JP2009144312A - Method for producing light calcium carbonate slurry produced by caustification process - Google Patents

Method for producing light calcium carbonate slurry produced by caustification process Download PDF

Info

Publication number
JP2009144312A
JP2009144312A JP2008291694A JP2008291694A JP2009144312A JP 2009144312 A JP2009144312 A JP 2009144312A JP 2008291694 A JP2008291694 A JP 2008291694A JP 2008291694 A JP2008291694 A JP 2008291694A JP 2009144312 A JP2009144312 A JP 2009144312A
Authority
JP
Japan
Prior art keywords
calcium carbonate
light calcium
pulverization
slurry
causticizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008291694A
Other languages
Japanese (ja)
Other versions
JP5203898B2 (en
Inventor
Toshimichi Ofuji
利通 大藤
Takashi Ochi
隆 越智
Shoichi Miyawaki
正一 宮脇
Yuji Ono
裕司 小野
Masaru Nagahara
大 永原
Hiroshi Arimatsu
洋志 有松
Keiji Monbetsu
恵二 門別
Masaki Konishi
昌樹 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2008291694A priority Critical patent/JP5203898B2/en
Publication of JP2009144312A publication Critical patent/JP2009144312A/en
Application granted granted Critical
Publication of JP5203898B2 publication Critical patent/JP5203898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paper (AREA)
  • Crushing And Grinding (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inexpensively and efficiently wet-pulverizing caustified light calcium carbonate after pulverization. <P>SOLUTION: The method for producing a slurry is to feed a slurry containing light calcium carbonate produced in a caustification process in a pulp producing process to a grinding mill 1 which is a continuous medium agitation type grind mill and constituted of a cylindrical grinding vessel 2 having closed both ends, an agitation member 18 rotatably installed inside of the grinding vessel 2 and agitating a grinding medium and a material to be treated locating inside of the grinding vessel 2, and a cylindrical separator 13 installed inside of the grinding vessel 2 and separating the material to be treated in the grinding vessel 2 from the grinding medium. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は粉砕機に関し、特に、硫酸塩法またはソーダ法によるパルプ製造工程の苛性化工程で製造されたカルサイト結晶構造を有する塊状の軽質炭酸カルシウムを湿式粉砕する際等に有効なL/D比が0.6より大きく1.2以下の媒体撹拌型湿式粉砕機を用いた粉砕方法に関するものである。   The present invention relates to a pulverizer, and is particularly effective for wet pulverization of massive light calcium carbonate having a calcite crystal structure produced in a causticizing step of a pulp production step by a sulfate method or a soda method. The present invention relates to a pulverization method using a medium stirring type wet pulverizer having a ratio of greater than 0.6 and not greater than 1.2.

近年、高白色、高不透明度、高光沢度を有する高品位な軽量塗工紙の需要が高い。これらの要求に応えるために高品質軽量塗工紙の塗工顔料には、カオリン、重質炭酸カルシウム、軽質炭酸カルシウムなどの無機顔料以外に、高価な二酸化チタンやプラスチックピグメントなどが配合される。   In recent years, there is a high demand for high-quality lightweight coated paper having high whiteness, high opacity, and high gloss. In order to meet these requirements, expensive titanium dioxide, plastic pigments, and the like are blended in the coating pigments of high-quality lightweight coated paper, in addition to inorganic pigments such as kaolin, heavy calcium carbonate, and light calcium carbonate.

塗工用顔料に用いられる炭酸カルシウムは非常に安価であり、塗料中の配合率を高くすることで塗工紙の白色度や不透明度を向上できるが、白紙光沢度が著しく低下する。このため、高配合化するためには、白紙光沢度発現性を向上させるために、湿式粉砕により微粒化するのが一般的である。しかし、微粒化するには分散剤の添加量を増やし、長時間粉砕しなくてはならないため、顔料製造コストが高くなる。
一般的な重質炭酸カルシウムの粉砕方法として、粉砕容器内部に粉砕媒体(ビーズ)と、被粉砕物を液体に混ぜたスラリーを充填し、粉砕容器中央の回転軸を回転させることによりビーズと被粉砕物を衝突させることによって微粉砕を行う装置(ビーズミル)がある。従来はビーズミルで処理されたスラリーを別のタンクで受けるパス方式の横型ビーズミルを用いていたが、粗粒子及び過粉砕による超微粒子が多くなり粉砕後の粒度分布がシャープにならなかった。
Calcium carbonate used for the coating pigment is very inexpensive, and the whiteness and opacity of the coated paper can be improved by increasing the blending ratio in the paint, but the glossiness of the white paper is remarkably lowered. For this reason, in order to increase the blending, it is common to atomize by wet pulverization in order to improve the white paper glossiness. However, in order to make fine particles, it is necessary to increase the amount of the dispersant added and pulverize for a long time, so that the pigment production cost increases.
As a general heavy calcium carbonate pulverization method, a pulverization medium (beads) and a slurry in which a material to be pulverized is mixed are filled in a pulverization container, and the rotating shaft in the center of the pulverization container is rotated to rotate the beads and There is an apparatus (bead mill) that performs fine pulverization by colliding a pulverized product. Conventionally, a pass-type horizontal bead mill that receives a slurry treated with a bead mill in a separate tank was used. However, the number of coarse particles and excessively fine particles due to excessive pulverization increased, and the particle size distribution after pulverization did not become sharp.

このため現在は、ビーズミルと循環タンクの間でスラリーを循環させるマルチパス方式のビーズミルが多く使用されている。マルチパス方式の粉砕機のメリットとして、粗粒子が少なくなり粒度分布がシャープになる特徴を持つ。なかでも、特にL/D比が0.5以下とするマルチパス方式の媒体撹拌型湿式粉砕機(特許文献1)は、粉砕室を工夫しビーズの充填率を低く抑えることが出来るため、大流量循環運転が可能となる特徴を持つ。   For this reason, at present, a multi-pass type bead mill in which slurry is circulated between the bead mill and the circulation tank is often used. As a merit of the multi-pass type pulverizer, it has the feature that the coarse particle size is reduced and the particle size distribution becomes sharp. Among them, a multi-pass medium agitation type wet pulverizer (Patent Document 1) having an L / D ratio of 0.5 or less is particularly large because the pulverization chamber can be devised to reduce the filling rate of beads. It has a feature that enables flow circulation operation.

前述のパス方式とマルチパス方式の粉砕方法について粉砕性能を比較するため、両方法にて重質炭酸カルシウムを同一条件下で粉砕したところ、マルチパス方式の粉砕方法は粒度分布がシャープになり、良好な結果が得られた。   In order to compare the pulverization performance of the above-mentioned pass method and multi-pass method, when the heavy calcium carbonate was pulverized under the same conditions by both methods, the multi-pass method has a sharp particle size distribution, Good results were obtained.

一方、硫酸塩法またはソーダ法によるパルプ製造工程の苛性化工程で、生石灰を水または弱液で消和した後、緑液で苛性化反応することによって製造(苛性化法)される苛性化工程で製造された軽質炭酸カルシウム(以下、苛性化軽質炭酸カルシウムという。)がある。この炭酸カルシウムは主産物である白液を製造する際の副産物であるため、従来の石灰乳と炭酸ガスとの反応による方法で得られる軽質炭酸カルシウムに比べて既にある設備を利用でき、設備投資額が最小ですむ利点がある。しかし、苛性化軽質炭酸カルシウムを塗工用顔料として高配合すると、前述のとおり白紙光沢度が著しく低下するため、粉砕によって微粒化する必要がある。   On the other hand, in the causticization process of the pulp manufacturing process by the sulfate method or soda method, the causticizing process is manufactured by causticizing reaction with green liquor after the quick lime is dehydrated with water or weak liquid (causticizing method) Light calcium carbonate (hereinafter referred to as causticized light calcium carbonate). Since this calcium carbonate is a by-product in producing white liquor, which is the main product, existing facilities can be used compared to light calcium carbonate obtained by the conventional method of reaction between lime milk and carbon dioxide, and capital investment There is an advantage that the amount is minimized. However, when causticized light calcium carbonate is highly blended as a coating pigment, the glossiness of the blank paper is remarkably lowered as described above, and it is necessary to atomize by grinding.

これらのことから、前述のL/D比が0.5以下となるマルチパス方式の媒体撹拌型湿式粉砕機を用いて、苛性化軽質炭酸カルシウムのスラリーの粉砕を行った。しかし、粉砕後のスラリーの粘度が高くなり高価な分散剤の使用量が増加し、また、重質炭酸カルシウムの粉砕時と比較して動力原単位も高くなり、コスト高となった。   For these reasons, the slurry of causticized light calcium carbonate was pulverized using a multi-pass medium stirring wet pulverizer having an L / D ratio of 0.5 or less. However, the viscosity of the slurry after pulverization is increased, the amount of expensive dispersant used is increased, and the power unit is increased as compared with the pulverization of heavy calcium carbonate, resulting in an increase in cost.

したがって、電力コストが安価となり、高価な分散剤使用量の使用を抑えることが出来る高品質な苛性化軽質炭酸カルシウムのスラリー製造技術を開発できれば、その苛性化軽質炭酸カルシウムを塗料中に高配合化することで、白紙光沢度が劣ることなく、高品質塗工紙を製造できる。   Therefore, if it is possible to develop a high-quality causticized light calcium carbonate slurry manufacturing technology that can reduce the power cost and suppress the use of expensive dispersant usage, the causticized light calcium carbonate can be highly formulated in the paint. By doing so, high-quality coated paper can be produced without inferior white paper glossiness.

