画像を撮像するための光学条件を制御する制御部20と、予め検出されたチップ内における欠陥の位置を記憶する記憶部25と、光学顕微鏡10で、欠陥を含む領域を撮像するための最適な光学条件を検出する検出手段40備えている。 As shown in FIG. 1, a defect inspection apparatus 1 according to the present embodiment is a defect inspection apparatus that inspects defects in chips formed on a wafer, and includes an optical microscope 10 and an optical microscope 10 for capturing an image of the chip. A control unit 20 that controls optical conditions, a storage unit 25 that stores the position of a defect detected in advance in the chip, and an optical microscope 10 that detect the optimal optical conditions for imaging a region containing a defect. Means 40 is provided.
 光学顕微鏡10は、ウェハ30を載置するステージ11と、ステージ11を保持する顕微鏡本体12と、ウェハ30に対して、照明光Lを照射する照明部13と、チップの画像を撮像する撮像部14とを備えている。 The optical microscope 10 includes a stage 11 on which a wafer 30 is placed, a microscope main body 12 that holds the stage 11, an illumination section 13 that irradiates illumination light L onto the wafer 30, and an imaging section that captures an image of a chip. It is equipped with 14.
 照明部13から照射された照明光Lは、集光レンズ15で集光された後、ハーフミラー16で、対物レンズ17の光軸に沿って偏向されて、ウェハ30の表面に照射される。ウェハ30からの反射光は、対物レンズ17、ハーフミラー16、及び結合レンズ18を経て、撮像素子19に入射する。撮像素子19で撮像された画像は、画像処理部35で画像処理される。 The illumination light L emitted from the illumination unit 13 is focused by the condenser lens 15, then deflected by the half mirror 16 along the optical axis of the objective lens 17, and is irradiated onto the surface of the wafer 30. The reflected light from the wafer 30 passes through the objective lens 17, the half mirror 16, and the coupling lens 18, and then enters the image sensor 19. The image captured by the image sensor 19 is subjected to image processing by the image processing section 35.
 本実施形態において、検出手段40は、撮像部14で撮像されたチップの画像情報に基づいて、欠陥を含む領域を撮像するための最適な光学条件を検出する。制御部20は、光学顕微鏡10を、検出手段40で検出した最適な光学条件に設定して、チップを撮像し、ウェハ30内の欠陥を検出する。 In the present embodiment, the detection means 40 detects optimal optical conditions for imaging a region including a defect based on the image information of the chip imaged by the imaging unit 14. The control unit 20 sets the optical microscope 10 to the optimal optical conditions detected by the detection means 40, images the chip, and detects defects in the wafer 30.
 なお、本実施形態において、制御部20で制御する光学顕微鏡10の光学条件は、対物レンズ17の倍率、照明光Lの種類(同軸、斜光、透過)や明るさ、微分干渉フィルタ(不図示)の位置、照明光Lのフィルタ(不図示)など、多岐にわたる。 In this embodiment, the optical conditions of the optical microscope 10 controlled by the control unit 20 include the magnification of the objective lens 17, the type (coaxial, oblique, transmitted) and brightness of the illumination light L, and a differential interference filter (not shown). The position of the illumination light L, the filter of the illumination light L (not shown), etc. are diverse.
 図2は、本実施形態における欠陥検査装置1を用いて、欠陥を含む領域を撮像するための最適な光学条件を検出する方法を示したフローチャートである。 FIG. 2 is a flowchart showing a method for detecting optimal optical conditions for imaging a region containing a defect using the defect inspection apparatus 1 according to the present embodiment.
 まず、図3(A)に示すように、予め、ウェハ30上に形成されたチップ31を光学顕微鏡10で撮像して、チップ31内の欠陥を検出し、検出された欠陥のチップ31a内における位置を、記憶部25に登録する(ステップS101)。 First, as shown in FIG. 3(A), a chip 31 formed on a wafer 30 is imaged in advance with an optical microscope 10 to detect defects within the chip 31. The position is registered in the storage unit 25 (step S101).
