JP2009139662A - Polarizing plate, optical film and image display device - Google Patents

Polarizing plate, optical film and image display device Download PDF

Info

Publication number
JP2009139662A
JP2009139662A JP2007316285A JP2007316285A JP2009139662A JP 2009139662 A JP2009139662 A JP 2009139662A JP 2007316285 A JP2007316285 A JP 2007316285A JP 2007316285 A JP2007316285 A JP 2007316285A JP 2009139662 A JP2009139662 A JP 2009139662A
Authority
JP
Japan
Prior art keywords
liquid crystal
polarizing plate
film
meth
transparent protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007316285A
Other languages
Japanese (ja)
Inventor
Yoichiro Sugino
洋一郎 杉野
Yuji Ueda
有史 上田
Satoshi Ito
聡 伊藤
Tatsuya Yamazaki
達也 山崎
Tsutomu Hani
勉 羽仁
Motoko Kawasaki
元子 河▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2007316285A priority Critical patent/JP2009139662A/en
Publication of JP2009139662A publication Critical patent/JP2009139662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarizing plate that has an adhesive layer, a transparent protective film and a liquid crystal optical compensation layer, in this order on at least one surface of a polarizer, and an adhesive layer and a transparent protective film, in this order on the other surface, and that can suppress display unevenness even when used for a liquid crystal panel. <P>SOLUTION: The polarizing plate has an adhesive layer, a transparent protective film (A), and a liquid crystal optical compensation layer, in this order on one surface of a polarizer, and has an adhesive layer and a transparent protective film (B), in this order on the other surface of the polarizer. The liquid crystal optical compensation layer is obtained by obliquely aligning the optical axis of a liquid crystal. At least one of the transparent protective film (A) and the transparent protective film (B) comprises a (meth)acrylic resin having a glutarimide unit and a (meth)acrylate unit, and has an in-plane retardation of less than 40 nm and a retardation in the thickness direction of less than 80 nm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、偏光板に関する。当該偏光板はこれ単独で、またはこれを積層した光学フィルムとして液晶表示装置(LCD)、有機EL表示装置、CRT、PDP等の画像表示装置を形成しうる。   The present invention relates to a polarizing plate. The polarizing plate can form an image display device such as a liquid crystal display device (LCD), an organic EL display device, a CRT, or a PDP alone or as an optical film in which the polarizing plate is laminated.

本発明の偏光板は、液晶光学補償層として、例えば、ディスコティック液晶層等を有しており、表示コントラスト及び表示色の視角特性を改善することができる、光学補償機能付き楕円偏光板として有用である。   The polarizing plate of the present invention has, for example, a discotic liquid crystal layer as a liquid crystal optical compensation layer, and can be used as an elliptical polarizing plate with an optical compensation function, which can improve display contrast and viewing angle characteristics of display colors. It is.

時計、携帯電話、PDA、ノートパソコン、パソコン用モニター、DVDプレイヤー、TVなどでは液晶表示装置が急速に市場展開している。液晶表示装置は、液晶のスイッチングによる偏光状態変化を可視化させたものであり、その表示原理から偏光子が用いられている。特に、TV等の用途にはますます高輝度かつ高コントラストな表示が求められ、偏光子にも、より明るく(高透過率)、より高コントラスト(高偏光度)のものが開発され導入されている。   Liquid crystal display devices are rapidly marketed in watches, mobile phones, PDAs, notebook computers, personal computer monitors, DVD players, TVs, and the like. A liquid crystal display device visualizes a change in polarization state due to switching of liquid crystal, and a polarizer is used from the display principle. In particular, displays with higher brightness and higher contrast are required for applications such as TV, and light polarizers with higher brightness (high transmittance) and higher contrast (high polarization degree) have been developed and introduced. Yes.

現在、一般的な液晶表示装置の主流方式は、TN液晶を用いたTFT−LCDである。この方式では、応答速度が速く、高いコントラストを得ることができるなどの利点がある。しかし、TN液晶を用いたパネルの表示をその法線方向より傾いた角度から見た場合、コントラストが著しく低下し、また階調表示が逆転する階調反転などが起こるため、TN液晶は非常に視野角が狭いという特性を持っている。一方、大型のPCモニターやテレビ等の用途においては、高コントラスト、広視野角、視野角による表示色変化が少ないことなどが要求される。従って、TNモードのTFT−LCDをそのような用途に用いる場合には、視野角を補償するための位相差フィルムが必要不可欠である。   At present, the mainstream method of a general liquid crystal display device is a TFT-LCD using a TN liquid crystal. This method has advantages such as high response speed and high contrast. However, when the display of a panel using TN liquid crystal is viewed from an angle inclined from the normal direction, the contrast is remarkably lowered, and gradation inversion that reverses the gradation display occurs. It has the characteristic that the viewing angle is narrow. On the other hand, in applications such as large PC monitors and televisions, high contrast, wide viewing angle, and small display color change due to viewing angle are required. Therefore, when a TN mode TFT-LCD is used for such applications, a retardation film for compensating the viewing angle is indispensable.

この位相差フィルムとしては、延伸複屈折ポリマーフィルムが従来から使用されていた。最近、延伸複屈折フィルムからなる光学補償フィルムに代えて、透明支持体上に液晶性分子から形成された光学異方性層を有する光学補償フィルムを使用することが提案されている。液晶性分子には多様な配向形態があるため、液晶性分子を用いることで、従来の延伸複屈折ポリマーフィルムでは得ることができない光学的性質を実現することが可能になった。   As this retardation film, a stretched birefringent polymer film has been conventionally used. Recently, it has been proposed to use an optical compensation film having an optically anisotropic layer formed of liquid crystalline molecules on a transparent support, instead of an optical compensation film made of a stretched birefringent film. Since liquid crystal molecules have various alignment forms, it has become possible to realize optical properties that cannot be obtained with conventional stretched birefringent polymer films by using liquid crystal molecules.

上記のような視野角補償用の位相差フィルムとして、O‐プレートが用いられている。例えば、負の屈折率異方性を持つディスコティック液晶を用いた富士フイルム社製のワイドビューフィルムが提案されている(特許文献1、特許文献2参照)。この位相差フィルムでは、透明基材フィルムの片面に、光軸が傾斜配向されたディスコティック液晶層を有する。この位相差フィルムでは、主として黒表示の電圧印加状態における視野角特性を改良することが目的とされている。即ち、電圧印加状態においては、液晶セル中の液晶分子はガラス基板から傾斜した光軸を有する正の屈折率異方性を示す。この屈折率異方性による位相差を補償するために、光軸がフィルム法線方向から傾斜し且つ負の屈折率異方性を有する液晶性分子を利用した位相差フィルムとなっている。   An O-plate is used as the retardation film for viewing angle compensation as described above. For example, a wide view film manufactured by FUJIFILM Corporation using a discotic liquid crystal having negative refractive index anisotropy has been proposed (see Patent Document 1 and Patent Document 2). This retardation film has a discotic liquid crystal layer having an optical axis inclined and oriented on one side of a transparent substrate film. This retardation film is mainly intended to improve viewing angle characteristics in a voltage application state for black display. That is, in a voltage application state, the liquid crystal molecules in the liquid crystal cell exhibit positive refractive index anisotropy having an optical axis inclined from the glass substrate. In order to compensate for the retardation due to the refractive index anisotropy, the retardation film uses a liquid crystalline molecule having an optical axis inclined from the normal direction of the film and having negative refractive index anisotropy.

前記視野角補償用の位相差フィルムにおいて、透明基材フィルムには、接着剤層を介して偏光子を積層して楕円偏光板として用いられる。また当該楕円偏光板では、前記偏光子の片面(前記位相差フィルムの反対側)には、透明保護フィルムが接着剤層により貼り合わされる。偏光子としては、例えばポリビニルアルコールにヨウ素を吸着させ、延伸した構造のヨウ素系偏光子が高透過率、高偏光度を有することから、最も一般的な偏光子として広く使用されている。透明保護フィルムとしては、透湿度の高いトリアセチルセルロース等が用いられる。   In the retardation film for viewing angle compensation, the transparent substrate film is used as an elliptically polarizing plate by laminating a polarizer through an adhesive layer. In the elliptically polarizing plate, a transparent protective film is bonded to one side of the polarizer (opposite side of the retardation film) with an adhesive layer. As a polarizer, for example, an iodine-based polarizer having a stretched structure obtained by adsorbing iodine to polyvinyl alcohol has a high transmittance and a high degree of polarization, and is therefore widely used as the most common polarizer. As the transparent protective film, triacetyl cellulose having a high moisture permeability is used.

前記楕円偏光板を液晶セルに貼り合わせた液晶パネルは、液晶表示装置に搭載されて用いられる。液晶表示装置は、加熱や加湿条件下等の様々な条件下におかれるため、かかる環境下においても、表示品位を損なわない高耐久性が要求されている。   A liquid crystal panel in which the elliptically polarizing plate is bonded to a liquid crystal cell is mounted and used in a liquid crystal display device. Since liquid crystal display devices are subjected to various conditions such as heating and humidification conditions, high durability that does not impair display quality is required even in such an environment.

しかし、透明保護フィルムとして用いられるトリアセチルセルロース等は、加熱や加湿条件下においた場合には、位相差が大きく変化して、液晶パネルの周辺部に表示ムラが生じ、表示不良が起きることがある。この周辺部の表示ムラは、特に、先述した楕円偏光板を使用した場合に顕著にみられることがあった。   However, when triacetylcellulose or the like used as a transparent protective film is subjected to heating or humidification conditions, the phase difference may change greatly, resulting in display unevenness in the periphery of the liquid crystal panel and display failure. is there. This display unevenness in the peripheral portion may be particularly noticeable when the above-described elliptically polarizing plate is used.

一方、偏光板に用いる透明保護フィルムは、接着剤により偏光子に接着されているが、偏光板を作成するにあたって、偏光子と透明保護フィルムを、貼り合わせる際には、クニック(クニック欠陥)が発生する問題がある。クニックは、偏光子と透明保護フィルムの界面において生じる、局所的な凹凸欠陥である。かかるクニックに対しては、偏光子として、含水量を調整したポリビニルアルコール系フィルムの表面を所定条件下にカレンダーロールで処理されたものを用いて、透明保護フィルムと積層する方法が提案されている(特許文献3)。また、クニックは、ポリビニルアルコール系接着剤として、アセトアセチル基を含有するポリビニルアルコール系樹脂を用いる場合に特に生じやすい。   On the other hand, the transparent protective film used for the polarizing plate is bonded to the polarizer with an adhesive, but when creating the polarizing plate, when the polarizer and the transparent protective film are bonded together, there is a nick (knic defect). There are problems that occur. A knick is a local irregularity defect that occurs at the interface between a polarizer and a transparent protective film. For such nicks, there has been proposed a method of laminating a transparent protective film as a polarizer using a surface of a polyvinyl alcohol film adjusted in water content treated with a calender roll under predetermined conditions. (Patent Document 3). In addition, the nick is particularly likely to occur when a polyvinyl alcohol resin containing an acetoacetyl group is used as the polyvinyl alcohol adhesive.

特開平8−95032号公報JP-A-8-95032 特許第2767382号明細書Japanese Patent No. 2767382 特開2006−119203号公報JP 2006-119203 A

本発明は、偏光子の少なくとも片面に、接着剤層、透明保護フィルムおよび液晶光学補償層をこの順で有し、他の片面に接着剤層、透明保護フィルムをこの順で有する偏光板であって、当該偏光板を液晶パネルに適用した場合にも表示ムラを小さく抑えることができる、偏光板を提供することを目的とする。   The present invention is a polarizing plate having an adhesive layer, a transparent protective film and a liquid crystal optical compensation layer in this order on at least one surface of a polarizer, and an adhesive layer and a transparent protective film in this order on the other surface. Thus, it is an object of the present invention to provide a polarizing plate that can suppress display unevenness even when the polarizing plate is applied to a liquid crystal panel.

また本発明は前記偏光板を積層した光学フィルムを提供すること、さらには、当該偏光板、光学フィルムを用いた液晶表示装置等の画像表示装置を提供することを目的とする。   Another object of the present invention is to provide an optical film in which the polarizing plate is laminated, and to provide an image display device such as a liquid crystal display device using the polarizing plate and the optical film.

本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す偏光板を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found the polarizing plate shown below and have completed the present invention.

即ち本発明は、偏光子の片面に、接着剤層、透明保護フィルムAおよび液晶光学補償層をこの順で有し、他の片面に接着剤層、透明保護フィルムBをこの順で有する偏光板であって、
前記液晶光学補償層は、液晶の光軸を傾斜配向させて得られる液晶光学補償層であり、かつ、
前記透明保護フィルムAおよび透明保護フィルムBのいずれか少なくとも一方は、グルタルイミド単位および(メタ)アクリル酸エステル単位を有する(メタ)アクリル系樹脂を含有してなり、かつ、面内位相差が40nm未満、厚み方向位相差が80nm未満であることを特徴とする偏光板、に関する。
That is, the present invention has an adhesive layer, a transparent protective film A and a liquid crystal optical compensation layer in this order on one side of a polarizer, and a polarizing plate having an adhesive layer and a transparent protective film B in this order on the other side. Because
The liquid crystal optical compensation layer is a liquid crystal optical compensation layer obtained by tilting the optical axis of liquid crystal, and
At least one of the transparent protective film A and the transparent protective film B contains a (meth) acrylic resin having a glutarimide unit and a (meth) acrylic acid ester unit, and has an in-plane retardation of 40 nm. And a polarizing plate characterized by having a thickness direction retardation of less than 80 nm.

