JP2009141419A - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
JP2009141419A
JP2009141419A JP2007312615A JP2007312615A JP2009141419A JP 2009141419 A JP2009141419 A JP 2009141419A JP 2007312615 A JP2007312615 A JP 2007312615A JP 2007312615 A JP2007312615 A JP 2007312615A JP 2009141419 A JP2009141419 A JP 2009141419A
Authority
JP
Japan
Prior art keywords
charge
voltage
optical signal
circuit
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007312615A
Other languages
English (en)
Inventor
Takahiko Murata
隆彦 村田
Shigetaka Kasuga
繁孝 春日
Takayoshi Yamada
隆善 山田
Takehisa Kato
剛久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007312615A priority Critical patent/JP2009141419A/ja
Publication of JP2009141419A publication Critical patent/JP2009141419A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】チップサイズの大を必要拡とせずダイナミックレンジの拡張が実現される固体撮像素子を提供する。
【解決手段】複数の画素部が二次元状に配置された固体撮像素子であって、受光強度及び露光時間に応じた光信号電荷を発生する受光素子1と、前記光信号電荷の電荷量に応じて当該電荷量を調節する電荷調節回路12と電荷調節回路12で調節された電荷量に対応する電圧を画素信号として読み出す回路部とを備える。
【選択図】図1

Description

本発明は、固体撮像素子に関し、特にデジタルカメラに用いられる固体撮像素子に関する。
従来の固体撮像装置のダイナミックレンジは、60dBから80dB程度であり、肉眼や銀塩フィルムに匹敵する100dBから120dB程度、あるいは車載カメラや監視カメラ等の用途によってはそれ以上のレベルにまで向上させることが望まれている。
特許文献1では、受光素子で発生した電荷を大容量に蓄積することでダイナミックレンジを拡張する技術が開示されている。
図14は特許文献1記載の固体撮像素子の回路構成図である。
同図における固体撮像素子は、受光素子500と、容量501、502、及び503と、トランジスタ504、505、506、507、508、509、及び510とを備える。
容量501は、受光素子500のカソード側に接続される。容量501は、受光素子500の寄生容量もしくは付加容量によって形成される。トランジスタ504は、受光素子500及び容量501、502、及び503をリセットするリセットトランジスタである。トランジスタ505及び506は、容量501の電荷を転送する。容量502及び503は、受光素子500及び容量501から転送された電荷を蓄積するが、これらはそれぞれ、トランジスタ509及び510のゲート容量を主として構成される。トランジスタ507及び508は、選択スイッチである。トランジスタ509及び510は、ゲートがそれぞれ容量502及び503に接続されたソースフォロワトランジスタであり、容量502及び503の電荷を読み出す機能を有する。
以上のように、受光素子500および容量501に蓄積された電荷は、2系統の出力手段を介して出力される。
次に、図14に記載された従来の固体撮像素子の回路動作を説明する。
はじめに、受光素子500及び容量501の電位は、トランジスタ504によってリセット電位Vrにリセットされる。次に、蓄積期間に受光素子500に光が入射すると、発生した光電荷は受光素子500および容量501に溜められる。次に、トランジスタ505もしくはトランジスタ506をONにすることで、容量502もしくは容量503の電位は、発生した光電荷の転送に応じて変化する。仮に、トランジスタ509のゲートサイズが幅W=1μm、長さL=1μmであり、トランジスタ510のゲートサイズが幅W=10μm、長さL=10μmであるとすると、トランジスタ510のゲート−ソース容量は、トランジスタ509のゲート−ソース容量に比べ10倍となる。すなわち容量503は容量502の10倍となり、ダイナミックレンジは10倍となる。よって、同一光量の撮像をする場合には、トランジスタ510は、蓄積時間10倍までダイナミックレンジ内で動作することが可能となる。
特開2003−134396号公報
しかしながら、上述した特許文献1の技術では、トランジスタ509及び510のゲート寸法を大きくすることで等価容量を増加しダイナミックレンジを拡張しているので、チップサイズが大きくなるという問題がある。
上記問題に鑑み、本発明は、チップサイズの拡大を必要とせずダイナミックレンジの拡張が実現される固体撮像素子を提供することを目的とする。
上記目的を達成するために、本発明に係る固体撮像素子は、複数の画素部が二次元状に配置された固体撮像素子であって、前記画素部は、受光強度及び露光時間に応じた光信号電荷を発生する受光素子と、前記光信号電荷の電荷量に応じて当該電荷量を調節する電荷調節部と前記電荷調節部で調節された電荷量に対応する電圧を画素信号として読み出す回路部とを備えることを特徴とする。
これにより、前記受光素子の受光量に対応して前記受光素子の蓄積電荷量が調節されるので、前記受光素子の蓄積電荷量の飽和が抑制される。よって、結果的には、前記受光素子の蓄積電荷量が飽和領域に達していないダイナミックレンジの拡張が実現される。