 次に、図3(B)に示すように、制御部20で、光学顕微鏡10の光学条件を変更して(ステップS102)、欠陥50を含む領域(欠陥領域)Aの画像(第1の画像)を撮像する(ステップS103)。 Next, as shown in FIG. 3B, the control unit 20 changes the optical conditions of the optical microscope 10 (step S102), and changes the image (first image) of the area (defect area) A including the defect 50. ) is imaged (step S103).
 次に、図3(B)に示すように、同じ光学条件で、欠陥50を含む領域Aと同じ領域で、欠陥50を含まないチップ31bの領域(良品領域)Bの画像(第2の画像)を撮像する(ステップS104)。ここで、欠陥領域Aと良品領域Bとは、チップ内で同じ領域である。 Next, as shown in FIG. 3B, under the same optical conditions, an image (second image) of an area (good product area) of the chip 31b that is the same area as the area A that includes the defect 50 and does not include the defect 50 is created. ) is imaged (step S104). Here, the defective area A and the non-defective area B are the same area within the chip.
 次に、欠陥領域Aの画像(第1の画像)の輝度値(特徴量)と、良品領域Bの画像(第2の画像)の輝度値(特徴量)とを比較する(ステップS105)。 Next, the brightness value (feature value) of the image (first image) of the defective area A is compared with the brightness value (feature value) of the image (second image) of the non-defective area B (step S105).
 次に、最適な光学条件の探索が終了していない場合(ステップS106のNo)、光学顕微鏡10の光学条件を変更して(ステップS102)、ステップS103~ステップS105を繰り返す。最適な光学条件の探索が終了している場合(ステップS106のYs)、光学顕微鏡10を最適な光学条件に設定して、ウェハ30内の欠陥を検出する。 Next, if the search for the optimal optical conditions has not been completed (No in step S106), the optical conditions of the optical microscope 10 are changed (step S102), and steps S103 to S105 are repeated. If the search for the optimal optical conditions has been completed (Ys in step S106), the optical microscope 10 is set to the optimal optical conditions to detect defects within the wafer 30.
 表1は、光学条件を、4回変更して、それぞれの光学条件で、欠陥領域Aの画像及び良品領域Bの画像を撮像して得られた欠陥領域Aの輝度値(A)、良品領域Bの輝度値(B)、及び、両者の輝度値の差(B-A)を例示した表である。なお、輝度値の数値は、任意単位を示す。 Table 1 shows the brightness value (A) of defective area A obtained by changing the optical conditions four times and capturing an image of defective area A and an image of non-defective area B under each optical condition. This is a table illustrating the brightness value of B (B) and the difference between the two brightness values (BA). Note that the numerical values of the brightness values indicate arbitrary units.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 同じ領域A、Bを撮像しても、光学条件が変われば、領域A、Bで撮像された画像の輝度値も変わり、画像の鮮明度が高いほど、両者の差は大きくなる。従って、欠陥領域Aの輝度値(A)と良品領域Bの輝度値(B)との差(B-A)は、最適な光学条件を求める評価値となる。 Even if the same areas A and B are imaged, if the optical conditions change, the brightness values of the images captured in areas A and B will also change, and the higher the clarity of the images, the larger the difference between them will be. Therefore, the difference (BA) between the brightness value (A) of the defective area A and the brightness value (B) of the non-defective area B is an evaluation value for determining the optimal optical conditions.
 表1に示した例では、4つの光学条件のうち、光学条件2が、両者の輝度値の差(B-A)が最も大きい。従って、この場合、光学条件2が、最も好適な光学条件であると言える。 In the example shown in Table 1, among the four optical conditions, optical condition 2 has the largest difference (BA) in luminance value between the two. Therefore, in this case, optical condition 2 can be said to be the most suitable optical condition.
