JP2009141034A - プラズマ処理装置及びプラズマ処理方法 - Google Patents

プラズマ処理装置及びプラズマ処理方法 Download PDF

Info

Publication number
JP2009141034A
JP2009141034A JP2007314133A JP2007314133A JP2009141034A JP 2009141034 A JP2009141034 A JP 2009141034A JP 2007314133 A JP2007314133 A JP 2007314133A JP 2007314133 A JP2007314133 A JP 2007314133A JP 2009141034 A JP2009141034 A JP 2009141034A
Authority
JP
Japan
Prior art keywords
temperature
sample
region
disk
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007314133A
Other languages
English (en)
Other versions
JP5414172B2 (ja
Inventor
Yutaka Omoto
豊 大本
Mamoru Yakushiji
守 薬師寺
Yutaka Takatsuma
豊 高妻
Takeshi Yoshioka
健 吉岡
Tsunehiko Tsubone
恒彦 坪根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2007314133A priority Critical patent/JP5414172B2/ja
Priority to US12/073,048 priority patent/US8282848B2/en
Publication of JP2009141034A publication Critical patent/JP2009141034A/ja
Application granted granted Critical
Publication of JP5414172B2 publication Critical patent/JP5414172B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2001Maintaining constant desired temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】
短時間で精度良く試料または試料台の温度の分布を実現して、処理の効率を向上させたプラズマ処理装置またはプラズマ処理方法を提供する。
【解決手段】
真空容器内の処理室内に配置された試料台と、この上に載せられた試料をこの処理室内に形成したプラズマを用いて処理するプラズマ処理装置であって、前記試料台の前記試料が載せられる面を構成する絶縁性の材料から構成される膜と、この膜の下方でその上面がこの膜と接合され熱伝導性部材から構成された円板状部材と、前記膜内部に配置されこの膜の中心部及びその外周側の領域の各々に配置されたヒータと、前記円板状部材内に配置され内部をこの円板状部材を冷却する冷媒が通流する冷媒流路と、前記複数の領域のヒータの各々に電力を調節する複数の電源と、これら複数の電源からの出力を前記円板状部材の上面の温度を推定した結果を用いて調節する制御器とを備えた。
【選択図】図1