また、前記回路部は、第1の露光時間において前記受光素子で発生した第1の光信号電荷に対応する第1光信号電圧を読み出し、前記電荷調節部は、前記第1光信号電圧を前記第1光信号電圧に応じた調節電圧に変換する電圧変換回路と、前記調節電圧をオフセットとして、前記第1の露光時間よりも長い第2の露光時間において前記受光素子で発生した光信号電荷の電荷量を調節する電荷調節回路とを備えることが好ましい。
これにより、短時間である第1の露光時間にて得られた電荷量からオフセット調節電荷量を予め決定しておくことができる。この際に決定されるオフセット調節電荷量は、電圧変換回路により状況に応じた変換がなされたものであるので、状況に応じたダイナミックレンジの調整が可能となり、ダイナミックレンジ調整のバリエーションが増加する。
また、前記電圧変換回路は、前記第1光信号電圧を反転し、前記調節電圧として出力するインバータを備えてもよい。
これにより、前記受光素子で発生した光信号電荷の電荷量を、常に減少させる方向で電荷調整するので、電荷量の飽和によるダイナミックレンジの制限が緩和される。
また、前記電荷調節回路は、カソード端子に前記調節電圧が印加され、アノード端子に前記受光素子の前記光信号電荷を出力する出力ノードが接続されたダイオードを備えることが好ましい。
これにより、電圧変換回路で変換された調節電圧に応じた電流がダイオードのアノード端子に流れるので、同じくアノード端子に接続された前記受光素子で発生した光信号電荷の電荷量が調整される。さらに、電圧調節が簡単なダイオードによって実現される。よって、チップサイズを拡大せずにダイナミックレンジの調整が可能となる。
また、前記電荷調節回路は、ドレイン端子に前記調節電圧が印加され、ソース端子に前記受光素子の前記光信号電荷を出力する出力ノードが接続され、ゲート端子に前記ソース端子が接続されたMOSトランジスタを備えてもよい。
これにより、電圧変換回路で変換された調節電圧に応じた電流がMOSトランジスタのソース端子に流れるので、同じくソース端子に接続された前記受光素子で発生した光信号電荷の電荷量が調整される。さらに、電圧調節が簡単なMOSトランジスタによって実現される。よって、チップサイズを拡大せずにダイナミックレンジの調整が可能となる。
また、前記電荷調節部は、カソード端子に定電圧が印加され、アノード端子に前記受光素子の前記光信号電荷を出力する出力ノードが接続されたダイオードを備えてもよい。
これにより、受光素子の出力側が接続されているダイオードのアノード端子は、受光素子の発生する電荷量により変化する。従って、アノード端子とカソード端子との間には、当該電荷量に対応した電圧が印加されることになり、当該電圧に対応した電流がダイオードのアノード端子に流れるので、受光素子で発生した光信号電荷の電荷量が調節される。さらに、電圧調節回路が簡単なダイオードによって実現され、しかも、電圧変換回路が不要である。さらに、光信号電荷の電荷量調節のための調節電圧を決定するための予備計測が不要となる。よって、チップサイズを拡大せずに、かつ信号電圧の出力までの応答時間を延ばすことなくダイナミックレンジの調整が可能となる。
また、前記ダイオードは、前記カソード端子の電圧の方が前記アノード端子の電圧よりも高く、かつ、前記カソード端子−前記アノード端子間の電圧の増減に対応して電流が増減する逆方向飽和領域で動作することにより、前記光信号電荷の電荷量を減少させることが好ましい。
これにより、電荷調節回路の有するダイオードのカソード端子からアノード端子へと電流が流れるので、光信号による負電荷が蓄積されたアノード端子の電荷量は減少する。また、ダイオードの逆方向飽和領域が使用されるので、ダイオードに印加された電圧の増減に対応した電流がダイオードに流れる。よって、電荷量の飽和によるダイナミックレンジの制限が緩和される。
また、前記電荷調節部は、ドレイン端子に定電圧が印加され、ソース端子に前記受光素子の前記光信号電荷を出力する出力ノードが接続され、ゲート端子に当該ソース端子が接続されたMOSトランジスタを備えてもよい。
これにより、ドレイン端子には定電圧が印加されるものの、ソース端子と短絡されたゲート端子には、受光素子の光信号電荷に応じた電圧が印加されているので、ドレイン端子とゲート端子間には、当該光信号電荷に応じた電圧が印加され当該電圧に応じた電流がソース端子に流れる。よって、受光素子で発生した光信号電荷の電荷量は調節される。さらに、電圧調節回路が簡単なMOSトランジスタによって実現され、しかも、電圧変換回路が不要である。さらに、光信号電荷の電荷量調節のための調節電圧を決定するための予備計測が不要となる。よって、チップサイズを拡大せずに、かつ信号電圧の出力までの応答時間を延ばすことなくダイナミックレンジの調整が可能となる。
また、前記回路部は、前記光信号電荷を転送する転送回路と、前記転送回路を介して前記光信号電荷に対応する信号電圧を発生する信号発生回路と、前記信号電圧を画素信号として読み出す読み出し回路と、前記信号発生回路における前記信号電圧をリセットするリセット回路とを備えてもよい。
これにより、受光素子で発生した光信号電荷が調節された信号電圧を外部回路へ読み出す前に、当該信号電圧が保持されるので、所定のタイミングで当該信号電圧が外部回路へ読み出される。また、光信号電荷の蓄積および調節と、信号電圧の読み出しが同時に実行され得る。
また、前記回路部は、前記光信号電荷に対応する信号電圧を画素信号として読み出す読み出し回路と、前記光信号電荷を出力する出力ノードの電圧をリセットするリセット回路とを備えてもよい。
転送部や拡散層のない構造においては、受光素子で発生した光信号電荷が当該光信号電荷が信号電圧として読み出されるまで前記出力ノードにて蓄積されるので電荷の飽和が発生しやすい。しかし、本構成をとることにより、前記出力ノードの電荷調節が実行されるので、ダイナミックレンジの拡大が実現される。
また、前記電荷調節回路は、さらに、前記ゲート端子と前記ソース端子との間にスイッチが接続され、当該スイッチがオフの場合は前記出力ノードの電圧を前記ドレイン端子の電圧でリセットするリセット回路となってもよい。
これにより、同一のMOSトランジスタを、前記出力ノードの電荷リセット用途と電荷調節用途とで共用できるので、チップサイズの拡大を必要としないダイナミックレンジの拡大が実現される。
また、本発明は、上記のような特徴を有する固体撮像素子として実現することができるだけでなく、このような固体撮像素子を備えるカメラとしても、同様の構成と効果がある。
