JP2009142231A - Method for using circulating recycled water by remote control of organic waste water treatment - Google Patents

Method for using circulating recycled water by remote control of organic waste water treatment Download PDF

Info

Publication number
JP2009142231A
JP2009142231A JP2007324926A JP2007324926A JP2009142231A JP 2009142231 A JP2009142231 A JP 2009142231A JP 2007324926 A JP2007324926 A JP 2007324926A JP 2007324926 A JP2007324926 A JP 2007324926A JP 2009142231 A JP2009142231 A JP 2009142231A
Authority
JP
Japan
Prior art keywords
facility
indoor
plant cultivation
water
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007324926A
Other languages
Japanese (ja)
Other versions
JP5224799B2 (en
Inventor
Sukenobu Fujiwara
祐信 藤原
Shinji So
愼治 宗
Kozo Kimura
興造 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNIVERSAL CONSULTANT KK
Sanyo Kogyo Co Ltd
Original Assignee
UNIVERSAL CONSULTANT KK
Sanyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNIVERSAL CONSULTANT KK, Sanyo Kogyo Co Ltd filed Critical UNIVERSAL CONSULTANT KK
Priority to JP2007324926A priority Critical patent/JP5224799B2/en
Publication of JP2009142231A publication Critical patent/JP2009142231A/en
Application granted granted Critical
Publication of JP5224799B2 publication Critical patent/JP5224799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plant cultivating method intended for automatic operation through incorporating operation management technique of an operation administrator into a computer program, and taking in a biological response condition as data based on information of various sensors. <P>SOLUTION: This recycled plant cultivating method includes reusing waste water from indoor plant cultivation facilities in order to produce recycled water. The operation management of the indoor plant cultivation facilities is remote-controlled using one or a plurality of sensors for detecting a parameter which influences activation of useful microorganisms, and a data communication network connectable to the Internet. The remote control is executed by transmitting data which is obtained from a parameter detected by the sensor to a remote supervisory controller which is connected to the data communication network connectable to Internet, and automatically operating the indoor plant cultivation facilities by an operation control program. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、生活系及び有機系排水処理施設の運転管理を各種センサーとインターネットに接続可能なデータ通信網、例えば携帯無線通信網を用いて排水処理を遠隔制御することによる、循環型再生水利用方法に関する。生活系及び有機系排水処理は各種有用微生物の働きを最大限に活用して、微生物が活動しやすい環境を処理水槽内に作ることにより効果的に排水処理が行われる。本発明では、排水処理工程の中に嫌気的環境や好気的環境を作り、微生物の働きを酸化還元電位、溶存酸素、水温、汚泥濃度、水量などのデータをセンサーで計測し、そのデータを携帯無線網で遠隔地のコンピュータに送り、人の経験で管理していた管理基準をコンピュータプログラム化し、その判断に基づいてブロワーの運転時間や送風量を遠隔制御する。また、運転は全自動または手動により行い運転管理の効率化を図るものとする。   The present invention relates to a method of using recycled water by remotely controlling wastewater treatment using a data communication network, such as a portable wireless communication network, which can be connected to various sensors and the Internet for operation management of living and organic wastewater treatment facilities. About. In daily life and organic wastewater treatment, wastewater treatment is effectively performed by making the most of the action of various useful microorganisms and creating an environment in which the microorganisms are easily active in the treatment water tank. In the present invention, an anaerobic environment or an aerobic environment is created in the wastewater treatment process, and the function of microorganisms is measured by sensors such as oxidation-reduction potential, dissolved oxygen, water temperature, sludge concentration, and water volume, and the data is obtained. Management standards that were sent to a remote computer via a portable wireless network and managed by human experience are converted into a computer program, and the blower operating time and air flow are remotely controlled based on the judgment. The operation is performed automatically or manually to improve the efficiency of operation management.

従来の循環型施設栽培方法は、図5に示す通り、植物工場1で植物を栽培する栽培工程と、栽培工程において発生する栽培残渣をメタン発酵設備3でメタン発酵されるメタン発酵工程と、メタン発酵工程で生成するバイオガスを燃料として熱併給型発電装置5に供給して発電する発電工程もしくはバイオガスを燃料としてボイラーに供給して燃焼させる燃焼工程を有し、発電工程もしくは燃焼工程で発生する電気、熱、炭酸ガスのうちで少なくとも何れかを栽培工程で消費する資源として植物工場1へ供給する、というものである。   As shown in FIG. 5, the conventional circulation type facility cultivation method includes a cultivation process for cultivating a plant in a plant factory 1, a methane fermentation process for methane fermentation of a cultivation residue generated in the cultivation process in a methane fermentation facility 3, and methane It has a power generation process in which the biogas generated in the fermentation process is supplied to the cogeneration generator 5 as a fuel to generate power, or a combustion process in which the biogas is supplied to the boiler as a fuel and burned, and is generated in the power generation process or combustion process Supplying at least one of electricity, heat, and carbon dioxide to the plant factory 1 as a resource consumed in the cultivation process.

特開平07−15164「光放射測定器」(松下電器産業(株))では、人工光源のもとで植物栽培を行う場合に使用する光源のもとで植物栽培を行う場合に使用する光源の植物生育の効率を定量的に評価できる光放射測定器について開示している。特開平06−245651「植物栽培装置」(ダイキン工業(株))では、光合成作用実現のための照明器具を効率よく冷却し得るとともに同時に植物の生育に必要な湿度への加湿機能を得る植物工場用の植物栽培装置について開示している。更に特開2003−23887「循環型施設栽培方法」((株)クボタ)では、生ごみ、家畜糞尿、施設栽培の栽培残渣等の有機性廃棄物を施設栽培に必要な資源として利用する循環型施設栽培方法について開示している。   In Japanese Patent Application Laid-Open No. 07-15164 “Light Radiation Measuring Instrument” (Matsushita Electric Industrial Co., Ltd.), a light source used when plant cultivation is performed under a light source used when plant cultivation is performed under an artificial light source. An optical radiation measuring instrument capable of quantitatively evaluating the efficiency of plant growth is disclosed. Japanese Patent Application Laid-Open No. 06-245651 “Daikin Kogyo Co., Ltd.” (Daikin Industries Co., Ltd.) is a plant factory that can efficiently cool a lighting fixture for realizing a photosynthetic action and at the same time has a humidifying function to a humidity necessary for plant growth. A plant cultivation apparatus for use is disclosed. Furthermore, in Japanese Patent Laid-Open No. 2003-23887 “Circulating facility cultivation method” (Kubota Co., Ltd.), a recycling method that uses organic wastes such as garbage, livestock manure, and cultivation residues of facility cultivation as resources necessary for facility cultivation. The facility cultivation method is disclosed.

また水生生物の養殖に目を向けると、例えば、従来のスッポン養殖方法は、親亀が産卵した有精卵を孵化場で孵化させ、約15gの孵化した稚亀を冬眠しない温度である20℃〜30℃に温度管理された透明ビニールハウス養殖池で養殖する。当該養殖池は飼育効率と経済性から、ある程度高密度状態で飼育されるので、その衛生環境並びに消毒剤及び抗生物質等の使用による食の安全性確保が問題となっている。   Turning to the aquatic aquaculture, for example, in the conventional turtle culture method, a fertilized egg laid by a parent turtle is hatched in a hatchery, and about 15 g of the hatched turtle is at a temperature at which it does not hibernate. It is cultivated in a transparent greenhouse pond that is temperature controlled at ~ 30 ° C. Since the aquaculture pond is bred in a high density state to some extent from the breeding efficiency and economy, ensuring the safety of food by using the sanitary environment and the use of disinfectants and antibiotics is a problem.

特開平7−222540号「浄化処理済みの畜産排水を利用した魚介類の養殖方法」(東洋電化工業株式会社)では、処理済みの畜産排水が海水乃至汽水に近い塩類含有組成を示すという特性を利用して、畜産業と海水性乃至汽水性の魚介類の養殖を複合的に行う魚介類の養殖方法ついて開示している。更に特開平10−249366「完全汚水処理法とその処理法で得られる有用液」(株式会社プリオ)では、各種汚水の完全処理が可能な高効率の微生物学的汚水処理法とその処理法で得られる有用液について開示している。   Japanese Patent Application Laid-Open No. 7-222540 “Aquaculture Method Using Livestock Wastewater after Purification” (Toyo Denka Kogyo Co., Ltd.) has a characteristic that the treated livestock wastewater shows a salt-containing composition close to seawater or brackish water. It discloses a method for cultivating seafood that uses the livestock industry in combination with aquaculture of seawater or brackish water. Furthermore, in Japanese Patent Application Laid-Open No. 10-249366 “Complete Sewage Treatment Method and Useful Liquid Obtained by the Treatment Method” (Prio Inc.), a highly efficient microbiological sewage treatment method capable of complete treatment of various sewage and its treatment method. The useful liquid obtained is disclosed.

また、排水処理の制御方法について目を向けてみると、特開平7−171592号「嫌気性排水処理設備への流入原水量自動制御装置」(アサヒビール株式会社)では、嫌気性排水処理設備において、流入原水の発酵槽への流量を発酵槽の負荷に応じて自動的に制御し、安定した処理原水を得る装置について開示している。   Looking at the control method of wastewater treatment, Japanese Patent Application Laid-Open No. 7-171593 “Automatic Control System for Raw Water Flow into Anaerobic Wastewater Treatment Facility” (Asahi Breweries Co., Ltd.) The apparatus which controls the flow volume to the fermenter of inflow raw | natural water automatically according to the load of a fermenter, and obtains the stable process raw | natural water is disclosed.

特開2001−000960号「排水処理の制御方法」(日立電線株式会社)では、工場内の建屋等より汚濁水が流出したとしても、迅速且つ自動的に緩衝池入口開閉ゲートを閉じると共に汚濁排水分流開閉ゲートを開いて汚濁水を汚濁水分流排水路を介して汚濁水分流処理池へ分流でき、それによって汚濁水を緩衝池及び一般河川への流出を食い止めることができる排水処理の制御方法について開示している。   In Japanese Patent Laid-Open No. 2001-000960, “Wastewater treatment control method” (Hitachi Cable Corp.), even if polluted water flows out of a building or the like in a factory, it quickly and automatically closes the buffer pond entrance open / close gate and polluted drainage. About the control method of drainage treatment that can open the diversion gate and divert the polluted water to the polluted water flow treatment pond through the polluted water flow drainage channel, thereby preventing the polluted water from flowing into the buffer pond and general river Disclosure.