Description

本発明は、プラズマ処理装置またはプラズマ処理方法に係り、特に処理対象の試料の表面に配置された膜を異なる処理の条件を実現して処理するプラズマ処理装置またはプラズマ処理方法に関する。
半導体デバイス等の半導体装置を製造するため上記のようなプラズマ処理装置を用いる場合に、処理対象の円盤形状を備えた半導体ウエハ等の基板状の試料表面に配置された膜を高精度に処理することが必要となるが、近年、半導体装置の集積度の向上を実現するために試料の半径方向,周方向についての温度分布等の処理の条件を所望の値となるように調節することが行われている。特に、上記半導体ウエハ表面の膜を半導体ウエハが配置される真空容器内部の処理室内に形成したプラズマを用いて行うエッチング処理においては、エッチングして形成される溝や孔構造の側壁にプラズマ内に形成された生成物を付着させつつ行うことが一般的であり、このような付着物の付着の度合は温度に大きく影響を受けることから、処理中の試料表面の温度の値とその分布とは高精度な処理を実現する上で重要な条件となっている。このため、従来より試料の処理中に試料の表面の温度を精度良く調節するために、試料をその上面に載せる試料台の内部に冷媒の通路を配置したり試料台と試料との間の空間に熱伝達性のガスを供給して該ガスの圧力を適切に調節したりして、試料の温度を適切な値の範囲内に維持するものが知られていた。
一方、近年は、半導体集積回路の集積度が高くなるにつれて素子構造の微細化が進み、従来は単層膜で構成されていた素子が、特性向上の要求に応じて複数の膜種で積層化されることが多くなった。例えば配線では、従来はアルミニウム単層で構成されていた配線材料が信頼性向上と露光解像度の要求のため上層膜と下層膜を例えば窒化チタンとし、積層することが広く行われている。さらに最近ではトランジスタの高速化,低消費電力化の要求でゲート電極に対しても積層構造が採用されるようになって来ている。このような半導体デバイスの精密な構造を実現するため、半導体ウエハ表面の上記積層された複数の膜の構造を各々の膜に応じて条件を異ならせて連続的に処理を行ったり、一つの膜を異なる複数の条件で連続的に処理することが行われている。このような処理では、単位時間あたりの処理する試料の枚数を増大させるため処理室内の試料台上に試料を載せたまま処理の条件の変更を行われることが望ましいが、このようは処理の条件の変更に長い時間を掛けてしまうと、処理の効率(スループット)が低下してしまうことになる。
上記試料台の内部に配置された通路内に冷媒を循環させる技術では、冷媒の熱容量の大きさのために試料台の温度の変更に、熱伝達性のガスの圧力を変更させる場合と比べ長い時間が掛かるために、上記の連続して行われる各処理の間で温度の値とその分布を変更しようとすると上記スループットが低下してしまう。また、試料と試料台上面との間に供給する熱伝達性ガス(例えば、He等)の圧力を変更する技術では、圧力の変更とこれによる試料−試料台間の熱伝達率の変更は比較的短時間で実現できるものの、熱伝達率の変更による試料の温度の変更は試料台上方の処理室内の空間に形成されたプラズマからの熱が試料に供給されて試料台に伝達される場合、つまりプラズマと試料台との間に試料を介した熱の伝達が生じた場合にのみ可能となるため、上記の処理の条件の変更の間にプラズマが消失してしまう処理に適用することが出来なかったり、プラズマが形成された初期の段階での処理の速度等特性がその後にプラズマが安定した状態での処理の特性と異なってしまい、処理の精度を損なってしまうという問題が有った。
このため、試料台の内部にヒータ等の加熱器を配置して、このヒータの試料台の加熱(さらには試料台内部の冷媒の通流による冷却との併用)により試料の温度の値またはその分布を調節することが考えられてきた。このような、従来の技術は、特表2004−533718号公報(特許文献1)に開示されたものが知られている。この従来技術は、試料台内部の導電体(金属)製の電極内にヒータが内蔵され、このヒータの近傍に埋め込まれた温度センサから検出される出力値に基づいてヒータに供給される電力が制御されることで、試料台内の温度の分布を調節して間接的にウエハ温度を所望の値と分布となるように調節されたものである。
特表2004−533718号公報
上記膜構造をエッチングで連続的に加工する場合に、膜同士で処理の条件としての温度が同じであると各膜の材料がエッチング用の処理用ガスと反応して試料表面の処理室内に形成される反応生成物の蒸気圧が異なり側壁の保護膜の付着量が異なって加工して得られる形状の精度が低下してしまうため、各層のエッチング時に試料の温度を変更することが行うことが望ましい。特にエッチング加工によって決定されるゲート長がトランジスタの電気特性に直接影響を与えるゲート電極加工では、その温度制御に高い精度が求められる。さらにこれら各層のエッチング毎にウエハ温度を変更するにあたっては、生産性を高める上で温度の変更を高速で行い、待ち時間を出来るだけ少なくすることが望まれる。
このような課題に対して、上記従来の技術では、試料台(電極)内に配置された温度センサの検出位置と電極の表面の位置とが離れているため、このセンサの信号に基づいてヒータ電力を制御した場合、ウエハ温度が振動し、エッチング形状に悪影響を及ぼす場合があった。これは、試料の温度が予め設定された温度に達した後整定するまでのしばらくの間、試料の温度が振動的に変化してしまい、処理が安定するまでに長い時間を要していた。これは、温度センサが電極内部においてヒータと冷媒の流路との中間に配置され、これらの間の温度の勾配が大きな位置にあるため、実際の試料表面の温度とは空間,時間的に乖離が大きくなり処理の精度の低下を招いてしまっていた点について、考慮されていなかった。
また、試料の温度またはその推定値を検出した信号に基づいて試料の温度を調節した場合は、直接試料の温度を検知しようとするとそのセンサが高価となってしまい、さらには信頼性が低いという問題がある。さらに、プラズマから供給される入熱により温度差を推定するものでは、プラズマからウエハへの入熱の量や速度を精度良く推定する必要があるが、入熱の量を検出するために必要な温度センサ等検出手段は信頼性が低いことから入熱に関する量を精密に同定するためには予め実験に多くの実験が必要となり、また温度の値等処理の条件によっても異なるため、信頼性の高い結果を得ることが困難であった。この結果、処理の効率を損なってしまっていた点について、上記従来技術は考慮されていなかった。
本発明は、短時間で精度良く試料または試料台の温度の分布を実現して、処理の効率を向上させたプラズマ処理装置またはプラズマ処理方法を提供することにある。
上記目的は、真空容器内の処理室内に配置された試料台と、この上に載せられた試料をこの処理室内に形成したプラズマを用いて処理するプラズマ処理装置であって、前記試料台の前記試料が載せられる面を構成する絶縁性の材料から構成される膜と、この膜の下方でその上面がこの膜と接合され熱伝導性部材から構成された円板状部材と、前記膜内部に配置されこの膜の中心部及びその外周側の領域の各々に配置されたヒータと、前記円板状部材内に配置され内部をこの円板状部材を冷却する冷媒が通流する冷媒流路と、前記複数の領域のヒータの各々に電力を調節する複数の電源と、これら複数の電源からの出力を前記円板状部材の上面の温度を推定した結果を用いて調節する制御器とを備えたプラズマ処理装置により達成される。