また、本発明は、このような特徴的な手段を備える固体撮像素子として実現することができるだけでなく、固体撮像素子に含まれる特徴的な手段をステップとする固体撮像素子の駆動方法として実現することができる。
本発明の固体撮像素子によれば、受光素子の受光量に応じて光信号電荷が調節されるので、信号ごとに受光素子の感度を調節でき、受光量が比較的少ない受光素子では高感度を維持し、受光量の多い受光素子では感度を押さえることができる。また、簡単なダイオードやMOSトランジスタを付加することのみで、電荷調節機能が実現される。従って、チップを大きくせずにダイナミックレンジの拡張が達成される。
(実施の形態1)
本実施の形態1における固体撮像素子は、受光素子と、当該受光素子で発生した光信号電荷に対応した信号電圧を読み出す回路部と、短い第1の露光時間にて発生した光信号電荷に対応する第1の光信号電圧を調節電圧に変換する電圧変換回路と、当該調節電圧を第2の露光時間にて発生した第2の光信号電荷にオフセットして、当該第2の光信号電荷を調節する電荷調節回路とを画素部内に備える。
この実施の形態によれば、オフセット調節電荷量は、電圧変換回路により状況に応じて変換され、また、電圧変換回路や電圧調節回路は簡単な回路素子で実現されるので、チップサイズを拡大することなく、状況に応じたダイナミックレンジの調整が可能となる。
以下、本発明の実施の形態1に係る固体撮像素子について図面を参照しながら詳細に説明する。
図1は、本発明の実施の形態1に係る固体撮像素子の基本回路構成図である。同図における固体撮像素子は、受光素子1と、MOS(Metal Oxide Semiconductor)トランジスタ2、3、4、5、6、8、及び11と、容量9及び10と、電荷調節回路12と、電圧変換回路13とを備える。なお、容量14は浮遊容量である。
受光素子1は、受光強度に応じた光信号電荷を発生する受光素子である。
MOSトランジスタ2は、転送回路を構成し、受光素子1で発生した信号電荷を拡散層FDへ転送するための転送ゲートである。拡散層FDは、光信号電荷に対応する信号電圧を発生する信号発生回路を構成する。つまり、MOSトランジスタ2が導通すると、受光素子1に発生した電荷が拡散層FDに転送される。そして、その電荷に応じた電圧が拡散層FDに発生する。MOSトランジスタ3は、拡散層FDの電圧を初期化電圧VRSTにリセットするトランジスタであり、リセット回路を構成する。MOSトランジスタ4は、読み出し回路を構成し、ゲートにバイアス電圧LGを印加したMOSトランジスタ5と組み合わせることでソースフォロワとして機能している。MOSトランジスタ6は、画素行を選択するスイッチとして機能している。
なお、画素行を選択する機能については、MOSトランジスタ4に接続されているVDDが、行選択用信号として制御されることにより、画素外への出力がオンオフされるという方式が採用され、MOSトランジスタ6がない構成をとってもよい。
また、MOSトランジスタ5は、画素毎に設けられているが、回路素子削減のため垂直共通信号線毎に設けられる構成をとってもよい。
電圧変換回路13は、拡散層FDの電圧に応じた電圧を検知し、電荷調節回路12にバイアス電圧を印加する。
電荷調節回路12は、受光素子1の出力点で発生する光信号電荷量を調節する。
同図において、破線で囲まれた部分が1つの画素内に存在する。
また、MOSトランジスタ8および11、容量9および10はノイズキャンセラを形成しており、画素のリセット状態における出力電圧と光信号電荷に対応した出力電圧との差分が出力されることにより、画素ごとのオフセットばらつきが低減される。
図2は、本発明の実施の形態1に係る固体撮像素子の具体的な回路構成図である。同図に記載された回路構成図は、図1に記載された基本回路構成図を具体化したものである。図2における回路構成図は、図1における回路構成図と比較して、電荷調節回路12及び電圧変換回路13の回路構成と、その間に付加されたMOSトランジスタ17のみが異なる。同じ点は説明を省略し、以下、異なる点のみを説明する。
電圧変換回路13は、MOSトランジスタ131及び132を備える。MOSトランジスタ131のゲート端子はMOSトランジスタ4の出力ノード15に接続され、ソース端子はGND接続され、ドレイン端子はMOSトランジスタ132のソース端子と接続され電圧変換回路13の出力端子となっている。またMOSトランジスタ132のゲート端子はドレイン端子と短絡され電源電圧VDDに接続されている。上記接続により、MOSトランジスタ131及び132は、nチャネルEE形インバータ回路を構成し、ノード15の入力電圧を反転し、かつ、その電圧レベルを調整した調節電圧をノード16に出力する。
なお、電圧変換回路13はインバータ機能を有するものであればよく、上記構成のほかにも、MOSトランジスタを用いたnチャネルED形や相補形などであってもよい。
MOSトランジスタ17は、電圧変換回路13の出力及び電荷調節回路12の入力に接続され、電圧変換回路13と電荷調節回路12との接続及び非接続を制御する。
電荷調節回路12はダイオード121を備える。ダイオード121のアノード端子は受光素子1の出力側であるノード18に接続され、カソード端子はMOSトランジスタ17に接続されている。電圧変換回路13から出力された調節電圧は、MOSトランジスタ17を介してダイオード121のカソードに印加される。この調節電圧がダイオード121のバイアス電圧として印加されることにより、そのバイアス電圧に応じた電流がノード18へ流れ、受光素子1で発生した光信号電荷をオフセットする。
図3は、本発明の実施の形態1に係る固体撮像素子の駆動タイミングチャートである。
ここでは、図2に記載された回路構成を用いてその動作を詳細に説明する。
まず、時刻t1において、制御信号RSTおよびSH、CLの電圧レベルがHIGHとなり、拡散層FDが初期化電圧VRSTに設定されるとともにMOSトランジスタ8、11が導通して端子OUTが電圧VNCDCに設定される。なお、図示していないが、行選択用MOSトランジスタ6はその行が選択されている間ON状態である。
次に、時刻t2では、制御信号RST、CLの電圧レベルがLOWとなり、MOSトランジスタ3、11が非導通となる。