特開平5−154496号「嫌気−好気活性汚泥処理装置の運転制御方法」(株式会社明電舎)では、嫌気−好気活性汚泥処理装置を用いて廃水中の有機物及び窒素を高効率に除去する運転制御方法を開示している。   In JP-A-5-15496, “Operation control method of anaerobic-aerobic activated sludge treatment apparatus” (Meidensha Co., Ltd.), organic substances and nitrogen in wastewater are removed with high efficiency using the anaerobic-aerobic activated sludge treatment apparatus. An operation control method is disclosed.

しかしながら、これらの排水処理の運転制御においては、熟練した運転管理者が常に施設の運転状態を監視しなければならず、多大な労力及び人件費を必要とするという問題点を有する。   However, in the operation control of these wastewater treatments, a skilled operation manager must constantly monitor the operation state of the facility, and has a problem that a great deal of labor and labor costs are required.

特開平07−15164号公報Japanese Patent Laid-Open No. 07-15164 特開平06−245651号公報Japanese Patent Application Laid-Open No. 06-245651 特開2003−23887号公報Japanese Patent Laid-Open No. 2003-23887 特開平7−222540号公報JP-A-7-222540 特開平10−249366号公報JP-A-10-249366 特開平7−171592号公報Japanese Patent Application Laid-Open No. 7-171592 特開2001−000960号公報JP 2001-000960 A 特開平5−154496号公報JP-A-5-15496

従来、排水処理施設から排出される処理水は河川や湖沼等に放流すると、その処理水の窒素、リン等が蓄積して富栄養化が進み、アオコ発生等の原因となっている。従って、それを防止するための排水処理施設は窒素、リンを除去するために高価な膜分離処理等により高度処理をして放流している。一方、野菜など食品のハウス栽培、温室栽培においては人工化学品による溶液栽培により農産物の安全確保が課題となっている。また同様に高級な水生生物、又はスッポン等の養殖においては、養殖対象の食物や排泄物で水槽が汚染され、臭気の発生や病気による死滅があり、抗生物質の投与などにより対応しているため薬品代がかかり、また衛生面や食の安全性確保においても課題がある。   Conventionally, when treated water discharged from a wastewater treatment facility is discharged into rivers, lakes, and the like, nitrogen, phosphorus, and the like of the treated water accumulate, and eutrophication progresses, which causes the occurrence of sea lions. Therefore, wastewater treatment facilities for preventing this are discharged after being subjected to advanced treatment such as expensive membrane separation treatment to remove nitrogen and phosphorus. On the other hand, in the greenhouse cultivation of foods such as vegetables and greenhouse cultivation, ensuring the safety of agricultural products has become an issue by solution cultivation with artificial chemicals. Similarly, in the cultivation of high-grade aquatic organisms or turtles, the aquarium is contaminated with food and excrement subject to cultivation, and odors and death due to illness occur. There is a problem in terms of sanitary and food safety.

また、生活系排水または有機系排水の高度処理方法として腐植活性汚泥法があるが、有用微生物の働きを有効に活用するため、従来は熟練した運転管理者が常に生物反応槽の状態を監視し、その状態に合わせてばっ気装置の運転管理を行い、その性能を確保していた。しかしながら、熟練した運転管理者の確保は近年困難となっている。本発明は、運転管理者の運転管理技術をコンピュータプログラムに組み込み、各種センサーの情報により生物反応状況をデータとして取り込み、自動運転することによりこのような問題についても同時に解決することができる。   In addition, there is a humus activated sludge method as an advanced treatment method for domestic wastewater or organic wastewater, but in order to effectively utilize the functions of useful microorganisms, conventionally, skilled operation managers have always monitored the state of biological reaction tanks. The operation management of the aeration apparatus was performed according to the state, and the performance was ensured. However, it has become difficult in recent years to secure skilled operation managers. The present invention can solve such a problem at the same time by incorporating the operation management technology of the operation manager into the computer program, taking in the biological reaction status as data based on information from various sensors, and performing automatic operation.

本発明は、図1のフロー図に示すごとく、生物反応槽である攪拌槽、ばっ気槽の生物反応状況を酸化還元電位計(ORP計)で、活性汚泥濃度を活性汚泥浮遊物濃度計(MLSS計)で、又ばっ気量を酸素濃度計(DO計)で計測し、そのデータをインターネットに接続可能なデータ通信網、例えば携帯無線通信網に接続された遠隔監視制御装置に送り、運転制御プログラムにより自動運転を行う。この自動運転制御方法を採用することにより、従来は処理施設に常駐の運転管理者をおいて、運転管理者の熟練した技術により管理していたものが遠隔で集中管理出来るようになり、大幅な省力化が図られる。具体的な運転制御プログラムは、図2〜4に示すように、酸化還元電位値等のパラメーターの上限値と下限値を定め、その値に近づいたらインターネット網を介して、管理者のパーソナルコンピューター又は携帯電話機などの端末装置に警報を発し、更に制御値に達した場合には遠隔操作にてばっ気装置の運転、停止、タイマー変更などの指令を発し遠隔設定制御を行う。該データは季節変化による流入水量や水温、日照時間などに影響しうるため、年間のデータを蓄積することにより、コンピュータの学習機能により設定値を修正し、運転管理の精度を上げることができる。   In the present invention, as shown in the flow diagram of FIG. 1, the biological reaction status of the agitation tank and the aeration tank, which are biological reaction tanks, is measured by an oxidation-reduction potentiometer (ORP meter), and the activated sludge concentration is measured by an activated sludge suspended solids concentration meter ( MLSS meter), and aeration volume is measured with an oxygen concentration meter (DO meter), and the data is sent to a data communication network that can be connected to the Internet, for example, a remote monitoring and control device connected to a portable wireless communication network. Automatic operation is performed by the control program. By adopting this automatic operation control method, it has become possible to centrally manage remotely what has been managed by the skill of the operation manager, which has been conventionally resident at the processing facility, Labor saving is achieved. As shown in FIGS. 2 to 4, the specific operation control program determines the upper limit value and lower limit value of parameters such as the oxidation-reduction potential value, and when approaching these values, the administrator's personal computer or An alarm is issued to a terminal device such as a mobile phone, and when the control value is reached, a command for operating the aeration device, stopping, changing the timer, etc. is issued by remote control to perform remote setting control. Since the data can affect the amount of inflow water, water temperature, and sunshine hours due to seasonal changes, by accumulating annual data, the setting value can be corrected by the learning function of the computer, and the accuracy of operation management can be improved.

本発明は、上述のとおり、排水処理施設の運転管理を遠隔制御することによる排水処理工程の有意な効率化を伴い、生活系汚水と食料生産施設の排水等を原料とし、再生水製造施設にて有用微生物培養槽で培養した有用微生物群の添加により、多くの嫌気性菌、好気性菌の働きにより再生水を自動的に製造し、該再生水を屋内型植物栽培施設に供給し、ばっ気槽からの炭酸ガス(CO2)と太陽光もしくは人工光により炭酸同化作用を促進させる野菜等の栽培を促進させる方法、及び/又は該再生水と太陽光もしくは人工光を屋内型養殖施設に提供し、水質浄化作用を促進させ水生生物又はスッポン等の成長を促進させる方法を提供する。更に本発明においては、屋内型植物栽培施設と屋内型養殖施設を組合せ、各々の施設から排出される高濃度の酸素(O2)と炭酸ガス(CO2)を相互にやり取りして排気ガスを系外に排出しない方法が供される。尚、いずれの方法も施設内から排出される排水を同一系内で再利用することを特徴とする。 As described above, the present invention involves significant efficiency of the wastewater treatment process by remotely controlling the operation management of the wastewater treatment facility. By adding useful microorganisms cultivated in useful microorganism culture tank, regenerated water is automatically produced by the action of many anaerobic bacteria and aerobic bacteria, and the regenerated water is supplied to indoor plant cultivation facilities. To promote the cultivation of vegetables, etc. that promote carbon dioxide assimilation by using carbon dioxide (CO 2 ) and sunlight or artificial light, and / or providing the reclaimed water and sunlight or artificial light to indoor aquaculture facilities, Provided is a method for promoting the purifying action and promoting the growth of aquatic organisms or turtles. Furthermore, in the present invention, an indoor plant cultivation facility and an indoor aquaculture facility are combined, and high concentration oxygen (O 2 ) and carbon dioxide gas (CO 2 ) discharged from each facility are mutually exchanged to emit exhaust gas. A method is provided that does not discharge out of the system. Each method is characterized in that wastewater discharged from the facility is reused in the same system.