さらに、前記円板状部材の前記上面と前記冷媒流路との間に配置され前記複数の領域に対応してこれらの下方の前記円板状部材の部分の温度を検知する温度センサと、これらの温度センサからの出力の信号を用いて前記円板状部材上面の前記各領域の温度を推定した結果を用いて前記電源からの出力を調節する前記制御器とを備えたプラズマ処理装置により達成される。
また、上記目的は、真空容器内の処理室内に配置された試料台上に試料を載せて、処理室内にプラズマを形成しこれを用いて前記試料を処理するプラズマ処理方法であって、前記試料台が、前記試料が載せられる面を構成する絶縁性の材料から構成される膜と、この膜の下方でその上面がこの膜と接合され熱伝導性部材から構成された円板状部材と、前記膜内部に配置されこの膜の中心部及びその外周側の領域の各々に配置されたヒータと、前記円板状部材内に配置され内部をこの円板状部材を冷却する冷媒が通流する冷媒流路と、前記複数の領域のヒータの各々に電力を調節する複数の電源とを備え、前記複数の電源からの出力を前記円板状部材の上面の温度を推定した結果を用いて調節して前記試料を処理するプラズマ処理方法により達成される。
さらには、前記試料台が前記円板状部材の前記上面と前記冷媒流路との間に配置され前記複数の領域に対応してこれらの下方の前記円板状部材の部分の温度を検知する温度センサを備え、これらの温度センサからの出力の信号を用いて前記円板状部材上面の前記各領域の温度を推定した結果を用いて前記電源からの出力を調節して前記試料を処理するプラズマ処理方法により達成される。
さらにまた、前記制御器は、一つの前記領域の下方の前記円板状部材の上面の温度を該領域の下方に配置された温度センサの出力と該領域に隣接する領域の下方に配置された前記温度センサからの出力とを用いて推定した結果を用いて該領域に電力を供給する前記電源からの出力を調節することにより達成される。さらにまた、前記制御器は、前記領域の下方に配置された温度センサの出力と該領域に配置された前記ヒータに供給されている電力の値とを用いて推定した結果を用いてこの領域に電力を供給する前記電源からの出力を調節することにより達成される。
以下、図面を用いて本発明の実施例を説明する。
本発明の実施例について、図1乃至図10を用いて説明する。
図1を用いて、本発明の実施例に係るプラズマ処理装置を説明する。図1は、本発明に係るプラズマ処理装置の構成の概略を模式的に示す縦断面図である。
図1において、本発明に係るプラズマ処理装置は、真空容器117とこの内部に配置された処理室103内に電界または磁界が供給されて形成されたプラズマを用いて、処理室103内の下部に配置された試料載置電極105上に載せられた半導体ウエハ等の処理対象の試料をエッチングして処理するものである。真空容器117の上方には、処理室103内に供給する電界が伝播する導波管102とこの導波管102の先端部に配置された電波源であるマグネトロン等のマイクロ波源101が配置されている。
マイクロ波源101により出力されたマイクロ波は導波管102内部を伝播して真空容器117側に向かって伝送される。導波管102は、まずマイクロ波源101から図上左から右向きに延在したのち、下方の真空容器117上部に向けて曲げられて配置されている。この内部を伝播するマイクロ波は、この導波管102の曲がりに応じて図上右向きから伝播の方向を下方に曲げられた後、導波管102の下端に連結された共振容器118内の空間に導入される。
共振容器118は、内部が処理室103と同じ中心軸周りに実質的に軸対象の形状を有した略円筒形を備え、その底面には、真空容器117の一部を構成して処理室103の天井として内部を気密に封止する円板状の石英製の窓部材115が配置されている。共振容器118内の円筒形状の室内で共振して発振されたマイクロ波は、底面の窓部材115及びその下方に配置されて処理室103の天井面を構成する円板状のシャワープレート116を透過して処理室103の上方からシャワープレート116の下面に対向して略平行に配置された試料に向かって導入される。
処理室103内にはシャワープレート116の処理室103の中心軸に合わせて配置された中心の周りに配置された複数の貫通孔から処理用の少なくとも1種類のガスが供給され、この導入された処理用ガスは、処理室103内に供給されたマイクロ波による電界と共振容器118の上方及び側方の周囲及び真空容器117の側方周囲に配置されたソレノイドコイル114から処理室103内に供給される磁界とにより励起され、この結果処理室103内にプラズマが形成される。処理室103には真空容器117下部に連結された図示しない真空排気系と処理室103の上方において真空容器117と連結された図示しないガス導入系が連結され、これらの動作により処理室103内の空間は処理に適した雰囲気、圧力に保持される。
すなわち、処理室103内に上方からマイクロ波及び処理用ガスを投入することと試料載置電極105の周囲及び処理室103の下方から処理室103内部のガスが排気されることとの相互作用により、処理室103内部は処理に適切な圧力となるように調節されつつ、処理用ガスを用いて形成されたプラズマは、被処理試料(以下ウエハと呼ぶ)104に所定の処理を行うことができる。なお、プラズマの生成手段は、マイクロ波ではなく高周波を用いた誘導結合手段、または高周波を用いた静電結合手段によってもよい。
ウエハ104はほぼ円筒形状の処理室103の中心軸に合わせて配置された円筒形状の試料載置電極105上に載せられており、試料載置電極105内にはバイアス電源107と接続された導電性部材から構成された円板上の電極が配置されており、バイアス電源107からの電力により試料載置電極105の上面の略円形の試料載置面を構成する誘電体製の膜上に載せられたウエハ104の表面にバイアス電位が与えられる。これによりプラズマ中のイオンをウエハ104上面に引き込み、深さ方向のエッチングを促進して加工の精度を向上することができる。
さらには、試料載置電極105の試料載置面とこの上に載せられるウエハ104の裏面との間には、試料と試料載置面を構成する誘電体膜との間の熱伝導を向上するためのHe等の熱伝達ガスのガス源106,ウエハ104を誘電体膜上に静電気により吸着保持するための静電チャックに電力を供給するための直流の静電吸着電源108及び誘電体膜内に配置された後述のヒータの動作によるウエハ104の温度の調節のための定電力出力電源111,112,113、さらに試料載置電極105内の導電体製の円板状の電極を構成する基材を冷却して試料載置電極105を所定の温度に調節するために基材内に配置された冷媒流路を通流させる冷媒の温度を調節しつつこれを循環させる温調器109が各々の接続経路を介して接続されている。定電力出力電源111,112,113には出力電力の値を調節するための温度制御部110が連結されており、これからの指令によって定電力出力電源111,112,113の加熱の動作、ひいてはウエハ104の温度が所期のものとなるように調節されている。