 このように、本実施形態では、欠陥領域Aの画像(第1の画像)の輝度値と、良品領域Bの画像(第2の画像)の輝度値とを比較することにより、欠陥を含む領域を撮像するための最適な光学条件を検出することができる。これにより、欠陥を検出する際の閾値に余裕ができるため、チップ内の欠陥を検出する際の検出精度を向上させることができる。 As described above, in this embodiment, by comparing the brightness value of the image of the defective area A (first image) and the brightness value of the image of the non-defective area B (second image), the area containing the defect is determined. The optimal optical conditions for imaging can be detected. This allows a margin for the threshold value when detecting a defect, so that it is possible to improve the detection accuracy when detecting a defect within a chip.
 なお、表1では、欠陥領域Aの輝度値(A)と良品領域Bの輝度値(B)との差(B-A)から、最適な光学条件を求めたが、欠陥領域Aの輝度値(A)と良品領域Bの輝度値(B)との比較は、表2に示すように、両者の比(B/A)で行ってもよい。 In addition, in Table 1, the optimal optical conditions were determined from the difference (B-A) between the brightness value (A) of defective area A and the brightness value (B) of non-defective area B, but the brightness value of defective area A (A) and the brightness value (B) of the non-defective area B may be compared using the ratio (B/A) between the two, as shown in Table 2.
 表2に示した例では、4つの光学条件のうち、光学条件2が、両者の輝度値の比(B/A)が最も大きい。従って、この場合、光学条件2が、最も好適な光学条件であると言える。 In the example shown in Table 2, among the four optical conditions, optical condition 2 has the largest ratio (B/A) of both luminance values. Therefore, in this case, optical condition 2 can be said to be the most suitable optical condition.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (第1の実施形態の変形例)
 上記実施形態では、欠陥領域Aの画像(第1の画像)の輝度値と、良品領域Bの画像(第2の画像)の輝度値とを比較して、欠陥を含む領域を撮像するための最適な光学条件を検出したが、さらに、異なる良品領域の画像同士の輝度値の差を評価値に加えて、最適な光学条件を検出してもよい。
(Modification of the first embodiment)
In the above embodiment, the brightness value of the image of the defective area A (first image) is compared with the brightness value of the image of the non-defective area B (second image) to image the area including the defect. Although the optimum optical conditions have been detected, the optimum optical conditions may also be detected by adding the difference in brightness values between images of different non-defective areas to the evaluation value.
 図4に示すように、図3(B)に示した欠陥50を含む領域Aと同じ領域で、図3(C)に示したチップ31bとは異なる、欠陥50を含まないチップ31cの領域(良品領域)B’の画像(第2の画像)を撮像する。ここで、欠陥領域Aと良品領域B’とは、チップ内で同じ領域である。 As shown in FIG. 4, an area of the chip 31c that does not include the defect 50 is the same area as the area A that includes the defect 50 shown in FIG. 3(B), and is different from the chip 31b shown in FIG. (non-defective area) B' image (second image) is captured. Here, the defective area A and the non-defective area B' are the same area within the chip.
 次に、図3(C)で示した良品領域(第1の良品領域)Bの画像の輝度値(B1)と、図4で示した良品領域(第2の良品領域)B’の画像の輝度値(B2)とを比較する。 Next, the brightness value (B1) of the image of the non-defective area (first non-defective area) B shown in FIG. 3(C) and the image of the non-defective area (second non-defective area) B' shown in FIG. The brightness value (B2) is compared.
 表3は、表1と同様に、光学条件を変えながら、それぞれの光学条件で、欠陥領域Aの輝度値(A)、第1の良品領域Bの輝度値(B1)、第2の良品領域B’の輝度値(B2)、輝度値(A)と輝度値(B1)との差(第1の輝度値の差)(D1=B1-A)、輝度値(B1)と輝度値(B2)との差(第2の輝度値の差)(D2=B1-B2)、及び、第1の輝度値の差(D1)第2の輝度値の差(D2)との差(D1―D2)を、それぞれ例示した表である。なお、輝度値の数値は、任意単位を示す。 Table 3 shows the brightness value (A) of the defective area A, the brightness value (B1) of the first good area B, and the brightness value of the second good area The brightness value (B2) of B', the difference between the brightness value (A) and the brightness value (B1) (difference in the first brightness value) (D1=B1-A), the brightness value (B1) and the brightness value (B2) ) (difference in second brightness value) (D2=B1-B2), and the difference between the difference in first brightness value (D1) and the difference in second brightness value (D2) (D1-D2) ) is a table illustrating each example. Note that the numerical values of the brightness values indicate arbitrary units.