上記課題を解決する為、具体的には本発明は下記の構成を採用する。
[1] 有用微生物を含む再生水、光、及び炭酸ガスを含む空気を屋内型植物栽培施設へ供給し、且つ該屋内型植物栽培施設からの排水を該再生水の生成のために再利用することを特徴とする、循環型植物栽培方法であって、ここで該屋内型植物栽培施設の運転管理が有用微生物の活性化に影響するパラメーターを検知するための1又は複数のセンサー及びインターネットに接続可能なデータ通信網を使用して遠隔制御されることを特徴とし、該遠隔制御がセンサーにより検知されたパラメーターから得られたデータをインターネットに接続可能なデータ通信網に接続された遠隔監視制御装置に送信し、そして運転制御プログラムにより該屋内型植物栽培施設を自動運転することにより実行される、方法。
[2] 前記有用微生物の活性化に影響するパラメーターが、酸化還元電位、活性汚泥浮遊物濃度、溶存酸素濃度、水温、水量、及びこれらの組み合わせから成る群から選択されることを特徴とする、[1]に記載の方法。
[3] 前記再生水が、有用微生物培養槽、撹拌槽、ばっ気槽、沈殿槽、及び汚泥貯槽から成る再生水製造施設において、生活系汚水を栄養源として、腐植土を充填した該有用微生物培養槽において培養した有用微生物の作用により生成することを特徴とする、[1]又は[2]に記載の循環型植物栽培方法。
[4] 前記有用微生物が、光合成細菌、放線菌、糸状菌、乳酸菌及び枯草菌から成る群から選定されることを特徴とする、[1]〜[3]のいずれかに記載の循環型植物栽培方法。
[5] 前記腐植土が、a)好気性細菌及び/又は通性嫌気性細菌の細菌群からの代謝産物、或いは当該代謝産物を含む物質、b)活性化した珪酸分を多量に含む物質、c)有機物を含んで成ることを特徴とする、[3]に記載の循環型植物栽培方法。
[6] 前記腐植土が、a)好気性細菌及び/又は通性嫌気性細菌の細菌群から産出されたフェノール及び/又はフェノール露出基のある代謝産物、或いは当該代謝産物を含む物質、b)タンパク質又は炭水化物、或いはタンパク質、炭水化物及び脂肪の組合せを、含んで成ることを特徴とする、[3]に記載の循環型植物栽培方法。
[7] 前記炭酸ガスを、前記再生水の製造処理施設内のばっ気槽から排出されて前記屋内型植物栽培施設へ供給し、該屋内型植物栽培施設から排出される排水を、該再生水の製造処理施設内の撹拌槽へ還流し系外に排出せずに再利用することを特徴とする、[1]又は[2]に記載の循環型植物栽培方法。
[8] 有用微生物を含む再生水、及び光を屋内型養殖施設へ供給し、且つ該屋内型養殖施設からの排水を該再生水の生成のために再利用することを特徴とする、水生生物の循環型養殖方法であって、ここで該屋内型養殖施設の運転管理が有用微生物の活性化に影響するパラメーターを検知するための1又は複数のセンサー及びインターネットに接続可能なデータ通信網を使用して遠隔制御されることを特徴とし、該遠隔制御がセンサーにより検知されたパラメーターから得られたデータをインターネットに接続可能なデータ通信網に接続された遠隔監視制御装置に送信し、そして運転制御プログラムにより該屋内型養殖施設を自動運転することにより実行される、方法。
[9] 前記有用微生物の活性化に影響するパラメーターが、酸化還元電位、活性汚泥浮遊物濃度、溶存酸素濃度、水温、水量、及びこれらの組み合わせから成る群から選択されることを特徴とする、[8]に記載の方法。
[10] 前記水生生物がスッポンである、[8]又は[9]に記載の方法。
[11] 前記再生水が、生活系汚水を栄養源として、有用微生物培養槽、撹拌槽、ばっ気槽、沈殿槽、及び汚泥貯槽から成る再生水製造施設において、腐植土を充填した該有用微生物培養槽において培養した有用微生物の作用により生成することを特徴とする、[8]〜[10]のいずれかに記載の循環型養殖方法。
[12] 前記有用微生物が、光合成細菌、放線菌、糸状菌、乳酸菌及び枯草菌から成る群から選定されることを特徴とする、[8]〜[11]のいずれかに記載の循環型養殖方法。
[13] 前記腐植土が、a)好気性細菌及び/又は通性嫌気性細菌の細菌群からの代謝産物、或いは当該代謝産物を含む物質、b)活性化した珪酸分を多量に含む物質、c)有機物を含んで成ることを特徴とする、[11]に記載の循環型養殖方法。
[14] 前記腐植土が、a)好気性細菌及び/又は通性嫌気性細菌の細菌群から産出されたフェノール及び/又はフェノール露出基のある代謝産物、或いは当該代謝産物を含む物質、b)タンパク質又は炭水化物、或いはタンパク質、炭水化物及び脂肪の組合せを、含んで成ることを特徴とする、[11]に記載の循環型養殖方法。
[15] 前記屋内型養殖施設から排出される排水を、前記再生水の製造処理施設内の撹拌槽へ還流し系外に排出せずに再利用することを特徴とする、[8]〜[10]のいずれかに記載の循環型養殖方法。
[16] 前記[1]又は[2]に記載の循環型植物栽培方法と、前記[8]又は[9]に記載の循環型養殖方法とを組合せることを特徴とする循環型再生水利用方法であって、該栽培方法における屋内型植物施設から排出される酸素及び該養殖方法における屋内型養殖施設から排出される二酸化炭素を相互に利用することを含んで成る、循環型再生水利用方法。
In order to solve the above problems, the present invention specifically adopts the following configuration.
[1] Supplying reclaimed water containing useful microorganisms, light, and air containing carbon dioxide gas to an indoor plant cultivation facility, and reusing wastewater from the indoor plant cultivation facility for producing the reclaimed water A circulating plant cultivation method, characterized in that the operation management of the indoor plant cultivation facility can be connected to one or a plurality of sensors and the Internet for detecting parameters that affect the activation of useful microorganisms Remotely controlled using a data communication network, and the remote control transmits data obtained from parameters detected by sensors to a remote monitoring and control device connected to a data communication network connectable to the Internet And a method executed by automatically driving the indoor plant cultivation facility by an operation control program.
[2] The parameter affecting the activation of the useful microorganism is selected from the group consisting of redox potential, activated sludge suspended solid concentration, dissolved oxygen concentration, water temperature, water amount, and combinations thereof. The method according to [1].
[3] In the reclaimed water production facility, wherein the reclaimed water comprises a useful microorganism culture tank, an agitation tank, an aeration tank, a sedimentation tank, and a sludge storage tank, the useful microorganism culture tank filled with humus soil using living sewage as a nutrient source It is produced | generated by the effect | action of the useful microorganisms cultured in <1> or [2], The circulation type plant cultivation method as described in [2].
[4] The circulating plant according to any one of [1] to [3], wherein the useful microorganism is selected from the group consisting of photosynthetic bacteria, actinomycetes, filamentous fungi, lactic acid bacteria, and Bacillus subtilis. Cultivation method.
[5] The humus is a) a metabolite from a bacterial group of aerobic bacteria and / or facultative anaerobic bacteria, or a substance containing the metabolite, b) a substance containing a large amount of activated silicic acid, c) The circulation type plant cultivation method according to [3], comprising an organic substance.
[6] The humus soil is a) a metabolite having phenol and / or a phenol-exposed group produced from a bacterial group of aerobic bacteria and / or facultative anaerobic bacteria, or a substance containing the metabolite, b) The circulating plant cultivation method according to [3], comprising protein or carbohydrate, or a combination of protein, carbohydrate and fat.
[7] The carbon dioxide gas is discharged from an aeration tank in the reclaimed water production treatment facility and supplied to the indoor plant cultivation facility, and waste water discharged from the indoor plant cultivation facility is used to produce the reclaimed water. The recycling-type plant cultivation method according to [1] or [2], wherein the recycling plant is recirculated to a stirring tank in a treatment facility and reused without being discharged out of the system.
[8] Circulation of aquatic organisms characterized by supplying reclaimed water containing useful microorganisms and light to an indoor aquaculture facility and reusing wastewater from the indoor aquaculture facility for the production of the reclaimed water A method for culturing a farm, wherein one or more sensors for detecting parameters in which the operation management of the indoor culturing facility affects the activation of useful microorganisms and a data communication network connectable to the Internet are used. The remote control is characterized in that the remote control transmits data obtained from parameters detected by the sensor to a remote monitoring and control device connected to a data communication network connectable to the Internet, and by an operation control program A method performed by automatically operating the indoor aquaculture facility.
[9] The parameter affecting the activation of the useful microorganism is selected from the group consisting of a redox potential, activated sludge suspended solid concentration, dissolved oxygen concentration, water temperature, water amount, and combinations thereof. The method according to [8].
[10] The method according to [8] or [9], wherein the aquatic organism is a turtle.
[11] The useful microorganism culture tank filled with humus soil in a reclaimed water production facility comprising a useful microorganism culture tank, an agitation tank, an aeration tank, a sedimentation tank, and a sludge storage tank using the domestic wastewater as a nutrient source. The circulating culture method according to any one of [8] to [10], which is produced by the action of useful microorganisms cultured in (1).
[12] The circulation type aquaculture according to any one of [8] to [11], wherein the useful microorganism is selected from the group consisting of photosynthetic bacteria, actinomycetes, filamentous fungi, lactic acid bacteria, and Bacillus subtilis. Method.
[13] The humus soil is a) a metabolite from a bacterial group of aerobic bacteria and / or facultative anaerobic bacteria, or a substance containing the metabolite, b) a substance containing a large amount of activated silicic acid, c) The circulating culture method according to [11], comprising an organic substance.
[14] The humus is a) a metabolite having phenol and / or a phenol-exposed group produced from a bacterial group of aerobic bacteria and / or facultative anaerobic bacteria, or a substance containing the metabolite, b) The circulating culture method according to [11], comprising protein or carbohydrate, or a combination of protein, carbohydrate and fat.
[15] The waste water discharged from the indoor aquaculture facility is recycled to the stirring tank in the reclaimed water production treatment facility without being discharged out of the system [8] to [10] ]. The recirculating culture method according to any one of
[16] A method for using recycled water, comprising combining the circulating plant cultivation method according to [1] or [2] and the circulating culture method according to [8] or [9] A method for using recycled reclaimed water, which comprises mutually using oxygen discharged from an indoor plant facility in the cultivation method and carbon dioxide discharged from an indoor culture facility in the cultivation method.

定義:
本明細書における用語、「生活系汚水」とは、家庭のトイレから排出される汚水と洗面、浴室、台所、洗濯等から排出される雑排水を合流させた排水で有害物質を含まないで、且つ有機質成分の濃度が高い排水を言う。
Definition:
The term “living sewage” in this specification is a wastewater that is a combination of sewage discharged from a toilet in the home and miscellaneous wastewater discharged from a bathroom, bathroom, kitchen, laundry, etc., and does not contain harmful substances. It also refers to wastewater with a high concentration of organic components.