図1に示すプラズマ処理装置では、処理室103内部がAr等の不活性ガスが導入されつつ図示しない真空排気系により排気され所定の圧力に調節された状態で、ウエハ104が図示しない搬送用ロボットのアーム上に載せられて搬送された後試料載置電極105上の試料載置面に載せられる。この後、後述の静電吸着のための電力が供給されて試料載置面上に吸着保持されたウエハ104と試料載置面との間にガス源106からの熱伝達性のガスが供給される。
さらに、処理室103内にはシャワープレート116の貫通孔から対象の膜の処理に適した所定の組成となる複数の物質のガスが混合された処理用ガスが供給され、ウエハ104の温度の値及びその分布等の処理の条件が予めプラズマ処理装置により取得されたデータに含まれる処理の条件に基づいて設定される。本実施例では、ウエハ104の温度の値とその分布は、試料載置電極105内に供給される温度調節された冷媒による冷却と後述の試料載置電極105の上部に配置されたヒータによる加熱との作用によって実現される。
処理室103には、シャワープレート116の上方の窓部材115からマイクロ波が供給されるとともに、ソレノイドコイル114から磁場が処理室103内に供給される。処理室103内がプラズマの形成に適した所定の圧力にされて電界及び磁界の強度の調節により処理用ガスの励起が生起してプラズマが形成される。バイアス電源107からの電力によって形成されたウエハ104表面のバイアス電位とプラズマとの電位差に起因する引力でプラズマ内の荷電粒子がウエハ104表面に引き込まれてウエハ104表面の膜のエッチング処理が開始される。
対象の膜のエッチング処理が進み予め定められた終点まで到達したことが図示しない終点判定用の検出装置により検出されると、プラズマを消失させて膜の下方の部分の処理に適した処理用ガスの組成やウエハ104の温度の値及びその分布等の処理の条件を変更した後、新たな組成の処理用ガスを処理室103内に供給して電界及び磁界を供給してプラズマを形成しバイアス電力を印加して上記下方の膜の部分の処理を開始する。
上記の処理を予め定められた処理が終了するまで行った後、プラズマを消失させてバイアス電力さらにはガス源からの熱伝達ガスの供給を停止して、静電吸着電源108からの電力を停止する。この際、必要に応じて定電力出力電源111,112,113からのヒータへの電力の供給が停止される。この後、ウエハ104が試料載置電極105の上方に持ち上げられて搬送用ロボットにより処理室103外に搬出され、別のウエハ104が再度処理室103内に搬送されて試料載置電極105上に載せられて上記プラズマを用いた処理が実施される。
図2を用いて図1に示す試料載置電極105の構成をより詳細に説明する。図2は、図1に示す実施例の試料載置電極の構成の概略を模式的に示す縦断面図である。この図において、試料載置電極105の上部の主要部を模式的に示している。この図の試料載置電極105の上部は、大きくわけてヘッドプレート201とその下方でこれと接合され配置されたクーリングプレート202を備えている。
ヘッドプレート201は絶縁性の材料から構成された円板形状を有した膜状の部材であり、試料載置面を構成する。ヘッドプレート201は内部に加熱用のヒータ抵抗体203が、試料載置面の全体に渡り埋め込まれている。ヒータ抵抗体203は所定の幅の膜状の金属膜から構成されており、本実施例では、試料載置面の中心周りにほぼ軸対象となるように該中心について多重の円弧を構成して配置されている。
また、ヒータ抵抗体203は、各々において多重の円弧を構成する図中の点線四角で囲まれた3つ領域に属しており、各領域は中心部からセンタ領域211,ミドル領域212,エッジ領域213を形成している。それぞれの領域のヒータ抵抗体203には、独立した3つの定電力出力電源111,112,113が接続される。一方、クーリングプレート202には図1の温調器109によって温調された冷媒を循環させるための多重の同心状の通路である内部流路204が配置されている。内部流路204は、試料載置面の全体に渡るように試料載置面の中心と同心の軸の周囲に配置され、クーリングプレート202のウエハ104の面方向の温度の基本的な分布を設定する。
なお、本実施例のヒータ抵抗体203は、アルミニウムのように熱伝導性の高い金属から構成された断面凸字状の円板であるクーリングプレート202の凸部上面に所定の厚さまで形成したアルミナ等のセラミクスから構成された絶縁性の材料の膜上タングステンを含む材料を所定の形状の領域に溶射して形成した後に絶縁性の材料をさらに上方に形成して一体の膜にしたものとなっている。また、ヘッドプレート201下面とクーリングプレート202の上面とは両者は一体と見なせる程度に接合されている。クーリングプレート202は、ヘッドプレート201に載せられる試料の温度を調節する手段を内部に備えて、試料載置電極105の上部の主要部を構成する部材であって、試料の温度を基本的に設定する基材と呼べるものである。
本実施例のヘッドプレート201の加熱を調節する領域ではセンタ領域211,ミドル領域212,エッジ領域213は、試料載置面の中心と同心の略円形の領域であるセンタ領域211とこの外周側に同心状に配置されたリング形を備えた2重の領域であるミドル領域212,エッジ領域213とを備えている。クーリングプレート202の試料載置電極105と同じ中心から半径方向の異なる位置には、各々が上下方向に延びて凸部の上面から所定の距離だけ離れた先端面を有する小径の孔が配置されており、孔の内部に棒状の温度センサ205,206,207が挿入されてその位置がクーリングプレート202に対して固定されている。本実施例の温度センサ205,206,207は測温抵抗体方式のものを用いており、各先端の検知部は、内部流路204の上面と上記凸部上面との間の高さ位置に配置されている。
上記孔は、上記センタ領域211,ミドル領域212,エッジ領域213の各々の下方に位置して、特に温度センサ205はヘッドプレート201の中心を含むセンタ領域211の中心の直下方に配置され、温度センサ207は内部流路204の最外周の流路の外周側であってエッジ領域213のヒータ抵抗体203が覆う投影面内に、謂わば、直下方に配置されている。各温度センサ205,206,207は各々の領域のヒータ抵抗体203による加熱の結果変化するクーリングプレート202の内部流路204と凸部上面との間の部位の温度を検知する。
図3,図4は図1に示す温度制御部110の内部の構成を模式的に示すブロック図である。図3は、センタ領域211についてのもので、図4はミドル領域、エッジ213についてのものである。図3に示すように、本実施例の温度制御部110においては、センタ領域211の温度センサ205からの出力である信号A1と、ヒータ電源である定電力出力電源111への電力指示値A2は算術演算器1(301)に入力される。算術演算器1(301)では温度センサ205からの信号値A1に所定の係数G1を乗じたものとヒータ電源への電力指示値A2に所定の定数G2を乗じたものが加算されB1として出力される。出力されたB1はPID演算器1(302)の現在値入力PVcに入力され、センタ領域211のクーリングプレートの凸部の上面の設定温度とを比較して得られたこれらの間の偏差を最小とするように操作値MVcが温度制御部110から出力される。この出力値はセンタ領域211に配置されたヒータ抵抗体203に出力される値とされ、この値に対応する出力となるようにセンタ領域211に対応するヒータ電源である定電力出力電源111の動作が調節される。