次に、時刻t3では、制御信号TRANの電圧レベルがHIGHとなり、MOSトランジスタ2が導通し、蓄積時間Tiにおいて受光素子1で発生した光信号電荷が拡散層FDに転送される。拡散層FDでは転送された電荷に応じて電圧降下が生じる。この電圧降下がMOSトランジスタ4及び5で構成するソースフォロワ回路、MOSトランジスタ6及び8を介して容量9のMOSトランジスタ8側の端子に伝わる。端子OUTでは、この電圧降下のうち、容量9及び10にて容量分配された分だけ電圧変化が生じ、VNCDCとの差が信号出力となる。
次に、時刻t5では、再び制御信号RSTの電圧レベルがHIGHとなり、拡散層FDが初期化電圧VRSTに設定される。
次に、時刻t6では、制御信号TRANの電圧レベルがHIGHとなり、蓄積時間Tiに比べ非常に短い蓄積時間Tisにおいて、受光素子1にて発生した信号電荷が拡散層FDに転送される。拡散層FDでは転送された電荷に応じて電圧降下が生じる。この短い時間Tisでの拡散層FDの電圧降下(図3におけるVa)が小さい場合は受光素子1に入射する光量が少なく、また、Vaが大きい場合は受光素子1に入射する光量が非常に多いと考えられる。つまり、蓄積時間Tisにおいて入射する光量が非常に多いときは、信号読み出しを実行する蓄積時間Tiにおいては、受光素子1はすぐに飽和することが予想される。ノード16の信号電圧はノード15の信号電圧が反転され、かつ、ノード15の信号電圧レベルに対応した調節電圧(図3におけるVb+Vpd)が発生している。
次に、時刻t8では、制御信号SETの電圧レベルがHIGHとなり、MOSトランジスタ17が導通してノード16に出力された調節電圧Vbがダイオード121のカソードに印加される。ダイオード121は、アノードに対しカソードの電圧が高く印加されるため、逆方向飽和電流が流れ、受光素子1に蓄積された電荷を減らすように動作する。このダイオード121の動作について、図4及び図5を用いて説明する。
図4は、電圧変換回路13の入出力特性を示す図である。ここで、VtをMOSトランジスタ4の閾値電圧、Vpdを受光素子1からの光信号電荷によるノード18の電圧とする。電圧変換回路13への入力が(Vrst−Vt)、つまり光信号電荷による電圧降下のない電圧が入力された場合は、電圧変換回路13はダイオード121の両端には電圧が発生しないような調節電圧Vpdを出力する。一方、電圧変換回路13への入力が(Vrst−Vt)以下、つまり光信号電荷による電圧降下を含む電圧が入力された場合は、電圧変換回路13はダイオード121のカソード端子にVpd以上の調節電圧(図3におけるVaの電圧降下に対し(Vb+Vpd))を出力する。この電圧変換回路13への入力が(Vrst−Vt)以下においては、入力電圧の降下に伴い出力調節電圧は上昇し、両者は線型な関係となる。図4に記載された特性は、電圧変換回路13のMOSトランジスタ132の電極幅Wを大きく、電極長さLを小さく(たとえばW/L=10程度)した特性である。受光素子1の入射光が少ない場合、時刻t6では受光素子1で発生する電荷が少なく、拡散層FDに転送しても電圧低下はほとんどなく、出力ノード15の電圧は、時刻t5における電圧から変化なく(Vrst−Vt)である。入力電圧が(Vrst−Vt)の場合、電圧変換回路13の出力調節電圧はVpdを発生し、ダイオード121のカソードにVpdを印加する。このとき、ダイオード121はアノード、カソード間電圧に差がないため逆方向飽和電流は流れず、受光素子1の蓄積電荷は減少しない。
以下、ダイオード121が、電圧変換回路13からの調節電圧を入力として電荷調節機能を有することを以下説明する。
図5は、電荷調節回路を構成するダイオードの電圧電流特性を示すグラフである。
受光素子1の入射光が少なく電圧変換回路13からの調節電圧がほぼVpdである場合の動作点は、図5中における“A”点である。このとき、ダイオード121のカソード−アノード間には電圧がかからないため電流が流れず、受光素子1の蓄積電荷は不変である。
一方、受光素子1の入射光が多く電圧変換回路13からの調節電圧が(Vpd+Vb)である場合の動作点は、図5中における“B”点である。このとき、ダイオード121のカソードはアノードよりVbだけ電圧が高くなり、いわゆる逆方向飽和電流が流れ、受光素子1の蓄積電荷を減らす動作をする。
再び、図3に戻って駆動タイミングチャートについての説明をする。
時刻t9では、次の期間Tiの電荷が読み出されるための準備が行われる。すなわち、時刻t1と同様に、制御信号RSTおよびSH、CLの電圧レベルがHIGHとなり、拡散層FDが初期化電圧VRSTに設定されるとともにMOSトランジスタ8、11が導通して端子OUTが電圧VNCDCに設定される。
次に、時刻t10では、制御信号TRANの電圧レベルがHIGHとなり、MOSトランジスタ2が導通し、時刻t8で印加された調節電圧によって調節された次の期間Tiにおける受光素子1の出力電荷量が、拡散層FDに転送される。拡散層FDでは転送された電荷に応じて電圧降下が生じる。
図6(a)は入射光量の少ない場合の入射光量と出力電荷量との関係を示したグラフである。Q1は受光素子1の発生電荷量、Q2は電荷調節回路12を構成するダイオード121の逆方向飽和電流による受光素子1の電荷を減らす電荷量、及びQ3は電荷調節回路により調節されMOSトランジスタ2へ出力される電荷量である。電荷量Q2はほとんどなく、受光素子1の発生した電荷Q1が出力Q3に反映される。
図6(b)は入射光量の多い場合の入射光量と出力電荷量との関係を示したグラフである。Q1、Q2、及びQ3は同図(a)に記載されたものと同定義である。受光素子1から発生電荷量Q1と電荷調節回路の調節電荷量Q2との差であるQ3が、受光素子1の発生した電荷を反映した信号として出力される。即ち、見かけの感度が小さくなりダイナミックレンジの拡張が実現される。
図7は、本発明の実施の形態1に係る第1の変形例を示す固体撮像素子の具体的な回路構成図である。同図に記載された回路構成図は、図1に記載された基本回路構成図を具体化したものである。図7における回路構成図は、図1における回路構成図と比較して、電荷調節回路12及び電圧変換回路13の回路構成と、その間に付加されたMOSトランジスタ17のみが異なる。同じ点は説明を省略し、以下、異なる点のみを説明する。
電圧変換回路13及びMOSトランジスタ17は、図2に記載された回路構成図と同様の構成及び機能であるので、ここでは説明を省略する。
