JP2004166648A - Vegetable cultivation method and apparatus - Google Patents

Vegetable cultivation method and apparatus Download PDF

Info

Publication number
JP2004166648A
JP2004166648A JP2002338815A JP2002338815A JP2004166648A JP 2004166648 A JP2004166648 A JP 2004166648A JP 2002338815 A JP2002338815 A JP 2002338815A JP 2002338815 A JP2002338815 A JP 2002338815A JP 2004166648 A JP2004166648 A JP 2004166648A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
plant
air
cultivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002338815A
Other languages
Japanese (ja)
Inventor
Akio Nojiri
昭夫 野尻
Tamotsu Tawara
保 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GIJUTSUSHI KYODO KUMIAI
Original Assignee
GIJUTSUSHI KYODO KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GIJUTSUSHI KYODO KUMIAI filed Critical GIJUTSUSHI KYODO KUMIAI
Priority to JP2002338815A priority Critical patent/JP2004166648A/en
Publication of JP2004166648A publication Critical patent/JP2004166648A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Landscapes

  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)
  • Hydroponics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for efficiently, safely and stably supply carbon dioxide gas at a low cost taking the acceleration of carbon dioxide assimilation action into consideration. <P>SOLUTION: The carbon dioxide gas supplying system has a module of a carbon dioxide gas permeation membrane, a pump, a controller and a regulating valve. The acceleration of carbon dioxide assimilation action can be confirmed by combining the system with a greenhouse 6. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本技術は、植物の育成を早める植物栽培方法に関する。より詳細には、植物の育成を促進するため、常態の空気より高濃度の炭酸ガスを使用する、植物栽培方法に関する。
【0002】
【発明が解決しようとする課題】
現在行われている植物の栽培は、殆どすべてが太陽光を用いての路地またはハウス栽培であって、太陽光の入り難い建物内の人工光による栽培は、水や温度の適正条件をとることが難しく、未だ研究の段階を出ていない。
【0003】
しかし、人工光で植物を栽培する場合、供給気体の炭酸ガス濃度を高めることにより、野菜などの生産効率が高められることは公知である。そして温室などの栽培室中の炭酸ガス濃度を高めた状態での野菜栽培は実際に行われている。しかし、後述するように、安全にかつ安定的に、高濃度の炭酸ガスを富化した空気を供給するシステムは、実用装置として存在しなかった。実際的には、温室内に、炭酸ガスボンベから減圧弁を介して、直接、ガスを送る方法がある。また燃料を燃焼させ、燃焼ガスを送る方法がある。
【0004】