本明細書における用語、「攪拌槽」とは、溶存酸素濃度を低く制御した環境で嫌気性菌を主体とした活性汚泥と生活系排水を攪拌、混合させて、微生物により有機質を主に発酵、還元により分解処理するための水槽を言う。   The term “stirring tank” in the present specification means that the activated sludge mainly composed of anaerobic bacteria and living wastewater are stirred and mixed in an environment where the dissolved oxygen concentration is controlled low, and the organic matter is mainly fermented by microorganisms. A water tank for decomposing by reduction.

本明細書における用語、「ばっ気槽」とは、ブロアーなどで圧縮空気を送り、溶存酸素濃度を高くした環境で好気性菌を主体として活性汚泥の好気性微生物が有機物を分解しながら増殖してきて、綿状の浮遊物(活性汚泥)を形成するための水槽を言う。   The term “aeration tank” in this specification means that aerobic microorganisms in activated sludge, mainly aerobic bacteria, grow while decomposing organic matter in an environment where compressed air is sent with a blower or the like and the dissolved oxygen concentration is high. This refers to a water tank for forming cotton-like suspended matter (activated sludge).

本明細書における用語、「沈殿槽」とは、活性汚泥を静置すると凝集・沈殿する性質を利用して、活性汚泥と上澄水を分離するための水槽を言う。   The term “sedimentation tank” in the present specification refers to a water tank for separating activated sludge and supernatant water by utilizing the property of agglomeration and precipitation when the activated sludge is allowed to stand.

本明細書における用語、「汚泥貯槽」とは、沈殿槽で分離した活性汚泥を貯留する水槽を言う。   The term “sludge storage tank” in the present specification refers to a water tank that stores activated sludge separated in a sedimentation tank.

本明細書における用語、「有用微生物培養槽」とは、天然の腐植土をペレット状に充填し、適度な酸素を供給し、活性汚泥と接触させて有用微生物を繁殖させる水槽であって、一種のバイオリアクターを言う。   The term “useful microorganism culture tank” in the present specification is a water tank in which natural humus soil is filled in pellets, supplied with appropriate oxygen, and brought into contact with activated sludge to propagate useful microorganisms. Say bioreactor.

本明細書における用語、「コンポスト」とは、有機物を微生物等の力を借りて分解すること、又はその分解されてできた堆肥を言う。   The term “compost” in the present specification refers to compost produced by decomposing or decomposing organic substances with the help of microorganisms or the like.

本明細書における用語、「ヒートポンプ」とは、大気中等に低レベルで大量に存在する排熱等を有効利用するための熱のポンプであって、圧縮機(コンプレッサ)と膨張弁を利用して冷媒を気化したり液化して、効率よく汲み上げ、移動させることにより冷却や加熱を行うポンプを言う。   The term “heat pump” in the present specification is a heat pump for effectively utilizing exhaust heat and the like existing in a large amount at a low level in the atmosphere, etc., and uses a compressor (compressor) and an expansion valve. A pump that cools and heats by evaporating or liquefying the refrigerant, pumping it efficiently, and moving it.

本明細書における用語、「水生生物」とは、海水、淡水を問わず、魚類、海草類、貝類、海老及び蟹、鰻、亀等を含む。   The term “aquatic organism” in the present specification includes fish, seaweeds, shellfish, shrimp and coral, cormorant, turtle and the like, regardless of seawater or freshwater.

本明細書における用語、「屋内型植物栽培施設」とは、自然光を取り入れるための透明な材料による屋根と、人工光源による照明装置、再生水供給装置、炭酸ガス供給装置、栽培施設内環境制御装置から構成される、植物を栽培するための施設を言う。   The term “indoor type plant cultivation facility” in the present specification means a roof made of a transparent material for taking in natural light, an illumination device using an artificial light source, a reclaimed water supply device, a carbon dioxide supply device, and an environment control device in a cultivation facility. A facility for cultivating plants.

本明細書における用語、「屋内型養殖施設」とは、自然光を取り入れるための透明な材料による屋根と、人工光源による照明装置、再生水供給装置、養殖施設内環境制御装置から構成される、水生生物又はスッポン等を養殖するための施設を言う。   In this specification, the term “indoor aquaculture facility” means an aquatic organism composed of a roof made of a transparent material for taking in natural light, an illumination device using an artificial light source, a reclaimed water supply device, and an environment control device in the aquaculture facility. Or a facility for aquaculture of turtles.

本明細書における用語、「インターネットに接続可能なデータ通信網」とは、データを送受信するためのインターネットにアクセス可能な通信網であり、例えば、携帯無線通信網、すなわち携帯電話又はPHS等の携帯端末を介する無線通信網を含む。   The term “data communication network connectable to the Internet” in this specification is a communication network accessible to the Internet for transmitting and receiving data. For example, a portable wireless communication network, that is, a mobile phone such as a mobile phone or a PHS. Includes a wireless communication network via terminals.

本明細書における用語、「有用微生物の活性化に影響するパラメーター」とは、生活系及び有機系排水処理における有用微生物の働きを最適とするために測定される指標であり、例えば、酸化還元電位、活性汚泥浮遊物濃度、溶存酸素濃度、水温、水量等を含む。   The term “parameter that affects the activation of useful microorganisms” in the present specification is an index that is measured to optimize the action of useful microorganisms in daily life and organic wastewater treatment, for example, redox potential. , Including activated sludge suspended matter concentration, dissolved oxygen concentration, water temperature, water volume, etc.

本明細書における用語、「運転制御プログラム」とは、本発明の排水処理施設の運転を自動制御するためのコンピュータプログラムであり、管理者のパーソナルコンピューター又は携帯電話等に警告又は警報を発信し、そして管理者のパーソナルコンピューター又は携帯電話等の端末から入力された命令を発信して遠隔設定制御を実行するためのプログラムを意味する。   The term “operation control program” in the present specification is a computer program for automatically controlling the operation of the wastewater treatment facility of the present invention, and sends a warning or an alarm to an administrator's personal computer or mobile phone, etc. It means a program for executing remote setting control by transmitting a command input from a terminal such as a personal computer of an administrator or a mobile phone.

本発明の一の態様は、図1のフロー図に示すごとく、生物反応槽である攪拌槽、ばっ気槽の生物反応状況を酸化還元電位計(ORP計)で、活性汚泥濃度を活性汚泥浮遊物濃度計(MLSS計)で、又ばっ気量を酸素濃度計(DO計)で計測し、そのデータをインターネットに接続可能な携帯無線通信網に接続された遠隔監視制御装置に送り、運転制御プログラムにより自動運転を行う、有機性排水処理の遠隔制御による循環型再生水利用方法である。   As shown in the flow diagram of FIG. 1, one aspect of the present invention is that the biological reaction state of the agitation tank and aeration tank that are biological reaction tanks is an oxidation-reduction potentiometer (ORP meter), and the activated sludge concentration is suspended in activated sludge. Measure the aeration volume with an object concentration meter (MLSS meter) and with an oxygen concentration meter (DO meter), send the data to a remote monitoring and control device connected to a portable wireless communication network that can be connected to the Internet, and control the operation This is a method of using recycled water through remote control of organic wastewater treatment, which is automatically operated by a program.

本発明の更なる態様において、図2〜4に示すように、酸化還元電位値等のパラメーターの上限値と下限値を定め、その値に近づいたらインターネット網を介して、管理者のパーソナルコンピューター又は携帯電話機などの端末装置に警報を発し、更に制御値に達した場合には遠隔操作により、ばっ気装置の運転、停止、タイマー変更などの指令を発し遠隔設定制御を行う。   In a further aspect of the present invention, as shown in FIGS. 2 to 4, an upper limit value and a lower limit value of a parameter such as an oxidation-reduction potential value are determined, and when approaching these values, an administrator's personal computer or An alarm is issued to a terminal device such as a mobile phone, and when the control value is reached, remote setting control is performed by issuing a command such as operation, stop, timer change, etc. of the aeration device by remote operation.

本発明の一の態様は、上述の排水処理施設の運転管理を遠隔制御することによる排水処理工程の有意な効率化を伴い、生活系汚水を原料とし、再生水製造施設にて有用微生物培養槽で培養した有用微生物群の添加により、多くの嫌気性菌、好気性菌の働きにより再生水を製造し、該再生水を屋内型植物栽培施設に供給し、ばっ気槽からの炭酸ガス(CO2)と太陽光もしくは人工光により炭酸同化作用を促進させ野菜等の栽培を促進させ、屋内型植物栽培施設から排出する排水は再生水製造施設に還流させる、循環型植物栽培方法である。 One aspect of the present invention involves significant efficiency of the wastewater treatment process by remotely controlling the operation management of the above-described wastewater treatment facility. By adding useful cultured microorganisms, regenerated water is produced by the action of many anaerobic bacteria and aerobic bacteria, the regenerated water is supplied to indoor plant cultivation facilities, and carbon dioxide (CO 2 ) from the aeration tank This is a circulation type plant cultivation method that promotes carbon assimilation by sunlight or artificial light to promote cultivation of vegetables and the like, and drains discharged from an indoor plant cultivation facility are returned to a recycled water production facility.