電荷調節回路12はMOSトランジスタ122を備える。MOSトランジスタ122のゲート端子はソース端子に短絡されており、いわゆる、ダイオード接続を構成している。ソース端子は受光素子1の出力側であるノード18に接続され、ドレイン端子はMOSトランジスタ17に接続されている。電圧変換回路13から出力された調節電圧は、MOSトランジスタ17を介してMOSトランジスタ122のドレインに印加される。この調節電圧がMOSトランジスタ122のバイアス電圧として印加されることにより、そのバイアス電圧に応じた電流がノード18へ流れ、受光素子1で発生した光信号電荷をオフセットする。
図7に記載された回路構成は、図2に記載された回路構成に比べ、電荷調節回路12の構成のみが異なる。つまり、MOSトランジスタ122をダイオード接続して、図2に記載されたダイオード121と同等の機能を有するようにしている。従って、図7に記載された回路構成を有する固体撮像素子の動作は、図3で説明された実施の形態1に係る固体撮像素子の動作タイミングチャートを用いて同様に説明される。また、図7に記載された電圧変換回路13の入出力特性は、図4に記載された電圧変換回路13の入出力特性と同等である。さらに、電荷調節回路12を構成するMOSトランジスタ122の電圧電流特性は、図5に記載されたダイオード121の電圧電流特性と同様である。
従って、実施の形態1に係る第1の変形例を示す固体撮像素子においても、図6(a)および図6(b)に記載された、入射光量の少ない場合および入射光量の多い場合の電荷量調節の効果が得られ、ダイナミックレンジの拡張が実現される。
図8は、本発明の実施の形態1に係る第2の変形例を示す固体撮像素子の基本回路構成図である。同図における固体撮像素子は、受光素子1と、MOSトランジスタ3、4、5、6、8、及び11と、容量9及び10と、電荷調節回路12と、電圧変換回路13とを備える。なお、容量14は浮遊容量である。
図8に記載された回路構成は、図1に記載された回路構成と比較し、転送回路であるMOSトランジスタ2および拡散層FDがないことのみが異なる。本回路構成は、AMI(Amplified MOS Intelligent Imager)型と呼ばれる。AMI型は、転送回路および拡散層FDを有するFDA(Floating Difusion Array)型と比較し、回路構成の簡略化や非破壊読み出しができるという特徴を有する。
電荷調節回路12および電圧変換回路13の具体的な回路構成については、実施の形態1およびその第1の変形例で挙げられた回路構成が全て適用される。
本固体撮像素子の駆動タイミングについては、TRAN及びFDの信号が除外されているため、MOSトランジスタ3のオフ動作時から受光素子1への光信号電荷の蓄積が開始される。同時にノード15は受光素子1に蓄積された電荷に対応した電圧となる。電荷調節のための蓄積時間Tisにおいて受光素子1に蓄積された光信号電荷に対応したノード15の電圧が、電圧変換回路13及び電荷調節回路12を経て、次の蓄積期間Tiにおける受光素子1のカソード電圧をオフセットする。蓄積時間Tiにおける光信号電荷が、その前の短い蓄積時間Tisにおいて生成された調節電圧によって調節される動作原理については、実施の形態1におけるFDA型回路と同様である。
本構成においても、実施の形態1の回路構成と同様に、電荷調節回路12及び電圧変換回路13が配置されていることにより、受光素子1にて発生した光信号電荷は、その電荷量に応じて電荷調節されるので、ダイナミックレンジの拡張が実現される。
図9は、本発明の実施の形態1に係る第3の変形例を示す固体撮像素子の具体的な回路構成図である。同図における固体撮像素子は、受光素子1と、MOSトランジスタ4、5、6、8、11、17、19、131及び132と、容量9及び10と、スイッチ素子20とを備える。なお、容量14は浮遊容量である。
図9に記載された固体撮像素子の回路構成は、図8に記載された実施の形態1に係る第2の変形例を示す固体撮像素子の基本回路構成図を具現化したものである。図9に記載された回路構成は、図8に記載された回路構成と比較し、電圧変換回路13を具体的回路素子で構成した点、電荷調節回路12を具体的回路素子で構成した点、電圧変換回路13と電荷調節回路12との間にMOSトランジスタ17が付加されている点、及び電荷調節回路12がリセット回路の機能を兼ねている点のみが異なる。図8に記載された回路構成と同じ点は説明を省略し、以下、異なる点のみを説明する。
電圧変換回路13及びMOSトランジスタ17は、図2に記載された回路構成図と同様の構成及び機能であるので、ここでは説明を省略する。
電荷調節回路12は、MOSトランジスタ19と、スイッチ素子20とを備える。MOSトランジスタ19のゲート端子とソース端子との間にスイッチ素子20が接続され、MOSトランジスタ19のドレイン端子はMOSトランジスタ17に接続され、ソース端子は受光素子1の出力端子であるノード18に接続されている。電荷調節回路12がノード18の電荷量を調節する回路として機能する場合には、スイッチ素子20はオンとなりMOSトランジスタ19はダイオード接続されている。また、電荷調節回路12がノード18の電圧をリセットする回路として機能する場合には、スイッチ素子20はオフとなり、ゲート端子からRST信号が入力され、調節電圧がノード18のリセット電圧となる。
本構成において、実施の形態1の回路構成と同様に電荷調節回路12及び電圧変換回路13が配置され、それらの回路が簡単な回路素子で構成され、さらに電荷調節回路12とリセット回路が兼用されていることにより、チップサイズの拡大を必要としないダイナミックレンジの拡張が実現される。
以上のように、本実施の形態1における固体撮像素子によれば、受光素子と、受光素子で発生した光信号電荷に対応した信号電圧を読み出す回路部と、短い第1の露光時間にて発生した光信号電荷に対応する第1の光信号電圧を調節電圧に変換する電圧変換回路と、調節電圧を第2の露光時間にて発生した第2の光信号電荷にオフセットして、第2の光信号電荷を調節する電荷調節回路とを画素部内に備えることにより、オフセット調節電荷量は、電圧変換回路により状況に応じて変換され、また、電圧変換回路や電圧調節回路は簡単な回路素子で実現されるので、チップサイズが拡大されることなく、状況に応じたダイナミックレンジの調整が可能となる。