前者は、高圧ガス取締り法の適用を受け、安全上また、設置場所等の問題もある。後者は安全上や省エネルギーの面からも問題がある。
【0005】
【課題を解決するための手段】
本発明者らは上記問題点を解決するため炭酸ガス濃度を空気の常態(約320ppm)に比し2から10倍程度高めた環境において炭酸同化作用が促進されることに着目し、効率よく安全にかつ安定的に、そして安価に炭酸ガスを供給するためのシステムを検討し、次の結果に到達した。すなわち本発明者らは気体分離膜を用いた炭酸ガス濃度制御システムを発明した。この方法を一般の栽培方法ばかりでなく水耕栽培と組み合わせて使用することでその有効性を実証するために実験を行った。その結果、特に蛍光灯などによる光照射方法を取り入れた水耕栽培と組み合わせた場合は見た目にも美しく、衛生的な環境を演出すると同時に本来植物の持ち合わせている生命力を十分発揮できる環境の一要因である炭酸ガス濃度を局所的に高めることができるようになった。本発明による装置は、小型、軽量なため、ごく小規模で、安全に、安定的に植物一株から少数株向けなど目的の局所に必要な量を供給が可能なシステムである。かつこのシステムを用いることにより家庭菜園、ベランダ菜園、居間のインテリアやレストランのインテリアを兼ねた野菜畑の効率を飛躍的に向上させる道を開くことに成功した。これらの事実を確認し本発明を完成した。
【0006】
すなわち本発明は1植物栽培において、炭酸ガス透過膜を透過した気体を植物に供給することを特徴とする植物栽培方法である。
【0007】
また本発明は、2上記において、炭酸ガス透過膜を透過した空気を植物に供給するための植物栽培用装置である。
【0008】
本発明の植物とは、葉采類のレタス類、ホーレン草、みつ葉、小松菜、ブロッコリー、カリフラワー、果采類のトマト類キュウリ、なす、ピーマン、メロン、根菜類として大根、かぶ、ラディッシュ、ニンジン、他にイチゴなどがあげられ、花はバラ、カーネーション、ハイビスカス、インパチェンス、日日草、ゼラニウム、セントポーリアなどである。
【0009】
本発明の炭酸ガス透過膜とは窒素に比べて相対的に炭酸ガスの透過速度の速いフィルム状物質をいう。
膜として使用可能な代表的な物質は以下のようで、窒素を1としたときの透過率の比を酸素と炭酸ガスについて記載する。
すなわち N:O:CO=1:a:b aは酸素、bは炭酸ガスを示す
(1) 水素化ポリブタジエン: 1:2.5:12.6
(2) アモルファスポリイソプレン(トランス): 1:2.9:16.5
(3) 2−メチル−1,3−ペンタジエン85%と
4メチル−1,3ペンタジエン15%の共重合体 1:3.7:16.4
(4) ポリオキシ−2,6−ジメチル−1.4−フェニレン: 1:4.2:19.9
(5) 10%架橋シリコンゴム含有ポリオキシジメチルシリレン: 1:2.2:14.3
(6) エチルセルロース: 1:3.3:25.5
などをあげることができる。窒素と炭酸ガスの透過速度の比で表せば1:10以上の物質を言う。好ましくは1:12以上の物質である。
【0010】
炭酸ガス富化膜を使用することにより同時に酸素や他の気体の組成比も変わりうるが炭酸同化作用への影響としては炭酸ガス濃度が圧倒的に影響が高かった。上記(1)の水素化ポリブタジエン膜を用いて空気を減圧ポンプ吸引すると炭酸ガス濃度が900ppmのとき酸素濃度は32%の組成の気体を得ることができ同時に得られた高濃度酸素も栽培時に根の健康と成長を支える効果があった。しかし本発明においてのポイントはあくまでも炭酸ガスを分離膜により高濃度にした装置であり酸素が高濃度であるかどうかは二次的なことである。
【0011】
本発明の植物への気体の供給方法とは、炭酸ガス透過膜を透過した気体を目的とする植物に、何らかの方法で、局所に供給される必要がある。例えば水耕栽培では根部25は水中にあり、(図3を参照)植物を保持するための仕切り板26がある。仕切り板の孔部22に、植物があたかも植え込まれた形で保持されている。気体は仕切板26と水面との間に導入することも効果がある。あるいは、葉部20にシャワー状に気体を降り注いでもよい。
【0012】
またここでいう局所への供給とは、炭酸ガスの富化空気の供給口が植物の根の部分や葉の部分に対して、目的に合わせて植物の各部位に向けて供給するということを意味する。
本発明において、水耕栽培において、膜モジュールを透過した空気は例えば図1の装置を用い発生させた炭酸ガス富化空気を図3において示せば、仕切板下の空気相あるいは仕切り板上方に噴出口を設けてもよい。
【0013】
【発明の実施の形態】
以下、本発明の炭酸ガス富化膜からなるモジュールを構成要素として含む装置について図1乃至図3を用いて説明する。
【0014】
植物にCOを供給するための装置は、▲1▼炭酸ガス透過用平膜を用いるか、▲2▼中空繊維束からなる炭酸ガス冨化膜を主要な構成要素としたモジュール(図2)とコンプレッサー1