 ここで、第1の輝度値の差(D1=B1-A)は、表1に示した欠陥領域Aの輝度値(A)と良品領域Bの輝度値(B)との差(B-A)と同じである。 Here, the first brightness value difference (D1=B1-A) is the difference (B-A ) is the same as
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 同じ光学条件で、良品領域B、B’を撮像しても、チップ間のバラツキにより、良品領域B、B’で撮像された画像の輝度値B1、B2も変わるが、画像の鮮明度が高いほど、両者の差は小さくなる。従って、良品領域同士の輝度値との差(B1-B2)も、最適な光学条件を求める評価値となる。そのため、欠陥領域Aの輝度値(A)と良品領域Bの輝度値(B1)との差(第1の輝度値の差:D1)と、良品領域B、B’同士の輝度値の差(第2の輝度値の差:D2)との差(D1―D2)は、より最適な光学条件を求める評価値となる。 Even if images of non-defective areas B and B' are captured under the same optical conditions, the brightness values B1 and B2 of the images captured in non-defective areas B and B' will vary due to variations between chips, but the images will have high clarity. The more the difference between the two becomes smaller. Therefore, the difference (B1-B2) between the brightness values of the non-defective areas also serves as an evaluation value for determining the optimal optical conditions. Therefore, the difference between the brightness value (A) of defective area A and the brightness value (B1) of non-defective area B (first brightness value difference: D1), and the difference in brightness value between non-defective areas B and B' ( The difference (D1−D2) from the second brightness value difference (D2) is an evaluation value for determining more optimal optical conditions.
 表3に示した例では、4つの光学条件のうち、光学条件2が、輝度値の差(D1-D2)が最も大きい。従って、この場合、光学条件2が、最も好適な光学条件であると言える。加えて、良品領域同士の輝度値の差を小さくすることで、良品を欠陥としてしまう疑似欠陥の検出も抑制することができる。 In the example shown in Table 3, among the four optical conditions, optical condition 2 has the largest difference in brightness values (D1-D2). Therefore, in this case, optical condition 2 can be said to be the most suitable optical condition. In addition, by reducing the difference in brightness values between non-defective areas, it is possible to suppress the detection of false defects that would cause non-defective products to be considered defects.
 (第2の実施形態)
 第1の実施形態では、最適な光学条件を求める評価値となる特徴量として、良品領域及び欠陥領域で撮像された画像の輝度値を用いたが、以下に説明する「感度値」を特徴量として用いてもよい。
(Second embodiment)
In the first embodiment, the brightness values of images captured in the non-defective area and the defective area were used as the feature values that serve as evaluation values for determining the optimal optical conditions. It may also be used as
 欠陥検査の手法として、DSI(Die-to-Statistical Image)比較法と呼ばれる良品学習方式が知られている。 As a defect inspection method, a good product learning method called the DSI (Die-to-Statistical Image) comparison method is known.
 図5は、複数の良品チップについて、学習データを作成する方法を説明した図である。 FIG. 5 is a diagram illustrating a method for creating learning data for a plurality of non-defective chips.
 まず、図5(A)に示すように、複数の良品チップを撮像し、図3(C)で示した良品領域Bと同じ領域の画像を取得する。ここでは、領域Bにおける画素Pの数は、12(3×4)個とする。 First, as shown in FIG. 5(A), a plurality of non-defective chips are imaged to obtain an image of the same area as the non-defective area B shown in FIG. 3(C). Here, the number of pixels P in area B is 12 (3×4).