前記偏光板において、前記接着剤層は、ポリビニルアルコール系樹脂、架橋剤および平均粒子径が1〜100nmの金属化合物コロイドを含有してなる樹脂溶液であって、かつ、金属化合物コロイドは、ポリビニルアルコール系樹脂100重量部に対して、200重量部以下の割合で配合されている偏光板用接着剤から形成することができる。   In the polarizing plate, the adhesive layer is a resin solution containing a polyvinyl alcohol resin, a crosslinking agent, and a metal compound colloid having an average particle diameter of 1 to 100 nm, and the metal compound colloid is polyvinyl alcohol. It can form from the adhesive agent for polarizing plates mix | blended in the ratio of 200 weight part or less with respect to 100 weight part of type | system | group resin.

前記金属化合物コロイドは、アルミナコロイド、シリカコロイド、ジルコニアコロイド、チタニアコロイドおよび酸化スズコロイドから選ばれるいずれか少なくとも1種が好ましい。また、金属化合物コロイドは、正電荷を有することが好ましく、特に、アルミナコロイドが好ましい。   The metal compound colloid is preferably at least one selected from alumina colloid, silica colloid, zirconia colloid, titania colloid and tin oxide colloid. Further, the metal compound colloid preferably has a positive charge, and alumina colloid is particularly preferable.

前記偏光板において、前記(メタ)アクリル系樹脂は、さらに芳香族ビニル単位を有することが好ましい。   In the polarizing plate, it is preferable that the (meth) acrylic resin further has an aromatic vinyl unit.

前記偏光板において、前記(メタ)アクリル系樹脂は、さらにスチレン系樹脂を含有することが好ましい。   In the polarizing plate, it is preferable that the (meth) acrylic resin further contains a styrene resin.

前記偏光板において、前記液晶光学補償層としては、ディスコティック液晶層を好適に用いることができる。   In the polarizing plate, a discotic liquid crystal layer can be suitably used as the liquid crystal optical compensation layer.

また本発明は、前記偏光板が、少なくとも1枚積層されていることを特徴とする光学フィルム、に関する。   The present invention also relates to an optical film in which at least one polarizing plate is laminated.

また本発明は、前記偏光板または前記光学フィルムが用いられていることを特徴とする画像表示装置、に関する。   The present invention also relates to an image display device using the polarizing plate or the optical film.

本発明では、偏光板の少なくも片面において、透明保護フィルムとして、グルタルイミド単位および(メタ)アクリル酸エステル単位を有する(メタ)アクリル系樹脂を含有してなり、かつ、面内位相差が40nm未満、厚み方向位相差が80nm未満であるものを用いる。前記(メタ)アクリル系樹脂は、透湿度が低く、当該透明保護フィルムを用いた偏光板は、液晶パネルに適用した場合にも高温環境下における耐熱性、高湿環境下における耐湿性等の耐久性を満足することができる。   In the present invention, at least one surface of the polarizing plate contains a (meth) acrylic resin having a glutarimide unit and a (meth) acrylic acid ester unit as a transparent protective film, and an in-plane retardation is 40 nm. And those having a thickness direction retardation of less than 80 nm are used. The (meth) acrylic resin has low moisture permeability, and the polarizing plate using the transparent protective film has durability such as heat resistance in a high temperature environment and moisture resistance in a high humidity environment even when applied to a liquid crystal panel. Can satisfy the sex.

本発明の偏光板は、ディスコティック液晶層等の液晶光学補償層を透明保護フィルムに積層したものであり、当該偏光板を、液晶パネルへ適用する場合には、液晶セルの光学補償のために、通常、液晶光学補償層を液晶セル側に配置する。かかる配置において、前記耐久性の良好な透明保護フィルムは、液晶セルを基準として、液晶光学補償層の外側に配置されているため、低透湿度の透明保護フィルムは、バリア層として機能して(加湿条件下の吸湿性を防ぐことができ)、液晶光学補償層の位相差変化を小さく制御することができ、液晶パネルの面内の均一性を確保することができる。   The polarizing plate of the present invention is obtained by laminating a liquid crystal optical compensation layer such as a discotic liquid crystal layer on a transparent protective film, and when applying the polarizing plate to a liquid crystal panel, for optical compensation of a liquid crystal cell. Usually, the liquid crystal optical compensation layer is disposed on the liquid crystal cell side. In such an arrangement, since the transparent protective film having good durability is arranged outside the liquid crystal optical compensation layer based on the liquid crystal cell, the transparent protective film having a low moisture permeability functions as a barrier layer ( Hygroscopicity under humidification conditions can be prevented), the change in retardation of the liquid crystal optical compensation layer can be controlled to be small, and the in-plane uniformity of the liquid crystal panel can be ensured.

また本発明では、偏光子と透明保護フィルムとを接合するための接着剤層の形成に、平均粒子径が1〜100nmの金属化合物コロイドを含有するポリビニルアルコール系接着剤を用いた場合には、かかる金属化合物コロイドの作用によって、クニックの発生が抑えられる。これにより、偏光板を作成する際の歩留まりを向上することができ、偏光板の生産性が向上し、その結果、液晶パネルの生産性が向上する。   In the present invention, when a polyvinyl alcohol-based adhesive containing a metal compound colloid having an average particle diameter of 1 to 100 nm is used for forming an adhesive layer for bonding a polarizer and a transparent protective film, Occurrence of the nick is suppressed by the action of the metal compound colloid. Thereby, the yield at the time of producing a polarizing plate can be improved, and the productivity of a polarizing plate improves, As a result, the productivity of a liquid crystal panel improves.

前記金属化合物コロイドは、正電荷を有するものが好適である。正電荷を有する金属化合物コロイドは、負電荷を有する金属化合物コロイドに比べて、クニックの発生を抑える効果が大きい。これらのなかでも、正電荷を有する金属化合物コロイドとしては、アルミナコロイドが好適である。   The metal compound colloid preferably has a positive charge. A metal compound colloid having a positive charge has a greater effect of suppressing the occurrence of nicks than a metal compound colloid having a negative charge. Among these, alumina colloid is suitable as the metal compound colloid having a positive charge.

前記接着剤層を形成する偏光板用接着剤としては、ポリビニルアルコール系樹脂を用いることができるが、ポリビニルアルコール系樹脂としてアセトアセチル基を含有するポリビニルアルコール系樹脂を用いる場合に本発明は特に好適である。アセトアセチル基を含有するポリビニルアルコール系樹脂を用いた接着剤は、耐水性に優れる接着剤層を形成することができる。一方、アセトアセチル基を含有するポリビニルアルコール系樹脂を用いた偏光板用接着剤では、クニックの発生が多く観察されたが、本発明の偏光板用接着剤では、前記金属化合物コロイドを配合することにより、アセトアセチル基を含有するポリビニルアルコール系樹脂を用いた偏光板用接着剤における、クニックの発生を抑えることができる。これにより、耐水性を有し、かつクニックの発生を抑えることができる。   As the polarizing plate adhesive for forming the adhesive layer, a polyvinyl alcohol resin can be used, but the present invention is particularly suitable when a polyvinyl alcohol resin containing an acetoacetyl group is used as the polyvinyl alcohol resin. It is. An adhesive using a polyvinyl alcohol-based resin containing an acetoacetyl group can form an adhesive layer having excellent water resistance. On the other hand, in the adhesive for polarizing plates using a polyvinyl alcohol-based resin containing an acetoacetyl group, many occurrences of nicks were observed. In the adhesive for polarizing plates of the present invention, the metal compound colloid is blended. Thus, the occurrence of nicks in the polarizing plate adhesive using a polyvinyl alcohol-based resin containing an acetoacetyl group can be suppressed. Thereby, it has water resistance and can suppress the generation of nicks.

以下本発明を、図面を参照しながら説明する。図1は、本発明の代表的な実施形態による偏光板を説明するための概略断面図である。本発明の偏光板10は、偏光子11の片面に、接着剤層12、透明保護フィルムAおよび液晶光学補償層Dをこの順で有し、他の片面に接着剤層12´、透明保護フィルムBを有する。透明保護フィルムAおよび液晶光学補償層Dは、順次に偏光子11に積層することができるが、通常は、透明保護フィルムAおよび液晶光学補償層Dは、積層フィルム13として用いることができる。図1では、積層フィルム13として用いられる場合が示されている。なお、図1では示していないが、透明基材フィルムAと液晶光学補償層Dとの間には配向膜を設けることができる。配向膜を設けない場合には、通常、透明基材フィルムAの片面を、ラビング処理したものを用いることができる。   The present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view for explaining a polarizing plate according to a representative embodiment of the present invention. The polarizing plate 10 of the present invention has an adhesive layer 12, a transparent protective film A, and a liquid crystal optical compensation layer D in this order on one side of a polarizer 11, and an adhesive layer 12 'and a transparent protective film on the other side. B. The transparent protective film A and the liquid crystal optical compensation layer D can be sequentially laminated on the polarizer 11, but usually the transparent protective film A and the liquid crystal optical compensation layer D can be used as the laminated film 13. In FIG. 1, the case where it uses as the laminated | multilayer film 13 is shown. Although not shown in FIG. 1, an alignment film can be provided between the transparent base film A and the liquid crystal optical compensation layer D. When the alignment film is not provided, one obtained by rubbing one side of the transparent base film A can be usually used.

本発明の偏光板10では、透明保護フィルムAおよび透明保護フィルムBのいずれか少なくとも一方は、グルタルイミド単位および(メタ)アクリル酸エステル単位を有する(メタ)アクリル系樹脂を含有する。透明保護フィルムAおよび透明保護フィルムBは、両者とも、前記(メタ)アクリル系樹脂を含有するものであってもよく、一方のみが、前記(メタ)アクリル系樹脂を含有するものであってもよい。透明保護フィルムの一方のみを、前記(メタ)アクリル系樹脂を含有するものにする場合には、当該一方の透明光学フィルムは、液晶光学補償層Dを設けていない側の透明保護フィルムBに適用するのが好適である。通常、液晶パネルにおいて、液晶光学補償層Dの側が、液晶セル側に配置されるため、より外側に配置される透明保護フィルムBとして、前記(メタ)アクリル系樹脂を含有してなる低透湿度の透明保護フィルムを採用することで、当該透明保護フィルムのバリア層としての効果をより発揮することができる。また、接着剤層12、12´には、金属化合物コロイドを含有するポリビニルアルコール系接着剤が好適に用いられる。   In the polarizing plate 10 of the present invention, at least one of the transparent protective film A and the transparent protective film B contains a (meth) acrylic resin having a glutarimide unit and a (meth) acrylic acid ester unit. Both the transparent protective film A and the transparent protective film B may contain the (meth) acrylic resin, or only one of them contains the (meth) acrylic resin. Good. When only one of the transparent protective films contains the (meth) acrylic resin, the one transparent optical film is applied to the transparent protective film B on the side where the liquid crystal optical compensation layer D is not provided. It is preferable to do this. Usually, in the liquid crystal panel, since the liquid crystal optical compensation layer D side is disposed on the liquid crystal cell side, the low-moisture permeability comprising the (meth) acrylic resin as the transparent protective film B disposed on the outer side. By adopting the transparent protective film, the effect of the transparent protective film as a barrier layer can be further exhibited. For the adhesive layers 12 and 12 ', a polyvinyl alcohol-based adhesive containing a metal compound colloid is preferably used.

偏光子は、特に制限されず、各種のものを使用できる。偏光子としては、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性材料を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等があげられる。これらのなかでもポリビニルアルコール系フィルムとヨウ素などの二色性物質からなる偏光子が好適である。これら偏光子の厚さは特に制限されないが、一般的に、5〜80μm程度であり、好ましくは10〜50μmであり、さらに好ましくは20〜40μmである。   The polarizer is not particularly limited, and various types can be used. Examples of the polarizer include hydrophilic polymers such as polyvinyl alcohol film, partially formalized polyvinyl alcohol film, and ethylene / vinyl acetate copolymer partially saponified film, and two colors such as iodine and dichroic dye. And polyene-based oriented films such as those obtained by adsorbing a functional material and uniaxially stretched, polyvinyl alcohol dehydrated products, and polyvinyl chloride dehydrochlorinated products. Among these, a polarizer composed of a polyvinyl alcohol film and a dichroic material such as iodine is preferable. The thickness of these polarizers is not particularly limited, but is generally about 5 to 80 μm, preferably 10 to 50 μm, and more preferably 20 to 40 μm.

ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3〜7倍に延伸することで作成することができる。必要に応じてホウ酸やヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸してもよし、また延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。   A polarizer obtained by dyeing a polyvinyl alcohol film with iodine and uniaxially stretching it can be prepared, for example, by immersing polyvinyl alcohol in an aqueous solution of iodine and stretching it 3 to 7 times the original length. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing. In addition to washing the polyvinyl alcohol film surface with dirt and anti-blocking agents by washing the polyvinyl alcohol film with water, it also has the effect of preventing unevenness such as uneven coloring by swelling the polyvinyl alcohol film. is there. Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. The film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.

上記偏光子の水分率としては、任意の適切な水分率が採用され得るが、好ましくは5〜40%であり、さらに好ましくは10〜30%であり、最も好ましくは20〜30%である。   Any appropriate moisture content may be adopted as the moisture content of the polarizer, but it is preferably 5 to 40%, more preferably 10 to 30%, and most preferably 20 to 30%.

本発明の、偏光子の水分率は、任意の適切な方法で調整すればよい。例えば偏光子の製造工程における乾燥工程の条件を調整することにより制御する方法があげられる。   The moisture content of the polarizer of the present invention may be adjusted by any appropriate method. For example, there is a method of controlling by adjusting the conditions of the drying process in the manufacturing process of the polarizer.

本発明に用いられる偏光子としては、上述した偏光子の他に、例えば、二色性物質を練りこんだ高分子フィルムを延伸して一定方向に配向させた偏光子、二色性物質と液晶性化合物とを含む液晶性組成物を一定方向に配向させたゲスト・ホストタイプのO型偏光子(米国特許5,523,863号、特表平3−503322号公報)、およびリオトロピック液晶を一定方向に配向させたE型偏光子(米国特許6,049,428号)等も用いることができる。   As the polarizer used in the present invention, in addition to the above-described polarizer, for example, a polarizer obtained by stretching a polymer film kneaded with a dichroic material and oriented in a certain direction, a dichroic material and a liquid crystal A guest-host type O-type polarizer (US Pat. No. 5,523,863, Japanese Patent Publication No. 3-503322) and a lyotropic liquid crystal in which a liquid crystal composition containing a functional compound is aligned in a certain direction An E-type polarizer oriented in the direction (US Pat. No. 6,049,428) or the like can also be used.

偏光子の両側に用いる透明保護フィルムAおよび透明保護フィルムBは、いずれか少なくとも一方が、グルタルイミド単位および(メタ)アクリル酸エステル単位を有する(メタ)アクリル系樹脂を含有してなるものを用いる。当該(メタ)アクリル系樹脂は、さらに芳香族ビニル単位を有するものが好ましい。   As the transparent protective film A and the transparent protective film B used on both sides of the polarizer, at least one of them contains a (meth) acrylic resin having a glutarimide unit and a (meth) acrylic acid ester unit. . The (meth) acrylic resin preferably has an aromatic vinyl unit.

前記(メタ)アクリル系樹脂は、好ましくは、下記一般式(1)で表されるグルタルイミド単位、および一般式(2)で表される(メタ)アクリル酸エステル単位を有する。   The (meth) acrylic resin preferably has a glutarimide unit represented by the following general formula (1) and a (meth) acrylic acid ester unit represented by the general formula (2).

ここで、R1およびR2は、それぞれ独立に、水素または炭素数1〜8のアルキル基を示し、R3は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数6〜10のアリール基を示す。 Here, R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, R 3 represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, Or an aryl group having 6 to 10 carbon atoms.

ここで、R4およびR5は、それぞれ独立に、水素または炭素数1〜8のアルキル基を示し、R6は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数6〜10のアリール基を示す。 Here, R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, R 6 represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, Or an aryl group having 6 to 10 carbon atoms.

前記一般式(1)で表される第一の構成単位(以下、グルタルイミド単位と言うことがある)は、好ましくは、R1、R2が水素またはメチル基であり、R3が水素、メチル基、またはシクロヘキシル基である。R1がメチル基であり、R2が水素であり、R3がメチル基である場合が、特に好ましい。前記グルタルイミド単位は、単一の種類でもよく、R1、R2、R3が異なる複数の種類を含んでいても構わない。 The first structural unit represented by the general formula (1) (hereinafter sometimes referred to as a glutarimide unit) is preferably R 1 and R 2 are hydrogen or a methyl group, R 3 is hydrogen, A methyl group or a cyclohexyl group. The case where R 1 is a methyl group, R 2 is hydrogen, and R 3 is a methyl group is particularly preferred. The glutarimide unit may be of a single type or may include a plurality of types having different R 1 , R 2 , and R 3 .

前記一般式(2)で表される第二の構成単位(以下、(メタ)アクリル酸エステルまたは(メタ)アクリル酸構成単位と言うことがある)は、好ましくは、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル等が挙げられる。これらの中でメタクリル酸メチルが特に好ましい。これら第二の構成単位は、単一の種類でもよく、R4、R5、R6が異なる複数の種類を含んでいてもかまわない。 The second structural unit represented by the general formula (2) (hereinafter sometimes referred to as (meth) acrylic acid ester or (meth) acrylic acid structural unit) is preferably methyl acrylate or ethyl acrylate. , Methyl methacrylate, ethyl methacrylate and the like. Of these, methyl methacrylate is particularly preferred. These second structural units may be of a single type, and may include a plurality of types in which R 4 , R 5 , and R 6 are different.

前記(メタ)アクリル系樹脂は、より好ましくは、前記一般式(1)で表されるグルタルイミド単位、一般式(2)で表される(メタ)アクリル酸エステル単位および下記一般式(3)で表される芳香族ビニル単位の構造単位を有する。芳香族ビニル単位は、(メタ)アクリル系樹脂を、流延法、溶融押出法等でフィルム化した後、機械的強度向上の目的で延伸する場合に生じる位相差を低減する効果を有する。   The (meth) acrylic resin is more preferably a glutarimide unit represented by the general formula (1), a (meth) acrylic acid ester unit represented by the general formula (2), and the following general formula (3). The structural unit of the aromatic vinyl unit represented by these. The aromatic vinyl unit has an effect of reducing a phase difference that occurs when a (meth) acrylic resin is stretched for the purpose of improving mechanical strength after being formed into a film by a casting method, a melt extrusion method or the like.

ここで、R7は、水素または炭素数1〜8のアルキル基を示し、R8は、炭素数6〜10のアリール基を示す。 Here, R 7 represents hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 8 represents an aryl group having 6 to 10 carbon atoms.

前記一般式(3)で表される第三の構成単位(以下、芳香族ビニル単位と言うことがある)は、好ましくは、スチレン、α−メチルスチレン等が挙げられる。これらの中でスチレンが特に好ましい。これら第三の構成単位は、単一の種類でもよく、R7、R8が異なる複数の種類を含んでいてもかまわない。 Preferred examples of the third structural unit represented by the general formula (3) (hereinafter sometimes referred to as an aromatic vinyl unit) include styrene and α-methylstyrene. Of these, styrene is particularly preferred. These third structural units may be of a single type or may include a plurality of types in which R 7 and R 8 are different.

(メタ)アクリル系樹脂中における、一般式(1)で表されるグルタルイミド単位の含有量は、一般式(1)で表されるグルタルイミド単位および一般式(2)で表される(メタ)アクリル酸エステル単位の合計を基準にして、60〜95重量%が好ましく、より好ましくは65〜90重量%、さらに好ましくは70〜90重量%である。グルタルイミド単位がこの範囲より小さい場合、得られるフィルムの耐熱性が不足したり、透明性が損なわれることがある。また、この範囲を超えると不必要に耐熱性が上がりフィルム化しにくくなる他、得られるフィルムの機械的強度は極端に脆くなり、また、透明性が損なわれることがある。   The content of the glutarimide unit represented by the general formula (1) in the (meth) acrylic resin is represented by the glutarimide unit represented by the general formula (1) and the general formula (2) (meta ) 60 to 95% by weight is preferred, more preferably 65 to 90% by weight, and still more preferably 70 to 90% by weight, based on the total of acrylic ester units. When a glutarimide unit is smaller than this range, the heat resistance of the film obtained may be insufficient, or transparency may be impaired. On the other hand, if it exceeds this range, the heat resistance is unnecessarily increased and it becomes difficult to form a film, the mechanical strength of the resulting film becomes extremely brittle, and the transparency may be impaired.

(メタ)アクリル系樹脂が、前記一般式(3)で表される芳香族ビニル単位を有するとき、一般式(1)で表されるグルタルイミド単位、一般式(2)で表される(メタ)アクリル酸エステル単位および一般式(3)で表される芳香族ビニル単位の合計を基準にして、一般式(1)で表されるグルタルイミド単位および一般式(2)で表される(メタ)アクリル酸エステル単位の合計が、好ましくは50〜90重量%、より好ましくは55〜90重量%、さらに好ましくは、60〜85重量%である。なお、この場合においても、一般式(1)で表されるグルタルイミド単位および一般式(2)で表される(メタ)アクリル酸エステル単位の割合は前記と同じである。そして、一般式(3)で表される芳香族ビニル単位の含有量は、一般式(1)で表されるグルタルイミド単位、一般式(2)で表される(メタ)アクリル酸エステル単位および一般式(3)で表される芳香族ビニル単位の合計を基準にして、好ましくは10〜50重量%、より好ましくは10〜45重量%、さらに好ましくは15〜40重量%である。芳香族ビニル単位がこの範囲より大きい場合、得られるフィルムの耐熱性が不足するとともに、光弾性係数が大きくなることがあり、この範囲より小さい場合、フィルムの機械的強度が低下することがある。   When the (meth) acrylic resin has an aromatic vinyl unit represented by the general formula (3), a glutarimide unit represented by the general formula (1), represented by the general formula (2) (meta ) Based on the total of the acrylic ester unit and the aromatic vinyl unit represented by the general formula (3), the glutarimide unit represented by the general formula (1) and the general formula (2) (meta) ) The total of acrylic ester units is preferably 50 to 90% by weight, more preferably 55 to 90% by weight, and still more preferably 60 to 85% by weight. In this case, the ratio of the glutarimide unit represented by the general formula (1) and the (meth) acrylic acid ester unit represented by the general formula (2) is the same as described above. And content of the aromatic vinyl unit represented by General formula (3) is the glutarimide unit represented by General formula (1), the (meth) acrylic acid ester unit represented by General formula (2), and Preferably it is 10 to 50 weight%, More preferably, it is 10 to 45 weight%, More preferably, it is 15 to 40 weight% on the basis of the sum total of the aromatic vinyl unit represented by General formula (3). When the aromatic vinyl unit is larger than this range, the heat resistance of the resulting film is insufficient and the photoelastic coefficient may be increased. When the aromatic vinyl unit is smaller than this range, the mechanical strength of the film may be decreased.

前記(メタ)アクリル系樹脂は、さらにスチレン系樹脂を加えることにより、(メタ)アクリル系樹脂が、芳香族ビニル単位を有する場合と同様の効果を得ることができる。スチレン系樹脂としては、例えば、アクリロニトリル−スチレン共重合体等があげられる。この場合、スチレン系樹脂中の芳香族ビニル単位の含有量が上記範囲となるようにするのが好ましい。   When the (meth) acrylic resin is further added with a styrene resin, the same effect as when the (meth) acrylic resin has an aromatic vinyl unit can be obtained. Examples of the styrene resin include acrylonitrile-styrene copolymer. In this case, it is preferable that the content of the aromatic vinyl unit in the styrene resin falls within the above range.

前記(メタ)アクリル系樹脂には、第四の構成単位が含有されていてもかまわない。第四の構成単位として、アクリロニトリルやメタクリロニトリル等のニトリル系単量体、マレイミド、N−メチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミドなどのマレイミド系単量体などを用いることができる。   The (meth) acrylic resin may contain a fourth structural unit. As the fourth structural unit, nitrile monomers such as acrylonitrile and methacrylonitrile, maleimide monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide can be used.

前記(メタ)アクリル系樹脂は、リニア(線状)ポリマーであっても、またブロックポリマー、コアシェルポリマー、分岐ポリマー、ラダーポリマー、架橋ポリマーであっても構わない。ブロックポリマーはA−B型、A−B−C型、A−B−A型、またはこれら以外のいずれのタイプであっても問題ない。コアシェルポリマーはただ一層のコアおよびただ一層のシェルのみからなるものであっても、それぞれが多層になっていても問題ない。   The (meth) acrylic resin may be a linear (linear) polymer, or may be a block polymer, a core-shell polymer, a branched polymer, a ladder polymer, or a crosslinked polymer. There is no problem even if the block polymer is A-B type, A-B-C type, A-B-A type, or any other type. There is no problem even if the core-shell polymer is composed of only one core and only one shell, or each layer is a multilayer.