配管3、5、流量調整弁4、ファン7などの気体送風装置、必要に応じて局部に必要な流量の気体を供給するための制御システム8である。即ち、一例を挙げれば、空気をコンプレッサーで約3kg/cmに加圧して、必要に応じて、例えば0.01m/minから数10m/minのほぼ一定量に調節し、配管でモジュール入口3’ に送風する。ここでモジュールを、図2を使って説明する。膜モジュールは、圧縮空気から炭酸ガス富化空気とそれ以外の気体に分離するための装置であって、以下の構成からなる。
【0015】
容器部本体である外筒17、中空繊維束を収納するファイバー部は、圧縮空気部14、出口空気部16、ファイバー部13と14・16とを隔てるファイバー支持部15、からなる。そして圧縮空気を送入する入口部10、炭酸ガス富化空気を取り出す取り出し部12、出口部11、から構成される。
【0016】
膜モジュールを透過した気体は常圧より若干高い圧力で配管3を通り、流量調整弁4を通り、配管5を経て、必要個所6に送られる。開閉弁への別の配管9は配管5の炭酸ガス濃度を調節するため、コンプレッサーで加圧した空気を送る配管であり、制御システム8で流量調整を行なって配管3からの気体と混合させる。
【0017】
好ましい炭酸ガス濃度は400ppmから5000ppmまでをいう。
望ましくは600ppmから3000ppmである。400ppm以下では通常の空気300ppmに比べて明らかな効果をみとめにくく、5000ppm以上では障害を起こしやすくなる物もあって植物の生育に不向きである。尚、植物の炭酸同化作用にとって有効な濃度は600ppmから1500ppm程度であるが、供給時に植物の周りにある空気で希釈されてしまうため、本発明の装置から供給できる炭酸ガス濃度としてはやや高めの範囲のものも有効に使用できる。
【0018】
本発明の植物栽培方法は、炭酸ガス富化空気の供給と水耕栽培と組み合わせることによって著しい効果を得ることができる。本発明にとって水耕栽培は極めて重要な方法ではあるが、土耕や砂耕、鉢植えなどの植物にもすべての方法に利用できる。
【0019】
本発明の一つの実施態様として水素化ポリブタジエンによるガス分離膜を用いると、通常の空気(窒素約79%、酸素約21%、炭酸ガス約320ppm)から(窒素約68%、酸素約32%。炭酸ガス約900ppm)の混合気体が得られる。すなわち炭酸ガスが高濃度であるばかりでなく酸素も同時に高濃度になっている。このことは水耕栽培において仕切板下の空気相に噴出することにより根に高濃度の炭酸ガスや酸素を供給できることで根からも炭酸ガスを吸収できるばかりでなく、酸素の作用により根の健康が保ちやすくなるものと思われる。さらに水耕栽培の水量も下げることができ根の成長を促進できる。
【0020】
また本発明においては、光源18は不可欠である。光源としては、蛍光灯や白熱灯を用いるが、直接、熱が葉面に当たらない様にする必要がある。葉面の照度は2000〜20000ルックスである。
【0021】
本発明では水耕栽培が好ましく行われる。水耕栽培とは土を使わず、理想に近いバランスに保った養分液で作物を育てる方式を云う。そのため雑菌が入らずクリーンで、連作障害もなく、必要に応じてコンピュータ制御による養分循環システム、温度管理により、高品質を保つことが出来るなどの効果のある植物栽培方法である。
【0022】
【発明の効果】
図3の装置を用いて以下の実施確認をおこなった。
実施例1、2 炭酸ガス富化モジュールとして水素化ポリブタジエンの中空糸からなる容量20Lのモジュールを用い、入口圧力3kg/cm、流量10L/min、出口圧力1.5kg/cm流量6L/min、炭酸ガス濃度、920ppmの気体(酸素濃度32%、窒素濃度68%)を配管を通して、直接5Lの植物栽培容器(3個植え)に送風した。植物の種類はグリーンリーフレタス、栽培方法は水耕栽培であった。植物への供給方法は仕切板下の空気相への噴出または気中で吹きかける方法とする。栽培時の温度は20℃とし光の強度は蛍光灯6千ルクス、逆方向反射板付きの条件をあわせて比較テストを実施した。その条件と結果を表1に示す。
【0023】
実施例3、4 日日草の栽培
同一の装置を用い、植物の種類は日日草、栽培方法は水耕栽培、使用気体の種類は高濃度炭酸ガス(約900ppm)、高濃度酸素(約32%)、窒素(68%)の混合気体、流速は6L/min、植物への供給方法は仕切板下の空気相への噴出または気中で吹きかける方法とする。栽培時の温度は23℃とし光の強度は蛍光灯5千ルックス、逆方向反射板付きの条件をあわせて比較テストを実施した。その条件と結果を表2に示す。
比較例1、2
水耕、鉢植え、通常の空気など条件をかえて実施。結果は表1に記載。
比較例3、4
水耕、鉢植え、通常の空気など条件をかえて実施。結果は表2に記載。
<実施例と比較例の結果比較>
【表1】