また、図4に示すように、ミドル領域212,エッジ領域213に各々対応する温度センサ206,207から出力された信号X1,X2と対応するヒータ電源である定電力出力電源112,113の電力指示値X3,X4は算術演算器2(401),算術演算器3(402)に入力される。算術演算器2(401)では各々の温度センサ信号値の総和に所定の係数K6をかけたものと電力値の総和に所定の係数K5をかけたものが加算された値Y1が出力される。一方、算術演算器3(402)では温度センサ206,207からの出力である信号値の差に所定の係数K3をかけたものと対応する2つの定電力出力電源への指示値の差に所定の係数K2をかけたものが加算された値Y2が出力される。
次に、算術演算器4(403)ではY1とY2とが加算されミドル領域212の温度を調節するPID演算器2(404)の指令の現在値PVmが出力される。また、算術演算器5(405)ではY1とY2の差が計算されエッジ領域213の温度を調節するPID演算器3(406)の指令の現在値PVeが出力される。各PID演算器では各設定温度と現在値の比較が行われ偏差を最小とするよう操作値MVがヒータ電力値として出力され、この電力によって各領域に属するヒータ抵抗体203が動作してヘッドプレート201が加熱され、ウエハ104の表面の各位置の温度の値及びその分布が所望のものとなるように調節される。
本実施例において、上記の各演算器の演算に用いられる6つの定数は、予め温度測定用のウエハを用いたキャリブレーション試験を行って求めた。キャリブレーション試験では各PID演算器は作動させずに、特定の一定電力を各定電力出力電源からヒータ抵抗体203に供給してこれを動作させ、温度センサ205,206,207の位置に対応する温度測定用ウエハの所定の位置の温度を検知する温度センサで温度が飽和した際の値と、そのときの温度センサ205,206,207からの出力を用いて温度を検出する。飽和するだけ時間が経過した場合には、ウエハ表面の温度を検出する温度センサ及びクーリングプレート202内の温度センサ205,206,207の出力は安定しているものと考えられる。これら検出された温度測定用ウエハのウエハ用センサの温度はそれぞれPVc,PVm,PVeに代入される。この測定をヒータ出力のいくつかの組み合わせで繰り返し行い、得られた複数の結果を用いて最小二乗法を行い、6定数を求めた。
このような演算により、本実施例の温度制御部110では、クーリングプレート202の凸部の表面のセンタ領域211,ミドル領域212,エッジ領域213の各領域に対応する部分の温度を推定して検出している。本実施例では、この演算により得られたクーリングプレート202の表面の温度の推定値を用いて各領域のヒータ抵抗体203へ供給される電力の出力を調節することで、ウエハ104の温度とその値を消耗の範囲内となるように調節するものである。温度センサ205,206,207の検知部が配置される位置は、クーリングプレート202の凸部の上面(ヘッドプレート201の底面)から離れた位置にあることから、これらの位置で検知された温度に係る検出値を用いて各領域のヒータ抵抗体203の動作を調節するものに比べて、高い精度で温度を調節できる。
特に、ヒータ抵抗体203の加熱の量の変動に伴う熱の衝撃により温度センサ205,206,207の出力値が不安定,低精度となる悪影響を抑制できるだけヒータ抵抗体203から離れた距離に温度センサ205,206,207の検知部を配置すると、実際のウエハ104の温度やヘッドプレート201の表面の温度との空間,時間的な差異が大きくなるために、精度が著しく低下してしまうという問題を解決して再現性と歩留まりとを向上したプラズマエッチング装置を提供することができる。さらに、本実施例では、クーリングプレート202の上面の温度の推定には、実際のウエハ104の温度やウエハ104へプラズマから伝達される熱量の値を用いておらず、これらを用いてウエハ104の温度を推定したりヒータ抵抗体203の動作を調節するものにおいて精度の良いウエハ104の温度の実現のために長期間で多数のデータの取得や経験が必要であったのに対して、低コストで信頼性の高い装置を実現できる。
なお、センタ領域211についてはミドル領域212との境界に面する面積(長さ)が小さいため、これらの間の相互干渉が少なく、ミドル領域212とセンタ領域211との間で温度センサ205,206からの信号、ヒータ抵抗体203へ供給される電力の値の相互の参照を行っていないが、ウエハ104の大口径化に伴ってこれらの干渉が無視できない場合には、相互参照させてもよい。また、ミドル領域212,エッジ領域213について同様に隣接する領域の信号の相互参照を行わず自領域の信号のみを用いて制御しても良い。
次に本発明の効果を図5,図6を用いて説明する。図5は、本実施例に係る前記処理演算を用いず、温度センサからの信号を直接PID演算器のPV値としてヒータ用電源へ直接入力して温度の設定値をステップ状に変化させた場合のウエハの温度の時間の変化に伴う変化を示したものである。本図に示すように、従来の技術ではウエハの温度が設定温度に達した後しばらくの間、ウエハ温度が振動的に変化し、静定までに長い時間を要している。発明者らは、これは、温度センサがヒータと内部流路の上端との中間に位置し、温度の勾配が大きい位置にあるためウエハの実際の温度とは空間,時間的に乖離が大きくこのような制御精度の低下を招いているためであるという知見を得た。
一方、図6は、図1に示す実施例に係るプラズマ処理装置の試料載置電極によりウエハの温度の調節した場合のウエハの温度の時間変化を示すグラフである。本図に示すように、本実施例に係る上記演算を用いてヒータ抵抗体203の動作を調節した場合は、図5に示すものと異なり、目的の温度に到達した後の振動が少なく、短時間で温度を整定させることが出来た。これは、図2に示す試料載置電極105の温度センサ205,206,207の検知部の位置とウエハ104の表面との時間,空間的な乖離を前記演算によって補ったことによるものであって、迅速な温度変化を得るために、本実施例のようにヒータ抵抗体203をヘッドプレート201等ウエハ104に位置に近づけた位置に実装する場合にも高い精度でヒータの動作を調節して所望のウエハ104の温度の値及び温度の分布を実現することができる。
従来の技術において、温度センサの検知部の位置をウエハに近づけることにより上記精度の低下と言う問題を解決しようとした場合、ヘッドプレート201内のヒータのレイアウトと温度センサの配置位置との干渉や温度センサ設置のために配置した孔の影響でセンサ周辺の熱的な特性がその他の場所に比較して異なってウエハ温度の均一性が損なわれる問題が生じる。本発明を用いることにより温度センサ205,206,207及びこれが挿入される孔はウエハ104の表面の温度均一性に影響のない位置及び深さに配置できるので、ウエハ104の温度の均一性に与える悪影響を抑制して温度の検出の精度と処理の均一性を向上することができる。