苛性化法によって製造された苛性化軽質炭酸カルシウムの粉砕においては、前記粉砕機を用いても良好な結果を得ることが出来ない。軽質炭酸カルシウムを粉砕する既存技術としては、特許文献2、特許文献3、特許文献4などが挙げられる。しかし、特許文献2は炭酸ガス法で得られる軽質炭酸カルシウムと重質炭酸カルシウムの混合粉砕、特許文献3は軽質炭酸カルシウムとカオリンの混合粉砕であり、苛性化軽質炭酸カルシウム単独の粉砕および苛性化軽質炭酸カルシウムと重質炭酸カルシウムの混合粉砕には適応できない。また、特許文献4は軽質炭酸カルシウムの粉砕時にスラリーpHが8〜12になるよう炭酸ガスを直接吹き込むことで高効率な軽質炭酸カルシウムの粉砕方法を提案している。一般に苛性化軽質炭酸カルシウムの粉砕後に得られるスラリーpHは13以上あり、しかもスラリー濃度が高いため、炭酸ガスでpH12以下まで中和するには長時間を要する。従って、スラリー粉砕機と循環タンクの間でスラリーを大流量循環させながら目的粒子径まで粉砕するマルチパスの粉砕方式では、炭酸ガス中和が不十分あるいは不可能となり、期待する効果を発揮できない。
特開平10−230182 特開平6−41463 特開2000−110096 特開2000−239017
In the pulverization of causticized light calcium carbonate produced by the causticizing method, good results cannot be obtained even if the pulverizer is used. Examples of existing techniques for pulverizing light calcium carbonate include Patent Document 2, Patent Document 3, and Patent Document 4. However, Patent Document 2 is a mixed pulverization of light calcium carbonate and heavy calcium carbonate obtained by the carbon dioxide method, and Patent Document 3 is a mixed pulverization of light calcium carbonate and kaolin, and pulverization and causticization of causticized light calcium carbonate alone. It cannot be applied to mixed grinding of light calcium carbonate and heavy calcium carbonate. Patent Document 4 proposes a highly efficient method for pulverizing light calcium carbonate by directly blowing carbon dioxide gas so that the slurry pH is 8 to 12 when pulverizing light calcium carbonate. Generally, the slurry pH obtained after pulverization of causticized light calcium carbonate is 13 or more, and since the slurry concentration is high, it takes a long time to neutralize to pH 12 or less with carbon dioxide gas. Therefore, the multipass pulverization method in which the slurry is pulverized to the target particle size while circulating the slurry at a large flow rate between the slurry pulverizer and the circulation tank, carbon dioxide neutralization becomes insufficient or impossible, and the expected effect cannot be exhibited.
JP-A-10-230182 JP-A-6-41463 JP2000-110096A JP 2000-239017 A

以上のような状況に鑑み、本発明の課題は上記のごとき課題を解決し、粉砕後の苛性化軽質炭酸カルシウムを安価に効率良く湿式粉砕する方法を提供することにある。   In view of the circumstances as described above, an object of the present invention is to solve the above problems and to provide a method for efficiently and wet-grinding causticized light calcium carbonate after grinding.

上記課題を解決するため、本発明では、筒状をなすとともに両端が閉塞した粉砕容器と、該粉砕容器の内部に、軸線をほぼ一致させた状態で設けられ、内部を径方向に2区画して内側室と外側室とを形成するとともに、両室間を連通する複数のスリットが周面の少なくとも一部に設けられている筒状のセパレータと、前記内側室の内部に粉砕容器と軸線をほぼ一致させた状態で回転可能に設けられた撹拌部材と、前記内側室に処理物を供給させるための供給口とを具えたことを特徴とし、前記粉砕容器の軸線方向の長さ(L)と直径(D)との比(L/D比)が0.6より大きく1.2以下のダブルローターとなるように構成した媒体撹拌型粉砕装置を使用することで、苛性化軽質炭酸カルシウムのスラリー製造時において動力原単位を下げることが出来、流動性が良好な状態で効率良く微粒化できる事を可能にする。前記L/D比は、好ましくは、0.8より大きく1.0以下である。   In order to solve the above problems, in the present invention, a pulverization container having a cylindrical shape and closed at both ends, and an inside of the pulverization container with the axes substantially coincided with each other, are divided into two in the radial direction. The inner chamber and the outer chamber are formed, and a cylindrical separator in which a plurality of slits communicating between the two chambers are provided in at least a part of the peripheral surface, and a pulverization container and an axis are provided in the inner chamber. A length (L) in the axial direction of the pulverization vessel, comprising a stirring member rotatably provided in a substantially matched state and a supply port for supplying the processed material to the inner chamber. And a diameter (D) ratio (L / D ratio) of 0.6 to 1.2, and using a medium agitation type pulverizer configured to be 1.2 or less, the causticized light calcium carbonate Reduce power consumption during slurry production It is possible to allow that the fluidity can be efficiently atomized in a good condition. The L / D ratio is preferably greater than 0.8 and not greater than 1.0.

本発明によれば、苛性化軽質炭酸カルシウム高濃度スラリーを微粒化する際に、ダブルローターにすることによって、従来技術と比較して粉砕媒体の動きが良くなり、低速回転でも粉砕効率の高い処理を行うことが可能となるために、動力原単位を少なくする事が出来る。また、粉砕後の苛性化軽質炭酸カルシウムの物性についても、比表面積が小さくなり、粘度が下がるために高価な分散剤の使用量を減らすことが出来る。   According to the present invention, when a causticized light calcium carbonate high-concentration slurry is atomized, by using a double rotor, the movement of the grinding medium is improved as compared with the prior art, and processing with high grinding efficiency even at low speed rotation. It is possible to reduce power intensity. Further, regarding the physical properties of the causticized light calcium carbonate after pulverization, the specific surface area is reduced and the viscosity is lowered, so that the amount of expensive dispersant used can be reduced.

以下、本発明の方法を具体的に説明する。本発明の軽質炭酸カルシウムは、硫酸塩法ま
たはソーダ法によるパルプ製造工程の苛性化工程で製造されたものを使用する。
[軽質炭酸カルシウムの製造方法]
軽質炭酸カルシウムの製造方法としては、(1)石灰の焼成装置その他から得られる二酸化炭素を含有したガスと石灰乳との反応、(2)アンモニアソーダ法における炭酸アンモニウムと塩化カルシウムとの反応、(3)炭酸ナトリウムの苛性化によって水酸化ナトリウムを製造する石灰乳と炭酸ナトリウムとの反応等が知られている。これらの方法のうち、(2)(3)においては、その主生産物を得る製造法が新たな方法に転換されたり、炭酸カルシウムが副産物であることから不純物含量が多いなど、その利用方法についてはあまり検討されていない。
[炭酸ガス法]
一方(1)は、反応系が比較的単純(水、消石灰、炭酸ガス)であり、様々な用途毎に目的に合った炭酸カルシウムを製造する方法等について広く研究が進み、石灰メーカーから市販されている商品もいくつか見られる。しかしながら、メーカーからの直接購入では輸送費コストがかさみ、トータルコストが高くなる欠点がある。また、オンサイト炭酸ガス法ではキルン排ガスを利用すれば、安価に高品質な炭酸カルシウムを製造できるが、設備投資に巨額の費用がかかる問題がある。
[苛性化法]
そこで考えられるのが、硫酸塩法又はソーダ法によるパルプ製造工程において、蒸解薬品を回収・再生する苛性化工程で白液を製造する際に副生する炭酸カルシウムを製紙用原料として使用する方法である。この方法であれば、既にある設備を利用でき、設備投資額が最小ですむ利点がある。
[苛性化工程]
硫酸塩法またはソーダ法によるパルプ製造工程においては、木材の繊維素を単離するために水酸化ナトリウムと硫化ナトリウムとを混合した薬液を用いて高温、高圧下で蒸解する。そして、繊維素は固層として分離精製されてパルプとなり、薬液および木材からの繊維素以外の溶出成分はパルプ廃液(黒液)として回収され、回収ボイラーで燃焼可能な濃度まで濃縮される。さらに、一連の過程で失われたナトリウム分と硫黄分を補給するために硫酸ナトリウムが添加された後、回収ボイラーで燃焼される。その際、黒液中の有機物質は熱源として、無機物質は主として炭酸ナトリウムおよび硫化ナトリウムとして回収されるが、これらの無機物はスメルトと呼ばれ溶融状態で回収ボイラーから取り出される。回収ボイラーから取り出されたスメルトは、水または弱液(炭酸カルシウムを水洗浄した後に得られる、白液成分を微量含んだ液)で溶解されて緑液となる。
[苛性化反応]
苛性化工程とは、緑液中の炭酸ナトリウムを蒸解薬品である水酸化ナトリウムに変えるための工程であり、生石灰を消石灰に変える消和反応(1)と、消石灰と緑液を混合し水酸化ナトリウムと炭酸カルシウムを生成する苛性化反応(2)よりなる。苛性化反応によって得られた液は白液と呼ばれ、炭酸カルシウムと分離、清澄化されて蒸解工程へ送られる。本発明では分離回収し、十分洗浄された炭酸カルシウムを使用する。
Hereinafter, the method of the present invention will be specifically described. The light calcium carbonate of this invention uses what was manufactured at the causticizing process of the pulp manufacturing process by a sulfate method or a soda method.
[Method for producing light calcium carbonate]
As a light calcium carbonate production method, (1) a reaction between carbon dioxide-containing gas obtained from a lime baking apparatus and others and lime milk, (2) a reaction between ammonium carbonate and calcium chloride in an ammonia soda method, ( 3) Reaction of lime milk and sodium carbonate, which produces sodium hydroxide by causticization of sodium carbonate, is known. Among these methods, in (2) and (3), the production method for obtaining the main product has been changed to a new method, or because calcium carbonate is a byproduct, the content of impurities is high. Has not been studied much.
[Carbon dioxide method]
On the other hand, (1) has a relatively simple reaction system (water, slaked lime, carbon dioxide), and extensive research has been conducted on methods for producing calcium carbonate suitable for various purposes. Some products are also seen. However, the direct purchase from the manufacturer has the disadvantage that the transportation cost is high and the total cost is high. Further, in the on-site carbon dioxide method, if kiln exhaust gas is used, high-quality calcium carbonate can be produced at a low cost, but there is a problem that the capital investment is enormous.
[Causticization method]
One possible method is to use calcium carbonate, which is a by-product when producing white liquor in the causticizing process for recovering and regenerating cooking chemicals, in the pulp manufacturing process using the sulfate method or soda method. is there. This method has the advantage that existing facilities can be used and the capital investment is minimized.
[Causticization process]
In the pulp manufacturing process by the sulfate method or the soda method, cooking is performed under high temperature and high pressure using a chemical solution in which sodium hydroxide and sodium sulfide are mixed in order to isolate wood fiber. The fiber is separated and purified as a solid layer to become pulp, and the elution components other than the chemical solution and the fiber from the wood are recovered as pulp waste liquid (black liquor) and concentrated to a combustible concentration in the recovery boiler. Further, sodium sulfate is added to replenish sodium and sulfur lost in the series of processes, and then burned in a recovery boiler. At that time, the organic substance in the black liquor is recovered as a heat source, and the inorganic substance is mainly recovered as sodium carbonate and sodium sulfide. These inorganic substances are called smelt and are taken out from the recovery boiler in a molten state. The smelt taken out from the recovery boiler is dissolved in water or a weak liquid (a liquid containing a small amount of white liquor component obtained after washing calcium carbonate with water) to become a green liquid.
[Causticization reaction]
The causticizing process is a process for changing sodium carbonate in green liquor to sodium hydroxide, a cooking chemical. Mixing the slaked lime and green liquor with a hydration reaction (1) to convert quick lime to slaked lime. It consists of a causticizing reaction (2) that produces sodium and calcium carbonate. The liquid obtained by the causticizing reaction is called white liquor, separated from calcium carbonate, clarified, and sent to the cooking process. In the present invention, calcium carbonate that has been separated and recovered and thoroughly washed is used.