Figure 2004166648
【表2】
Figure 2004166648
以上から、炭酸ガス富化膜を透過した空気を使用するという本発明の効果が顕著であり、短時間で、植物が収穫できることが分かる。
【図面の簡単な説明】
【図1】本発明の植物プラント内の概観図である。
【図2】本発明の炭酸ガス富化膜を主要な構成要素としたモジュールである。
【図3】本発明の植物栽培装置の全体図である。
【符号の説明】
2 モジュール
19 光
21 反射板
22 孔部[0001]
TECHNICAL FIELD OF THE INVENTION
The present technology relates to a plant cultivation method for accelerating plant growth. More specifically, the present invention relates to a plant cultivation method that uses a higher concentration of carbon dioxide than normal air to promote the growth of plants.
[0002]
[Problems to be solved by the invention]
Almost all cultivation of plants currently performed is alley or house cultivation using sunlight, and cultivation using artificial light in buildings where sunlight is hard to enter requires appropriate conditions of water and temperature. It is difficult and has not yet reached the stage of research.
[0003]
However, when cultivating plants with artificial light, it is known that the production efficiency of vegetables and the like can be increased by increasing the concentration of carbon dioxide in the supply gas. Vegetable cultivation is actually performed in a state in which the concentration of carbon dioxide in a cultivation room such as a greenhouse is increased. However, as will be described later, a system for safely and stably supplying high-concentration carbon dioxide-enriched air has not existed as a practical device. Practically, there is a method of sending gas directly from a carbon dioxide gas cylinder into a greenhouse via a pressure reducing valve. There is also a method of burning fuel and sending combustion gas.
[0004]
The former is subject to the High Pressure Gas Control Law, and has problems in terms of safety and installation location. The latter has problems in terms of safety and energy saving.
[0005]
[Means for Solving the Problems]
The present inventors have focused on the fact that carbon dioxide assimilation is promoted in an environment in which the concentration of carbon dioxide is increased about 2 to 10 times as compared with the normal state of air (about 320 ppm) in order to solve the above problems, and is efficiently and safely performed. A system for supplying carbon dioxide gas stably and inexpensively was studied, and the following results were obtained. That is, the present inventors have invented a carbon dioxide gas concentration control system using a gas separation membrane. Experiments were conducted to verify the effectiveness of this method by using it in combination with not only general cultivation methods but also hydroponic cultivation. As a result, especially when combined with hydroponic cultivation that adopts a method of irradiating light such as fluorescent light, it is aesthetically pleasing and creates a hygienic environment, and at the same time, is a factor in an environment that can fully demonstrate the vitality inherent in plants. Can be locally increased. Since the device according to the present invention is small and lightweight, it is a system that is very small and can supply a required amount to a target local area such as a plant to a small number of plants stably and stably. By using this system, we succeeded in opening a way to dramatically improve the efficiency of vegetable gardens that also serve as home gardens, veranda gardens, living room interiors, and restaurant interiors. After confirming these facts, the present invention has been completed.
[0006]
That is, the present invention is a plant cultivation method characterized in that, in one plant cultivation, gas permeated through a carbon dioxide permeable membrane is supplied to the plant.
[0007]
Further, the present invention is the plant cultivation apparatus for supplying air permeated through a carbon dioxide gas permeable membrane to a plant in the above item 2.
[0008]
The plants of the present invention include leaf lettuce, foliage grass, honey leaf, komatsuna, broccoli, cauliflower, fruit tomato cucumber, eggplant, pepper, melon, and radish, turnip, radish, carrot as root vegetables. And strawberry, etc., and the flowers are rose, carnation, hibiscus, impatiens, sunflower, geranium, saintpaulia, etc.
[0009]
The carbon dioxide permeable membrane of the present invention refers to a film-like substance having a relatively high carbon dioxide gas permeation rate as compared with nitrogen.
Typical substances that can be used as the membrane are as follows, and the ratio of the transmittance when nitrogen is set to 1 is described for oxygen and carbon dioxide.
That is, N 2 : O 2 : CO 2 = 1: a: ba indicates oxygen and b indicates carbon dioxide gas. (1) Hydrogenated polybutadiene: 1: 2.5: 12.6
(2) Amorphous polyisoprene (trans): 1: 2.9: 16.5