(実施の形態2)
本実施の形態2における固体撮像素子は、受光素子と、当該受光素子で発生した光信号電荷を当該光信号電荷に対応した電荷量でオフセットして当該光信号電荷を調節する電荷調節回路と、当該電荷調節回路で調節された光信号電荷に対応した信号電圧を読み出す回路部とを画素部内に備える。
この実施の形態によれば、光信号電荷量の調節に利用されるオフセット調節電荷量は、簡単な回路素子から構成される電荷調節回路により発生し、また受光素子からの光信号電荷を予め計測しておく必要がないので、チップサイズを拡大することなく、また信号出力までの応答時間を延ばすことなくダイナミックレンジの調整が可能となる。
図10は、本発明の実施の形態2に係る固体撮像素子の具体的な回路図である。同図における固体撮像素子は、受光素子1と、MOSトランジスタ2、3、4、5、6、8、及び11と、容量9及び10と、ダイオード123とを備える。
図10に記載された回路構成は、図2に記載された実施の形態1に係る固体撮像素子の回路構成と比較し、電圧変換回路13及びMOSトランジスタ17がないこと、及び電荷調節回路12の構成要素であるダイオード123の入力電圧が電圧変換回路13の出力調節電圧ではなく定電圧V0であること、のみが異なる。図2に記載された回路構成と同じ点は説明を省略し、以下、異なる点のみを説明する。
ダイオード123は、電荷調節回路を構成し、アノード端子は受光素子1の出力側であるノード18に接続され、カソード端子は定電圧V0に接続されている。
以下、ダイオード123が、定電圧V0を入力として受光素子1からの電荷量を調節する機能を有することを以下説明する。
図11は、本発明の実施の形態2に係る固体撮像素子の電荷調節回路の入出力電圧と光量との関係を表すグラフである。横軸は光量、縦軸は電圧を示す。電荷調節回路12であるダイオード123のカソード端子の電圧VKは固定電圧V0に固定されている。ここで、ノード18の電圧をVAとし、光量の少ない場合のVAをVpdとする。光量が増加すると受光素子1で電荷が発生し、その電荷によりVAは減少する(図11におけるVC)。即ち、ダイオード123のカソード端子はV0で固定されているので、アノード端子がVpdからVCだけ下がり、ダイオード123のカソード−アノード間電圧が大きくなる。従って、受光素子1に大光量が入射すると、ダイオード123のカソード−アノード間電圧が増えるので、いわゆる逆方向飽和電流が増加する。これにより、受光素子1で発生した電荷は、光量が多いほど電荷量の減少分が増加するので、見かけの感度が小さくなりダイナミックレンジの拡張が実現される。しかも本実施の形態2によれば、光信号電荷量の調節に利用されるオフセット調節電荷量は、簡単なダイオード素子から構成される電荷調節回路により発生し、また受光素子からの光信号電荷を予め計測しておく必要がないので、チップサイズを拡大することなく、また信号出力までの応答時間を延ばすことなくダイナミックレンジの調整が可能となる。
なお、ダイオード123は、MOSトランジスタをダイオード接続したものであってもよい。例えば、ゲート端子とソース端子とが短絡され、ドレイン端子が定電圧V0に接続され、ソース端子がノード18に接続された場合である。
以上のように、本実施の形態2における固体撮像素子によれば、受光素子と、受光素子で発生した光信号電荷を光信号電荷に対応した電荷量でオフセットして光信号電荷を調節する電荷調節回路と、電荷調節回路で調節された光信号電荷に対応した信号電圧を読み出す回路部とを画素部内に備えることにより、光信号電荷量の調節に利用されるオフセット調節電荷量は、簡単な回路素子から構成される電荷調節回路により発生し、また受光素子からの光信号電荷を予め計測しておく必要がないので、チップサイズが拡大されることなく、また信号出力までの応答時間が延びることなくダイナミックレンジの調整が可能となる。
なお、本発明に係る固体撮像素子は、上記実施の形態に限定されるものではない。実施形態1及び2における任意の構成要素を組み合わせて実現される別の実施形態や、実施の形態1及び2に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る固体撮像装置を内蔵した各種機器も本発明に含まれる。
また、例えば、図12に示されるように、本発明に係る固体撮像素子52が内蔵されたカメラも本発明に含まれる。このカメラは、図12に示されるように、レンズ51と、固体撮像素子52と、駆動回路53と、信号処理部54と、外部インターフェイス部55とを備える。レンズ51を通過した光は、固体撮像素子52に入射する。信号処理部54は、駆動回路53を介して固体撮像素子52を駆動し、固体撮像素子52からの出力信号を取り込む。その出力信号は、信号処理部54で各種信号処理が施され、外部インターフェイス部55を介して外部に出力される。ここで、駆動回路53は、固体撮像素子52の有する受光素子で発生した電荷量を、その電荷量に対応した電荷量でオフセット調節することにより、固体撮像素子52が備える複数の画素部およびノイズキャンセラからの信号が、素子サイズを拡大することなく広いダイナミックレンジを有するように固体撮像素子52を駆動する点に特徴を有する。このようなカメラは、強い光が入射したときであっても、あるいは微弱な光が入射されても、鮮明な画像を撮影することができる利点を有し、例えば、図13に示されるデジタルスチルカメラやビデオカメラとして実現される。
本発明は、特に固体撮像素子を内蔵する車載カメラや監視カメラ等に有用であり、特に受光量が少ない場合には高感度を維持し、受光量の多い場合には感度を押さえて広いダイナミックレンジを確保することが必要な固体撮像素子に用いるのに最適である。