CaO + H2O → Ca(OH)2 (1):消和反応
Ca(OH)2+ Na2CO3 → CaCO3+ 2NaOH (2):苛性化反応
[苛性化反応の特徴]
この炭酸カルシウムは主産物である白液を製造する際の副産物であるため、従来の石灰乳と炭酸ガスとの反応による方法で得られる軽質炭酸カルシウムに比べて既にある設備を利用でき、設備投資額が最小ですむ利点がある。また、従来閉鎖系にある苛性化工程のカルシウム(生石灰、消石灰、炭酸カルシウム)循環サイクルから炭酸カルシウムを系外に抜き取ることによって、系内の清浄および循環石灰の高純度化が達成され、上記(1)(2)の反応性向上や白液の清澄性の向上、さらには廃棄物の低減が期待できる。
[脱水濃縮、平均粒子径]
本発明で使用される軽質炭酸カルシウムは圧搾、吸引、遠心分離方式などの脱水装置に
よって脱水濃縮されたケーキ状、スラッジ状のものが使用される。また、苛性化工程で得られる塊状の軽質炭酸カルシウムの平均粒子径は、顔料用途で使用できる73%濃度以上まで濃縮できれば特に限定されないが、レーザー透過式粒度分布測定装置(マスターサイザー2000、マルバーン社製)の値で10〜30μmが好ましく、更に好ましくは10〜20μmが好ましい。
[スラリー化]
このようにして得られた苛性化軽質炭酸カルシウム湿り粉体をスラリー化する方法として、円筒形の容器と棒状の攪拌アームからなり、3〜10ミリのボールを充填、攪拌して分散と粉砕を同時に行えるアトライターや高速攪拌羽根を装備した高濃度分散装置等を適宜使用できる。
[分散剤]
また、分散剤と希釈水は一括または分割しながら添加することで、スラリー粘度や濃度を調整できる。顔料分散液中に使用する分散剤としては、一般に製紙用として使用されているポリアクリル酸塩、リグニンスルホン酸塩等が挙げられ、これらのうち1種類以上を必要に応じて選択して使用する。このスラリー化での軽質炭酸カルシウムの平均粒子径はビーズ径、処理時間などで任意に調整でき、この粗粉砕後の平均粒子径は、レーザー透過式粒度分布測定装置(マスターサイザー2000、マルバーン社製)の値で1〜30μmが好ましく、さらに好ましくは1〜10μmが好ましい。粗粉砕後のスラリー濃度は65〜80%が好ましい。
CaO + H 2 O → Ca (OH) 2 (1): Saturation reaction
Ca (OH) 2 + Na 2 CO 3 → CaCO 3 + 2NaOH (2): Causticizing reaction [Characteristics of causticizing reaction]
Since this calcium carbonate is a by-product in producing white liquor, which is the main product, existing facilities can be used compared to light calcium carbonate obtained by the conventional method of reaction between lime milk and carbon dioxide, and capital investment There is an advantage that the amount is minimized. Also, by extracting calcium carbonate out of the system from the calcium (quick lime, slaked lime, calcium carbonate) circulation cycle of the causticization process in the conventional closed system, purification in the system and high purity of the circulating lime are achieved. 1) The reactivity improvement of (2), the improvement of the clarity of white liquor, and the reduction of waste can be expected.
[Dehydrated concentration, average particle size]
The light calcium carbonate used in the present invention is in the form of cake or sludge that has been dehydrated and concentrated by a dehydration apparatus such as a squeezing, suction, or centrifugal separation method. In addition, the average particle size of the bulk light calcium carbonate obtained in the causticizing step is not particularly limited as long as it can be concentrated to a concentration of 73% or higher that can be used for pigments. However, a laser transmission particle size distribution analyzer (Mastersizer 2000, Malvern) 10 to 30 μm, preferably 10 to 20 μm.
[Slurry]
As a method of slurrying the causticized light calcium carbonate wet powder obtained in this way, it consists of a cylindrical container and a rod-shaped stirring arm, filled with 3 to 10 mm balls, stirred and dispersed and pulverized. A high-concentration dispersing device equipped with an attritor that can be performed simultaneously or a high-speed stirring blade can be used as appropriate.
[Dispersant]
Moreover, a slurry viscosity and a density | concentration can be adjusted by adding a dispersing agent and dilution water collectively or dividing | segmenting. Examples of the dispersant used in the pigment dispersion include polyacrylates and lignin sulfonates that are generally used for papermaking, and one or more of these are selected and used as necessary. . The average particle size of the light calcium carbonate in this slurry can be adjusted arbitrarily according to the bead size, processing time, etc. The average particle size after this coarse pulverization is determined by a laser transmission type particle size distribution measuring device (Mastersizer 2000, manufactured by Malvern). ) Is preferably 1 to 30 μm, more preferably 1 to 10 μm. The slurry concentration after coarse pulverization is preferably 65 to 80%.

また、不定形状の苛性化軽質炭酸カルシム以外、例えば針状や柱状の苛性化軽質炭酸カルシウムに対しても、粉砕処理を必要とする場合には本発明を適用することが出来る。
また、顔料分散液中に使用する分散剤としては、一般に製紙用として使用されるポリアクリル酸ソーダ、リグニンスルホン酸ソーダ、リン酸塩およびそれらの変性物等が挙げられ、これらのうち一種類以上を必要に応じて選択して使用することができ、分散剤の使用量は、顔料100重量部に対して0.7〜2.0重量部が好ましく、さらに好ましくは顔料100重量部に対して0.9〜1.8重量部が好ましい。苛性化軽質炭酸カルシウムは重質炭酸カルシウムと比較して高アルカリ性であり、凝集性、疎水性が極めて高いために顔料分散液の粘度が非常に高く、粉砕時の粉砕機負荷が大きくなり過ぎるばかりか、場合によっては粉砕機中に充填されている媒体の割れや磨耗が著しくなるなどの問題を生じてしまう。また、粉砕が進行するに従って顔料分散液粘度が急上昇するため、重質炭酸カルシウム粉砕時と比較してより多くの分散剤使用量が必要となる。
In addition, the present invention can also be applied to a needle-like or columnar causticized light calcium carbonate other than the irregularly shaped causticized light calcium carbonate, when a pulverization treatment is required.
Examples of the dispersant used in the pigment dispersion include polyacrylic acid soda, lignin sulfonic acid soda, phosphates and modified products thereof, which are generally used for papermaking. Can be selected and used as required, and the amount of the dispersant used is preferably 0.7 to 2.0 parts by weight, more preferably 100 parts by weight of the pigment. 0.9 to 1.8 parts by weight are preferred. Causticized light calcium carbonate has higher alkalinity than heavy calcium carbonate, and its cohesiveness and hydrophobicity are extremely high, so the viscosity of the pigment dispersion is very high, and the load on the grinder during grinding is too large. In some cases, problems such as significant cracking and wear of the medium filled in the pulverizer occur. In addition, since the viscosity of the pigment dispersion rapidly increases as pulverization progresses, a larger amount of dispersant is required than when pulverizing heavy calcium carbonate.