(3) Copolymer of 85% of 2-methyl-1,3-pentadiene and 15% of 4-methyl-1,3 pentadiene 1: 3.7: 16.4
(4) Polyoxy-2,6-dimethyl-1.4-phenylene: 1: 4.2: 19.9
(5) 10% crosslinked silicone rubber-containing polyoxydimethylsilylene: 1: 2.2: 14.3
(6) Ethyl cellulose: 1: 3.3: 25.5
And so on. A substance having a ratio of nitrogen and carbon dioxide gas transmission rates of 1:10 or more is expressed. Preferably, it is a substance of 1:12 or more.
[0010]
The composition ratio of oxygen and other gases can be changed at the same time by using the carbon dioxide gas-enriched membrane, but the carbon dioxide gas concentration has an overwhelmingly large effect on carbon dioxide assimilation. When air is pumped under reduced pressure using the hydrogenated polybutadiene membrane of the above (1), when the carbon dioxide concentration is 900 ppm, a gas having an oxygen concentration of 32% can be obtained. It has the effect of supporting your health and growth. The point of the present invention, however, is that the apparatus has a high concentration of carbon dioxide gas by a separation membrane, and whether or not oxygen has a high concentration is secondary.
[0011]
The method for supplying gas to a plant according to the present invention requires that gas permeated through a carbon dioxide gas permeable membrane be locally supplied to a target plant by some method. For example, in hydroponics, the root 25 is underwater (see FIG. 3) and there is a partition plate 26 for holding the plants. The plant is held in the hole 22 of the partition plate as if planted. It is also effective to introduce gas between the partition plate 26 and the water surface. Alternatively, a gas may be poured into the leaf 20 in a shower shape.
[0012]
In addition, local supply here means that the supply port of carbon dioxide-enriched air supplies the roots and leaves of the plant to each part of the plant according to the purpose. means.
In the present invention, in the hydroponic cultivation, the air permeated through the membrane module is, for example, carbon dioxide-enriched air generated by using the apparatus shown in FIG. An outlet may be provided.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an apparatus including a module formed of a carbon dioxide gas-enriched film of the present invention as a component will be described with reference to FIGS. 1 to 3.
[0014]
The device for supplying CO 2 to the plant is either (1) using a flat membrane for permeating carbon dioxide, or (2) a module mainly composed of a carbon dioxide-enriched membrane consisting of a hollow fiber bundle (Fig. 2). And compressor 1
A gas blower such as pipes 3 and 5, a flow control valve 4, and a fan 7, and a control system 8 for supplying a required flow of gas to a local area as needed. That is, to give an example, the air is pressurized to about 3 kg / cm 2 by a compressor, and if necessary, is adjusted to a substantially constant amount of, for example, 0.01 m 3 / min to several tens m 3 / min. Ventilate to entrance 3 '. Here, the module will be described with reference to FIG. The membrane module is a device for separating compressed air into carbon dioxide-enriched air and other gases, and has the following configuration.
[0015]
The outer cylinder 17, which is the container body, and the fiber section for storing the hollow fiber bundle are composed of a compressed air section 14, an outlet air section 16, and a fiber support section 15 for separating the fiber sections 13 and 14. An inlet 10 for feeding compressed air, a take-out unit 12 for taking out carbon dioxide-enriched air, and an outlet 11 are provided.
[0016]
The gas that has passed through the membrane module passes through the pipe 3 at a pressure slightly higher than the normal pressure, passes through the flow control valve 4, passes through the pipe 5, and is sent to a required location 6. Another pipe 9 to the on-off valve is a pipe for sending air pressurized by a compressor in order to adjust the concentration of carbon dioxide in the pipe 5, and the flow rate is adjusted by the control system 8 to be mixed with the gas from the pipe 3.
[0017]
A preferred carbon dioxide concentration is from 400 ppm to 5000 ppm.
Desirably, it is 600 ppm to 3000 ppm. At 400 ppm or less, it is difficult to obtain a clear effect as compared with normal air at 300 ppm, and at 5000 ppm or more, there is a substance that is liable to cause damage and is not suitable for plant growth. The effective concentration for carbon dioxide assimilation of plants is about 600 ppm to 1500 ppm. However, since it is diluted with air around the plants at the time of supply, the concentration of carbon dioxide gas that can be supplied from the apparatus of the present invention is slightly higher. Those in the range can also be used effectively.