なお、前記(メタ)アクリル系樹脂は、米国特許3284425号明細書、米国特許4246374号明細書、特開平2−153904号公報等に記載されているグルタルイミド樹脂と同様に、イミド化可能な単位を有する樹脂としてメタクリル酸メチルエステルなどを主原料として得られる樹脂を用い、該イミド化可能な単位を有する樹脂をアンモニアまたは置換アミンを用いてイミド化することにより得られる。   The (meth) acrylic resin is a unit that can be imidized in the same manner as the glutarimide resin described in US Pat. No. 3,284,425, US Pat. No. 4,246,374, JP-A-2-153904, and the like. It is obtained by imidizing a resin having a unit capable of imidization with ammonia or a substituted amine, using a resin obtained by using methyl methacrylate or the like as a main raw material.

前記(メタ)アクリル系樹脂は、例えば、メタクリル酸メチルとスチレンの共重合体(以下、MS樹脂と呼ぶ)を、上記の方法でイミド化することにより得ることができる。本発明では、スチレン含有量10〜50重量%のMS樹脂をイミド化するのが好ましく、スチレン含量15〜40重量%のMS樹脂をイミド化するのがより好ましく、スチレン含量20〜30重量%のMS樹脂をイミド化するのが更に好ましい。   The (meth) acrylic resin can be obtained, for example, by imidizing a copolymer of methyl methacrylate and styrene (hereinafter referred to as MS resin) by the above method. In the present invention, it is preferable to imidize MS resin having a styrene content of 10 to 50% by weight, more preferably imidizing MS resin having a styrene content of 15 to 40% by weight, and a styrene content of 20 to 30% by weight. More preferably, the MS resin is imidized.

グルタルイミド単位、(メタ)アクリル酸エステル単位、および芳香族ビニル単位を有する(メタ)アクリル系樹脂としては、特開2006−309033号公報、特開2006−317560号公報、特開2006−328329号公報、特開2006−328334号公報、特開2006−337491号公報、特開2006−337492号公報、特開2006−337493号公報、特開2006−337569号公報などに記載のものがあげられる。   Examples of the (meth) acrylic resin having a glutarimide unit, a (meth) acrylic acid ester unit, and an aromatic vinyl unit include JP 2006-309033 A, JP 2006-317560 A, and JP 2006-328329 A. JP-A-2006-328334, JP-A-2006-337491, JP-A-2006-337492, JP-A-2006-337493, JP-A-2006-337469, and the like.

また、前記(メタ)アクリル系樹脂は、1×104ないし5×105の重量平均分子量を有することが好ましい。重量平均分子量が上記の値以下の場合には、フィルムにした場合の機械的強度が不足し、上記の値以上の場合には、溶融時の粘度が高く、フィルムの生産性が低下することがある。重量平均分子量は、ゲル浸透クロマトグラフ(GPCシステム,東ソー製)を用いて、ポリスチレン換算により求めた。溶剤はテトラヒドロフランを用いた。 The (meth) acrylic resin preferably has a weight average molecular weight of 1 × 10 4 to 5 × 10 5 . If the weight average molecular weight is less than the above value, the mechanical strength in the case of film is insufficient, and if it is more than the above value, the viscosity at the time of melting may be high, and the productivity of the film may decrease. is there. The weight average molecular weight was determined in terms of polystyrene using a gel permeation chromatograph (GPC system, manufactured by Tosoh Corporation). Tetrahydrofuran was used as the solvent.

前記(メタ)アクリル系樹脂のガラス転移温度は100℃以上であることが好ましく、120℃以上であることがより好ましく、130℃以上であることが更に好ましい。   The glass transition temperature of the (meth) acrylic resin is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and further preferably 130 ° C. or higher.

前記(メタ)アクリル系樹脂は光弾性係数が小さいことが好ましい。本発明で使用する(メタ)アクリル系樹脂の光弾性係数は、20×10-122/N以下であることが好ましく、10×10-122/N以下であることがより好ましく、5×10-122/N以下であることが更に好ましい。光弾性係数の絶対値が20×10-122/Nより大きい場合は、応力により光学歪が生じ、光漏れが起きやすくなる。特に高温高湿度環境下において、その傾向が著しくなる。 The (meth) acrylic resin preferably has a small photoelastic coefficient. Used in the present invention (meth) photoelasticity coefficient of the acrylic resin is preferably not more than 20 × 10- 12 m 2 / N , more preferably 10 × 10 -12 m 2 / N or less, and still more preferably 5 × or less 10- 12 m 2 / N. If the absolute value of the photoelastic coefficient is larger than 20 × 10- 12 m 2 / N, the optical distortion is caused by stress, light leakage is likely to occur. In particular, the tendency becomes remarkable in a high temperature and high humidity environment.

光弾性係数とは、等方性の固体に外力を加えて応力(△F)を起こさせると、一時的に光学異方性を呈し、複屈折(△n)を示すようになるが、その応力と複屈折の比を光弾性係数(c)と呼び、次式:c=△n/△F、で示される。   The photoelastic coefficient means that when an external force is applied to an isotropic solid to cause stress (ΔF), it temporarily exhibits optical anisotropy and exhibits birefringence (Δn). The ratio of stress to birefringence is called the photoelastic coefficient (c) and is represented by the following formula: c = Δn / ΔF.

前記(メタ)アクリル系樹脂は、ASTM−D−1003に準じた方法で測定される全光線透過率が、好ましくは85%以上、より好ましくは88%以上であり、さらに好ましくは90%以上である。また、フィルムの濁度は、好ましくは2%以下、より好ましくは1%以下、更に好ましくは0.5%以下である。   The (meth) acrylic resin has a total light transmittance of preferably 85% or more, more preferably 88% or more, and still more preferably 90% or more, as measured by a method according to ASTM-D-1003. is there. The turbidity of the film is preferably 2% or less, more preferably 1% or less, and still more preferably 0.5% or less.

透明保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、薄層性などの点より1〜500μm程度である。特に1〜300μmが好ましく、5〜200μmがより好ましい。薄型化の点からは、透明保護フィルムの厚さは5〜100μmが好ましい。なお、クニックは、透明保護フィルムが、薄型化するほど生じやすくなる。   Although the thickness of a transparent protective film can be determined suitably, generally it is about 1-500 micrometers from points, such as workability | operativity, such as intensity | strength and handleability, and thin layer property. 1-300 micrometers is especially preferable, and 5-200 micrometers is more preferable. From the viewpoint of thinning, the thickness of the transparent protective film is preferably 5 to 100 μm. In addition, nicks are more likely to occur as the transparent protective film becomes thinner.

本発明の前記(メタ)アクリル系樹脂を含有する透明保護フィルムは、通常、前記(メタ)アクリル系樹脂を溶融押出等によりフィルム化することにより得られる。得られたフィルムは、フィルム強度を向上させるために一軸または二軸延伸することができる。延伸することにより位相差を生じる場合があるが、芳香族ビニル単位やスチレン系樹脂の含有量と延伸倍率を制御することにより所望の位相差とすることができる。延伸倍率は、通常、縦横それぞれ、1〜3倍程度である。   The transparent protective film containing the (meth) acrylic resin of the present invention is usually obtained by forming the (meth) acrylic resin into a film by melt extrusion or the like. The resulting film can be uniaxially or biaxially stretched to improve film strength. Although stretching may cause a phase difference, a desired phase difference can be obtained by controlling the content of the aromatic vinyl unit or the styrene resin and the stretching ratio. The draw ratio is usually about 1 to 3 times in the longitudinal and lateral directions.

また本発明の前記(メタ)アクリル系樹脂を含有する透明保護フィルムは、透湿度300g/m2以下を満足することができ、耐久性の点で好ましい。透湿度は、さらには250g/m2以下であるのが好ましく、さらには200g/m2以下であるのが好ましい。 Moreover, the transparent protective film containing the (meth) acrylic resin of the present invention can satisfy a moisture permeability of 300 g / m 2 or less, and is preferable in terms of durability. The moisture permeability is further preferably 250 g / m 2 or less, and more preferably 200 g / m 2 or less.

上記の通り、本発明では、偏光子の両側に用いる透明保護フィルムAおよび透明保護フィルムBは、いずれか少なくとも一方が、前記(メタ)アクリル系樹脂を含有してなるものであるが、一方の片側の透明保護フィルムは、上記以外の材料を用いることができる。当該上記以外の材料としては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロース等のセルロース系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー、ポリカーボネート系ポリマーなどがあげられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または前記ポリマーのブレンド物なども前記透明保護フィルムを形成するポリマーの例としてあげられる。なお、偏光子には、通常、透明保護フィルムが接着剤層により貼り合わされるが、液晶セルに対して反対側に配置される透明保護フィルムとして、(メタ)アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化性樹脂または紫外線硬化型樹脂を用いることができる。   As described above, in the present invention, at least one of the transparent protective film A and the transparent protective film B used on both sides of the polarizer contains the (meth) acrylic resin. For the transparent protective film on one side, materials other than those described above can be used. As materials other than those described above, materials excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like are preferable. For example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, acrylic polymers such as polymethyl methacrylate, styrene such as polystyrene and acrylonitrile / styrene copolymer (AS resin) -Based polymer, polycarbonate-based polymer and the like. In addition, polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers , Polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the above Polymer blends and the like are also examples of polymers that form the transparent protective film. A transparent protective film is usually bonded to the polarizer by an adhesive layer, but as a transparent protective film disposed on the opposite side of the liquid crystal cell, (meth) acrylic, urethane-based, acrylic-urethane-based In addition, a thermosetting resin such as an epoxy type or a silicone type or an ultraviolet curable resin can be used.

本発明の透明保護フィルムの位相差は面内位相差が40nm未満、かつ、厚み方向位相差が80nm未満である。面内位相差Reは、Re=(nx−ny)×d、で表わされる。厚み方向位相差Rthは、Rth=(nx−nz)×d、で表される。また、Nz係数は、Nz=(nx−nz)/(nx−ny)、で表される。[ただし、フィルムの遅相軸方向、進相軸方向及び厚さ方向の屈折率をそれぞれnx、ny、nzとし、d(nm)はフィルムの厚みとする。遅相軸方向は、フィルム面内の屈折率の最大となる方向とする。]。なお、透明保護フィルムは、できるだけ色付きがないことが好ましい。厚み方向の位相差値が−90nm〜+75nmである保護フィルムが好ましく用いられる。かかる厚み方向の位相差値(Rth)が−90nm〜+75nmのものを使用することにより、透明保護フィルムに起因する偏光板の着色(光学的な着色)をほぼ解消することができる。厚み方向位相差値(Rth)は、さらに好ましくは−80nm〜+60nm、特に−70nm〜+45nmが好ましい。   The retardation of the transparent protective film of the present invention has an in-plane retardation of less than 40 nm and a thickness direction retardation of less than 80 nm. The in-plane phase difference Re is represented by Re = (nx−ny) × d. The thickness direction retardation Rth is represented by Rth = (nx−nz) × d. The Nz coefficient is represented by Nz = (nx−nz) / (nx−ny). [However, the refractive indexes in the slow axis direction, the fast axis direction, and the thickness direction of the film are nx, ny, and nz, respectively, and d (nm) is the thickness of the film. The slow axis direction is the direction that maximizes the refractive index in the film plane. ]. In addition, it is preferable that a transparent protective film has as little color as possible. A protective film having a thickness direction retardation value of −90 nm to +75 nm is preferably used. By using a film having a thickness direction retardation value (Rth) of −90 nm to +75 nm, the coloring (optical coloring) of the polarizing plate caused by the transparent protective film can be almost eliminated. The thickness direction retardation value (Rth) is more preferably −80 nm to +60 nm, and particularly preferably −70 nm to +45 nm.

なお、本発明で用いる透明保護フィルム中には任意の適切な添加剤が1種類以上含まれていてもよい。その他の添加剤としては、例えば、ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;フェニルサリチレート、(2,2’−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−ヒドロキシベンゾフェノン等の紫外線吸収剤;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーや無機フィラー;樹脂改質剤;有機充填剤や無機充填剤;可塑剤;滑剤;帯電防止剤;難燃剤;などが挙げられる。   In addition, 1 or more types of arbitrary appropriate additives may be contained in the transparent protective film used by this invention. Examples of other additives include hindered phenol-based, phosphorus-based and sulfur-based antioxidants; light-resistant stabilizers, weather-resistant stabilizers, heat-stabilizers, and other stabilizers; reinforcing materials such as glass fibers and carbon fibers. UV absorbers such as phenyl salicylate, (2,2′-hydroxy-5-methylphenyl) benzotriazole, 2-hydroxybenzophenone; near infrared absorbers; tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide Flame retardants such as: antistatic agents such as anionic, cationic and nonionic surfactants; colorants such as inorganic pigments, organic pigments and dyes; organic fillers and inorganic fillers; resin modifiers; Inorganic fillers; plasticizers; lubricants; antistatic agents; flame retardants;

本発明の透明保護フィルム中の添加剤の含有割合は、好ましくは0〜5重量%、より好ましくは0〜2重量%、さらに好ましくは0〜0.5重量%である。   The content of the additive in the transparent protective film of the present invention is preferably 0 to 5% by weight, more preferably 0 to 2% by weight, and still more preferably 0 to 0.5% by weight.