なお、重質炭酸カルシウムと苛性化軽質炭酸カルシウムの混合顔料分散液中の苛性化軽質炭酸カルシウム含有率が50重量%以下であれば、本発明の粉砕機を使用しなくても粉砕可能である。本発明では、前記パルプ製造工程の苛性化工程で製造された顔料としての軽質炭酸カルシウムであって媒体撹拌型粉砕装置に供給される前の前記軽質炭酸カルシウムが、全顔料の重量基準で50重量%以上含有することができる。
[粉砕機]
本発明に用いる粉砕機1は、連続式の媒体撹拌型湿式粉砕機であって、筒状をなすとともに両端が閉塞された粉砕容器2と、粉砕容器2の内部に回転可能に設けられるとともに、粉砕容器2の内部に位置する処理物と粉砕媒体とを撹拌する撹拌部材18a及び撹拌部材18bと、粉砕容器2の内部に設けられるとともに粉砕容器2の内部の処理物と粉砕媒体とを分離する筒状のセパレータ13とから構成されている。
[粉砕容器]
粉砕容器2は、一端が閉塞された筒状の容器本体3と、この容器本体3の他端開口部を閉塞する円盤状の蓋6とを有している。
If the causticized light calcium carbonate content in the mixed pigment dispersion of heavy calcium carbonate and causticized light calcium carbonate is 50% by weight or less, it can be pulverized without using the pulverizer of the present invention. . In the present invention, the light calcium carbonate as a pigment produced in the causticizing step of the pulp production step, and before being supplied to the medium stirring type pulverizer, is 50 wt. % Or more.
[Crusher]
The pulverizer 1 used in the present invention is a continuous medium agitation type wet pulverizer, which is formed in a cylindrical shape and closed at both ends, and is provided rotatably inside the pulverization container 2. The agitating member 18a and the agitating member 18b for agitating the processed material and the pulverization medium located inside the pulverization container 2 are provided inside the pulverization container 2, and the processed material and the pulverization medium inside the pulverization container 2 are separated. It comprises a cylindrical separator 13.
[Crushing container]
The pulverization container 2 has a cylindrical container body 3 whose one end is closed, and a disk-shaped lid 6 which closes the other end opening of the container body 3.

容器本体3の閉塞されている一端の中央部には容器本体3の内外部を連通する筒状のボス4が一体に設けられ、このボス4の内部に軸受け8を介して前記撹拌部材18a及び撹拌部材18bが回転可能に支持されている。   A cylindrical boss 4 that communicates the inside and outside of the container main body 3 is integrally provided at the central portion of the closed end of the container main body 3, and the stirring member 18 a and the agitating member 18 a are connected to the inside of the boss 4 via a bearing 8. The stirring member 18b is rotatably supported.

容器本体3の内部には、図示していないが内周面に沿って環状の溝が設けられているとともに、この溝に対応する前記蓋6の部分にも図示していないが環状の溝が設けられている。そして、容器本体3の図示していない溝に前記セパレータ13の一端を位置し、また、前記蓋6の図示していない溝に前記セパレータ13の軸方向の他端を位置し、蓋6を容器本体3に図示していないがボルト等によって固定して、前記セパレータ13を粉砕容器2の内部に固定する。なお、容器本体3および蓋6に溝を設けずに、他の手段、たとえばボルト等によってセパレータ13を粉砕容器2内に固定してもよい。   Although not shown in the drawing, an annular groove is provided along the inner peripheral surface of the container body 3, and the annular groove is not shown in the portion of the lid 6 corresponding to this groove. Is provided. Then, one end of the separator 13 is positioned in a groove (not shown) of the container body 3, and the other axial end of the separator 13 is positioned in a groove (not shown) of the lid 6. Although not shown in the main body 3, the separator 13 is fixed inside the crushing container 2 by fixing with a bolt or the like. Note that the separator 13 may be fixed in the pulverization container 2 by other means, for example, a bolt or the like, without providing the container body 3 and the lid 6 with grooves.

粉砕容器2の内部は前記セパレータ13によって径方向に2室に区画されて円形状の内側室9と環状の外側室10とが形成されている。前記蓋6の中央部には前記内側室9の内外部を連通する筒状の供給口11が一体に設けられ、この供給口11によって前記内側室9の内部に処理物が供給される。前記容器本体3には前記外側室10の内外部を連通する筒状の排出口12が一体に設けられ、この排出口12から前記セパレータ13を通過した処理物が粉砕容器2の外部に排出される。
処理物を苛性化軽質炭酸カルシウムとする場合は、粉砕容器2のL/D比が0.6より大きく1.2以下となるものを選定する。なお、Lは軸方向の長さ、Dは直径である。L/D比を1.2以下とすることにより、媒体の偏析現象を抑制する傾向となる。また、0.6よりも大きくすることにより、撹拌部材18の作用範囲を確保できるようになる。好ましくは、L/D比が0.8より大きく1.0以下とすることにより、さらに上記のそれぞれの効果は顕著となる。
[セパレータ]
セパレータ13は、筒状の内側リング14と、筒状の外側リング15と、両リング14、15間に設けられる断面が楔状の複数の棒鋼16、16…とから構成されている。棒鋼16は、内径側が大径となっていて、外側リング15と内側リング14との間に所定の間隔で設けられている。内側リング14と外側リング15との間に複数の棒鋼16、16…を設けることで、隣接する棒鋼16、16間で内径側から外径側にかけて間隔が順次大きくなるような楔状のスリット17、17…が形成され、これらのスリット17、17…を介して内側室9と外側室10との間が相互に連通するものである。なお、内側リング14および外側リング15には各スリット17に通じる複数の孔が設けられている。
The inside of the pulverization container 2 is divided into two chambers in the radial direction by the separator 13 to form a circular inner chamber 9 and an annular outer chamber 10. A cylindrical supply port 11 that communicates the inside and outside of the inner chamber 9 is integrally provided at the center of the lid 6, and the processed material is supplied into the inner chamber 9 through the supply port 11. The container body 3 is integrally provided with a cylindrical discharge port 12 that communicates the inside and outside of the outer chamber 10, and the processed material that has passed through the separator 13 is discharged from the discharge port 12 to the outside of the pulverization container 2. The
When the treated product is causticized light calcium carbonate, the one in which the L / D ratio of the pulverization container 2 is greater than 0.6 and 1.2 or less is selected. L is the length in the axial direction, and D is the diameter. By setting the L / D ratio to 1.2 or less, the segregation phenomenon of the medium tends to be suppressed. Further, by making the value larger than 0.6, it becomes possible to secure the operating range of the stirring member 18. Preferably, when the L / D ratio is greater than 0.8 and 1.0 or less, each of the above effects becomes more significant.
[Separator]
The separator 13 is composed of a cylindrical inner ring 14, a cylindrical outer ring 15, and a plurality of steel bars 16, 16... The steel bar 16 has a large inner diameter side and is provided between the outer ring 15 and the inner ring 14 at a predetermined interval. By providing a plurality of steel bars 16, 16... Between the inner ring 14 and the outer ring 15, a wedge-shaped slit 17 that gradually increases the distance between the adjacent steel bars 16 from the inner diameter side to the outer diameter side, 17 are formed, and the inner chamber 9 and the outer chamber 10 communicate with each other through the slits 17. The inner ring 14 and the outer ring 15 are provided with a plurality of holes that communicate with the slits 17.

そして、上記のように内側リング14、外側リング15、および棒鋼16を組合わせて複数のスリット17、17……を形成することで、大流量の処理物を通過させるのに十分な有効面積を確保することができる。また、各スリット17は内径側から外径側にかけて間隔が順次大きくなる楔状に形成されているので、目詰まりを起こすことなく処理物を外側室10側に流動させることができる。さらに、運転時における強度も十分に確保することができる。   Then, as described above, the inner ring 14, the outer ring 15, and the steel bar 16 are combined to form a plurality of slits 17, 17..., Thereby providing an effective area sufficient to pass a large amount of processed material. Can be secured. Further, since each slit 17 is formed in a wedge shape in which the interval is gradually increased from the inner diameter side to the outer diameter side, the processed material can flow to the outer chamber 10 side without causing clogging. Furthermore, sufficient strength during operation can be ensured.

なお、セパレータ13は、上記のものに限定することなく、(1)「大流量の処理物を通過させるのに十分な有効面積を確保できる。」、(2)「目詰まりを起こすことがない。」、(3)「運転時の強度を十分に確保できる。」の3つの条件を満たす構造のものであればよい。
[撹拌部材]
撹拌部材18は、一端が閉塞された筒状で、粉砕容器2の内側室9内に回転可能にまた軸方向に二個、撹拌部材18a及び撹拌部材18bが設けられ、撹拌部材18の筒状の部分の外周側には、全周に渡って凹部19、凸部20が交互に設けられている。各凹部19には貫通孔21が設けられ、この貫通孔21を介して撹拌部材18の径方向の内外間において処理物および粉砕媒体が相互に流動する。撹拌部材18の閉塞されている一端には複数の貫通孔22が設けられている。この貫通孔22は、撹拌部材18の軸心を中心とする同心円状に所定の間隔で位置し、この貫通孔22を介して撹拌部材18a及び撹拌部材18bの内外部間において処理物および粉砕媒体が相互に流動する。
In addition, the separator 13 is not limited to the above-mentioned ones. (1) “A sufficient effective area for passing a large flow rate of processed material can be secured”, (2) “Clogging does not occur. ”, (3) Any structure that satisfies the three conditions of“ sufficient strength during operation ”may be used.
[Stirring member]
The stirring member 18 has a cylindrical shape with one end closed, and two stirring members 18a and 18b are provided in the inner chamber 9 of the crushing container 2 so as to be rotatable and in the axial direction. On the outer peripheral side of this portion, concave portions 19 and convex portions 20 are alternately provided over the entire circumference. Each recess 19 is provided with a through hole 21, and the processed material and the grinding medium flow between the inner and outer portions of the stirring member 18 in the radial direction via the through hole 21. A plurality of through holes 22 are provided at one end of the stirring member 18 that is closed. The through holes 22 are concentrically centered around the axis of the stirring member 18 at a predetermined interval, and the processed material and the grinding medium are disposed between the inside and outside of the stirring member 18a and the stirring member 18b through the through hole 22. Flow to each other.