 同じ領域の画像を取得しているので、各画素の輝度値の分布は、良品のバラツキを反映した正規分布をなす。従って、画素毎に統計処理を行うことによって、図5(B)及び(C)に示すように、各画素における平均値Gi(i=1~12)と、標準偏差σi(i=1~12)とを求めることができる。 Since images of the same area are acquired, the distribution of brightness values of each pixel forms a normal distribution that reflects the dispersion of non-defective products. Therefore, by performing statistical processing for each pixel, the average value Gi (i=1 to 12) and standard deviation σi (i=1 to 12 ) can be obtained.
 このようにして得られた学習データを用いて、検査対象のウェハに対して、図3(B)、(C)に示した欠陥領域A、及び良品領域Bの各画素における感度値Aiを、下記の式(1)に基づいて算出する。ここで、giは、各画素における輝度値を示す。 Using the learning data obtained in this way, the sensitivity value Ai at each pixel in the defective area A and non-defective area B shown in FIGS. 3(B) and (C) is calculated for the wafer to be inspected. Calculated based on the following formula (1). Here, gi indicates the brightness value at each pixel.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 図6(A)は、欠陥領域Aにおける各画素の輝度値giを示し、図6(B)は、式(1)を用いて算出した各画素の感度値Aiを示す。 FIG. 6(A) shows the luminance value gi of each pixel in the defective area A, and FIG. 6(B) shows the sensitivity value Ai of each pixel calculated using equation (1).
 同様に、図7(A)は、良品領域Bにおける各画素の輝度値g'iを示し、図7(B)は、式(1)を用いて算出した各画素の感度値A'iを示す。 Similarly, FIG. 7(A) shows the luminance value g'i of each pixel in the non-defective area B, and FIG. 7(B) shows the sensitivity value A'i of each pixel calculated using equation (1). show.
 このようにして、光学顕微鏡の光学条件を変えながら、欠陥領域Aにおける各画素の感度値Ai、及び、良品領域Bにおける各画素の感度値A'iを取得する。 In this way, the sensitivity value Ai of each pixel in the defect area A and the sensitivity value A'i of each pixel in the non-defective area B are obtained while changing the optical conditions of the optical microscope.
 そして、各光学条件において、欠陥領域Aにおける各画素の感度値Aiの最大値Amaxと、良品領域Bにおける各画素の感度値Aiの最大値A'maxとを比較する。 Then, under each optical condition, the maximum value Amax of the sensitivity value Ai of each pixel in the defective area A is compared with the maximum value A'max of the sensitivity value Ai of each pixel in the non-defective area B.
 表4は、光学条件を、4回変更して、それぞれの光学条件で、欠陥領域Aの感度値(Amax)、良品領域Bの感度値(A'max)、及び、両者の感度値の差(A'maxB-Amax)を例示した表である。なお、感度値の数値は、任意単位を示す。 Table 4 shows the sensitivity value of defective area A (Amax), the sensitivity value of non-defective area B (A'max), and the difference between the two sensitivity values under each optical condition after changing the optical conditions four times. This is a table illustrating (A'maxB-Amax). Note that the numerical value of the sensitivity value indicates an arbitrary unit.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 同じ領域A、Bを撮像しても、光学条件が変われば、領域A、Bで撮像された画像の感度値も変わり、領域Aの欠陥部分の鮮明度が高いほど、学習データとの差が大きくなり、領域Bとの差は大きくなる。従って、欠陥領域Aの感度値(Amax)と良品領域Bの感度値(A'max)との差(Amax-A'max)は、最適な光学条件を求める評価値となる。感度値とは、検査時に対象の欠陥を検出するための閾値となる。従って、実際の検査と同様の評価値となるため、「輝度値」を使用するより、より正確な評価が可能となる。 Even if the same areas A and B are imaged, if the optical conditions change, the sensitivity values of the images captured in areas A and B will also change, and the higher the clarity of the defective part in area A, the greater the difference from the learning data. The area becomes larger, and the difference from area B becomes larger. Therefore, the difference (Amax-A'max) between the sensitivity value (Amax) of the defective area A and the sensitivity value (A'max) of the non-defective area B is an evaluation value for determining the optimal optical conditions. The sensitivity value is a threshold value for detecting a target defect during inspection. Therefore, since the evaluation value is similar to that of an actual inspection, more accurate evaluation is possible than using a "luminance value."