[0018]
The plant cultivation method of the present invention can achieve a remarkable effect by combining the supply of carbon dioxide-enriched air with the hydroponic cultivation. Although hydroponic cultivation is an extremely important method for the present invention, it can be applied to all methods for soil cultivation, sand culture, potted plants and the like.
[0019]
Using a hydrogenated polybutadiene gas separation membrane in one embodiment of the present invention, from normal air (about 79% nitrogen, about 21% oxygen, about 320 ppm carbon dioxide) (about 68% nitrogen, about 32% oxygen). A mixed gas of about 900 ppm of carbon dioxide is obtained. That is, not only is the concentration of carbon dioxide high, but also the concentration of oxygen is high. This means that high-density carbon dioxide and oxygen can be supplied to the roots by squirting into the air phase below the partition plate in hydroponic cultivation, so that not only can the roots absorb carbon dioxide, but also the health of the roots by the action of oxygen Seems to be easier to keep. Furthermore, the amount of water for hydroponics can be reduced, and root growth can be promoted.
[0020]
In the present invention, the light source 18 is indispensable. As a light source, a fluorescent lamp or an incandescent lamp is used, but it is necessary to prevent heat from directly hitting the leaves. The illuminance on the leaves is between 2000 and 20000 lux.
[0021]
In the present invention, hydroponics is preferably performed. Hydroponic cultivation refers to a method of growing crops using nutrient solutions that maintain a nearly ideal balance without using soil. Therefore, the method is a plant cultivation method that is effective in that it is clean without any germs, has no continuous cropping trouble, and can maintain high quality by a computer-controlled nutrient circulating system and temperature control as required.
[0022]
【The invention's effect】
The following execution confirmation was performed using the apparatus of FIG.
Examples 1 and 2 As a carbon dioxide gas-enriched module, a module having a capacity of 20 L composed of hollow fibers of hydrogenated polybutadiene was used, an inlet pressure was 3 kg / cm 2 , a flow rate was 10 L / min, and an outlet pressure was 1.5 kg / cm 2 and a flow rate was 6 L / min. A gas having a carbon dioxide concentration of 920 ppm (oxygen concentration 32%, nitrogen concentration 68%) was directly blown into a 5 L plant cultivation container (three plants) through a pipe. The type of plant was green leaf lettuce, and the cultivation method was hydroponics. The method of supplying the plants is to blow them into the air phase below the partition plate or spray them in the air. The temperature at the time of cultivation was set to 20 ° C., the light intensity was set to 6,000 lux with a fluorescent lamp, and a comparative test was performed under the conditions of having a retroreflector. Table 1 shows the conditions and results.
[0023]
Examples 3 and 4 Cultivation of Sungrass The same equipment was used, the plant type was sungrass, the cultivation method was hydroponics, and the type of gas used was high-concentration carbon dioxide (about 900 ppm) and high-concentration oxygen (about 900 ppm). 32%), a mixed gas of nitrogen (68%), the flow rate is 6 L / min, and the method of supplying to the plant is a method of blowing into the air phase below the partition plate or blowing in the air. A comparative test was carried out under the conditions of cultivation at 23 ° C., light intensity of 5,000 lux fluorescent light, and conditions with a retroreflector. Table 2 shows the conditions and results.
Comparative Examples 1 and 2
Hydroponics, potted plants, normal air, etc. under different conditions. The results are shown in Table 1.
Comparative Examples 3 and 4
Hydroponics, potted plants, normal air, etc. under different conditions. The results are shown in Table 2.
<Comparison of results between Example and Comparative Example>
[Table 1]
Figure 2004166648
[Table 2]
Figure 2004166648
From the above, it can be seen that the effect of the present invention of using air permeated through the carbon dioxide-enriched membrane is remarkable, and that plants can be harvested in a short time.
[Brief description of the drawings]
FIG. 1 is a schematic view of the inside of a plant plant of the present invention.
FIG. 2 is a module using the carbon dioxide-enriched membrane of the present invention as a main component.
FIG. 3 is an overall view of the plant cultivation apparatus of the present invention.
[Explanation of symbols]
2 Module 19 Light 21 Reflector 22 Hole