供給口11側の撹拌部材18aの内部には駆動軸24の先端に螺合する分散部材25が位置し、この分散部材25はロックナットを兼用している。
分散部材25の頭部には全周に渡って凹部、凸部が交互に設けられ(図示せず。)、この凹部、凸部によって前記供給口11から粉砕容器2の内側室9に供給された処理物、および内側室9に位置する粉砕媒体が径方向の外方に分散される。
A dispersion member 25 screwed to the tip of the drive shaft 24 is located inside the stirring member 18a on the supply port 11 side, and this dispersion member 25 also serves as a lock nut.
The head of the dispersion member 25 is provided with recesses and projections alternately (not shown) over the entire circumference, and is supplied from the supply port 11 to the inner chamber 9 of the grinding container 2 by the recesses and projections. The processed material and the grinding medium located in the inner chamber 9 are dispersed outward in the radial direction.

次に、前記に示すものの作用について説明する。まず、駆動源を作動して駆動軸24が回転すると、駆動軸24に連結されている撹拌部材18a及び撹拌部材18bが回転するとともに、撹拌部材18aの中心部に位置している分散部材25も回転する。   Next, the operation of the above will be described. First, when the drive source 24 is operated to rotate the drive shaft 24, the stirring member 18a and the stirring member 18b connected to the drive shaft 24 rotate, and the dispersion member 25 positioned at the center of the stirring member 18a also Rotate.

そして、処理物を供給口11から粉砕容器2の内側室9の内部に供給すると、処理物は分散部材25及び撹拌部材18aによって粉砕媒体とともに径方向の外方向に分散されるとともに、撹拌部材18a及び撹拌部材18bによって撹拌される。   When the processed product is supplied from the supply port 11 to the inside of the inner chamber 9 of the pulverization container 2, the processed product is dispersed in the radially outward direction together with the pulverization medium by the dispersion member 25 and the stirring member 18a, and the stirring member 18a. And it is stirred by the stirring member 18b.

この場合、撹拌部材18a及び撹拌部材18bの筒状の部分には貫通孔21が設けられているので、この貫通孔21によって処理物および粉砕媒体には強力な遠心力が作用し、処理物および粉砕媒体は貫通孔21から撹拌部材18a及び撹拌部材18bの外周側に流動する。   In this case, since the through holes 21 are provided in the cylindrical portions of the stirring member 18a and the stirring member 18b, a strong centrifugal force acts on the processed material and the pulverization medium by the through holes 21, and the processed material and The grinding medium flows from the through hole 21 to the outer peripheral side of the stirring member 18a and the stirring member 18b.

そして、撹拌部材18a及び撹拌部材18bの外周側に流動した処理物および粉砕媒体は、撹拌部材18a及び撹拌部材18bの外周側において撹拌部材18a及び撹拌部材18bの凹部19、凸部20によって強力な剪断力が加えられて、撹拌部材18a及び撹拌部材18bの軸方向の一端方向又は他端方向に流動し、蓋6と撹拌部材18aとの間の間隙を介して撹拌部材18aの内側に流動する。また一部は撹拌部材18bと容器本体3との間の間隙を通って貫通孔22から撹拌部材18bの内側に流動し、このような一連の流れに沿って撹拌部材18a及び撹拌部材18b間に循環流を発生させる。   Then, the processed material and the pulverization medium that have flowed to the outer peripheral side of the stirring member 18a and the stirring member 18b are stronger on the outer peripheral side of the stirring member 18a and the stirring member 18b by the concave portions 19 and the convex portions 20 of the stirring member 18a and the stirring member 18b. A shearing force is applied to flow in one end direction or the other end direction in the axial direction of the stirring member 18a and the stirring member 18b, and flow to the inside of the stirring member 18a through the gap between the lid 6 and the stirring member 18a. . Further, a part flows through the gap between the stirring member 18b and the container body 3 from the through hole 22 to the inside of the stirring member 18b, and along the series of flows, between the stirring member 18a and the stirring member 18b. Generate a circulating flow.

そして、このように処理物および粉砕媒体が内側室9の内部を循環することで、両者は全体が完全な混合状態となり、処理物は徐々に細かく粉砕されて所定の粒度に達する。そして、所定の粒度に達した処理物は、撹拌部材18の外周側に流動した際にセパレータ13によって粉砕媒体と分離され、セパレータの各スリット17内に流れ込み、そこを流れて外側室10の内部に達し、外側室10から排出口12を介して粉砕容器2の外部に排出される。   Then, the processed material and the pulverizing medium circulate inside the inner chamber 9 as described above, so that the whole is completely mixed, and the processed material is gradually finely pulverized to reach a predetermined particle size. When the processed product having reached a predetermined particle size flows to the outer peripheral side of the stirring member 18, it is separated from the pulverization medium by the separator 13, flows into the slits 17 of the separator, flows there, and flows inside the outer chamber 10. And is discharged from the outer chamber 10 to the outside of the pulverization container 2 through the discharge port 12.

上記のように構成したこの実施の形態による粉砕機1にあっては、粉砕容器2のL/D比を0.6より大きく1.2以下に、好ましくは、0.8より大きく1.0以下に形成してあり、内側室9(粉砕領域)の容積を十分に確保している。したがって、従来のシングルローター以上の粉砕効率が得られることになる。   In the pulverizer 1 according to this embodiment configured as described above, the L / D ratio of the pulverization container 2 is larger than 0.6 and smaller than or equal to 1.2, preferably larger than 0.8 and larger than 1.0. It is formed below, and the volume of the inner chamber 9 (grinding region) is sufficiently secured. Therefore, the grinding efficiency higher than that of the conventional single rotor can be obtained.

また、処理物と粉砕媒体とを分離するセパレータ13を筒状に形成して複数のスリット17を形成し、軸線をほぼ一致させた状態でセパレータ13を粉砕容器2の内部に設けたので、大流量の処理物を処理するのに十分な有効面積を確保することができる。したがって、処理物の流れがセパレータ13によって制限されるようなことはなく、大流量の処理物の処理にも十分に対応できる。   In addition, since the separator 13 for separating the processed material and the grinding medium is formed in a cylindrical shape to form a plurality of slits 17 and the separators 13 are provided inside the grinding container 2 in a state where the axes are substantially coincident with each other. An effective area sufficient to process a flow rate of processed material can be secured. Therefore, the flow of the processed material is not limited by the separator 13, and can sufficiently handle the processing of a large flow rate of processed material.

さらに、セパレータ13は、内側リング14と外側リング15との間に複数の棒鋼16を設けた構成なため、大流量の処理物を処理しても十分に強度を確保することができる。したがって、長期的に安定した性能を発揮することができることになる。   Furthermore, since the separator 13 has a configuration in which a plurality of steel bars 16 are provided between the inner ring 14 and the outer ring 15, sufficient strength can be secured even when a large amount of processed material is processed. Therefore, stable performance can be exhibited in the long term.

そして、撹拌部材18aの中央部に分散部材25を設けるとともに、撹拌部材18a及び撹拌部材18bの筒状の部分に内外を貫通する貫通孔21、撹拌部材18a及び撹拌部材18bの閉塞されている一端に内外部を貫通する貫通孔22をそれぞれ設けたので、内側室9の全体を使って処理物および粉砕媒体を循環させることができる。したがって、粉砕媒体および処理物が粉砕容器2の内部の一部に片寄って運転に影響を与えたり、運転が困難となったりするようなことはなく、長期的に良好な運転特性が得られる。
[処理システム]
この媒体攪拌型湿式分散機は、図2に示すような処理システムで使用されている。すなわち、処理システム140は、分散機110と処理物のサービスタンク141及び循環ポンプ142を、循環ライン143で接続したものである。サービスタンク141に投入された処理物は、循環ポンプ142によって循環ライン143を循環し、分散機110によって繰り返し分散処理を受けることになる。この結果、系内の処理物全体について分散処理が進行することになる。
[媒体充填率]
なお、粉砕媒体の充填率は出来る限り高いほうが好ましいが、充填率が高すぎる場合は粉砕室内での媒体の動きが制限されるため粉砕効率を低下させることがある。そのため、粉砕媒体の充填率は70〜90%が好ましく、さらに好ましくは、75〜85%が好ましい。
[ローター回転数]
また、ローター(撹拌部材)回転数についても出来る限り高いほうが好ましいが、ローター回転数が高すぎる場合は粉砕機の粉砕機負荷が大きくなり過ぎるばかりか、場合によっては粉砕機中に充填されている媒体の割れや磨耗が著しくなることがある。よってローター回転数は、ローター外径が196mmの場合、700〜1200min−1が好ましく、さらに好ましくは800〜1000min−1が好ましい。
And while providing the dispersion member 25 in the center part of the stirring member 18a, the closed end of the through-hole 21, the stirring member 18a, and the stirring member 18b which penetrates the inside and outside in the cylindrical part of the stirring member 18a and the stirring member 18b Since the through holes 22 penetrating the inside and the outside are respectively provided in the inner chamber 9, the processed material and the grinding medium can be circulated using the entire inner chamber 9. Therefore, the pulverization medium and the processed product are not shifted to a part of the inside of the pulverization container 2 to affect the operation or make the operation difficult, and good operation characteristics can be obtained in the long term.
[Processing system]
This medium stirring type wet disperser is used in a processing system as shown in FIG. In other words, the processing system 140 is a system in which the disperser 110 is connected to the processing service tank 141 and the circulation pump 142 through the circulation line 143. The processed material put into the service tank 141 is circulated through the circulation line 143 by the circulation pump 142 and repeatedly subjected to the dispersion treatment by the disperser 110. As a result, distributed processing proceeds for the entire processed material in the system.
[Medium filling rate]
The filling rate of the pulverizing medium is preferably as high as possible. However, if the filling rate is too high, the movement of the medium in the pulverizing chamber is limited, which may reduce the pulverizing efficiency. Therefore, the filling rate of the grinding medium is preferably 70 to 90%, and more preferably 75 to 85%.
[Rotor speed]
Also, the rotor (stirring member) rotation speed is preferably as high as possible. However, if the rotor rotation speed is too high, the load on the pulverizer of the pulverizer becomes too large, and in some cases the pulverizer is filled. Media cracking and wear may be significant. Thus the rotor rotational speed, when the rotor outer diameter is 196 mm, preferably 700~1200Min -1, still more preferably 800~1000min -1.