前記透明保護フィルムBの偏光子を接着させない面は、ハードコート層や反射防止処理、スティッキング防止や、拡散ないしアンチグレアを目的とした処理を施したものであってもよい。   The surface of the transparent protective film B on which the polarizer is not adhered may be subjected to a hard coat layer, an antireflection treatment, an antisticking treatment, or a treatment for diffusion or antiglare.

ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例えばアクリル系、シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑り特性等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて形成することができる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるものであり、従来に準じた反射防止膜などの形成により達成することができる。また、スティッキング防止処理は隣接層との密着防止を目的に施される。   The hard coat treatment is applied for the purpose of preventing scratches on the surface of the polarizing plate. For example, a transparent protective film with a cured film excellent in hardness, sliding properties, etc. by an appropriate ultraviolet curable resin such as acrylic or silicone is used. It can be formed by a method of adding to the surface of the film. The antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art. Further, the anti-sticking treatment is performed for the purpose of preventing adhesion with an adjacent layer.

またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を阻害することの防止等を目的に施されるものであり、例えばサンドブラスト方式やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて透明保護フィルムの表面に微細凹凸構造を付与することにより形成することができる。前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が0.5〜50μmのシリカ、アルミナ、チタニア、ジルコニア、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン等からなる導電性のこともある無機系微粒子、架橋又は未架橋のポリマー等からなる有機系微粒子などの透明微粒子が用いられる。表面微細凹凸構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形成する透明樹脂100重量部に対して一般的に2〜50重量部程度であり、5〜25重量部が好ましい。アンチグレア層は偏光板透過光を拡散して視角などを拡大するための拡散層(視角拡大機能など)を兼ねるものであってもよい。   The anti-glare treatment is applied for the purpose of preventing the outside light from being reflected on the surface of the polarizing plate and obstructing the visibility of the light transmitted through the polarizing plate. For example, the surface is roughened by a sandblasting method or an embossing method. It can be formed by imparting a fine concavo-convex structure to the surface of the transparent protective film by an appropriate method such as a blending method of transparent fine particles. The fine particles to be included in the formation of the surface fine concavo-convex structure are, for example, conductive materials made of silica, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, antimony oxide or the like having an average particle size of 0.5 to 50 μm. In some cases, transparent fine particles such as inorganic fine particles, organic fine particles composed of a crosslinked or uncrosslinked polymer, and the like are used. When forming a surface fine uneven structure, the amount of fine particles used is generally about 2 to 50 parts by weight, preferably 5 to 25 parts by weight, based on 100 parts by weight of the transparent resin forming the surface fine uneven structure. The antiglare layer may also serve as a diffusion layer (viewing angle expanding function or the like) for diffusing the light transmitted through the polarizing plate to expand the viewing angle.

なお、前記反射防止層、スティッキング防止層、拡散層やアンチグレア層等は、透明保護フィルムそのものに設けることができるほか、別途光学層として透明保護フィルムとは別体のものとして設けることもできる。   The antireflection layer, antisticking layer, diffusion layer, antiglare layer, and the like can be provided on the transparent protective film itself, or can be provided separately from the transparent protective film as an optical layer.

液晶光学補償層は、液晶の光軸を傾斜配向させて得られるものである。かかる液晶光学補償層としては、O‐プレートが用いられる。例えば、光学的に正または負の一軸性を示す液晶材料により形成され、かつ当該材料が傾斜配向している部分を有するものがあげられる。光学的に正の一軸性を示す材料とは、三次元屈折率楕円体において一方向の主軸の屈折率が他の2方向の屈折率よりも大きい材料を示す。光学的に負の一軸性を示す材料とは、三次元屈折率楕円体において、一方向の主軸の屈折率が他の2方向の屈折率よりも小さい材料を示す。また、これらの材料を主成分とし、その他のオリゴマーやポリマーと混合、反応させて、正または負の一軸性を示す材料が傾斜配向した状態を固定化してフィルム状にしたものがあげられる。液晶化合物を用いるにあたって、液晶性分子の傾斜配向状態は、その分子構造、配向膜の種類および光学異方性層内に適宜に加えられる添加剤(たとえば、可塑剤、バインダー、界面活性剤)の使用によって制御できる。   The liquid crystal optical compensation layer is obtained by tilting and aligning the optical axis of the liquid crystal. An O-plate is used as the liquid crystal optical compensation layer. For example, a liquid crystal material that is optically positive or negative uniaxial and has a portion in which the material is tilted and aligned. An optically positive uniaxial material is a material in which the refractive index of the principal axis in one direction is larger than the refractive indexes in the other two directions in the three-dimensional refractive index ellipsoid. An optically negative uniaxial material refers to a material in which the refractive index of the principal axis in one direction is smaller than the refractive indexes in the other two directions in the three-dimensional refractive index ellipsoid. In addition, a material in which these materials are the main components and mixed with and reacted with other oligomers or polymers to fix a state in which a material exhibiting positive or negative uniaxiality is tilted is fixed and formed into a film. In using a liquid crystal compound, the tilted alignment state of the liquid crystalline molecules is determined by the molecular structure, the type of alignment film, and additives (for example, plasticizers, binders, surfactants) that are appropriately added to the optically anisotropic layer. Can be controlled by use.

本発明の液晶光学補償層は、光学的に正または負の一軸性を示す液晶材料により形成されるが、光学的に負の一軸性を示す液晶材料を用いるのが好ましい。光学的に負の一軸性を示す液晶材料としては、ディスコティック液晶化合物などの液晶系材料が好ましい。   The liquid crystal optical compensation layer of the present invention is formed of a liquid crystal material that exhibits optically positive or negative uniaxiality, but it is preferable to use a liquid crystal material that exhibits optically negative uniaxiality. As the liquid crystal material exhibiting optically negative uniaxiality, a liquid crystal material such as a discotic liquid crystal compound is preferable.

ディスコティック液晶層は、通常、重合性不飽和基を有するディスコティック液晶化合物の配向、硬化により形成される。ディスコティック液晶層は、液晶光学補償層として有用であり、視野角、コントラスト、明るさ等を向上させうる。ディスコティック液晶層は、ディスコティック液晶化合物が傾斜配向しているものが好適である。ディスコティック液晶層の厚さは、通常、0.5〜10μm程度である。   The discotic liquid crystal layer is usually formed by alignment and curing of a discotic liquid crystal compound having a polymerizable unsaturated group. The discotic liquid crystal layer is useful as a liquid crystal optical compensation layer and can improve the viewing angle, contrast, brightness, and the like. The discotic liquid crystal layer is preferably one in which a discotic liquid crystal compound is tilted. The thickness of the discotic liquid crystal layer is usually about 0.5 to 10 μm.

ディスコティック液晶化合物とは、負の屈折率異方性(一軸性)を有するものであり、例えば、C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載されている、ベンゼン誘導体や、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体及びJ.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルなどが挙げられ、一般的にこれらを分子中心の母核とし、直鎖のアルキル基やアルコキシ基、置換ベンゾイルオキシ基等がその直鎖として放射状に置換された構造であり、液晶性を示し、一般的にディスコティック液晶と呼ばれるものが含まれる。ただし、分子自身が負の一軸性を有し、一定の配向を付与できるものであれば上記記載に限定されるものではない。また、本発明において、ディスコティック液晶化合物は、熱、光等で硬化反応する重合性不飽和基(例えば、アクリロイル基、メタクリロイル基、ビニル基、アリル基等があげられる)を有するものが通常用いられる。なお、ディスコティック液晶層は、最終的にできた物が前記化合物である必要はなく、重合性不飽和基の反応により重合または架橋し、高分子量化し液晶性を失ったものも含まれる。   The discotic liquid crystal compound has a negative refractive index anisotropy (uniaxiality). Destrade et al., Mol. Cryst. 71, 111 (1981), benzene derivatives and B.I. Kohne et al., Angew. Chem. 96, page 70 (1984) and the cyclohexane derivatives described in J. Am. M.M. Lehn et al. Chem. Commun. , 1794 (1985), J. Am. Zhang et al., J. Am. Chem. Soc. 116, 2655 (1994), such as azacrown and phenylacetylene macrocycles, etc., and these are generally used as the mother nucleus of the molecular center, and are linear alkyl groups, alkoxy groups, substituted A structure in which a benzoyloxy group or the like is radially substituted as a straight chain thereof exhibits liquid crystallinity and includes what is generally called a discotic liquid crystal. However, the molecule itself is not limited to the above description as long as the molecule itself has negative uniaxiality and can give a certain orientation. In the present invention, as the discotic liquid crystal compound, those having a polymerizable unsaturated group (for example, acryloyl group, methacryloyl group, vinyl group, allyl group, etc.) that undergo a curing reaction with heat, light, etc. are usually used. It is done. Note that the discotic liquid crystal layer does not necessarily need to be a final product, and includes a liquid crystal layer that has been polymerized or cross-linked by the reaction of a polymerizable unsaturated group to increase the molecular weight and lose liquid crystallinity.

またディスコティック液晶化合物は、種々のディスコティック液晶化合物、および他の低分子化合物やポリマーとの反応により、もはや液晶性を示さなくなったディスコティック液晶の反応生成物等のように、分子自身が光学的に負の一軸性を有する化合物全般を意味する。   In addition, discotic liquid crystal compounds are optical molecules such as reaction products of discotic liquid crystals that no longer exhibit liquid crystallinity due to reactions with various discotic liquid crystal compounds and other low molecular compounds and polymers. In general, it means all compounds having negative uniaxiality.

ディスコティック液晶の配向処理には、透明基板フィルム表面をラビング処理したり、または配向膜を用いる。配向膜としては、無機物斜方蒸着膜、或いは特定の有機高分子膜をラビングした配向膜があげられる。アゾベンゼン誘導体からなるLB膜のように光により異性化を起こし、分子が方向性を持って均一に配列する薄膜などもある。有機配向膜としては、ポリイミド膜や、アルキル鎖変性系ポバール、ポリビニルブチラール、ポリメチルメタクリレート、など疎水性表面を形成する有機高分子膜があげられる。その他、無機物斜方蒸着膜として、SiO斜方蒸着膜があげられる。   For the alignment treatment of the discotic liquid crystal, the surface of the transparent substrate film is rubbed or an alignment film is used. Examples of the alignment film include an inorganic oblique deposition film or an alignment film obtained by rubbing a specific organic polymer film. There is a thin film in which isomerization is caused by light, such as an LB film made of an azobenzene derivative, and molecules are uniformly arranged with directionality. Examples of the organic alignment film include polyimide films, and organic polymer films that form a hydrophobic surface such as alkyl chain-modified poval, polyvinyl butyral, and polymethyl methacrylate. In addition, a SiO oblique vapor deposition film is an example of the inorganic oblique vapor deposition film.

ディスコティック液晶化合物を、傾斜配向させる手段としては、例えば、透明基材フィルムに、配向膜を形成し、次いで、ディスコティック液晶化合物(重合性液晶化合物)を塗布し、傾斜配向状態にし、その後、紫外光等の光照射や熱により固定化する等の方法を用いることができる。また、他の配向基材上にディスコティック液晶を傾斜配向させた後、透明支持体上に光学的に透明な接着剤又は感圧性接着剤を利用して転写することにより形成することも可能である。   As a means for tilting and aligning the discotic liquid crystal compound, for example, an alignment film is formed on a transparent substrate film, and then a discotic liquid crystal compound (polymerizable liquid crystal compound) is applied to be in a tilt alignment state. A method of fixing by irradiation with light such as ultraviolet light or heat can be used. It is also possible to form the discotic liquid crystal on another alignment substrate by tilting and then transferring it onto a transparent support using an optically transparent adhesive or pressure sensitive adhesive. is there.

かかるディスコティック液晶層としては、特許文献1、2に記載のものが好適に用いられる。このようなディスコティック液晶の傾斜配向層をセルロース系高分子フィルム上に形成させたものとして富士フィルム社製のワイドビューフィルムがある。   As such a discotic liquid crystal layer, those described in Patent Documents 1 and 2 are preferably used. A wide-view film manufactured by Fuji Film Co., Ltd. is one in which such a discotic liquid crystal inclined alignment layer is formed on a cellulose polymer film.

一方、光学的に正の一軸性を示す液晶材料としてはネマチック液晶化合物があげられる。ネマチック液晶化合物としては、ネマチック液晶性モノマーおよび/またはポリマーがあげられる。   On the other hand, a nematic liquid crystal compound is an example of a liquid crystal material that exhibits optically positive uniaxiality. Examples of the nematic liquid crystal compound include nematic liquid crystal monomers and / or polymers.