 表4に示した例では、4つの光学条件のうち、光学条件2が、両者の輝度値の差(A'max-Amax)が最も大きい。従って、この場合、光学条件2が、最も好適な光学条件であると言える。 In the example shown in Table 4, among the four optical conditions, optical condition 2 has the largest difference in luminance value (A'max-Amax) between the two. Therefore, in this case, optical condition 2 can be said to be the most suitable optical condition.
 なお、表4では、欠陥領域Aの感度値(Amax)と良品領域Bの感度値(A'max)との差(A'max-Amax)から、最適な光学条件を求めたが、欠陥領域Aの感度値(Amax)と良品領域Bの感度値(A'max)との比較は、両者の比(A'max/Amax)で行ってもよい。 In addition, in Table 4, the optimal optical conditions were determined from the difference (A'max - Amax) between the sensitivity value (Amax) of defective area A and the sensitivity value (A'max) of non-defective area B. The sensitivity value (Amax) of A and the sensitivity value (A'max) of non-defective area B may be compared based on the ratio of the two (A'max/Amax).
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。例えば、上記実施形態では、光学顕微鏡の最適な光学条件を求める評価値となる特徴量として、良品領域及び欠陥領域で撮像された画像の輝度値や感度値を例に説明したが、これに限定されず、画像の鮮明度によって変化する特徴量であれば、分散値やエッジ強調フィルタ処理後の輝度値など、他の特徴量を用いてもよい。 Although the present invention has been described above using preferred embodiments, such descriptions are not limiting, and of course, various modifications are possible. For example, in the above embodiment, the brightness value and sensitivity value of images captured in a non-defective area and a defect area are used as an example of feature values that are evaluation values for determining the optimal optical conditions of an optical microscope, but the invention is not limited to this. Instead, other feature quantities may be used, such as a variance value or a brightness value after edge enhancement filter processing, as long as the feature quantity changes depending on the sharpness of the image.
   1   欠陥検査装置 
  10   光学顕微鏡 
  11   ステージ 
  12   顕微鏡本体 
  13   照明部 
  14   撮像部 
  15   集光レンズ 
  16   ハーフミラー 
  17   対物レンズ 
  18   結合レンズ 
  19   撮像素子 
  20   制御部
  25   記憶部
  30   ウェハ 
  31   チップ 
  35   画像処理部 
  40   検出手段 
  50   欠陥 
1 Defect inspection equipment
10 Optical microscope
11 stage
12 Microscope body
13 Lighting section
14 Imaging section
15 Condensing lens
16 Half mirror
17 Objective lens
18 Combined lens
19 Image sensor
20 control section 25 storage section 30 wafer
31 Chip
35 Image processing section
40 Detection means
50 defects

Claims (7)

  1.  ウェハ上に形成されたチップ内の欠陥を検査する欠陥検査装置であって、
     前記チップの画像を撮像する撮像部を備えた光学顕微鏡と、
     前記光学顕微鏡で前記チップの画像を撮像するための光学条件を制御する制御部と、
     予め検出された前記チップ内における欠陥の位置が記憶された記憶部と、
    を備え、
     前記撮像部は、前記制御部で前記光学条件を変えながら、前記憶部に記憶された前記欠陥を含む領域の第1の画像、及び、前記欠陥を含む領域と同じ領域で、前記欠陥を含まない領域の第2の画像を撮像し、
     前記第1の画像の特徴量と、前記第2の画像の特徴量とを比較することにより、前記欠陥を含む領域を撮像するための最適な光学条件を検出する検出手段を備えた、欠陥検査装置。
    A defect inspection device that inspects defects in chips formed on a wafer,
    an optical microscope equipped with an imaging unit that captures an image of the chip;
    a control unit that controls optical conditions for capturing an image of the chip with the optical microscope;
    a storage unit storing the position of a defect detected in advance in the chip;
    Equipped with
    The imaging unit is configured to capture a first image of the area including the defect stored in the previous storage unit and an area including the defect in the same area as the area including the defect while changing the optical conditions with the control unit. capturing a second image of the area where there is no
    Defect inspection, comprising a detection means for detecting optimal optical conditions for imaging the region including the defect by comparing the feature amount of the first image and the feature amount of the second image. Device.