以下に実施例を挙げて本発明を具体的に説明するが、もちろん本発明はそれらに限定されるものではない。なお、例中の「部」および「%」は特に断らない限り、それぞれ「重量部」および「重量%」を示す。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is of course not limited thereto. In the examples, “parts” and “%” represent “parts by weight” and “% by weight”, respectively, unless otherwise specified.

日本製紙株式会社A工場の苛性化工程で製造された固形分濃度73%の塊状軽質炭酸カ
ルシウムを用いた。この湿り粉体50部と重質炭酸カルシウム50部を混合した顔料分散液、または塊状軽質炭酸カルシウム100部の顔料分散液に、それぞれポリアクリル酸系分散剤を1.6〜3.6部と水を一括添加し、アトライター(三井鉱山社製)にて濃度73%、平均粒子径7μmなるよう粗粉砕した。この処理で得られた粗スラリーを7.4Lの粉砕室を有するダブルローター型SCミルLSC220(三井鉱山社製)に定量ポンプで一定量送液し湿式粉砕した。
Lumped light calcium carbonate with a solid content concentration of 73% produced in the causticizing process of Nippon Paper Industries Co., Ltd. A factory was used. In a pigment dispersion obtained by mixing 50 parts of this wet powder and 50 parts of heavy calcium carbonate, or 100 parts of bulk light calcium carbonate, 1.6 to 3.6 parts of a polyacrylic acid-based dispersant is added. Water was added all at once and coarsely pulverized with an attritor (manufactured by Mitsui Mining) to a concentration of 73% and an average particle size of 7 μm. The crude slurry obtained by this treatment was sent to a double rotor type SC mill LSC220 (manufactured by Mitsui Mining Co., Ltd.) having a 7.4 L crushing chamber with a metering pump and wet pulverized.

媒体として直径0.5ミリのジルコニアビーズ(ニッカトー社製)を使用し、ビーズ充填率(粉砕室中の空隙容積に対する、最密充填した時の粉砕媒体の容積)は70〜90%、ローター回転数を800〜1000min−1とし、本発明の粉砕機または横型ビーズミル粉砕機(三井鉱山社製)を用いて平均粒子径が0.4〜1.0μmとなるまで粉砕した。粉砕後、スラリー濃度を70%にして25℃でのB型粘度(60rpm、東京計器社製)を測
定した。また、マスターサイザー2000(マルバーン社製)を用いて、重量累積分布の50%点を平均粒子径として算出し、また、セディグラフ(マイクロメリテックス製)を用いて粒度分布についても測定した。また、マイクロメリティックス・ジェミニ2360(島津社製)を用いてBET比表面積を測定した。
〔実施例1〕
苛性化工程で製造された軽質炭酸カルシウム(以下、苛性化軽カルという。)を50部、重質炭酸カルシウム(三共精粉、平均粒子径13μm)を50部配合した顔料分散液に
ポリアクリル酸系分散剤を1.6部添加したものを平均粒子径7μmまで粗スラリー化した後、ダブルローター型SCミルLSC220でビーズ充填率90%、ローター回転数800min−1で平均粒子径が0.4μmとなるまで湿式粉砕した。そのときの動力原単位は165kW・h/tであり、B型粘度は3900mPa・sであり、比表面積は15.7m
gであった。
〔実施例2〕
苛性化軽カルを100部配合した顔料分散液にポリアクリル酸系分散剤を1.6部添加したものを平均粒子径7μmまで粗スラリー化した後、ダブルローター型SCミルLSC220でビーズ充填率85%、ローター回転数800min−1で平均粒子径が0.4μmとなるまで湿式粉砕した。そのときの動力原単位は171kW・h/tであり、B型粘度は4600
mPa・sであり、比表面積は11.1m/gであった。
〔実施例3〕
苛性化軽カルを100部配合した顔料分散液にポリアクリル酸系分散剤を1.6部添加したものを平均粒子径7μmまで粗スラリー化した後、ダブルローター型SCミルLSC220でビーズ充填率80%、ローター回転数900min−1で平均粒子径が0.4μmとなるまで湿式粉砕した。そのときの動力原単位は171kW・h/tであり、B型粘度は4900
mPa・sであり、比表面積は11.2m/gであった。
〔実施例4〕
苛性化軽カルを100部配合した顔料分散液にポリアクリル酸系分散剤を1.6部添加したものを平均粒子径7μmまで粗スラリー化した後、ダブルローター型SCミルLSC220でビーズ充填率70%、ローター回転数1000min−1で平均粒子径が0.4μmとなるまで湿式粉砕した。そのときの動力原単位は193kW・h/tであり、B型粘度は500
0mPa・sであり、比表面積は12.4m/gであった。
〔実施例5〕
苛性化軽カルを100部配合した顔料分散液にポリアクリル酸系分散剤を1.6部添加したものを平均粒子径7μmまで粗スラリー化した後、ダブルローター型SCミルLSC220でビーズ充填率85%、ローター回転数800min−1で平均粒子径が1.0μmとなるまで湿式粉砕した。そのときの動力原単位は111kW・h/tであり、B型粘度は900m
Pa・sであり、比表面積は7.9m/gであった。
〔比較例1〕
苛性化軽カルを50部、重質炭酸カルシウム(三共精粉、平均粒子径13μm)を50部配合した顔料分散液にポリアクリル酸系分散剤を2.6部添加したものを平均粒子径7μmまで粗スラリー化した後、シングルローター型SCミルSC220でビーズ充填率90%、
ローター回転数800min−1で平均粒子径が0.4μmとなるまで湿式粉砕した。そのときの動力原単位は226kW・h/tであり、B型粘度は7500mPa・sであり、比
表面積は18.6m/gであった。
〔比較例2〕
苛性化軽カルを100部配合した顔料分散液にポリアクリル酸系分散剤を2.6部添加したものを平均粒子径7μmまで粗スラリー化した後、シングルローター型SCミルSC220
でビーズ充填率85%、ローター回転数800min−1で平均粒子径が0.4μmとなるまで湿式粉砕した。そのときの動力原単位は238kW・h/tであり、B型粘度は870
0mPa・sであり、比表面積は13.1m/gであった。
〔比較例3〕
苛性化軽カルを100部配合した顔料分散液にポリアクリル酸系分散剤を2.6部添加したものを平均粒子径7μmまで粗スラリー化した後、シングルローター型SCミルSC220
でビーズ充填率80%、ローター回転数900min−1で平均粒子径が0.4μmとなるまで湿式粉砕した。そのときの動力原単位は237kW・h/tであり、B型粘度は820
0mPa・sあり、比表面積は13.8m/gであった。
〔比較例4〕
苛性化軽カルを100部配合した顔料分散液にポリアクリル酸系分散剤を2.6部添加
したものを平均粒子径7μmまで粗スラリー化した後、シングルローター型SCミルSC220
でビーズ充填率70%、ローター回転数1000min−1で平均粒子径が0.4μmとなるまで湿式粉砕した。そのときの動力原単位は285kW・h/tであり、B型粘度は89
00mPa・sであり、比表面積は13.5m/gであった。
〔比較例5〕
苛性化軽カルを100部配合した顔料分散液にポリアクリル酸系分散剤を2.6部(表は1.6部)添加したものを平均粒子径7μmまで粗スラリー化した後、シングルローター型SCミルSC220でビーズ充填率85%、ローター回転数1000min−1で平均粒子径が
0.4μmとなるまで湿式粉砕した。そのときの動力原単位は247kW・h/tであり、B型粘度は10000mPa・s以上(測定不能)であり、比表面積は13.7m
/gであった。
〔比較例6〕
苛性化軽カルを100部配合した顔料分散液にポリアクリル酸系分散剤を3.6部添加したものを平均粒子径7μmまで粗スラリー化した後、横型サンドグラインダー(三井鉱山社製)でビーズ充填率90%、ローター回転数800min−1で平均粒子径が0.4μmとなるまで湿式粉砕した。そのときの動力原単位は350kW・h/tであり、B型粘度
は7100mPa・sであり、比表面積は17.1m/gであった。
〔試験結果〕
1.B型粘度について
表1の実施例1〜4から、本発明の粉砕機(L/D比が0.9のダブルローター)によれば、苛性化軽カルを50重量%以上配合して、平均粒子径を0.4μmとなるまで湿式粉砕しても、スラリーのB型粘度は3900〜5000mPa・sの範囲となります。
Zirconia beads (made by Nikkato Co., Ltd.) with a diameter of 0.5 mm are used as the medium, and the bead filling rate (the volume of the grinding medium when closest packed with respect to the void volume in the grinding chamber) is 70 to 90%. The number was set to 800 to 1000 min −1 and pulverization was performed using the pulverizer of the present invention or a horizontal bead mill pulverizer (manufactured by Mitsui Mining Co., Ltd.) until the average particle size became 0.4 to 1.0 μm. After grinding, the B concentration (60 rpm, manufactured by Tokyo Keiki Co., Ltd.) at 25 ° C. was measured at a slurry concentration of 70%. Moreover, the 50% point of the weight cumulative distribution was calculated as an average particle diameter using Mastersizer 2000 (manufactured by Malvern), and the particle size distribution was also measured using Cedigraph (manufactured by Micromeritex). Further, the BET specific surface area was measured using Micromeritics Gemini 2360 (manufactured by Shimadzu Corporation).
[Example 1]
Polyacrylic acid in a pigment dispersion containing 50 parts of light calcium carbonate produced in the causticizing process (hereinafter referred to as causticized light cal) and 50 parts of heavy calcium carbonate (Sankyo fine powder, average particle size 13 μm) After adding 1.6 parts of a dispersant to a coarse slurry to an average particle size of 7 μm, a double rotor type SC mill LSC220 has a bead filling rate of 90%, an average particle size of 0.4 μm at a rotor speed of 800 min −1. Wet pulverized until The power unit at that time is 165 kW · h / t, the B-type viscosity is 3900 mPa · s, and the specific surface area is 15.7 m 2 / s.
g.
[Example 2]
After adding 1.6 parts of polyacrylic acid-based dispersant to a pigment dispersion containing 100 parts of causticized light calcium, the slurry is coarsely slurried to an average particle size of 7 μm, and then a double-rotor SC mill LSC220 is used to fill the beads with 85 %, And wet pulverization was performed until the average particle size became 0.4 μm at a rotor rotation speed of 800 min −1 . The power unit at that time is 171 kW · h / t, and the B-type viscosity is 4600.
mPa · s, and the specific surface area was 11.1 m 2 / g.
Example 3
After adding 1.6 parts of a polyacrylic acid dispersant to a pigment dispersion containing 100 parts of causticized light calcium, the slurry is coarsely slurried to an average particle size of 7 μm, and then filled with a double rotor type SC mill LSC220 with a bead filling rate of 80 %, And wet pulverization was performed until the average particle size became 0.4 μm at a rotor rotational speed of 900 min −1 . The power unit at that time is 171 kW · h / t, and the B-type viscosity is 4900.
mPa · s, and the specific surface area was 11.2 m 2 / g.
Example 4
After adding 1.6 parts of a polyacrylic acid dispersant to a pigment dispersion containing 100 parts of causticized light calcium, the slurry is coarsely slurried to an average particle size of 7 μm, and then filled with a double rotor SC mill LSC220 with a bead filling ratio of 70. %, And wet pulverization was performed until the average particle size became 0.4 μm at a rotor rotation speed of 1000 min −1 . The power unit at that time is 193 kW · h / t, and the B-type viscosity is 500
The specific surface area was 12.4 m 2 / g.
Example 5
After adding 1.6 parts of polyacrylic acid-based dispersant to a pigment dispersion containing 100 parts of causticized light calcium, the slurry is coarsely slurried to an average particle size of 7 μm, and then a double-rotor SC mill LSC220 is used to fill the beads with 85 %, And wet pulverization was performed until the average particle size became 1.0 μm at a rotor rotational speed of 800 min −1 . The power unit at that time is 111 kW · h / t, and the B-type viscosity is 900 m.
The specific surface area was 7.9 m 2 / g.
[Comparative Example 1]
An average particle diameter of 7 μm is obtained by adding 2.6 parts of a polyacrylic acid-based dispersant to a pigment dispersion containing 50 parts of causticized light calcium and 50 parts of heavy calcium carbonate (Sankyo fine powder, average particle diameter of 13 μm). After roughly slurrying to a single rotor type SC mill SC220, the bead filling rate is 90%.
Wet grinding was performed until the average particle size became 0.4 μm at a rotor rotation speed of 800 min −1 . The power unit at that time was 226 kW · h / t, the B-type viscosity was 7500 mPa · s, and the specific surface area was 18.6 m 2 / g.
[Comparative Example 2]
After adding 1.6 parts of a polyacrylic acid dispersant to a pigment dispersion containing 100 parts of causticized light calcium, the slurry is coarsely slurried to an average particle size of 7 μm, and then a single rotor type SC mill SC220.
Was wet pulverized until the average particle size became 0.4 μm at a bead filling rate of 85% and a rotor rotational speed of 800 min −1 . The power unit at that time is 238 kW · h / t, and the B-type viscosity is 870.
The specific surface area was 13.1 m 2 / g.
[Comparative Example 3]
After adding 1.6 parts of a polyacrylic acid dispersant to a pigment dispersion containing 100 parts of causticized light calcium, the slurry is coarsely slurried to an average particle size of 7 μm, and then a single rotor type SC mill SC220.
And wet milling until the average particle size is 0.4 μm at a bead filling rate of 80% and a rotor rotation speed of 900 min −1 . The power unit at that time is 237 kW · h / t, and the B-type viscosity is 820
The specific surface area was 13.8 m 2 / g.
[Comparative Example 4]
After adding 1.6 parts of a polyacrylic acid dispersant to a pigment dispersion containing 100 parts of causticized light calcium, the slurry is coarsely slurried to an average particle size of 7 μm, and then a single rotor type SC mill SC220.
Then, wet milling was performed until the average particle size became 0.4 μm at a bead filling rate of 70% and a rotor rotation speed of 1000 min −1 . The power unit at that time is 285 kW · h / t, and the B-type viscosity is 89
The specific surface area was 13.5 m 2 / g.
[Comparative Example 5]
After adding 2.6 parts of polyacrylic acid-based dispersant (1.6 parts in the table) to a pigment dispersion containing 100 parts of causticized light calcium, it is coarsely slurried to an average particle size of 7 μm, and then a single rotor type Wet pulverization was performed with an SC mill SC220 until the average particle size became 0.4 μm at a bead filling rate of 85%, a rotor rotation speed of 1000 min −1 . The power unit at that time is 247 kW · h / t, the B-type viscosity is 10000 mPa · s or more (unmeasurable), and the specific surface area is 13.7 m 2.
/ G.
[Comparative Example 6]
After adding 3.6 parts of polyacrylic acid-based dispersant to a pigment dispersion containing 100 parts of causticized light cal, it is coarsely slurried to an average particle size of 7 μm, and then beads are used with a horizontal sand grinder (Mitsui Mining Co., Ltd.). Wet pulverization was carried out at a filling rate of 90% and a rotor rotational speed of 800 min −1 until the average particle size became 0.4 μm. The power basic unit at that time was 350 kW · h / t, the B-type viscosity was 7100 mPa · s, and the specific surface area was 17.1 m 2 / g.
〔Test results〕
1. About B-type viscosity From Examples 1 to 4 in Table 1, according to the pulverizer of the present invention (double rotor having an L / D ratio of 0.9), causticized light cal. Even if wet-pulverized until the particle size reaches 0.4 μm, the B-type viscosity of the slurry is in the range of 3900 to 5000 mPa · s.