本発明の実施の形態1に係る固体撮像素子の基本回路構成図である。 本発明の実施の形態1に係る固体撮像素子の具体的な回路構成図である。 本発明の実施の形態1に係る固体撮像素子の駆動タイミングチャートである。 電圧変換回路の入出力特性を示す図である。 電荷調節回路を構成するダイオードの電圧電流特性を示すグラフである。 (a)は入射光量の少ない場合の入射光量と出力電荷量との関係を示したグラフである。(b)は入射光量の多い場合の入射光量と出力電荷量との関係を示したグラフである。 本発明の実施の形態1に係る第1の変形例を示す固体撮像素子の具体的な回路構成図である。 本発明の実施の形態1に係る第2の変形例を示す固体撮像素子の基本回路構成図である。 本発明の実施の形態1に係る第3の変形例を示す固体撮像素子の具体的な回路構成図である。 本発明の実施の形態2に係る固体撮像素子の具体的な回路図である。 本発明の実施の形態2に係る固体撮像素子の電荷調節回路の入出力電圧と光量との関係を表すグラフである。 本発明に係る固体撮像素子を備えるカメラの構成を示すブロック図である。 本発明に係る固体撮像素子を備えるカメラの外観図である。 特許文献1記載の固体撮像素子の回路構成図である。
符号の説明
1、500 受光素子
2、3、4、5、6、8、11、17、19、122、131、132 MOSトランジスタ
7 垂直共通信号線
9、10、14、501、502、503 容量
12 電荷調節回路
13 電圧変換回路
15、16、18 ノード
20 スイッチ素子
51 レンズ
52 固体撮像素子
53 駆動回路
54 信号処理部
55 外部インターフェイス部
121、123 ダイオード
504、505、506、507、508、509、510 トランジスタ

Claims (14)

  1. 複数の画素部が二次元状に配置された固体撮像素子であって、
    前記画素部は、
    受光強度及び露光時間に応じた光信号電荷を発生する受光素子と、
    前記光信号電荷の電荷量に応じて当該電荷量を調節する電荷調節部と、
    前記電荷調節部で調節された電荷量に対応する電圧を画素信号として読み出す回路部とを備える
    ことを特徴とする固体撮像素子。
  2. 前記回路部は、第1の露光時間において前記受光素子で発生した第1の光信号電荷に対応する第1光信号電圧を読み出し、
    前記電荷調節部は、
    前記第1光信号電圧を前記第1光信号電圧に応じた調節電圧に変換する電圧変換回路と、
    前記調節電圧をオフセットとして、前記第1の露光時間よりも長い第2の露光時間において前記受光素子で発生した光信号電荷の電荷量を調節する電荷調節回路とを備える
    ことを特徴とする請求項1記載の固体撮像素子。
  3. 前記電圧変換回路は、
    前記第1光信号電圧を反転し、前記調節電圧として出力するインバータを備える
    ことを特徴とする請求項2記載の固体撮像素子。
  4. 前記電荷調節回路は、
    カソード端子に前記調節電圧が印加され、アノード端子に前記受光素子の前記光信号電荷を出力する出力ノードが接続されたダイオードを備える
    ことを特徴とする請求項2または3に記載の固体撮像素子。
  5. 前記電荷調節回路は、
    ドレイン端子に前記調節電圧が印加され、ソース端子に前記受光素子の前記光信号電荷を出力する出力ノードが接続され、ゲート端子に前記ソース端子が接続されたMOSトランジスタを備える
    ことを特徴とする請求項2または3に記載の固体撮像素子。
  6. 前記電荷調節部は、
    カソード端子に定電圧が印加され、アノード端子に前記受光素子の前記光信号電荷を出力する出力ノードが接続されたダイオードを備える
    ことを特徴とする請求項1記載の固体撮像素子。
  7. 前記ダイオードは、前記カソード端子の電圧の方が前記アノード端子の電圧よりも高く、かつ、前記カソード端子−前記アノード端子間の電圧の増減に対応して電流が増減する逆方向飽和領域で動作することにより、前記光信号電荷の電荷量を減少させる
    ことを特徴とする請求項4または6に記載の固体撮像素子。
  8. 前記電荷調節部は、
    ドレイン端子に定電圧が印加され、ソース端子に前記受光素子の前記光信号電荷を出力する出力ノードが接続され、ゲート端子に当該ソース端子が接続されたMOSトランジスタを備える
    ことを特徴とする請求項1記載の固体撮像素子。
  9. 前記回路部は、
    前記光信号電荷を転送する転送回路と、
    前記転送回路を介して前記光信号電荷に対応する信号電圧を発生する信号発生回路と、
    前記信号電圧を画素信号として読み出す読み出し回路と、
    前記信号発生回路における前記信号電圧をリセットするリセット回路とを備える
    ことを特徴とする請求項1〜8のいずれか1項に記載の固体撮像素子。
  10. 前記回路部は、
    前記光信号電荷に対応する信号電圧を画素信号として読み出す読み出し回路と、
    前記光信号電荷を出力する出力ノードの電圧をリセットするリセット回路とを備える
    ことを特徴とする請求項1〜8のいずれか1項に記載の固体撮像素子。
  11. 前記電荷調節回路は、さらに、前記ゲート端子と前記ソース端子との間にスイッチが接続され、当該スイッチがオフの場合は前記出力ノードの電圧を前記ドレイン端子の電圧でリセットするリセット回路となる
    ことを特徴とする請求項5または8に記載の固体撮像素子。
  12. 請求項1ないし11のいずれか1項に記載の固体撮像素子を備える
    ことを特徴とするカメラ。
  13. 複数の画素部が二次元状に配置された固体撮像素子の駆動方法であって、
    前記画素部に設けられた受光素子が第1の露光時間において生成した第1の光信号電荷に応じた電圧を第1光信号電圧として読み出す調節信号読み出しステップと、
    前記受光素子が前記第1の露光時間よりも長い第2の露光時間において生成した第2の光信号電荷の電荷量を、前記第1光信号電圧に対応する電圧をオフセットとして調節する電荷調節ステップと、
    前記電荷調節ステップにおいて調節された電荷量に対応する電圧を画素信号として読み出す画素信号読み出しステップとを含む
    ことを特徴とする固体撮像素子の駆動方法。
  14. 前記第1光信号電圧に対応する電圧は、
    前記電荷調節ステップにより調節された電荷量が、前記第2の光信号電荷の電荷量よりも少なくなるよう、前記第2の光信号電荷の電荷量を調節する
    ことを特徴とする請求項13記載の固体撮像素子の駆動方法。