なお、両者の比例演算は同じゲインを用いており、前者の場合についてゲインを下げることによってウエハ温度の振動的な変化は抑制できるが、その場合温度上昇に長い時間を要するようになって結果的に処理に悪影響を与えないと見なせるまでの整定に要する時間は短縮できない。
さらに、本発明を温度制御の精度を向上する目的で実施した例を図7,図8を用いて説明する。図7,図8は、従来の技術による温度の調節を実施場合のウエハ104の半径方向について温度の分布と本実施例に係る温度の制御を実施した場合の半径方向について温度の分布とを示したものである。これらの例では、ウエハ104の半径方向のエッチング形状差をウエハの温度を微調整することによって均一化することを想定して、所定の基準となる温度の設定値からエッジ領域の温度を1℃低下させるという設定で行った。
図7は、基準となるウエハの温度分布をフラットとした場合について得られる温度の分布を示したグラフである。この図において、本実施例に係るの上記演算を用いず温度センサから出力された信号を直接PID演算器のPV値として入力してヒータ電源からの出力を調節してヒータの動作の調節を行った場合と、本実施例に係る上記演算を用いてヒータの動作を調節した場合との各々で、エッジ領域213の設定の温度を1℃下げた場合のウエハ104の半径方向ついての温度の分布を示したものである。前者の場合、エッジ領域213の設定温度だけを変化させたにもかかわらずミドル領域212の温度も変化し、またエッジ領域213の温度も0.2℃程度しか低下していないことがわかった。これはエッジ領域213へミドル領域212から温度差によって熱の流れが生じたことによるものであり、結果としてウエハ面内方向においてエッチングによる加工形状の差を低減して形状を均一化することは達成が不十分であった。一方、後者の本実施例に係る場合では、エッジ領域213付近の温度だけが意図通り約1℃低下しており、ウエハ面内の方向についてのエッチング形状の寸法の差異が所望の範囲内となりウエハ内で寸法均一性を向上することが出来た。
次に、基準となる温度分布がセンタ領域211を中心とした凸型(中高の温度分布)である場合に、上記と同様にエッジ領域213の設定温度を1℃下げた場合のウエハの半径方向についての温度の分布を図8に示す。この場合も図7に示す基準となる温度の分布がフラットである場合と同様に、本実施例に係る前記演算を用いた場合に所望の温度分布の変化が得られ、エッチング形状の寸法が微調整されウエハ104表面の面内方向についての加工の精度を向上することが出来た。
次に、ウエハの温度を直接調節した場合との効果の比較を図9,図10を用いて説明する。図9は、図1に示す実施例に係るプラズマエッチング装置が実施する2つの連続的なステップから構成されたエッチング処理のレシピを示す表である。このエッチング処理においては、レシピのステップ1からステップ2の間で供給する処理用のガスの組成とバイアス電力を変化させる一方、センタ領域211,ミドル領域212,エッジ領域213の各領域の温度の設定が順に30/30/30(℃)→45/41/36(℃)へ変更される。これらの設定は、プラズマ処理装置に備えられた設定、センサの検出値や指令の入力が可能な表示装置とエッチング処理装置に指令を入力する入力装置から行っても良い。これらの例では、ウエハ104の温度の調節は、温度センサ205,206,207からの出力を用いてウエハ104の温度を演算して推定して得られた値に基づいてヒータの動作を調節した場合と安定時のウエハ温度とが等しくなるようにした。
図10は、上記ウエハの温度を用いてヒータの動作を調節した場合でのステップ間のウエハ温度の変化と本実施例に係る演算を用いてヒータの動作を調節した場合とを図示したものである。ステップ1から2に移ったとき、本実施例の場合はウエハ104の温度を用いてヒータ抵抗体203を含むヘッドプレート201の動作を調節した場合に比較して飽和温度への到達が遅れている。これは、本実施例では、ウエハ104へのプラズマからの入熱の量が温度制御部110内へフィードバックされていないために生じた結果である。また、これら2つの場合の各々で実際のウエハをエッチングし加工した結果の形状を比較したところ形状の精度に差は見られなかった。
上記実施例では、試料載置電極105の試料載置面の誘電体膜の温度調節用のセンタ,ミドル,エッジ各領域に加熱器を配置したものとなっているが、本発明はこのような3つの領域に限定されたものではなく、複数の温度を調節する領域を備えた試料載置電極105において同様の作用・効果を奏することができる。また、試料載置電極105に用いられる部材の材料も上記実施例に示したものに限定されない。例えば、試料載置電極105のクーリングプレート202としてチタンまたはその合金を用いても良く、またヘッドプレート201の絶縁性の膜の材料として、イットリウムの酸化材料やこれを含むセラミクスの混合したものや、これらの焼結材を用いても良い。
また、図3,図4では温度制御部110は複数のブロックに分けられて示されているが、これらのブロックに相当する部分は複数が任意の半導体デバイスの内部に内蔵されて構成されていても良く、1つの半導体デバイスが各々の機能部分を内包した一つの温度制御部110として機能する制御器であっても良い。また、これらのブロックが遠隔した箇所に配置されて各ブロック間が通信装置で通信可能に構成されたネットワークを備えた温度制御部110を構成しても良い。
以上の実施例に示したように、本実施例によれば、精密で高速なウエハの温度の値及びその分布の実現ができ、歩留まりとスループットが向上され、半導体デバイスの生産コストを低下することが可能となる。
本発明に係るプラズマ処理装置の構成の概略を模式的に示す縦断面図である。 図1に示す実施例の試料載置電極の構成の概略を模式的に示す縦断面図である。 図1に示す温度制御部110の内部の構成を模式的に示すブロック図である。 図1に示す温度制御部110の内部の構成を模式的に示すブロック図である。 従来の技術によりウエハの温度の調節した場合のウエハの温度の時間変化を示すグラフである。 図1に示す実施例に係るプラズマ処理装置の試料載置電極によりウエハの温度の調節した場合のウエハの温度の時間変化を示すグラフである。 従来の技術及び図1に示す実施例に係るプラズマ処理装置の試料載置電極によりウエハの温度の調節した場合のウエハの温度の分布を示すグラフである。 従来の技術及び図1に示す実施例に係るプラズマ処理装置の試料載置電極によりウエハの温度の調節した場合のウエハの温度の分布を示すグラフである。 図1に示す実施例に係るプラズマエッチング装置が実施する2つの連続的なステップから構成されたエッチング処理のレシピを示す表である。 従来の技術及び図1に示す実施例に係るプラズマ処理装置の試料載置電極により図9に示すエッチング処理のレシピに応じてウエハを処理した場合のウエハ温度の変化を示すグラフである。
符号の説明
101 マイクロ波源
102 導波管
103 処理室
104 ウエハ
105 試料載置電極
106 ガス源
107 バイアス電源
108 静電吸着電源
109 温調器
110 温度制御部
111,112,113 定電力出力電源
201 ヘッドプレート
202 クーリングプレート
203 ヒータ抵抗体
204 内部流路
205,206,207 温度センサ
211 センタ領域
212 ミドル領域
213 エッジ領域