本態様は図6に示す通り、主に施設周辺の住宅から排出される生活系の排水と当該栽培施設から排出される排水を栄養源として有用微生物培養槽(バイオリアクター)で後述の腐植土を用いて特殊培養した有用菌により、酸化分解処理を行う。有用菌は攪拌槽、ばっ気槽で予め訓養されている活性汚泥と接触させて、ばっ気量の調整により嫌気状態、好気状態を各槽内につくり、その槽の状態に適合した各種有用微生物の作用により排水の汚濁成分を酸化、発酵、還元、分解処理し、次工程の沈殿槽にて固液分離され、上澄水を再生水(液肥)として屋内型植物栽培施設に供給する。沈殿槽で分離された余剰汚泥は別に設けたコンポスト施設で発酵分解させて固体肥料として主に土耕の植物栽培施設に供給する。屋内型植物栽培施設では、ばっ気槽から発生する炭酸ガス(CO2)を収集して、植物栽培施設に供給し、植物の炭酸同化作用の促進をはかる。また、植物栽培施設は透明ガラス等による屋根とし、日中は自然の太陽光、夜間はLED等の人工照明により、野菜などの植物の生産効率を高める。冬期室内を加温する必要がある場合は、再生水製造施設のばっ気槽で生物反応により生じる排熱をヒートポンプで汲み上げて、栽培施設内の加温を行う。夏期で冷却を必要とする場合には、当該ヒートポンプを利用している栽培施設内の温熱を汲み上げて、給湯に利用する。このように、系内から発生する排水や炭酸ガス、温熱を系外に排出することなく系内で利用し、外部に排出する環境負荷の発生しない環境循環系を提供する。 In this embodiment, as shown in FIG. 6, the humus soil described below is used in a useful microorganism culture tank (bioreactor) mainly using living wastewater discharged from houses around the facility and wastewater discharged from the cultivation facility as nutrient sources. Oxidative decomposition treatment is performed using useful bacteria specially cultured. Useful bacteria are brought into contact with activated sludge cultivated in agitating tanks and aeration tanks in advance, and anaerobic and aerobic conditions are created in each tank by adjusting the amount of aeration. Wastewater pollutants are oxidized, fermented, reduced, and decomposed by the action of useful microorganisms, separated into solid and liquid in the sedimentation tank of the next step, and the supernatant water is supplied as reclaimed water (liquid fertilizer) to indoor plant cultivation facilities. The surplus sludge separated in the settling tank is fermented and decomposed in a separate compost facility, and supplied as a solid fertilizer mainly to soil cultivation plant cultivation facilities. In an indoor plant cultivation facility, carbon dioxide (CO 2 ) generated from an aeration tank is collected and supplied to the plant cultivation facility to promote the carbon assimilation of the plant. The plant cultivation facility will be a roof made of transparent glass and the like, and natural sunlight during the day and artificial lighting such as LEDs at night will increase the production efficiency of plants such as vegetables. When it is necessary to warm the room in winter, the heat generated in the aeration tank of the reclaimed water production facility is pumped up with a heat pump to heat the cultivation facility. When cooling is required in the summer, the heat in the cultivation facility using the heat pump is pumped up and used for hot water supply. In this way, the wastewater, carbon dioxide gas, and heat generated from the inside of the system are used inside the system without being discharged outside the system, and an environmental circulation system that discharges outside and does not generate an environmental load is provided.

上述の通り、該再生水は、生活系汚水を栄養源として、腐植土を充填した有用微生物培養槽において培養した有用微生物の作用により生成する。該有用微生物は、光合成細菌、放線菌、糸状菌、乳酸菌及び枯草菌等から成る群から選定される。前記腐植土は(A)代謝産物(好気性細菌または/及び通性嫌気性細菌の細菌群からの分泌物で、例えば汚泥、汚泥状物質)若しくは代謝産物を多量に含む物質、(B)活性化した珪酸分を多量に含む物質(例えば、溶紋岩質の軽石等)、(C)有機物(例えば、動植物のタンパク質、炭水化物)を、好ましくは成分C100(重量比)に対して成分Aを代謝産物自体のときは0.1以上、汚泥若しくは汚泥状物質のときは5以上、成分Bを成分AとCの重量合計の5〜40%の割合で混合して緩速攪拌した後、20日以上成熟させることにより得られる。或いは前記腐食土は、通性嫌気性細菌群または好気性細菌群の共存する細菌群から選ばれた細菌群の代謝作用を通じて産出されたフェノールまたは/及びフェノール露出基のある化合物を含む代謝産物またはその代謝産物を含む物質を、タンパク質、炭水化物の何れか、或いはタンパク質、炭水化物及び脂肪の組合せよりなり、且つ脂肪分が有機質量の10%以下である有機混合物及び活性化された珪酸分を多量に含む物質に混合し、オートクレーブ中で、温度、全ガス圧、水蒸気圧、水素イオン濃度を一定条件に保ちながら攪拌することによって腐食化反応を進展させた後、嫌気状態で成熟させることにより、短時間で大量に得られる。尚、当該再生水は図14に示す通りのミネラル成分の構成となっており、(財)日本肥糧検定協会によりその安全性が証明されている。   As described above, the reclaimed water is generated by the action of useful microorganisms cultured in a useful microorganism culture tank filled with humus soil, using living sewage as a nutrient source. The useful microorganism is selected from the group consisting of photosynthetic bacteria, actinomycetes, filamentous fungi, lactic acid bacteria, Bacillus subtilis and the like. The humus soil is (A) a metabolite (aerobic bacteria or / and facultative anaerobic bacteria, such as sludge, sludge-like substances) or a substance containing a large amount of metabolites, and (B) activity. A substance containing a large amount of silicic acid content (for example, rhyolite pumice), (C) organic matter (for example, animal or plant protein, carbohydrate), preferably component A to component C100 (weight ratio) When the metabolite itself is 0.1 or more, when it is sludge or sludge-like substance, mix 5% to 40% of the total weight of components A and C, and after stirring gently, 20 Obtained by maturing for more than a day. Alternatively, the corrosive earth is a metabolite containing phenol or / and a compound having a phenol-exposed group produced through metabolic action of a bacterial group selected from facultative anaerobic bacteria group or bacteria group in which aerobic bacteria group coexist. A substance containing the metabolite is made of a protein, a carbohydrate, or a combination of protein, carbohydrate and fat, and an organic mixture in which the fat content is 10% or less of the organic mass and a large amount of activated silicic acid content. In the autoclave, the temperature, total gas pressure, water vapor pressure, and hydrogen ion concentration are kept constant, and the corrosive reaction is advanced by stirring and then matured in an anaerobic state. Can be obtained in large quantities in time. The reclaimed water has a mineral composition as shown in FIG. 14, and its safety has been proven by the Japan Fertilizer Examination Association.

本発明の他の態様は、上述のとおり排水処理施設の運転管理を遠隔制御することによる排水処理工程の有意な効率化を伴い、上記再生水を製造し、水生生物又はスッポン等の屋内養殖施設に供給し、そして太陽光又はLED照明等の人工照明を該屋内養殖施設に供給することにより、養殖施設の衛生環境の向上を図り、水生生物又はスッポン等の生育を促進させ、養殖施設で発生する動物の排泄物や排水は再生水製造施設に還流させる、循環型の水生生物、又はスッポン等の養殖方法である。   Another aspect of the present invention involves the significant efficiency of the wastewater treatment process by remotely controlling the operation management of the wastewater treatment facility as described above, and produces the reclaimed water to be used in an indoor aquaculture facility such as an aquatic organism or a turtle. Supplying and supplying artificial lighting such as sunlight or LED lighting to the indoor aquaculture facility improves the sanitary environment of the aquaculture facility, promotes the growth of aquatic organisms or turtles, etc., and is generated at the aquaculture facility Animal excrement and wastewater are circulated to a reclaimed water production facility, such as circulating aquatic organisms or turtles.

本態様は図7に示す通り再生水の製造工程までは上記有機性排水処理の遠隔制御による循環型植物栽培方法と同じであり、当該再生水を養殖施設中の養殖池に供給する。養殖池では魚類や、スッポン等の主に稚魚、稚亀を養殖し、当該再生水の添加により稚魚の成育を促進させ、病原菌の発生や水質悪化による臭気の発生を抑え、適正な養殖施設の環境を提供する。養殖施設中の養殖池で発生した餌や飼育対象の排泄物による汚濁排水は、再生水製造施設の攪拌槽に返送され、有用微生物により浄化され、再度再生水として利用することができる。   As shown in FIG. 7, this embodiment is the same as the recycling-type plant cultivation method by the remote control of the organic wastewater treatment until the production process of the recycled water, and supplies the recycled water to the aquaculture pond in the aquaculture facility. In the aquaculture pond, fish, turtles and other larvae and turtles are mainly cultivated, and the growth of the fry is promoted by the addition of the reclaimed water. I will provide a. The polluted wastewater generated by the feed and the excrement to be reared in the aquaculture pond in the aquaculture facility is returned to the stirring tank of the reclaimed water production facility, purified by useful microorganisms, and can be reused as reclaimed water.

更に本発明の他の態様は、排水処理施設の運転管理を遠隔制御することにより排水処理工程が有意に効率化された上記循環型植物栽培方法と循環型水生生物、又はスッポン等の養殖方法とを組合せることを特徴とする循環型再生水利用方法であって、該栽培方法において排出される酸素及び該養殖方法において排出される二酸化炭素を相互に利用することを含んで成る循環型再生水利用方法である。   Furthermore, another aspect of the present invention is the above-described circulating plant cultivation method and a circulating aquatic organism, or a culture method such as a suppon, in which the wastewater treatment process is significantly improved by remotely controlling the operation management of the wastewater treatment facility. A method for using recycled reclaimed water, which comprises combining the oxygen discharged in the cultivation method and the carbon dioxide discharged in the aquaculture method. It is.

本態様は図8に示す通り、屋内型植物栽培施設と屋内型養殖施設を隣接させ、該屋内型植物栽培施設で発生する酸素濃度の高い空気を該屋内型養殖施設に供給し、更に該屋内型養殖施設で発生する炭酸ガス(CO2)を該屋内型植物栽培施設に供給し、各々の施設内の効果を高めることができる。該屋内型植物栽培施設、及び該屋内型養殖施設はそれぞれ気密性の高いドームで覆われ、空気を一方から送り、反対側から排気し、空気の流れを一方通行として酸素濃度の高い該屋内型植物栽培施設の排気を該屋内型養殖施設に供給し、反対に炭酸ガス濃度の高い該屋内型養殖施設の排気を該屋内型植物栽培施設に送るものとする。該屋内型植物栽培施設と該屋内型養殖施設を同一のドーム内に設置し、空気の循環機構を設けることもできる。 In this embodiment, as shown in FIG. 8, an indoor plant cultivation facility and an indoor culture facility are adjacent to each other, and air having a high oxygen concentration generated in the indoor plant cultivation facility is supplied to the indoor culture facility. Carbon dioxide gas (CO 2 ) generated in the type aquaculture facility can be supplied to the indoor type plant cultivation facility to enhance the effects in each facility. The indoor type plant cultivation facility and the indoor type aquaculture facility are each covered with a highly airtight dome, air is sent from one side, exhausted from the other side, and the flow of air is one-way and the indoor type has a high oxygen concentration. The exhaust from the plant cultivation facility is supplied to the indoor culture facility, and the exhaust from the indoor culture facility having a high carbon dioxide gas concentration is sent to the indoor plant cultivation facility. The indoor plant cultivation facility and the indoor aquaculture facility may be installed in the same dome and an air circulation mechanism may be provided.