JP2007312615A 2007-12-03 2007-12-03 固体撮像素子 Pending JP2009141419A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007312615A JP2009141419A (ja) 2007-12-03 2007-12-03 固体撮像素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007312615A JP2009141419A (ja) 2007-12-03 2007-12-03 固体撮像素子

Publications (1)

Publication Number Publication Date
JP2009141419A true JP2009141419A (ja) 2009-06-25

Family

ID=40871639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007312615A Pending JP2009141419A (ja) 2007-12-03 2007-12-03 固体撮像素子

Country Status (1)

Country Link
JP (1) JP2009141419A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051734A1 (en) * 2011-10-06 2013-04-11 National Institute Of Advanced Industrial Science And Technology Photoelectric converter, photoelectric converter array and imaging device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051734A1 (en) * 2011-10-06 2013-04-11 National Institute Of Advanced Industrial Science And Technology Photoelectric converter, photoelectric converter array and imaging device
JP2013085030A (ja) * 2011-10-06 2013-05-09 National Institute Of Advanced Industrial & Technology 光電変換装置、光電変換アレイおよび撮像装置
CN103975581A (zh) * 2011-10-06 2014-08-06 独立行政法人产业技术总合研究所 光电转换器、光电转换器阵列和成像器件
KR101609960B1 (ko) * 2011-10-06 2016-04-06 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 광전 변환기, 광전 변환 어레이 및 촬상 장치
US9337234B2 (en) 2011-10-06 2016-05-10 National Institute Of Advanced Industrial Science And Technology Photoelectric converter, photoelectric converter array and imaging device
CN103975581B (zh) * 2011-10-06 2017-09-08 独立行政法人产业技术总合研究所 光电转换器、光电转换器阵列和成像器件

Similar Documents

Publication Publication Date Title
US11482558B2 (en) Imaging device including unit pixel cell
JP5358136B2 (ja) 固体撮像装置
KR100763442B1 (ko) 듀얼 변환 이득 이미저
JP4937380B2 (ja) Cmosイメージセンサー
KR100787938B1 (ko) 공유 능동 화소 센서 구조의 씨모스 이미지 센서 및 그구동 방법
JP6108884B2 (ja) 光電変換装置及び撮像システム
JP2020188511A (ja) 撮像装置
US20080062296A1 (en) Photoelectric conversion device and imaging device
US9456159B1 (en) Pixels with an active reset circuit in CMOS image sensors
US10645327B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US20090284634A1 (en) Solid-state imaging apparatus
JP5112685B2 (ja) Cmosイメージセンサ
CN112291493A (zh) 用于生成高动态范围图像的成像系统和方法
JPWO2007066762A1 (ja) 固体撮像装置
US10116854B2 (en) Photoelectric conversion apparatus, switching an electric path between a conductive state and a non-conductive state
US11658200B2 (en) Imaging device
JP2008186894A (ja) 固体撮像素子
US20130314571A1 (en) Photoelectric conversion device and camera system
KR100865111B1 (ko) 넓은 동작 범위의 cmos형 이미지 센서용 화소 회로
KR102546197B1 (ko) 단위 픽셀 장치 및 그 동작 방법
US8786723B2 (en) Photoelectric-conversion device
JP6532224B2 (ja) 撮像装置、撮像システム、及び撮像装置の駆動方法
KR101064495B1 (ko) 광다이나믹 레인지 이미지 센서 및 그 동작방법
US11665445B2 (en) Image sensing device for cancelling a horizontal banding noise
JP2009141419A (ja) 固体撮像素子