ネマチック液晶性モノマーとしては、末端にアクリロイル基、メタクリロイル基等の重合性官能基を有し、これに環状単位等からなるメソゲン基を有するものがあげられる。また重合性官能基として、アクリロイル基、メタアクリロイル基等を2つ以上有するものを用いて架橋構造を導入して耐久性を向上させることもできる。メソゲン基となる前記環状単位としては、たとえば、ビフェニル系、フェニルベンゾエート系、フェニルシクロヘキサン系、アゾキシベンゼン系、アゾメチン系、アゾベンゼン系、フェニルピリミジン系、ジフェニルアセチレン系、ジフェニルベンゾエート系、ビシクロへキサン系、シクロヘキシルベンゼン系、ターフェニル系等があげられる。なお、これら環状単位の末端は、たとえば、シアノ基、アルキル基、アルコキシ基、ハロゲン基等の置換基を有していてもよい。   Examples of the nematic liquid crystalline monomer include those having a polymerizable functional group such as an acryloyl group or a methacryloyl group at the terminal and a mesogenic group composed of a cyclic unit or the like. In addition, as a polymerizable functional group, one having two or more acryloyl groups, methacryloyl groups and the like can be used to introduce a crosslinked structure to improve durability. Examples of the cyclic unit serving as a mesogenic group include biphenyl, phenylbenzoate, phenylcyclohexane, azoxybenzene, azomethine, azobenzene, phenylpyrimidine, diphenylacetylene, diphenylbenzoate, and bicyclohexane. Cyclohexylbenzene, terphenyl and the like. In addition, the terminal of these cyclic units may have substituents, such as a cyano group, an alkyl group, an alkoxy group, a halogen group, for example.

主鎖型の液晶ポリマーとしては、芳香族単位等からなるメソゲン基を結合した構造を有する縮合系のポリマー、たとえば、ポリエステル系、ポリアミド系、ポリカーボネート系、ポリエステルイミド系などのポリマーがあげられる。メソゲン基となる前記芳香族単位としては、フェニル系、ビフェニル系、ナフタレン系のものがあげられ、これら芳香族単位は、シアノ基、アルキル基、アルコキシ基、ハロゲン基等の置換基を有していてもよい。   Examples of the main chain type liquid crystal polymer include condensation polymers having a structure in which mesogenic groups composed of aromatic units or the like are bonded, for example, polymers such as polyester, polyamide, polycarbonate, and polyesterimide. Examples of the aromatic unit that becomes a mesogenic group include phenyl, biphenyl, and naphthalene types, and these aromatic units have substituents such as a cyano group, an alkyl group, an alkoxy group, and a halogen group. May be.

側鎖型の液晶ポリマーとしては、ポリアクリレート系、ポリメタクリレート系、ポリシロキサン系、ポリマロネート系の主鎖を骨格とし、側鎖に環状単位等からなるメソゲン基を有するものがあげられる。メソゲン基となる前記環状単位としては、たとえば、ビフェニル系、フェニルベンゾエート系、フェニルシクロヘキサン系、アゾキシベンゼン系、アゾメチン系、アゾベンゼン系、フェニルピリミジン系、ジフェニルアセチレン系、ジフェニルベンゾエート系、ビシクロへキサン系、シクロヘキシルベンゼン系、ターフェニル系等があげられる。なお、これら環状単位の末端は、たとえば、シアノ基、アルキル基、アルコキシ基、ハロゲン基等の置換基を有していてもよい。   Examples of the side chain type liquid crystal polymer include those having a polyacrylate-based, polymethacrylate-based, polysiloxane-based, or polymalonate-based main chain as a skeleton, and a mesogenic group composed of a cyclic unit or the like in the side chain. Examples of the cyclic unit serving as a mesogenic group include biphenyl, phenylbenzoate, phenylcyclohexane, azoxybenzene, azomethine, azobenzene, phenylpyrimidine, diphenylacetylene, diphenylbenzoate, and bicyclohexane. Cyclohexylbenzene, terphenyl and the like. In addition, the terminal of these cyclic units may have substituents, such as a cyano group, an alkyl group, an alkoxy group, a halogen group, for example.

前記重合性液晶モノマー、液晶ポリマーのいずれのメソゲン基も屈曲性を付与するスペーサー部を介して結合していてもよい。スペーサー部としては、ポリメチレン鎖、ポリオキシメチレン鎖等があげられる。スペーサー部を形成する構造単位の繰り返し数は、メソゲン部の化学構造により適宜に決定されるがポリメチレン鎖の繰り返し単位は0〜20、好ましくは2〜12、ポリオキシメチレン鎖の繰り返し単位は0〜10、好ましくは1〜3である。   Any mesogenic group of the polymerizable liquid crystal monomer or the liquid crystal polymer may be bonded via a spacer portion that imparts flexibility. Examples of the spacer part include a polymethylene chain and a polyoxymethylene chain. The number of repeating structural units forming the spacer portion is appropriately determined depending on the chemical structure of the mesogenic portion, but the repeating unit of the polymethylene chain is 0 to 20, preferably 2 to 12, and the repeating unit of the polyoxymethylene chain is 0 to 0. 10, preferably 1-3.

前記ネマチック液晶性モノマー、液晶性ポリマーには、液晶状態においてコレステリック相を呈するように、コレステリック液晶性モノマーやカイラル剤を配合することができる。またコレステリック液晶性ポリマーを用いることができる。得られたコレステリック液晶相は選択反射フィルムとして用いられる。カイラル剤としては、光学活性基を有し、ネマティック液晶性モノマー等の配向を乱さないものであれば特に制限されない。カイラル剤は液晶性を有していてもよく液晶性を有しなくてもよいが、コレステリック液晶性を示すものを好ましく使用できる。カイラル剤は反応性基を有するもの、有しないもののいずれも使用できるが、硬化して得られるコレステリック液晶配向フィルムの耐熱性、耐溶剤性の点では反応性基を有するものが好ましい。反応性基としては、たとえば、アクリ
ロイル基、メタクリロイル基、アジド基、エポキシ基などがあげられる。
A cholesteric liquid crystalline monomer and a chiral agent can be blended with the nematic liquid crystalline monomer and liquid crystalline polymer so as to exhibit a cholesteric phase in a liquid crystal state. A cholesteric liquid crystalline polymer can also be used. The obtained cholesteric liquid crystal phase is used as a selective reflection film. The chiral agent is not particularly limited as long as it has an optically active group and does not disturb the alignment of a nematic liquid crystalline monomer or the like. The chiral agent may or may not have liquid crystallinity, but those exhibiting cholesteric liquid crystallinity can be preferably used. As the chiral agent, those having or not having a reactive group can be used, but those having a reactive group are preferred from the viewpoint of heat resistance and solvent resistance of a cholesteric liquid crystal alignment film obtained by curing. Examples of the reactive group include an acryloyl group, a methacryloyl group, an azide group, and an epoxy group.

なお、前記液晶モノマー、液晶ポリマーは、配向膜上に展開させることができる。配向膜としては、従来より知られている各種のものを使用でき、たとえば、透明な基材上にポリイミドやポリビニルアルコール等からなる薄膜を形成してそれをラビングする方法により形成したもの、透明なフィルムを延伸処理した延伸フィルム、シンナメート骨格やアゾベンゼン骨格を有するポリマーまたはポリイミドに偏光紫外線を照射したもの等を用いることができる。   The liquid crystal monomer and liquid crystal polymer can be developed on the alignment film. As the alignment film, various conventionally known ones can be used. For example, a film formed by rubbing a thin film made of polyimide, polyvinyl alcohol or the like on a transparent base material, transparent A stretched film obtained by stretching the film, a polymer having a cinnamate skeleton or an azobenzene skeleton, or a polyimide irradiated with polarized ultraviolet rays can be used.

前記偏光子と透明保護フィルム(または、積層フィルムの透明保護フィルム側)の貼り合わせに用いる接着剤層は光学的に透明であれば、特に制限されず水系、溶剤系、ホットメルト系、ラジカル硬化型の各種形態のものが用いられるが、水系接着剤またはラジカル硬化型接着剤が好適である。   The adhesive layer used for laminating the polarizer and the transparent protective film (or the transparent protective film side of the laminated film) is not particularly limited as long as it is optically transparent, and is water-based, solvent-based, hot-melt-based, radical-cured. Various types of molds are used, and water-based adhesives or radical curable adhesives are preferred.

接着剤層を形成する水系接着剤としては特に限定されるものではないが、例えば、ビニルポリマー系、ゼラチン系、ビニル系ラテックス系、ポリウレタン系、イソシアネート系、ポリエステル系、エポキシ系等を例示できる。このような水系接着剤からなる接着剤層は、水溶液の塗布乾燥層などとして形成しうるが、その水溶液の調製に際しては、必要に応じて、架橋剤や他の添加剤、酸等の触媒も配合することができる。前記水系接着剤としては、ビニルポリマーを含有する接着剤などを用いることが好ましく、ビニルポリマーとしては、ポリビニルアルコール系樹脂が好ましい。またポリビニルアルコール系樹脂には、ホウ酸やホウ砂、グルタルアルデヒドやメラミン、シュウ酸などの水溶性架橋剤を含有することができる。特に偏光子としてポリビニルアルコール系のポリマーフィルムを用いる場合には、ポリビニルアルコール系樹脂を含有する接着剤を用いることが、接着性の点から好ましい。さらには、アセトアセチル基を有するポリビニルアルコール系樹脂を含む接着剤が耐久性を向上させる点からより好ましい。   Although it does not specifically limit as a water-system adhesive agent which forms an adhesive bond layer, For example, a vinyl polymer type | system | group, a gelatin type, a vinyl type latex type, a polyurethane type, an isocyanate type, a polyester type, an epoxy type etc. can be illustrated. Such an adhesive layer composed of an aqueous adhesive can be formed as an aqueous solution coating / drying layer, etc., but when preparing the aqueous solution, a catalyst such as a crosslinking agent, other additives, and an acid can be used as necessary. Can be blended. As the water-based adhesive, an adhesive containing a vinyl polymer is preferably used, and the vinyl polymer is preferably a polyvinyl alcohol resin. The polyvinyl alcohol-based resin can contain a water-soluble crosslinking agent such as boric acid, borax, glutaraldehyde, melamine, or oxalic acid. In particular, when a polyvinyl alcohol polymer film is used as the polarizer, it is preferable from the viewpoint of adhesiveness to use an adhesive containing a polyvinyl alcohol resin. Furthermore, an adhesive containing a polyvinyl alcohol-based resin having an acetoacetyl group is more preferable from the viewpoint of improving durability.

ポリビニルアルコール系樹脂は、ポリ酢酸ビニルをケン化して得られたポリビニルアルコール;その誘導体;更に酢酸ビニルと共重合性を有する単量体との共重合体のケン化物;ポリビニルアルコールをアセタール化、ウレタン化、エーテル化、グラフト化、リン酸エステル化等した変性ポリビニルアルコールがあげられる。前記単量体としては、(無水)マレイン酸、フマール酸、クロトン酸、イタコン酸、(メタ)アクリル酸等の不飽和カルボン酸及びそのエステル類;エチレン、プロピレン等のα−オレフィン、(メタ)アリルスルホン酸(ソーダ)、スルホン酸ソーダ(モノアルキルマレート)、ジスルホン酸ソーダアルキルマレート、N−メチロールアクリルアミド、アクリルアミドアルキルスルホン酸アルカリ塩、N−ビニルピロリドン、N−ビニルピロリドン誘導体等があげられる。これらポリビニルアルコール系樹脂は一種を単独でまたは二種以上を併用することができる。   Polyvinyl alcohol resin is polyvinyl alcohol obtained by saponifying polyvinyl acetate; a derivative thereof; a saponified product of a copolymer of vinyl acetate and a monomer having copolymerizability; Examples thereof include modified polyvinyl alcohols that have been converted into ethers, ethers, grafts, or phosphoric esters. Examples of the monomer include unsaturated carboxylic acids such as (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, (meth) acrylic acid, and esters thereof; α-olefins such as ethylene and propylene, (meth) Examples include allyl sulfonic acid (soda), sulfonic acid soda (monoalkyl malate), disulfonic acid soda alkyl maleate, N-methylol acrylamide, acrylamide alkyl sulfonic acid alkali salt, N-vinyl pyrrolidone, N-vinyl pyrrolidone derivatives and the like. . These polyvinyl alcohol resins can be used singly or in combination of two or more.

前記ポリビニルアルコール系樹脂は特に限定されないが、接着性の点からは、平均重合度100〜5000程度、好ましくは1000〜4000、平均ケン化度85〜100モル%程度、好ましくは90〜100モル%である。   The polyvinyl alcohol-based resin is not particularly limited, but from the viewpoint of adhesiveness, the average degree of polymerization is about 100 to 5000, preferably 1000 to 4000, the average saponification degree is about 85 to 100 mol%, preferably 90 to 100 mol%. It is.