Claims (8)

  1. 真空容器内の処理室内に配置された試料台と、この上に載せられた試料をこの処理室内に形成したプラズマを用いて処理するプラズマ処理装置であって、
    前記試料台の前記試料が載せられる面を構成する絶縁性の材料から構成される膜と、この膜の下方でその上面がこの膜と接合され熱伝導性部材から構成された円板状部材と、前記膜内部に配置されこの膜の中心部及びその外周側の領域の各々に配置されたヒータと、前記円板状部材内に配置され内部をこの円板状部材を冷却する冷媒が通流する冷媒流路と、前記複数の領域のヒータの各々に電力を調節する複数の電源と、これら複数の電源からの出力を前記円板状部材の上面の温度を推定した結果を用いて調節する制御器とを備えたプラズマ処理装置。
  2. 請求項1に記載のプラズマ処理装置であって、
    前記円板状部材の前記上面と前記冷媒流路との間に配置され前記複数の領域に対応してこれらの下方の前記円板状部材の部分の温度を検知する温度センサと、これらの温度センサからの出力の信号を用いて前記円板状部材上面の前記各領域の温度を推定した結果を用いて前記電源からの出力を調節する前記制御器とを備えたプラズマ処理装置。
  3. 請求項2に記載のプラズマ処理装置であって、
    前記制御器は、一つの前記領域の下方の前記円板状部材の上面の温度を該領域の下方に配置された温度センサの出力と該領域に隣接する領域の下方に配置された前記温度センサからの出力とを用いて推定した結果を用いて該領域に電力を供給する前記電源からの出力を調節するプラズマ処理装置。
  4. 請求項2または3に記載のプラズマ処理装置であって、
    前記制御器は、前記領域の下方に配置された温度センサの出力と該領域に配置された前記ヒータに供給されている電力の値とを用いて推定した結果を用いてこの領域に電力を供給する前記電源からの出力を調節するプラズマ処理装置。
  5. 真空容器内の処理室内に配置された試料台上に試料を載せて、処理室内にプラズマを形成しこれを用いて前記試料を処理するプラズマ処理方法であって、
    前記試料台が、前記試料が載せられる面を構成する絶縁性の材料から構成される膜と、この膜の下方でその上面がこの膜と接合され熱伝導性部材から構成された円板状部材と、前記膜内部に配置されこの膜の中心部及びその外周側の領域の各々に配置されたヒータと、前記円板状部材内に配置され内部をこの円板状部材を冷却する冷媒が通流する冷媒流路と、前記複数の領域のヒータの各々に電力を調節する複数の電源とを備え、
    前記複数の電源からの出力を前記円板状部材の上面の温度を推定した結果を用いて調節して前記試料を処理するプラズマ処理方法。
  6. 請求項5に記載のプラズマ処理方法であって、
    前記試料台が前記円板状部材の前記上面と前記冷媒流路との間に配置され前記複数の領域に対応してこれらの下方の前記円板状部材の部分の温度を検知する温度センサを備え、
    これらの温度センサからの出力の信号を用いて前記円板状部材上面の前記各領域の温度を推定した結果を用いて前記電源からの出力を調節して前記試料を処理するプラズマ処理方法。
  7. 請求項6に記載のプラズマ処理方法であって、
    一つの前記領域の下方の前記円板状部材の上面の温度を該領域の下方に配置された温度センサの出力と該領域に隣接する領域の下方に配置された前記温度センサからの出力とを用いて推定した結果を用いて該領域に電力を供給する前記電源からの出力を調節して前記試料を処理するプラズマ処理方法。
  8. 請求項6または7に記載のプラズマ処理方法であって、
    前記領域の下方に配置された温度センサの出力と該領域に配置された前記ヒータに供給されている電力の値とを用いて推定した結果を用いてこの領域に電力を供給して前記試料を処理するプラズマ処理方法。
JP2007314133A 2007-12-05 2007-12-05 プラズマ処理装置及びプラズマ処理方法 Expired - Fee Related JP5414172B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007314133A JP5414172B2 (ja) 2007-12-05 2007-12-05 プラズマ処理装置及びプラズマ処理方法
US12/073,048 US8282848B2 (en) 2007-12-05 2008-02-28 Plasma processing method and plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314133A JP5414172B2 (ja) 2007-12-05 2007-12-05 プラズマ処理装置及びプラズマ処理方法