  2.  前記撮像部は、前記第2の画像を複数撮像することを含み、
     前記検出手段は、前記第1の画像の特徴量と、前記第2の画像の特徴量との比較に加えて、前記複数の第2の画像同士の特徴量を比較することにより、前記欠陥を含む領域を撮像するための最適な光学条件を検出する、請求項1に記載の欠陥検査装置。
    The imaging unit includes capturing a plurality of the second images,
    The detection means detects the defect by comparing the feature amounts of the plurality of second images in addition to comparing the feature amounts of the first image and the feature amounts of the second image. The defect inspection device according to claim 1, which detects optimal optical conditions for imaging a region including the defect.
  3.  前記第1の画像の特徴量と、前記第2の画像の特徴量との差が最大となる光学条件を、前記欠陥を含む領域を撮像するための最適な光学条件として検出する、請求項1または2に記載の欠陥検査装置。 1 . The optical condition in which the difference between the feature amount of the first image and the feature amount of the second image is maximum is detected as the optimal optical condition for imaging the region including the defect. Or the defect inspection device according to 2.
  4.  前記第1の画像の特徴量と、前記第2の画像の特徴量との差を第1の差とし、前記複数の第2の画像同士の特徴量の差を第2の差として、前記第1の差と前記第2の差との差、または比が最大となる光学条件を、前記欠陥を含む領域を撮像するための最適な光学条件として検出する、請求項1または2に記載の欠陥検査装置。 The difference between the feature amount of the first image and the feature amount of the second image is defined as a first difference, and the difference between the feature amounts of the plurality of second images is defined as a second difference. 3. The defect according to claim 1, wherein an optical condition in which a difference or a ratio between a difference of 1 and the second difference or a ratio is maximum is detected as an optimal optical condition for imaging the region including the defect. Inspection equipment.
  5.  前記第1の画像の特徴量、及び前記第2の画像の特徴量は、輝度値または感度値である、請求項1~4の何れかに記載の欠陥検査装置。 The defect inspection device according to any one of claims 1 to 4, wherein the feature amount of the first image and the feature amount of the second image are brightness values or sensitivity values.
  6.  前記光学条件は、前記チップの画像を撮像する対物レンズの倍率、前記チップに照射する照明光の種類、前記照明光の明るさ、及び前記照明光のフィルタの少なくともいずれか一つを含む、請求項1~5の何れかに記載の欠陥検査装置。 The optical conditions include at least one of a magnification of an objective lens for capturing an image of the chip, a type of illumination light irradiated to the chip, a brightness of the illumination light, and a filter for the illumination light. The defect inspection device according to any one of Items 1 to 5.
  7.  光学顕微鏡でウェハ上に形成されたチップの画像を撮像して、前記チップ内の欠陥を検査する欠陥検査方法であって、
     予め、前記チップの欠陥の位置を登録する工程と、
     前記光学顕微鏡の光学条件を変えながら、前記欠陥を含む領域の第1の画像、及び、前記欠陥を含む領域と同じ領域で、前記欠陥を含まない領域の第2の画像を撮像する工程と、
     前記第1の画像の特徴量と、前記第2の画像の特徴量とを比較することにより、前記欠陥を含む領域を撮像するための最適な光学条件を検出する工程と
    を含む、欠陥検査方法。
    A defect inspection method for inspecting defects in the chips by capturing an image of a chip formed on a wafer with an optical microscope, the method comprising:
    a step of registering the location of the defect in the chip in advance;
    While changing the optical conditions of the optical microscope, capturing a first image of the region containing the defect and a second image of the region not containing the defect in the same region as the defect-containing region;
    A defect inspection method comprising: detecting optimal optical conditions for imaging the region including the defect by comparing the feature amount of the first image and the feature amount of the second image. .