アセトアセチル基を含有するポリビニルアルコール系樹脂は、ポリビニルアルコール系樹脂とジケテンとを公知の方法で反応して得られる。例えば、ポリビニルアルコール系樹脂を酢酸等の溶媒中に分散させておき、これにジケテンを添加する方法、ポリビニルアルコール系樹脂をジメチルホルムアミドまたはジオキサン等の溶媒にあらかじめ溶解しておき、これにジケテンを添加する方法等があげられる。またポリビニルアルコールにジケテンガスまたは液状ジケテンを直接接触させる方法があげられる。   A polyvinyl alcohol-based resin containing an acetoacetyl group is obtained by reacting a polyvinyl alcohol-based resin with diketene by a known method. For example, a method in which a polyvinyl alcohol resin is dispersed in a solvent such as acetic acid and diketene is added thereto, and a polyvinyl alcohol resin is previously dissolved in a solvent such as dimethylformamide or dioxane, and diketene is added thereto. And the like. Another example is a method in which diketene gas or liquid diketene is brought into direct contact with polyvinyl alcohol.

アセトアセチル基を含有するポリビニルアルコール系樹脂のアセトアセチル基変性度は、0.1モル%以上であれば特に制限はなない。0.1モル%未満では接着剤層の耐水性が不充分であり不適当である。アセトアセチル基変性度は、好ましくは0.1〜40モル%程度、さらに好ましくは1〜20モル%、特に好ましくは2〜7モル%である。アセトアセチル基変性度が40モル%を超えると、耐水性の向上効果が小さい。アセトアセチル基変性度はNMRにより測定した値である。   The degree of acetoacetyl group modification of the polyvinyl alcohol-based resin containing an acetoacetyl group is not particularly limited as long as it is 0.1 mol% or more. If it is less than 0.1 mol%, the water resistance of the adhesive layer is insufficient and unsuitable. The degree of acetoacetyl group modification is preferably about 0.1 to 40 mol%, more preferably 1 to 20 mol%, and particularly preferably 2 to 7 mol%. When the acetoacetyl group modification degree exceeds 40 mol%, the effect of improving water resistance is small. The degree of acetoacetyl modification is a value measured by NMR.

架橋剤としては、ポリビニルアルコール系接着剤に用いられているものを特に制限なく使用できる。前記ポリビニルアルコール系樹脂と反応性を有する官能基を少なくとも2つ有する化合物を使用できる。例えば、エチレンジアミン、トリエチレンジアミン、ヘキサメチレンジアミン等のアルキレン基とアミノ基を2個有するアルキレンジアミン類;トリレンジイソシアネート、水素化トリレンジイソシアネート、トリメチロールプロパントリレンジイソシアネートアダクト、トリフェニルメタントリイソシアネート、メチレンビス(4−フェニルメタントリイソシアネート、イソホロンジイソシアネートおよびこれらのケトオキシムブロック物またはフェノールブロック物等のイソシアネート類;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジまたはトリグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジグリシジルアミン等のエポキシ類;ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド等のモノアルデヒド類;グリオキザール、マロンジアルデヒド、スクシンジアルデヒド、グルタルジアルデヒド、マレインジアルデヒド、フタルジアルデヒド等のジアルデヒド類;メチロール尿素、メチロールメラミン、アルキル化メチロール尿素、アルキル化メチロール化メラミン、アセトグアナミン、ベンゾグアナミンとホルムアルデヒドとの縮合物等のアミノ−ホルムアルデヒド樹脂、;更にナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム、鉄、ニッケル等の二価金属、又は三価金属の塩及びその酸化物があげられる。これらのなかでもアミノ−ホルムアルデヒド樹脂やジアルデヒド類が好ましい。アミノ−ホルムアルデヒド樹脂としてはメチロール基を有する化合物が好ましく、ジアルデヒド類としてはグリオキザールが好適である。なかでもメチロール基を有する化合物である、メチロールメラミンが特に好適である。また、架橋剤としては、シランカップリング剤、チタンカップリング剤などのカップリング剤を用いることができる。   As a crosslinking agent, what is used for the polyvinyl alcohol-type adhesive agent can be especially used without a restriction | limiting. A compound having at least two functional groups having reactivity with the polyvinyl alcohol resin can be used. For example, alkylene diamines having two alkylene groups and two amino groups such as ethylenediamine, triethylenediamine, hexamethylenediamine; tolylene diisocyanate, hydrogenated tolylene diisocyanate, trimethylolpropane tolylene diisocyanate adduct, triphenylmethane triisocyanate, methylene bis (Isocyanates such as 4-phenylmethane triisocyanate, isophorone diisocyanate and their ketoxime block product or phenol block product; ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin di or triglycidyl ether, 1,6-hexane Diol diglycidyl ether, trimethylolpropane triglycidyl ether, jig Epoxys such as sidylaniline and diglycidylamine; monoaldehydes such as formaldehyde, acetaldehyde, propionaldehyde, and butyraldehyde; Aldehydes: amino-formaldehyde resins such as methylol urea, methylol melamine, alkylated methylol urea, alkylated methylolated melamine, acetoguanamine, condensate of benzoguanamine and formaldehyde; further sodium, potassium, magnesium, calcium, aluminum, iron And salts of divalent metals such as nickel or trivalent metals and oxides thereof, among which amino-formaldehyde resins and dia Dehydrates are preferred, amino-formaldehyde resins are preferably compounds having a methylol group, and dialdehydes are preferably glyoxal, particularly methylol melamine, which is a compound having a methylol group. As the crosslinking agent, a coupling agent such as a silane coupling agent or a titanium coupling agent can be used.

前記架橋剤の配合量は、ポリビニルアルコール系樹脂の種類等に応じて適宜設計できるが、ポリビニルアルコール系樹脂100重量部に対して、通常、4〜60重量部程度、好ましくは10〜55重量部程度、さらに好ましくは20〜50重量部である。かかる範囲において、良好な接着性が得られる。   The amount of the crosslinking agent can be appropriately designed according to the type of polyvinyl alcohol resin, etc., but is usually about 4 to 60 parts by weight, preferably 10 to 55 parts by weight with respect to 100 parts by weight of the polyvinyl alcohol resin. Degree, more preferably 20 to 50 parts by weight. In such a range, good adhesiveness can be obtained.

耐久性を向上させるには、アセトアセチル基を含有するポリビニルアルコール系樹脂を用いる。この場合にも、ポリビニルアルコール系樹脂100重量部に対して、前記同様、架橋剤を4〜60重量部程度、好ましくは10〜55重量部程度、さらに好ましくは20〜50重量部の範囲で用いるのが好ましい。架橋剤の配合量が多くなりすぎると、架橋剤の反応が短時間で進行し、接着剤がゲル化する傾向がある。その結果、接着剤としての可使時間(ポットライフ)が極端に短くなり、工業的な使用が困難になる。かかる観点からは、架橋剤の配合量は、上記配合量で用いられるが、本発明の樹脂溶液は、金属化合物コロイドを含有しているため、前記のように架橋剤の配合量が多い場合であっても、安定性よく用いることができる。   In order to improve the durability, a polyvinyl alcohol resin containing an acetoacetyl group is used. Also in this case, the crosslinking agent is used in the range of about 4 to 60 parts by weight, preferably about 10 to 55 parts by weight, and more preferably 20 to 50 parts by weight, as described above, with respect to 100 parts by weight of the polyvinyl alcohol resin. Is preferred. When the amount of the crosslinking agent is too large, the reaction of the crosslinking agent proceeds in a short time and the adhesive tends to gel. As a result, the pot life as an adhesive is extremely shortened, making industrial use difficult. From this point of view, the blending amount of the crosslinking agent is used in the above blending amount. However, since the resin solution of the present invention contains the metal compound colloid, the blending amount of the crosslinking agent is large as described above. Even if it exists, it can be used with good stability.

本発明の偏光板用接着剤としては、ポリビニルアルコール系樹脂、架橋剤および平均粒子径が1〜100nmの金属化合物コロイドを含有してなる樹脂溶液が好ましく用いられる。当該樹脂溶液は、通常、水溶液として用いられる。樹脂溶液濃度は特に制限はないが、塗工性や放置安定性等を考慮すれば、0.1〜15重量%、好ましくは0.5〜10重量%である。   As the polarizing plate adhesive of the present invention, a resin solution containing a polyvinyl alcohol resin, a crosslinking agent, and a metal compound colloid having an average particle size of 1 to 100 nm is preferably used. The resin solution is usually used as an aqueous solution. The concentration of the resin solution is not particularly limited, but is 0.1 to 15% by weight, preferably 0.5 to 10% by weight in consideration of coating properties and storage stability.

金属化合物コロイドは、微粒子が分散媒中に分散しているものであり、微粒子の同種電荷の相互反発に起因して静電的安定化し、永続的に安定性を有するものである。金属化合物コロイド(微粒子)の平均粒子径は1〜100nmである。前記コロイドの平均粒子径が前記範囲であれば、接着剤層中において、金属化合物を略均一に分散させることができ、接着性を確保し、かつクニックを抑えることができる。前記平均粒子径の範囲は、可視光線の波長領域よりもかなり小さく、形成される接着剤層中において、金属化合物によって透過光が散乱したとしても、偏光特性には悪影響を及ぼさない。金属化合物コロイドの平均粒子径は、1〜100nm、さらには1〜50nmであるのが好ましい。   The metal compound colloid is one in which fine particles are dispersed in a dispersion medium, and is electrostatically stabilized due to mutual repulsion of the same kind of charge of the fine particles, and has permanent stability. The average particle diameter of the metal compound colloid (fine particles) is 1 to 100 nm. When the average particle diameter of the colloid is within the above range, the metal compound can be dispersed substantially uniformly in the adhesive layer, the adhesiveness can be ensured, and the nick can be suppressed. The range of the average particle diameter is considerably smaller than the wavelength range of visible light, and even if the transmitted light is scattered by the metal compound in the formed adhesive layer, the polarization characteristics are not adversely affected. The average particle size of the metal compound colloid is preferably 1 to 100 nm, more preferably 1 to 50 nm.

金属化合物コロイドとしては、各種のものを用いることができる。例えば、金属化合物コロイドとしては、アルミナ、シリカ、ジルコニア、チタニア、酸化スズ、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸マグネシウム等の金属酸化物のコロイド;炭酸亜鉛、炭酸バリウム、リン酸カルシウム等の金属塩のコロイド;セライト、タルク、クレイ、カオリン等の鉱物のコロイドがあげられる。   Various types of metal compound colloids can be used. For example, colloids of metal compounds such as alumina, silica, zirconia, titania, tin oxide, aluminum silicate, calcium carbonate, and magnesium silicate; colloids of metal salts such as zinc carbonate, barium carbonate, and calcium phosphate And colloids of minerals such as celite, talc, clay and kaolin.

金属化合物コロイドは、分散媒に分散してコロイド溶液の状態で存在している。分散媒は、主として水である。水の他に、アルコール類等の他の分散媒を用いることもできる。コロイド溶液中の金属化合物コロイドの固形分濃度は、特に制限されないが、通常、1〜50重量%程度、さらには、1〜30重量%のものが一般的である。また、金属化合物コロイドは、安定剤として硝酸、塩酸、酢酸などの酸を含有するものを用いることができる。   The metal compound colloid is dispersed in a dispersion medium and exists in a state of a colloid solution. The dispersion medium is mainly water. In addition to water, other dispersion media such as alcohols can also be used. The solid content concentration of the metal compound colloid in the colloid solution is not particularly limited, but is generally about 1 to 50% by weight, and more preferably 1 to 30% by weight. In addition, as the metal compound colloid, those containing an acid such as nitric acid, hydrochloric acid, and acetic acid as a stabilizer can be used.

金属化合物コロイドは、静電的に安定化しており、正電荷を有するものと、負電荷を有するものに分けられるが、金属化合物コロイドは非導電性の材料である。正電荷と負電荷とは、接着剤調製後の溶液におけるコロイド表面電荷の電荷状態により、区別される。金属化合物コロイドの電荷は、例えば、ゼータ電位測定機により、ゼータ電位を測定することにより確認できる。金属化合物コロイドの表面電荷は、一般に、pHにより変化する。従って、本願のコロイド溶液の状態の電荷は、調整された接着剤溶液のpHにより影響される。接着剤溶液のpHは、通常、2〜6、好ましくは2.5〜5、さらに好ましくは3〜5、さらには3.5〜4.5の範囲に設定される。本発明では、正電荷を有する金属化合物コロイドが、負電荷を有する金属化合物コロイドに比べて、クニックの発生を抑える効果が大きい。正電荷を有する金属化合物コロイドとしては、アルミナコロイド、ジルコニアコロイド、チタニアコロイド、酸化スズコロイド等があげられる。これらのなかでも、特に、アルミナコロイドが好適である。   Metal compound colloids are electrostatically stabilized and can be classified into those having a positive charge and those having a negative charge. Metal compound colloids are non-conductive materials. Positive charge and negative charge are distinguished by the charge state of the colloidal surface charge in the solution after the adhesive preparation. The charge of the metal compound colloid can be confirmed, for example, by measuring the zeta potential with a zeta potential measuring machine. The surface charge of a metal compound colloid generally varies with pH. Therefore, the charge in the state of the colloidal solution of the present application is affected by the pH of the adjusted adhesive solution. The pH of the adhesive solution is usually set in the range of 2 to 6, preferably 2.5 to 5, more preferably 3 to 5, and further 3.5 to 4.5. In the present invention, a metal compound colloid having a positive charge has a greater effect of suppressing the occurrence of nicks than a metal compound colloid having a negative charge. Examples of the positively charged metal compound colloid include alumina colloid, zirconia colloid, titania colloid, and tin oxide colloid. Among these, alumina colloid is particularly preferable.