比較例1〜5から、従来型の粉砕機(L/D比が0.3のシングルローター)では、苛性化軽カルを50重量%以上配合して、平均粒子径を0.4μmとなるまで湿式粉砕すると、スラリーのB型粘度は7500〜8900mPa・sの範囲となります。   From Comparative Examples 1 to 5, in a conventional pulverizer (single rotor having an L / D ratio of 0.3), causticized light calf is blended in an amount of 50% by weight or more until the average particle size becomes 0.4 μm When wet pulverized, the B-type viscosity of the slurry is in the range of 7500-8900 mPa · s.

以上から、本発明の粉砕機によるスラリーのB型粘度は、従来型の粉砕機によるものと
比較すると、約半減しており操業性に優れる。当然のことながら、粘度が上昇しないため、動力原単位も小さくなっている。
2.粒子径分布について
図3から、実施例2の本発明の粉砕機によるスラリーの固形分の粒子径分布は、同じ平均粒子径であっても、従来型の粉砕機によるものと比較すると、狭い粒子範囲(いわゆるシャープな粒子分布で粒子径が揃った状態)になっており、微細粒のものや粒子径大のものが少なく、塗工顔料に使用するに当って良好である。
From the above, the B-type viscosity of the slurry by the pulverizer of the present invention is about half that of the conventional pulverizer and is excellent in operability. As a matter of course, since the viscosity does not increase, the power unit is also reduced.
2. About the particle size distribution From FIG. 3, the particle size distribution of the solid content of the slurry by the pulverizer of the present invention in Example 2 is narrower than that by the conventional pulverizer even though the average particle size is the same. It is in a range (a state in which the particle diameter is uniform with a so-called sharp particle distribution), and there are few fine particles and large particles, which are good for use as a coating pigment.

このようになる要因としては、実施例2の本発明の粉砕機では、衝撃力の作用が粒子に伝わり易いため、粒子全体が粉砕される(いわゆる体積粉砕)傾向となり、一方、比較例2や6の従来型の粉砕機では、衝撃力の作用が粒子に上手く伝わらず、摩擦力の作用が進み、過粉砕粒子が生じてしまう(いわゆる表面粉砕)傾向となるためと考えられる。   As a factor to be such, in the pulverizer of the present invention of Example 2, since the action of impact force is easily transmitted to the particles, the whole particles tend to be pulverized (so-called volume pulverization). In the conventional pulverizer of No. 6, the effect of the impact force is not transmitted well to the particles, and the action of the frictional force is advanced, so that excessively pulverized particles tend to be generated (so-called surface pulverization).

Figure 2009144312
Figure 2009144312

本発明の媒体攪拌型湿式分散機の実施の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of implementation of the medium stirring type wet disperser of this invention. 本発明の処理システムを示す概略説明図である。It is a schematic explanatory drawing which shows the processing system of this invention. 本発明の実施例2と比較例2及び6における、粒子径(μm)と粒子の存在比率(%)の関係を示すグラフである。It is a graph which shows the relationship between the particle diameter (micrometer) and the abundance ratio (%) of a particle in Example 2 and Comparative Examples 2 and 6 of the present invention.