Publications (2)

Publication Number Publication Date
JP2009141034A true JP2009141034A (ja) 2009-06-25
JP5414172B2 JP5414172B2 (ja) 2014-02-12

Family

ID=39969929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314133A Expired - Fee Related JP5414172B2 (ja) 2007-12-05 2007-12-05 プラズマ処理装置及びプラズマ処理方法

Country Status (2)

Country Link
US (1) US8282848B2 (ja)
JP (1) JP5414172B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082442A (ja) * 2009-10-09 2011-04-21 Hitachi High-Technologies Corp プラズマエッチング処理装置
KR20140114817A (ko) * 2012-01-13 2014-09-29 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치 및 히터의 온도 제어 방법
KR20210022522A (ko) * 2018-06-29 2021-03-03 도쿄엘렉트론가부시키가이샤 플라스마 처리 장치, 플라스마 상태 검출 방법 및 플라스마 상태 검출 프로그램

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5788355B2 (ja) * 2012-03-29 2015-09-30 東京エレクトロン株式会社 熱処理システム、熱処理方法、及び、プログラム
WO2014203692A1 (ja) * 2013-06-21 2014-12-24 株式会社カネカ 耐アーク性能評価方法及び耐アーク性能評価装置
US10763142B2 (en) 2015-06-22 2020-09-01 Lam Research Corporation System and method for determining field non-uniformities of a wafer processing chamber using a wafer processing parameter
US10386821B2 (en) 2015-06-22 2019-08-20 Lam Research Corporation Systems and methods for calibrating scalar field contribution values for a limited number of sensors including a temperature value of an electrostatic chuck and estimating temperature distribution profiles based on calibrated values
JP7154160B2 (ja) * 2019-03-18 2022-10-17 東京エレクトロン株式会社 温度測定機構、温度測定方法、およびステージ装置
KR102639158B1 (ko) * 2019-07-23 2024-02-22 삼성전자주식회사 웨이퍼 처리 장치 및 이를 이용한 웨이퍼 처리 방법
CN110502049B (zh) * 2019-08-30 2021-05-07 北京北方华创微电子装备有限公司 卡盘温度控制方法、卡盘温度控制系统及半导体设备
JP7380062B2 (ja) * 2019-10-18 2023-11-15 富士電機株式会社 半導体モジュール

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116885A (ja) * 1996-10-08 1998-05-06 Anelva Corp 基板温度制御機構
JP2007088411A (ja) * 2005-06-28 2007-04-05 Hitachi High-Technologies Corp 静電吸着装置およびウエハ処理装置ならびにプラズマ処理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800173B2 (en) * 2000-12-15 2004-10-05 Novellus Systems, Inc. Variable gas conductance control for a process chamber
WO2002089531A1 (en) * 2001-04-30 2002-11-07 Lam Research, Corporation Method and apparatus for controlling the spatial temperature distribution across the surface of a workpiece support
JP2006351887A (ja) * 2005-06-17 2006-12-28 Hitachi High-Technologies Corp プラズマ処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116885A (ja) * 1996-10-08 1998-05-06 Anelva Corp 基板温度制御機構
JP2007088411A (ja) * 2005-06-28 2007-04-05 Hitachi High-Technologies Corp 静電吸着装置およびウエハ処理装置ならびにプラズマ処理方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082442A (ja) * 2009-10-09 2011-04-21 Hitachi High-Technologies Corp プラズマエッチング処理装置
KR20140114817A (ko) * 2012-01-13 2014-09-29 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치 및 히터의 온도 제어 방법
KR102021570B1 (ko) * 2012-01-13 2019-09-16 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치 및 히터의 온도 제어 방법
US10629464B2 (en) 2012-01-13 2020-04-21 Tokyo Electron Limited Plasma processing apparatus and heater temperature control method
KR20210022522A (ko) * 2018-06-29 2021-03-03 도쿄엘렉트론가부시키가이샤 플라스마 처리 장치, 플라스마 상태 검출 방법 및 플라스마 상태 검출 프로그램
KR102690560B1 (ko) 2018-06-29 2024-08-01 도쿄엘렉트론가부시키가이샤 플라스마 처리 장치, 플라스마 상태 검출 방법 및 플라스마 상태 검출 프로그램

Also Published As

Publication number Publication date
US8282848B2 (en) 2012-10-09
US20080280451A1 (en) 2008-11-13
JP5414172B2 (ja) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5414172B2 (ja) プラズマ処理装置及びプラズマ処理方法
US10872748B2 (en) Systems and methods for correcting non-uniformities in plasma processing of substrates
US9150967B2 (en) Plasma processing apparatus and sample stage
KR100728312B1 (ko) 정전 흡착장치와 웨이퍼 처리장치 및 플라즈마 처리방법
JP5203612B2 (ja) プラズマ処理装置
JP5274918B2 (ja) プラズマ処理装置のチャンバー内部材の温度制御方法、チャンバー内部材及び基板載置台、並びにそれを備えたプラズマ処理装置
US7815740B2 (en) Substrate mounting table, substrate processing apparatus and substrate processing method
JP4815298B2 (ja) プラズマ処理方法
JP6335229B2 (ja) 基板温度制御方法及びプラズマ処理装置
US20130270250A1 (en) Current peak spreading schemes for multiplexed heated array
US20060191482A1 (en) Apparatus and method for processing wafer
JP2006351887A (ja) プラズマ処理装置
US11862438B2 (en) Plasma processing apparatus, calculation method, and calculation program
US10964513B2 (en) Plasma processing apparatus
JP7202972B2 (ja) プラズマ処理装置、プラズマ状態検出方法およびプラズマ状態検出プログラム
CN111933508B (zh) 等离子体处理装置、温度控制方法以及记录介质
US10361089B2 (en) Plasma processing method
JP7321026B2 (ja) エッジリング、載置台、基板処理装置及び基板処理方法
JP2020520099A (ja) 基板処理システムのための温度調節された基板支持体
JP2017208401A (ja) プラズマ処理装置およびプラズマ処理方法
JP2023033331A (ja) プラズマ処理装置、プラズマ状態検出方法およびプラズマ状態検出プログラム
JP2016136553A (ja) プラズマ処理装置
JP5453024B2 (ja) プラズマエッチング処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131112

LAPS Cancellation because of no payment of annual fees