野菜の水耕栽培:
農業集落からの排水(汚水、雑排水)を再生水製造施設に供給した。再生水製造施設では有用微生物培養槽で培養された有用微生物の働きにより再生水が製造される。製造された再生水は有用微生物の働きにより殺菌作用があり、図9に示す通り有害な大腸菌や一般細菌が殆ど無くなり、塩素剤の添加など滅菌装置を設けることなく、そのまま屋内型植物栽培施設に供給することができる。製造された再生水を透明材料で出来た温室の水耕栽培池に適宜供給し、野菜等の栽培を行った。該屋内型植物栽培施設には昼間は太陽光で、夜間太陽光が不足すると、センサーでハウス内照度を自動探知し、発光ダイオード(LED)などの人工照明で必要な照度を確保した。投入した再生水はその投入量分を排水する必要があり、その余剰分の排水は再生水製造施設にポンプで返送し循環利用した。
Hydroponics of vegetables:
Wastewater (sewage and miscellaneous wastewater) from agricultural settlements was supplied to the reclaimed water production facility. In the reclaimed water production facility, reclaimed water is produced by the action of useful microorganisms cultured in a useful microorganism culture tank. The produced reclaimed water has a bactericidal action due to the action of useful microorganisms, and as shown in FIG. 9, almost no harmful E. coli and general bacteria are eliminated. can do. The produced reclaimed water was appropriately supplied to a hydroponics pond in a greenhouse made of a transparent material to grow vegetables and the like. In the indoor plant cultivation facility, sunlight was used in the daytime, and when the nighttime sunlight was insufficient, the illuminance in the house was automatically detected by a sensor, and the necessary illuminance was ensured by artificial lighting such as a light emitting diode (LED). It is necessary to drain the reclaimed water that has been thrown in, and the surplus drainage was returned to the reclaimed water production facility by a pump and recycled.

その再生水の効果は、佐賀市の元相応地区の農業集落排水処理施設で製造した再生水を農家で野菜栽培に使用した結果、以下のような効果があった。佐賀の苺「さがほのか」のハウス栽培では、糖度は通常は12〜14度で、平均13度でも充分甘いとされているが、該再生水を使用した場合、糖度は平均15〜16度となり、色艶も良く良質の苺が出来て商品化率も向上している。また、従来は栽培に農薬は切り離せないものであったが、該再生水を使用することにより土壌消毒の必要がなくなった。同様に、ミニトマトの栽培農家では、該再生水を使用することにより、無農薬で病気が全く発生せず、収穫量が大幅に増加し、糖度が高くなったことが報告されている。また、キャベツの栽培農家では、該再生水を使用することにより土壌の団粒化が促進され、保水能力が向上し、有機堆肥などの発酵分解能力を向上させ、図10に示す通りキャベツの大きさ(重さ)が従来の約2倍に成長し、高品質となり、収穫量が大幅に増加したことが報告されている。更に臭気の脱臭効果に関しては、図11に示す通り、元相応地区の農業集落排水処理施設の臭気濃度と臭気指数データからも明らかなように、従来の処理場内臭気指数40〜25であったものが、20〜15に減少し、その効果は明らかなものである。ハウス栽培においても従来発生していたハウス特有の臭気が減少した。   The effect of the reclaimed water was as follows as a result of using the reclaimed water produced at the farm village drainage treatment facility in the formerly suitable area of Saga City for the vegetable cultivation at the farm. In the house cultivation of Saga's “Sagahonoka”, the sugar content is usually 12-14 degrees, and even on average 13 degrees is considered sweet enough, but when using this reclaimed water, the sugar content averages 15-16 degrees It has good color and good quality cocoons, and the rate of commercialization has improved. Conventionally, agricultural chemicals cannot be separated for cultivation, but the use of the reclaimed water eliminates the need for soil disinfection. Similarly, it has been reported that farmers who grow cherry tomatoes use the reclaimed water to produce no disease at all without pesticides, greatly increase the yield, and increase the sugar content. Moreover, in the cabbage growing farm, the use of the reclaimed water promotes soil agglomeration, improves water retention capacity, improves fermentative decomposition capacity such as organic compost, and the size of cabbage as shown in FIG. It has been reported that (height) has grown twice as much as before, has become high quality, and the yield has increased significantly. Furthermore, regarding the deodorizing effect of odors, as shown in FIG. 11, the odor index in the conventional treatment plant was 40 to 25, as is clear from the odor concentration and odor index data of the agricultural settlement drainage treatment facility in the original district. However, the effect is clear. In house cultivation, the odor peculiar to the house that had been generated has decreased.

スッポン養殖:
ここでは実施例1で使用した再生水と同じものを使用した。本発明は気密性のあるガラスやビニール、ポリカーボネートなどの透明な屋根材によるハウス内にコンクリート製の池を1系統2〜4槽設置し、その中で成長段階ごとに分けられた稚亀を入れて飼育を行った。各槽に1月あたり水槽1m3に対して10〜20l(リットル)の再生水製造施設で製造された再生水を投入した。その結果、約一ヶ月経過すると水槽の水は茶色で濁っていたものの透明度が増し、赤色に変化した。これは槽内に光合成細菌(紅色細菌)が繁殖した結果であり、これにより、ハウス内の臭気が大幅に消滅し、ハウス環境が大幅に改善された。また、従来腐敗防止のため槽に消毒剤を投入していたものが、再生水投入後はその必要がなくなり、抗生物質の費用は1月あたり80万円が削減された。更にスッポンの死滅が無くなり、従来に比べて成長速度が速くなり、出荷生産量が4倍となった。スッポンの食材としての品質は、スッポンの色艶がよくなり、以前あった肉の臭気がなくなり、その結果、抗生物質等を使用せずに安全性が確保され、高級品として出荷されるようになった。槽からの排水及び低質(ヘドロ)は排水処理施設にポンプで返送され、有用微生物の働きで処理され循環利用された。
Suppon aquaculture:
Here, the same reclaimed water as used in Example 1 was used. In the present invention, 2 to 4 concrete ponds are installed in a house made of transparent roofing material such as airtight glass, vinyl, polycarbonate, etc., and young turtles divided according to their growth stages are placed therein. And reared. Each tank was charged with 10 to 20 l (liter) of reclaimed water produced in a reclaimed water production facility for 1 m 3 of water tank per month. As a result, after about one month, the water in the aquarium was brown and cloudy, but the transparency increased and it turned red. This is the result of the propagation of photosynthetic bacteria (red bacteria) in the tank, which greatly eliminated the odor in the house and greatly improved the house environment. In addition, disinfectants that had previously been put into the tank to prevent spoilage are no longer necessary after the addition of recycled water, and the cost of antibiotics has been reduced by 800,000 yen per month. In addition, the pupons were not killed, the growth rate was faster than before, and the shipping production was quadrupled. Suppon's quality as a food ingredient improves the color of the suppon and eliminates the odor of meat that used to be. As a result, safety is ensured without using antibiotics, etc. so that it can be shipped as a luxury product. became. Wastewater from the tank and low quality (sludge) were returned to the wastewater treatment facility by a pump, treated by useful microorganisms, and recycled.

遠隔監視制御装置による排水処理施設の管理:
該実施例は群馬県の某農業排水処理施設に汚泥改質機(バイオリアクター)を組み込み、有用微生物を培養し、嫌気槽、好気槽で微生物の働きを最大限に活用するために本遠隔監視制御装置を設置した。処理原水は農業集落からの生活系の排水で、図2の流入水量データに示すように1日あたり一定のレベルである。水量は一定のレベルで警告を発し、一定のレベルになると警報を発し、現場に駆けつけて対策を行うことになる。日常の水質管理は、ばっ気槽の酸化還元電位計(ORP計)を主な管理項目とし、図3に示すように好気側は一定のレベルで警告を発し、そしてさらに一定のレベルで警報を発するように設定した。これにより、警告が出た時はばっ気時間のタイマー設定間隔を遠隔で設定変更したりして調整することができ、さらに、警報ラインに達したら現場に行ってばっ気風量を調節したり、返送汚泥量を調整したりすることで対応を行うことが可能となる。同様に、嫌気側についても管理を行うことが出来る。また、これと同時に酸素濃度計(DO計)も計測し、酸化還元電位(ORP)との相関を見たりして運転管理データを蓄積し、各処理場に合った運転管理方法に改善することが出来る。この遠隔監視制御方法を採用することにより、遠隔地から少人数で熟練者の運転管理が可能となり大幅な運転管理の省力化と適切な処理性能の確保が可能となった。
Management of wastewater treatment facilities by remote monitoring and control equipment:
This example incorporates a sludge reformer (bioreactor) into a wastewater treatment facility in Gunma Prefecture to cultivate useful microorganisms and to make the best use of microorganisms in anaerobic and aerobic tanks. A monitoring and control device was installed. The treated raw water is a daily drainage from an agricultural village, and is at a certain level per day as shown in the inflow water amount data in FIG. The amount of water will give a warning at a certain level, and if it reaches a certain level, it will give a warning and take the measures to the site. For daily water quality management, the oxidation-reduction potentiometer (ORP meter) of the aeration tank is the main management item. As shown in Fig. 3, the aerobic side issues a warning at a certain level, and further alerts at a certain level. Set to emit. With this, when a warning is issued, the aerating time timer setting interval can be remotely adjusted and adjusted, and when the alarm line is reached, the aerating air volume can be adjusted by going to the site, It is possible to take measures by adjusting the amount of returned sludge. Similarly, the anaerobic side can be managed. At the same time, the oxygen concentration meter (DO meter) is also measured, and the operation management data is accumulated by checking the correlation with the oxidation-reduction potential (ORP) to improve the operation management method suitable for each treatment plant. I can do it. By adopting this remote monitoring and control method, it is possible to manage the operation of a skilled person from a remote location with a small number of people, making it possible to greatly save the operation management and ensure appropriate processing performance.