符号の説明Explanation of symbols

1 粉砕機
2 粉砕容器
3 容器本体
4 ボス
6 蓋
8 軸受け
9 内側室
10 外側室
11 供給口
12 排出口
13 セパレータ
14 内側リング
15 外側リング
16 棒鋼
17 スリット
18 撹拌部材
18a 撹拌部材
18b 撹拌部材
19 凹部
20 凸部
21 貫通孔
22 貫通孔
24 駆動軸
25 分散部材
110 媒体攪拌型湿式分散機
140 処理システム
141 サービスタンク
142 循環ポンプ
143 循環ライン
DESCRIPTION OF SYMBOLS 1 Crusher 2 Crushing container 3 Container body 4 Boss 6 Lid 8 Bearing 9 Inner chamber 10 Outer chamber 11 Supply port 12 Discharge port 13 Separator 14 Inner ring 15 Outer ring 16 Steel bar 17 Slit 18 Stirring member 18a Stirring member 18b Stirring member 19 Recess 20 Convex part 21 Through hole 22 Through hole 24 Drive shaft 25 Dispersing member 110 Medium agitation type wet disperser 140 Processing system 141 Service tank 142 Circulation pump 143 Circulation line

Claims (4)

パルプ製造工程の苛性化工程で製造された軽質炭酸カルシウムを湿式粉砕して塗工用顔料を得るためのスラリー製造方法であって、
筒状をなすとともに両端が閉塞した粉砕容器と、該粉砕容器の内部に、軸線をほぼ一致させた状態で設けられ、内部を径方向に2区画して内側室と外側室とを形成するとともに、両室間を連通する複数のスリットが周面の少なくとも一部に設けられている筒状のセパレータと、前記内側室の内部に粉砕容器と軸線をほぼ一致させた状態で回転可能に設けられた撹拌部材と、前記内側室に処理物を供給させるための供給口とを具えたことを特徴とし、前記粉砕容器の軸線方向の長さ(L)と直径(D)との比(L/D比)が0.6より大きく1.2以下のダブルローターとなるように構成された媒体撹拌型粉砕装置にパルプ製造工程の苛性化工程で製造された軽質炭酸カルシウムを含有するスラリーを供給して粉砕処理することを特徴とする、パルプ製造工程の苛性化工程で製造された軽質炭酸カルシウムのスラリー製造方法。
A slurry manufacturing method for obtaining a coating pigment by wet pulverization of light calcium carbonate manufactured in a causticizing process of a pulp manufacturing process,
A pulverization container having a cylindrical shape and closed at both ends, and provided inside the pulverization container in a state in which the axes substantially coincide with each other, and the inside is divided into two in the radial direction to form an inner chamber and an outer chamber. A cylindrical separator in which a plurality of slits communicating between the chambers are provided in at least a part of the peripheral surface, and a rotation vessel provided in the inner chamber so as to be rotatable in a state in which the axis of the pulverization container is substantially coincided. And a ratio of the length (L) and the diameter (D) in the axial direction of the grinding container (L / The slurry containing light calcium carbonate produced in the causticizing process of the pulp production process is supplied to a medium agitation type pulverizer configured to be a double rotor having a D ratio of greater than 0.6 and less than or equal to 1.2. Characterized by pulverization, Slurry method for producing precipitated calcium carbonate produced by causticizing process the pulp manufacturing process.
前記パルプ製造工程の苛性化工程で製造された顔料としての軽質炭酸カルシウムであって媒体撹拌型粉砕装置に供給される前の前記軽質炭酸カルシウムが、全顔料の重量基準で50重量%以上含有されていることを特徴とする請求項1に記載のパルプ製造工程の苛性化工程で製造された軽質炭酸カルシウムのスラリー製造方法。   Light calcium carbonate as a pigment manufactured in the causticizing step of the pulp manufacturing process, and before being supplied to the medium stirring type pulverizer, the light calcium carbonate is contained in an amount of 50% by weight or more based on the weight of the total pigment. The light calcium carbonate slurry manufacturing method manufactured in the causticizing step of the pulp manufacturing step according to claim 1. 前記パルプ製造工程の苛性化工程で製造された軽質炭酸カルシウムが、塊状でカルサイト結晶構造を有することを特徴とする請求項1又は2に記載のパルプ製造工程の苛性化工程で製造された軽質炭酸カルシウムのスラリー製造方法。   The light calcium carbonate produced in the causticizing step of the pulp producing process is a light calcium carbonate produced in the causticizing step of the pulp producing process according to claim 1 or 2, wherein the light calcium carbonate produced in the causticizing step of the pulp producing process has a lumpy and calcite crystal structure. A method for producing a slurry of calcium carbonate. 前記L/D比が、0.8より大きく1.0以下である請求項1記載のパルプ製造工程の苛性化工程で製造された軽質炭酸カルシウムのスラリー製造方法。   The said L / D ratio is larger than 0.8 and 1.0 or less, The slurry manufacturing method of the light calcium carbonate manufactured at the causticizing process of the pulp manufacturing process of Claim 1.
JP2008291694A 2007-11-21 2008-11-14 Method for producing light calcium carbonate slurry produced in causticizing process Active JP5203898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291694A JP5203898B2 (en) 2007-11-21 2008-11-14 Method for producing light calcium carbonate slurry produced in causticizing process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007301468 2007-11-21
JP2007301468 2007-11-21
JP2008291694A JP5203898B2 (en) 2007-11-21 2008-11-14 Method for producing light calcium carbonate slurry produced in causticizing process

Publications (2)

Publication Number Publication Date
JP2009144312A true JP2009144312A (en) 2009-07-02
JP5203898B2 JP5203898B2 (en) 2013-06-05

Family

ID=40915239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291694A Active JP5203898B2 (en) 2007-11-21 2008-11-14 Method for producing light calcium carbonate slurry produced in causticizing process

Country Status (2)

Country Link
JP (1) JP5203898B2 (en)
CN (1) CN101508145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203086A (en) * 2008-02-26 2009-09-10 Nippon Paper Industries Co Ltd Method for grinding light calcium carbonate
JP2009242211A (en) * 2008-03-31 2009-10-22 Nippon Paper Industries Co Ltd Production method of slurry of light calcium carbonate produced in causticizing process
CN103706444A (en) * 2013-12-20 2014-04-09 广州派勒机械设备有限公司 Novel nano bead mill

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079835A1 (en) * 2013-11-28 2015-06-04 吉野石膏株式会社 Gypsum slurry, hardened gypsum body, gypsum-based building material, gypsum board, process for manufacturing gypsum slurry, process for manufacturing hardened gypsum body, process for manufacturing gypsum-based building material, and process for manufacturing gypsum board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239017A (en) * 1999-02-17 2000-09-05 Nippon Paper Industries Co Ltd Grinding of precipitated calcium carbonate
JP2004026639A (en) * 2002-04-30 2004-01-29 Oji Paper Co Ltd Method for manufacturing calcium carbonate
JP2007307522A (en) * 2006-05-22 2007-11-29 Mitsui Mining Co Ltd Medium agitation type wet dispersion machine and dispersion method of fine particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239017A (en) * 1999-02-17 2000-09-05 Nippon Paper Industries Co Ltd Grinding of precipitated calcium carbonate
JP2004026639A (en) * 2002-04-30 2004-01-29 Oji Paper Co Ltd Method for manufacturing calcium carbonate
JP2007307522A (en) * 2006-05-22 2007-11-29 Mitsui Mining Co Ltd Medium agitation type wet dispersion machine and dispersion method of fine particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203086A (en) * 2008-02-26 2009-09-10 Nippon Paper Industries Co Ltd Method for grinding light calcium carbonate
JP2009242211A (en) * 2008-03-31 2009-10-22 Nippon Paper Industries Co Ltd Production method of slurry of light calcium carbonate produced in causticizing process
CN103706444A (en) * 2013-12-20 2014-04-09 广州派勒机械设备有限公司 Novel nano bead mill

Also Published As

Publication number Publication date
CN101508145A (en) 2009-08-19
JP5203898B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
RU2389689C2 (en) Method and device for making product containing calcium carbonate, said product and use thereof
FI122343B (en) Method and apparatus for preparing solid suspensions
US4793985A (en) Method of producing ultrafine ground calcium carbonate
US6416727B1 (en) Apparatus and process for the preparation of precipitated calcium carbonate
JP5203898B2 (en) Method for producing light calcium carbonate slurry produced in causticizing process
CN105000570B (en) A kind of ultra-fine low conductivity burnt kaolin production process
EP2900761B1 (en) Method for producing basic products from ash, in particular paper ash
US20150259767A1 (en) Method for producing basic products for use as e.g. alkalizing agent (soda lye substitute), for ground stabilization or as filler/pigment
JP2008230898A (en) Manufacturing method of slurry containing light calcium carbonate and coated paper using the slurry
JP2013536154A (en) Improving the lightness of lime caustic products by predissolution
JP5274049B2 (en) Light calcium carbonate grinding method
JP5673072B2 (en) Method for producing light calcium carbonate
FI100237B (en) Process and apparatus for producing calcium carbonate
JP5274077B2 (en) Method for producing light calcium carbonate slurry produced in causticizing process
JP5009024B2 (en) Light calcium carbonate grinding method
JP3879306B2 (en) Light calcium carbonate grinding method
TWI460331B (en) And a method for producing a slurry of light calcium carbonate by a causticizing step
JP5203776B2 (en) Method for producing light calcium carbonate slurry produced in causticizing process and paper coated with coating liquid containing said slurry
JP2004026639A (en) Method for manufacturing calcium carbonate
JP4698994B2 (en) Method for producing calcium carbonate slurry
JP5314295B2 (en) Method for producing calcium carbonate
JP2010132522A (en) Method of manufacturing calcium carbonate
JP2009243023A (en) Method for producing printing coated paper
KR20100038850A (en) Apparatus for continuous fine powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R150 Certificate of patent or registration of utility model

Ref document number: 5203898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3