PCT/JP2023/008619 2022-03-25 2023-03-07 Defect inspection device and defect inspection method WO2023181918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022050008A JP2023142884A (en) 2022-03-25 2022-03-25 Defect inspection device and defect inspection method
JP2022-050008 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023181918A1 true WO2023181918A1 (en) 2023-09-28

Family

ID=88100786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008619 WO2023181918A1 (en) 2022-03-25 2023-03-07 Defect inspection device and defect inspection method

Country Status (3)

Country Link
JP (1) JP2023142884A (en)
TW (1) TW202348988A (en)
WO (1) WO2023181918A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145307A (en) * 2007-12-18 2009-07-02 Nikon Corp Surface inspection apparatus and surface inspection method
JP2010054269A (en) * 2008-08-27 2010-03-11 Toshiba Corp Visual examination method, program and visual examination device
JP2010151655A (en) * 2008-12-25 2010-07-08 Hitachi High-Technologies Corp Defect inspection method and apparatus therefore
US20140219544A1 (en) * 2013-02-01 2014-08-07 Kla-Tencor Corporation Detecting Defects on a Wafer Using Defect-Specific and Multi-Channel Information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145307A (en) * 2007-12-18 2009-07-02 Nikon Corp Surface inspection apparatus and surface inspection method
JP2010054269A (en) * 2008-08-27 2010-03-11 Toshiba Corp Visual examination method, program and visual examination device
JP2010151655A (en) * 2008-12-25 2010-07-08 Hitachi High-Technologies Corp Defect inspection method and apparatus therefore
US20140219544A1 (en) * 2013-02-01 2014-08-07 Kla-Tencor Corporation Detecting Defects on a Wafer Using Defect-Specific and Multi-Channel Information

Also Published As

Publication number Publication date
JP2023142884A (en) 2023-10-06
TW202348988A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
US6928185B2 (en) Defect inspection method and defect inspection apparatus
US7400393B2 (en) Method and apparatus for detecting defects in a specimen utilizing information concerning the specimen
JP5228490B2 (en) Defect inspection equipment that performs defect inspection by image analysis
TWI621849B (en) Computer-implemented method, non-transitory computer-readable medium, and system for detecting defects on a wafer
KR102019534B1 (en) Detecting defects on a wafer using defect-specific and multi-channel information
JP4802481B2 (en) Surface inspection apparatus, surface inspection method, and exposure system
TWI648534B (en) Inspection method for back surface of epitaxial wafer, inspection device for back surface of epitaxial wafer, lift pin management method for epitaxial growth device, and manufacturing method for epitaxial wafer
JP2008145226A (en) Apparatus and method for defect inspection
US6556291B2 (en) Defect inspection method and defect inspection apparatus
JP2009042202A (en) Wafer inspection equipment and wafer inspection method
JP2005214980A (en) Macro inspection method for wafer and automatic wafer macro inspection device
JP2001209798A (en) Method and device for inspecting outward appearance
JP2001194322A (en) External appearance inspection device and inspection method
WO2023181918A1 (en) Defect inspection device and defect inspection method
JP2009236760A (en) Image detection device and inspection apparatus
JP2004144610A (en) Wafer defect inspection apparatus
JP2647051B2 (en) Appearance inspection device
JP2009264882A (en) Visual inspection device
JP2022161475A (en) Defect detection device, defect detection method, image processing device and image processing program
IL286948B1 (en) Defect candidate generation for inspection
JP4483038B2 (en) Inspection device
JP2807599B2 (en) Semiconductor chip appearance inspection device
JP2005077272A (en) Method for inspecting defect
JP2001281178A (en) Defect detecting method, manufacturing method of semiconductor device, and defect detector
JP2023142887A (en) Defect inspection device and defect inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774517

Country of ref document: EP

Kind code of ref document: A1