有機性排水処理装置の遠隔監視制御方法についてのフローチャートである。It is a flowchart about the remote monitoring control method of an organic waste water treatment equipment. 流入水量の警告ライン及び警報ラインを示すグラフである。It is a graph which shows the warning line and warning line of the amount of inflow water. ばっ気槽の酸化還元電位の警告ライン及び警報ラインを示すグラフである。It is a graph which shows the warning line and warning line of the oxidation reduction potential of an aeration tank. ばっ気槽の溶存酸素濃度の警告ライン及び警報ラインを示すグラフである。It is a graph which shows the warning line and warning line of the dissolved oxygen concentration of an aeration tank. 従来の循環型施設における植物栽培方法について説明する。The plant cultivation method in the conventional circulation type facility will be described. 本発明に係る循環型植物栽培方法について説明する。The circulation type plant cultivation method according to the present invention will be described. 本発明に係る循環型養殖方法について説明する。A circulating culture method according to the present invention will be described. 本発明に係る循環型植物栽培方法と循環型養殖方法について説明する。The circulation type plant cultivation method and the circulation type aquaculture method according to the present invention will be described. 山ノ内町水質浄化センター処理水中の一般細菌数と大腸菌数ついて説明する。The number of general bacteria and E. coli in the treated water of Yamanouchi Town Water Purification Center will be explained. 再生水を使用して栽培したキャベツと再生水を使用しないで栽培したキャベツとの比較ついて説明する。A comparison between cabbage cultivated using reclaimed water and cabbage cultivated without using reclaimed water will be described. 再生水製造施設内と対照施設内での臭気濃度及び臭気指数の比較。Comparison of odor concentration and odor index in reclaimed water production facility and control facility. 再生水製造施設内と対照施設内での臭気濃度及び臭気指数の比較(7月)。Comparison of odor concentration and odor index in reclaimed water production facility and control facility (July). 再生水製造施設内と対照施設内での臭気濃度及び臭気指数の比較(8月)。Comparison of odor concentration and odor index in reclaimed water production facility and control facility (August). (財)日本肥糧検定協会による本発明にかかる再生水の安全性の証明書。Certificate of safety of reclaimed water according to the present invention by the Japan Fertilizer Inspection Association.

Claims (16)

有用微生物を含む再生水、光、及び炭酸ガスを含む空気を屋内型植物栽培施設へ供給し、且つ該屋内型植物栽培施設からの排水を該再生水の生成のために再利用することを特徴とする循環型植物栽培方法であって、ここで該屋内型植物栽培施設の運転管理が有用微生物の活性化に影響するパラメーターを検知するための1又は複数のセンサー及びインターネットに接続可能なデータ通信網を使用して遠隔制御されることを特徴とし、該遠隔制御がセンサーにより検知されたパラメーターから得られたデータをインターネットに接続可能なデータ通信網に接続された遠隔監視制御装置に送信し、そして運転制御プログラムにより該屋内型植物栽培施設を自動運転することにより実行される、方法。   Recycled water containing useful microorganisms, light, and air containing carbon dioxide gas are supplied to an indoor plant cultivation facility, and wastewater from the indoor plant cultivation facility is reused for the production of the recycled water A circulation type plant cultivation method comprising: one or a plurality of sensors for detecting parameters that affect the activation of useful microorganisms by operation management of the indoor type plant cultivation facility; and a data communication network connectable to the Internet. Using the remote control to transmit data obtained from the parameters detected by the sensor to a remote monitoring and control device connected to a data communication network connectable to the Internet, and to operate A method executed by automatically operating the indoor plant cultivation facility by a control program. 前記有用微生物の活性化に影響するパラメーターが、酸化還元電位、活性汚泥浮遊物濃度、溶存酸素濃度、水温、水量、及びこれらの組み合わせから成る群から選択されることを特徴とする、請求項1に記載の方法。   The parameter affecting the activation of the useful microorganisms is selected from the group consisting of redox potential, activated sludge suspended solid concentration, dissolved oxygen concentration, water temperature, water volume, and combinations thereof. The method described in 1. 前記再生水が、有用微生物培養槽、撹拌槽、ばっ気槽、沈殿槽、及び汚泥貯槽から成る再生水製造施設において、生活系汚水を栄養源として、腐植土を充填した該有用微生物培養槽において培養した有用微生物の作用により生成することを特徴とする、請求項1又は2に記載の循環型植物栽培方法。   The reclaimed water was cultured in the reclaimed water production facility consisting of a useful microorganism culture tank, a stirring tank, an aeration tank, a sedimentation tank, and a sludge storage tank, and the living microorganisms were cultured in the useful microorganism culture tank filled with humus soil as a nutrient source. It produces | generates by the effect | action of a useful microorganism, The circulation type plant cultivation method of Claim 1 or 2 characterized by the above-mentioned. 前記有用微生物が、光合成細菌、放線菌、糸状菌、乳酸菌及び枯草菌から成る群から選定されることを特徴とする、請求項1〜3のいずれか1項に記載の循環型植物栽培方法。   The recycling-type plant cultivation method according to any one of claims 1 to 3, wherein the useful microorganism is selected from the group consisting of photosynthetic bacteria, actinomycetes, filamentous fungi, lactic acid bacteria, and Bacillus subtilis. 前記腐植土が、a)好気性細菌及び/又は通性嫌気性細菌の細菌群からの代謝産物、或いは当該代謝産物を含む物質、b)活性化した珪酸分を多量に含む物質、c)有機物を含んで成ることを特徴とする、請求項3に記載の循環型植物栽培方法。   The humus is a) a metabolite from a bacterial group of aerobic bacteria and / or facultative anaerobic bacteria, or a substance containing the metabolite, b) a substance containing a large amount of activated silicic acid, c) an organic substance The circulation type plant cultivation method according to claim 3, comprising: 前記腐植土が、a)好気性細菌及び/又は通性嫌気性細菌の細菌群から産出されたフェノール及び/又はフェノール露出基のある代謝産物、或いは当該代謝産物を含む物質、b)タンパク質又は炭水化物、或いはタンパク質、炭水化物及び脂肪の組合せを、含んで成ることを特徴とする、請求項3に記載の循環型植物栽培方法。   The humus soil is a) a metabolite having a phenol and / or phenol-exposed group produced from a bacterial group of aerobic bacteria and / or facultative anaerobic bacteria, or a substance containing the metabolite, b) a protein or a carbohydrate Or the combination of protein, carbohydrate, and fat, The circulation type plant cultivation method of Claim 3 characterized by the above-mentioned. 前記炭酸ガスを、前記再生水の製造処理施設内のばっ気槽から排出されて前記屋内型植物栽培施設へ供給し、該屋内型植物栽培施設から排出される排水を、該再生水の製造処理施設内の撹拌槽へ還流し系外に排出せずに再利用することを特徴とする、請求項1又は2に記載の循環型植物栽培方法。   The carbon dioxide gas is discharged from an aeration tank in the reclaimed water production treatment facility and supplied to the indoor plant cultivation facility, and waste water discharged from the indoor plant cultivation facility is supplied to the reclaimed water production treatment facility. The recycling-type plant cultivation method according to claim 1, wherein the recycling method is recirculated to the stirring tank and reused without being discharged out of the system. 有用微生物を含む再生水、及び光を屋内型養殖施設へ供給し、且つ該屋内型養殖施設からの排水を該再生水の生成のために再利用することを特徴とする、水生生物の循環型養殖方法であって、ここで該屋内型養殖施設の運転管理が有用微生物の活性化に影響するパラメーターを検知するための1又は複数のセンサー及びインターネットに接続可能なデータ通信網を使用して遠隔制御されることを特徴とし、該遠隔制御がセンサーにより検知されたパラメーターから得られたデータをインターネットに接続可能なデータ通信網に接続された遠隔監視制御装置に送信し、そして運転制御プログラムにより該屋内型養殖施設を自動運転することにより実行される、方法。   A method for circulating aquatic organisms, characterized by supplying reclaimed water containing useful microorganisms and light to an indoor aquaculture facility, and reusing wastewater from the indoor aquaculture facility for the production of the reclaimed water Wherein the operational management of the indoor aquaculture facility is remotely controlled using one or more sensors for detecting parameters affecting the activation of useful microorganisms and a data communication network connectable to the Internet. The remote control transmits data obtained from the parameters detected by the sensor to a remote monitoring and control device connected to a data communication network connectable to the Internet, and the indoor control type is controlled by an operation control program. A method carried out by automatically operating an aquaculture facility. 前記有用微生物の活性化に影響するパラメーターが、酸化還元電位、活性汚泥浮遊物濃度、溶存酸素濃度、水温、水量、及びこれらの組み合わせから成る群から選択されることを特徴とする、請求項8に記載の方法。   The parameter affecting the activation of the useful microorganism is selected from the group consisting of redox potential, activated sludge suspended solid concentration, dissolved oxygen concentration, water temperature, water volume, and combinations thereof. The method described in 1. 前記水生生物がスッポンである、請求項8又は9に記載の方法。   The method according to claim 8 or 9, wherein the aquatic organism is a turtle. 前記再生水が、生活系汚水を栄養源として、有用微生物培養槽、撹拌槽、ばっ気槽、沈殿槽、及び汚泥貯槽から成る再生水製造施設において、腐植土を充填した該有用微生物培養槽において培養した有用微生物の作用により生成することを特徴とする、請求項8〜10のいずれか1項に記載の循環型養殖方法。   The reclaimed water was cultured in the rejuvenated water production facility consisting of useful microorganism culture tank, agitation tank, aeration tank, sedimentation tank, and sludge storage tank, using living wastewater as a nutrient source, in the useful microorganism culture tank filled with humus soil. It produces | generates by the effect | action of a useful microorganism, The circulation type culture method of any one of Claims 8-10 characterized by the above-mentioned. 前記有用微生物が、光合成細菌、放線菌、糸状菌、乳酸菌及び枯草菌から成る群から選定されることを特徴とする、請求項8〜11のいずれか1項に記載の循環型養殖方法。   The circulating culture method according to any one of claims 8 to 11, wherein the useful microorganism is selected from the group consisting of photosynthetic bacteria, actinomycetes, filamentous fungi, lactic acid bacteria and Bacillus subtilis. 前記腐植土が、a)好気性細菌及び/又は通性嫌気性細菌の細菌群からの代謝産物、或いは当該代謝産物を含む物質、b)活性化した珪酸分を多量に含む物質、c)有機物を含んで成ることを特徴とする、請求項11に記載の循環型養殖方法。   The humus is a) a metabolite from a bacterial group of aerobic bacteria and / or facultative anaerobic bacteria, or a substance containing the metabolite, b) a substance containing a large amount of activated silicic acid, c) an organic substance The circulating culture method according to claim 11, comprising: 前記腐植土が、a)好気性細菌及び/又は通性嫌気性細菌の細菌群から産出されたフェノール及び/又はフェノール露出基のある代謝産物、或いは当該代謝産物を含む物質、b)タンパク質又は炭水化物、或いはタンパク質、炭水化物及び脂肪の組合せを、含んで成ることを特徴とする、請求項11に記載の循環型養殖方法。   The humus soil is a) a metabolite having a phenol and / or phenol-exposed group produced from a bacterial group of aerobic bacteria and / or facultative anaerobic bacteria, or a substance containing the metabolite, b) a protein or a carbohydrate The circulating culture method according to claim 11, further comprising a combination of protein, carbohydrate and fat. 前記屋内型養殖施設から排出される排水を、前記再生水の製造処理施設内の撹拌槽へ還流し系外に排出せずに再利用することを特徴とする、請求項8〜10のいずれか1項に記載の循環型養殖方法。   The wastewater discharged from the indoor aquaculture facility is recycled to the stirring tank in the reclaimed water production treatment facility without being discharged out of the system. The recirculating aquaculture method according to item. 前記請求項1又は2に記載の循環型植物栽培方法と、前記請求項8又は9に記載の循環型養殖方法とを組合せることを特徴とする循環型再生水利用方法であって、該栽培方法における屋内型植物施設から排出される酸素及び該養殖方法における屋内型養殖施設から排出される二酸化炭素を相互に利用することを含んで成る、循環型再生水利用方法。   A recycling-type reclaimed water utilization method comprising combining the recycling-type plant cultivation method according to claim 1 or 2 and the circulation-type aquaculture method according to claim 8 or 9, wherein the cultivation method A method for using recycled reclaimed water, comprising mutually using oxygen discharged from an indoor plant facility in the plant and carbon dioxide discharged from the indoor farm facility in the farming method.
JP2007324926A 2007-12-17 2007-12-17 Recycled water use method by remote control of organic wastewater treatment Active JP5224799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007324926A JP5224799B2 (en) 2007-12-17 2007-12-17 Recycled water use method by remote control of organic wastewater treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007324926A JP5224799B2 (en) 2007-12-17 2007-12-17 Recycled water use method by remote control of organic wastewater treatment