Claims (2)

常態の空気よりも高濃度の炭酸ガスを供給する植物栽培方法において、炭酸ガス透過膜を透過した空気を植物に供給することを特徴とする植物栽培方法A plant cultivation method for supplying carbon dioxide at a higher concentration than normal air, comprising supplying air permeating a carbon dioxide permeable membrane to a plant. 請求項1記載の炭酸ガス透過膜を透過した空気を植物に供給するための装置An apparatus for supplying air permeating the carbon dioxide permeable membrane according to claim 1 to a plant.
JP2002338815A 2002-11-22 2002-11-22 Vegetable cultivation method and apparatus Pending JP2004166648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002338815A JP2004166648A (en) 2002-11-22 2002-11-22 Vegetable cultivation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002338815A JP2004166648A (en) 2002-11-22 2002-11-22 Vegetable cultivation method and apparatus

Publications (1)

Publication Number Publication Date
JP2004166648A true JP2004166648A (en) 2004-06-17

Family

ID=32701926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002338815A Pending JP2004166648A (en) 2002-11-22 2002-11-22 Vegetable cultivation method and apparatus

Country Status (1)

Country Link
JP (1) JP2004166648A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011814A (en) * 2006-07-07 2008-01-24 Unicon Engineering Co Ltd Method for using circulation type regenerated water
JP2008201186A (en) * 2007-02-19 2008-09-04 Zeniya Kaiyo Service Kk Light storage type luminous mooring buoy
JP2008259444A (en) * 2007-04-11 2008-10-30 Hidekazu Nishiyama Method for making periwinkle standard, and standard making of periwinkle made by the same
JP2009142231A (en) * 2007-12-17 2009-07-02 Universal Consultant Kk Method for using circulating recycled water by remote control of organic waste water treatment
KR200447866Y1 (en) 2007-04-11 2010-02-24 강민구 A co2 supply
CN104920115A (en) * 2015-06-19 2015-09-23 丁盛生 Greenhouse carbon dioxide generator
JP2015204801A (en) * 2014-04-22 2015-11-19 岩谷産業株式会社 plant cultivation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011814A (en) * 2006-07-07 2008-01-24 Unicon Engineering Co Ltd Method for using circulation type regenerated water
JP2008201186A (en) * 2007-02-19 2008-09-04 Zeniya Kaiyo Service Kk Light storage type luminous mooring buoy
JP2008259444A (en) * 2007-04-11 2008-10-30 Hidekazu Nishiyama Method for making periwinkle standard, and standard making of periwinkle made by the same
KR200447866Y1 (en) 2007-04-11 2010-02-24 강민구 A co2 supply
JP4762948B2 (en) * 2007-04-11 2011-08-31 英一 西山 Daily grass standard tailoring method and daily grass standard tailoring tailored by that method
JP2009142231A (en) * 2007-12-17 2009-07-02 Universal Consultant Kk Method for using circulating recycled water by remote control of organic waste water treatment
JP2015204801A (en) * 2014-04-22 2015-11-19 岩谷産業株式会社 plant cultivation method
CN104920115A (en) * 2015-06-19 2015-09-23 丁盛生 Greenhouse carbon dioxide generator

Similar Documents

Publication Publication Date Title
CN103098665B (en) System and method of planting of plant based on standard environment
CN106170201B (en) High-density soilless plant growth system and method
CN107426977A (en) Plant indoor growing system with simulation natural lighting condition
CA2636382A1 (en) Controlled environment system and method for rapid propagation of seed potato stocks
GB2234415A (en) Plant cultivation and apparatus therefor
JP2007236235A (en) Plant-cultivation plant
JP6392692B2 (en) Equipment for mutual cultivation of spinach and mushrooms
JP7036362B2 (en) Plant root activation method and cultivation method
JP2004166648A (en) Vegetable cultivation method and apparatus
NO991442L (en) System and method of favoring the growth conditions of grass plants included in grasslands
CN207767047U (en) Plant culture mist ploughing system and its small plant factory of utilization
ZA200402799B (en) Method of producing rooted cutting of arboreous plant.
AU2002343943B2 (en) Method of producing rooted cutting of arboreous plant
CN209824729U (en) Breeding greenhouse for miniature detoxified potato
JP2007169183A (en) Growth promotion chamber for plant
JPS63240731A (en) Plant cultivation method and apparatus
JPH0463525A (en) Plant culturing method and plant culturing device
CN109566128A (en) Utilize the method for atomization sticking device cutting propagation mulberry tree nursery stock
CN107094540A (en) A kind of garden plantses high effect culture device
WO2017190705A1 (en) Plant air conditioning system or method
CN108124662A (en) Plant culture mist ploughing system and its small plant factory of utilization
JP2003339227A (en) Method for producing cuttage seedling of woody plant
CN106538273A (en) A kind of indoor plantation nursery thermoregulating system
CN212523666U (en) Open biological filter bed deodorization equipment
KR200288940Y1 (en) Cultivation apparatus and atomizer of ornamental plants by ultrasonic humidification.