Publications (2)

Publication Number Publication Date
JP2009142231A true JP2009142231A (en) 2009-07-02
JP5224799B2 JP5224799B2 (en) 2013-07-03

Family

ID=40913600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007324926A Active JP5224799B2 (en) 2007-12-17 2007-12-17 Recycled water use method by remote control of organic wastewater treatment

Country Status (1)

Country Link
JP (1) JP5224799B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245476A (en) * 2010-05-26 2011-12-08 Universal Engineering Co Ltd Sludge modifying machine and water treatment facility provided with sludge modifying machines in parallel
JP5330589B1 (en) * 2012-12-06 2013-10-30 大志 比氣 Drainage sludge information detection device
JP2015231591A (en) * 2014-06-09 2015-12-24 三菱レイヨン株式会社 Remote supervisory control system
JPWO2014034581A1 (en) * 2012-08-30 2016-08-08 東レ株式会社 Method for producing vinylidene fluoride resin fine particles, and vinylidene fluoride resin fine particles
JP2017070258A (en) * 2015-10-08 2017-04-13 東和酵素株式会社 Cultivation method for aquatic animal and method for shortening a culture period
CN114262659A (en) * 2021-12-03 2022-04-01 中国船舶重工集团公司第七0四研究所 Automatic bacteria culture system for marine domestic sewage treatment device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141327A (en) * 1976-05-21 1977-11-25 Kunihiko Murai Growing device combined vegetable cultivation and fish culture
JPS60239380A (en) * 1984-05-12 1985-11-28 青木電器工業株式会社 Manufacture of humus
JPH06113688A (en) * 1992-09-29 1994-04-26 Toshiba Corp Culture of plant by using liquid separated from
JPH10249366A (en) * 1997-03-11 1998-09-22 Purio:Kk Complete sewage treatment and useful liquid obtainable from the treatment
JP2001054320A (en) * 1999-08-13 2001-02-27 Mitsubishi Chemicals Corp Method for culturing plant
JP2003023887A (en) * 2001-07-19 2003-01-28 Kubota Corp Method for circulating type protected cultivation
JP2004166648A (en) * 2002-11-22 2004-06-17 Gijutsushi Kyodo Kumiai Vegetable cultivation method and apparatus
JP2004194585A (en) * 2002-12-19 2004-07-15 Ebara Corp Plant-cultivating apparatus
JP2004298732A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Electrolytic device and water treatment device using it, and hydroponic culture system using them
WO2005100267A1 (en) * 2004-03-30 2005-10-27 Masaki Envec Co. Ltd. Drainage treatment apparatus using humic matters
JP2006042635A (en) * 2004-08-02 2006-02-16 Dr Fish Biotech Inc Automated indoor culture system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141327A (en) * 1976-05-21 1977-11-25 Kunihiko Murai Growing device combined vegetable cultivation and fish culture
JPS60239380A (en) * 1984-05-12 1985-11-28 青木電器工業株式会社 Manufacture of humus
JPH06113688A (en) * 1992-09-29 1994-04-26 Toshiba Corp Culture of plant by using liquid separated from
JPH10249366A (en) * 1997-03-11 1998-09-22 Purio:Kk Complete sewage treatment and useful liquid obtainable from the treatment
JP2001054320A (en) * 1999-08-13 2001-02-27 Mitsubishi Chemicals Corp Method for culturing plant
JP2003023887A (en) * 2001-07-19 2003-01-28 Kubota Corp Method for circulating type protected cultivation
JP2004166648A (en) * 2002-11-22 2004-06-17 Gijutsushi Kyodo Kumiai Vegetable cultivation method and apparatus
JP2004194585A (en) * 2002-12-19 2004-07-15 Ebara Corp Plant-cultivating apparatus
JP2004298732A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Electrolytic device and water treatment device using it, and hydroponic culture system using them
WO2005100267A1 (en) * 2004-03-30 2005-10-27 Masaki Envec Co. Ltd. Drainage treatment apparatus using humic matters
JP2006042635A (en) * 2004-08-02 2006-02-16 Dr Fish Biotech Inc Automated indoor culture system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245476A (en) * 2010-05-26 2011-12-08 Universal Engineering Co Ltd Sludge modifying machine and water treatment facility provided with sludge modifying machines in parallel
JPWO2014034581A1 (en) * 2012-08-30 2016-08-08 東レ株式会社 Method for producing vinylidene fluoride resin fine particles, and vinylidene fluoride resin fine particles
JP5330589B1 (en) * 2012-12-06 2013-10-30 大志 比氣 Drainage sludge information detection device
JP2014113520A (en) * 2012-12-06 2014-06-26 Hiroshi Hiki Effluent system sludge information detection device
JP2015231591A (en) * 2014-06-09 2015-12-24 三菱レイヨン株式会社 Remote supervisory control system
JP2017070258A (en) * 2015-10-08 2017-04-13 東和酵素株式会社 Cultivation method for aquatic animal and method for shortening a culture period
CN114262659A (en) * 2021-12-03 2022-04-01 中国船舶重工集团公司第七0四研究所 Automatic bacteria culture system for marine domestic sewage treatment device

Also Published As

Publication number Publication date
JP5224799B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP4384141B2 (en) How to use recycled water
Yeh et al. Artificial floating islands for environmental improvement
WO2015127904A1 (en) Super-large scale photon capture bioreactor for water purification and operation method therefor
JP5224799B2 (en) Recycled water use method by remote control of organic wastewater treatment
CN103250668A (en) System combining aquaculture and soilless agriculture planting
CN106277320A (en) A kind of Penaeus vannamei freshwater cultivation water regulation method
CN108374577A (en) A kind of agricultural breeding ecological resources circulating production system
CN103648987B (en) For system and its working method of decomposing organic compounds
CN114085003A (en) Micro-power intelligent rural drought-to-toilet-changing feces recycling treatment system
US20030209489A1 (en) System and method for remediation of waste
CN109111061A (en) Livestock breeding wastewater circulation recycling system and method
CN108990869A (en) It is superimposed multilayer industrial aquaculture case
CN110776194B (en) Wastewater treatment system and method based on ecological water treatment coupling geothermal energy
CN102126816B (en) Method for treating sewage by adopting biological-physical combined method
CN208829494U (en) A kind of sewage dystopy Ecosystem restoration system
CN110204054A (en) A method of utilizing duckweed processing high concentration antibiotic pig raising biogas slurry
CN101348308B (en) Novel town sewerage mixed treatment process
CN209652075U (en) Livestock breeding wastewater circulation recycling system
CN208166808U (en) A kind of sewage-treatment plant for calf cultivation
CN107759017B (en) Excrement treatment process
CN110357264A (en) Multi-effect water body restoration device
CN109368808A (en) A kind of device of deflector type fixed bed vehicle treated animal dung sewage and application
CN108706819A (en) A kind of method of HC high-effective microorganisms processing livestock and poultry cultivation sewage
Torres et al. Development of an organic fertilizer bioreactor for the bioconversion of dried chicken manure into organic liquid solution.
CN109280627B (en) Method for rapidly and continuously culturing attached growth rhodopseudomonas photosynthetic bacteria

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R150 Certificate of patent or registration of utility model

Ref document number: 5224799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250