金属化合物コロイドは、ポリビニルアルコール系樹脂100重量部に対して、200重量部以下の割合(固形分の換算値)で配合される。また金属化合物コロイドの配合割合を前記範囲とすることで、偏光子と透明保護フィルム(または、積層フィルムの透明保護フィルム側)との接着性を確保しながら、クニックの発生を抑えることができる。金属化合物コロイドの配合割合は、10〜200重量部であるのが好ましく、さらには20〜175重量部、さらには30〜150重量部であるのが好ましい。金属化合物コロイドの配合割合が、ポリビニルアルコール系樹脂100重量部に対して、200重量部を超えると、接着剤中における、ポリビニルアルコール系樹脂の割合が小さくなり、接着性の点から好ましくない。なお、金属化合物コロイドの配合割合は、特に制限されないが、有効にクニックを抑えるには、前記範囲の下限値とするのが好ましい。   A metal compound colloid is mix | blended in the ratio (converted value of solid content) of 200 weight part or less with respect to 100 weight part of polyvinyl alcohol-type resin. Moreover, by making the compounding ratio of the metal compound colloid within the above range, the occurrence of nicks can be suppressed while ensuring the adhesion between the polarizer and the transparent protective film (or the transparent protective film side of the laminated film). The compounding ratio of the metal compound colloid is preferably 10 to 200 parts by weight, more preferably 20 to 175 parts by weight, and further preferably 30 to 150 parts by weight. When the compounding ratio of the metal compound colloid exceeds 200 parts by weight with respect to 100 parts by weight of the polyvinyl alcohol resin, the ratio of the polyvinyl alcohol resin in the adhesive is reduced, which is not preferable from the viewpoint of adhesiveness. The mixing ratio of the metal compound colloid is not particularly limited, but is preferably set to the lower limit of the above range in order to effectively suppress nicks.

偏光板用接着剤である樹脂溶液の粘度は特に制限されないが、1〜50mPa・sの範囲のものが用いられる。偏光板の作成にあたって生じるクニックは、樹脂溶液の粘度が下がるに従って、クニックの発生も多くなる傾向があるが、本発明の偏光板用接着剤によれば、1〜20mPa・sの範囲のような低粘度の範囲においても、クニックの発生を抑えることができ、樹脂溶液の粘度に拘らず、クニックの発生を抑えることができる。アセトアセチル基を含有するポリビニルアルコール系樹脂は、一般的なポリビニルアルコール樹脂に比べて、重合度を高くすることができず、前記のような低粘度で用いられていたが、本発明では、アセトアセチル基を含有するポリビニルアルコール系樹脂を用いる場合にも、樹脂溶液の低粘度によって生じるクニックの発生を抑えられる。   Although the viscosity of the resin solution which is an adhesive for polarizing plates is not particularly limited, those having a range of 1 to 50 mPa · s are used. The nick generated in the production of the polarizing plate tends to increase as the viscosity of the resin solution decreases. However, according to the polarizing plate adhesive of the present invention, a range of 1 to 20 mPa · s can be obtained. Even in the low viscosity range, the occurrence of nicks can be suppressed, and the occurrence of nicks can be suppressed regardless of the viscosity of the resin solution. A polyvinyl alcohol resin containing an acetoacetyl group cannot be increased in polymerization degree compared to a general polyvinyl alcohol resin and has been used at a low viscosity as described above. Even when a polyvinyl alcohol-based resin containing an acetyl group is used, the occurrence of nicks caused by the low viscosity of the resin solution can be suppressed.

偏光板用接着剤である樹脂溶液の調製法は特に制限されない。通常は、ポリビニルアルコール系樹脂および架橋剤を混合し、適宜に濃度を調製したものに、金属化合物コロイドを配合することで、樹脂溶液が調製される。また、ポリビニルアルコール系樹脂として、アセトアセチル基を含有するポリビニルアルコール系樹脂を用いたり、架橋剤の配合量が多いような場合には、溶液の安定性を考慮して、ポリビニルアルコール系樹脂と金属化合物コロイドを混合した後に、架橋剤を、得られる樹脂溶液の使用時期等を考慮しながら、混合することができる。なお、偏光板用接着剤である樹脂溶液の濃度は、樹脂溶液を調製した後に適宜に調整することもできる。   The method for preparing the resin solution that is the polarizing plate adhesive is not particularly limited. In general, a resin solution is prepared by mixing a polyvinyl alcohol resin and a crosslinking agent and blending a metal compound colloid with a mixture having an appropriate concentration. In addition, when a polyvinyl alcohol resin containing an acetoacetyl group is used as the polyvinyl alcohol resin or when the amount of the crosslinking agent is large, the polyvinyl alcohol resin and the metal are considered in consideration of the stability of the solution. After mixing the compound colloid, the cross-linking agent can be mixed in consideration of the use time of the resulting resin solution. In addition, the density | concentration of the resin solution which is an adhesive agent for polarizing plates can also be adjusted suitably after preparing a resin solution.

ラジカル硬化型接着剤としては、電子線硬化型、紫外線硬化型等の活性エネルギー線硬化型、熱硬化型等の各種のものを例示できるが、短時間で硬化可能な、活性エネルギー線硬化型が好ましい。特に、電子線硬化型が好ましい。電子線硬化型接着剤を用いることができる。偏光子と透明保護フィルムを貼り合せるために用いる接着剤の硬化方法に電子線を用いる(即ちドライラミネーション)ことによって、紫外線硬化法のような、加熱工程が不要になり、生産性を非常に高くすることができる。   Examples of the radical curable adhesive include various active energy ray curable types such as an electron beam curable type and an ultraviolet ray curable type, and a thermosetting type. preferable. In particular, an electron beam curable type is preferable. An electron beam curable adhesive can be used. By using an electron beam for the adhesive curing method used for laminating the polarizer and the transparent protective film (that is, dry lamination), a heating step such as an ultraviolet curing method is unnecessary, and the productivity is extremely high. can do.

硬化性成分としては、(メタ)アクリロイル基を有する化合物、ビニル基を有する化合物があげられる。これら硬化性成分は、単官能または二官能以上のいずれも用いることができる。またこれら硬化性成分は、1種を単独で、または2種以上を組み合わせて用いることができる。これら硬化性成分としては、例えば、(メタ)アクリロイル基を有する化合物が好適であり、例えば、各種のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートや、各種の(メタ)アクリレート系モノマー等があげられる。   Examples of the curable component include a compound having a (meth) acryloyl group and a compound having a vinyl group. These curable components may be monofunctional or bifunctional or higher. Moreover, these curable components can be used individually by 1 type or in combination of 2 or more types. As these curable components, for example, compounds having a (meth) acryloyl group are suitable. For example, various epoxy (meth) acrylates, urethane (meth) acrylates, polyester (meth) acrylates, and various (meth) acrylates. Examples thereof include acrylate monomers.

上記硬化性成分のなかでも、エポキシ(メタ)アクリレート、特に、芳香環およびヒドロキシ基を有する単官能の(メタ)アクリレートが好ましい。また、(メタ)アクリロイル基を有する化合物としては、窒素含有モノマーおよび/またはカルボキシル基モノマーが好適に用いられる。これらモノマーは、接着性の点で好ましい。(メタ)アクリレートは、アクリレートおよび/またはメタクリレートを意味する。本発明では(メタ)アクリレートはこの意味である。   Among the curable components, epoxy (meth) acrylate, particularly monofunctional (meth) acrylate having an aromatic ring and a hydroxy group is preferable. Moreover, as a compound which has a (meth) acryloyl group, a nitrogen-containing monomer and / or a carboxyl group monomer are used suitably. These monomers are preferable in terms of adhesiveness. (Meth) acrylate means acrylate and / or methacrylate. In the present invention, (meth) acrylate has this meaning.

また、硬化性成分として、(メタ)アクリロイル基を有する化合物、特に、芳香環およびヒドロキシ基を有する単官能の(メタ)アクリレート、窒素含有(メタ)アクリレート、カルボキシル基含有(メタ)アクリレートを用いる場合には、当該硬化性成分は、電子線硬化型接着剤として適しており、当該接着剤を用いることで、偏光子および透明保護フィルムに対して良好な接着性を有する偏光板が得られる。例えば、低水分率の偏光子を用いた場合にも、また、透明保護フィルムとして透湿度の低い材料を用いた場合にも、本発明の接着剤は、これらに対して良好な接着性を示し、その結果、寸法安定性の良好な偏光板が得られる。   In addition, a compound having a (meth) acryloyl group, particularly a monofunctional (meth) acrylate having an aromatic ring and a hydroxy group, a nitrogen-containing (meth) acrylate, or a carboxyl group-containing (meth) acrylate is used as the curable component. The curable component is suitable as an electron beam curable adhesive, and a polarizing plate having good adhesion to a polarizer and a transparent protective film can be obtained by using the adhesive. For example, even when a polarizer with a low moisture content is used, and when a material with low moisture permeability is used as the transparent protective film, the adhesive of the present invention exhibits good adhesion to them. As a result, a polarizing plate with good dimensional stability can be obtained.

上記硬化性成分を用いる場合には、寸法変化が小さい偏光板を作製できるため、偏光板の大型化にも容易に対応でき、歩留まり、取り数の観点から生産コストを抑えることができる。また、本発明で得られた偏光板は寸法安定性がよいことから、バックライトの外部熱による画像表示装置のムラの発生を抑えることができる。   When the curable component is used, a polarizing plate having a small dimensional change can be produced, so that it is possible to easily cope with an increase in the size of the polarizing plate, and it is possible to suppress the production cost from the viewpoint of yield and number. Further, since the polarizing plate obtained in the present invention has good dimensional stability, it is possible to suppress the occurrence of unevenness in the image display device due to the external heat of the backlight.

芳香環およびヒドロキシ基を有する単官能の(メタ)アクリレートは、芳香環およびヒドロキシ基を有する、各種の単官能の(メタ)アクリレートを用いることができる。ヒドロキシ基は、芳香環の置換基として存在してもよいが、本発明では、芳香環と(メタ)アクリレートとを結合する有機基(炭化水素基、特に、アルキレン基に結合したもの)として存在するものが好ましい。   As the monofunctional (meth) acrylate having an aromatic ring and a hydroxy group, various monofunctional (meth) acrylates having an aromatic ring and a hydroxy group can be used. The hydroxy group may exist as a substituent of the aromatic ring, but in the present invention, it exists as an organic group (bonded to a hydrocarbon group, particularly an alkylene group) that bonds the aromatic ring and the (meth) acrylate. Those that do are preferred.

前記芳香環およびヒドロキシ基を有する単官能の(メタ)アクリレートとしては、例えば、芳香環を有する単官能のエポキシ化合物と、(メタ)アクリル酸との反応物があげられる。芳香環を有する単官能のエポキシ化合物としては、例えば、フェニルグリシジルエーテル、t‐ブチルフェニルグリシジルエーテル、フェニルポリエチレングリコールグリシジルエーテル等があげられる。芳香環およびヒドロキシ基を有する単官能の(メタ)アクリレートの、具体例としては、例えば、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−t−ブチルフェノキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−フェニルポリエチレングリコールプロピル(メタ)アクリレート等があげられる。   Examples of the monofunctional (meth) acrylate having an aromatic ring and a hydroxy group include a reaction product of a monofunctional epoxy compound having an aromatic ring and (meth) acrylic acid. Examples of the monofunctional epoxy compound having an aromatic ring include phenyl glycidyl ether, t-butylphenyl glycidyl ether, and phenyl polyethylene glycol glycidyl ether. Specific examples of the monofunctional (meth) acrylate having an aromatic ring and a hydroxy group include, for example, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2-hydroxy-3-t-butylphenoxypropyl (meth) Examples thereof include acrylate and 2-hydroxy-3-phenyl polyethylene glycol propyl (meth) acrylate.

窒素含有モノマーとしては、例えば、N−アクリロイルモルホリン、N−アクリロイルピペリジン、N−メタクリロイルピペリジン、N−アクリロイルピロリジン等のモルホリン環、ピペリジン環、ピロリジン環、ピペラジン環等の複素環を有する複素環含有アクリルモノマーがあげられる。また、窒素含有モノマーとしては、例えば、マレイミド、N−シクロへキシルマレイミド、N−フェニルマレイミド;(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−ヘキシル(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−ブチル(メタ)アクリルアミド、N−ブチル(メタ)アクリルアミドやN−メチロール(メタ)アクリルアミド、N−メチロールプロパン(メタ)アクリルアミド、N−イソプロピルアクリルアミド、N−メチロール(メタ)アクリルアミド、N−ヒドロキシエチル(メタ)アクリルアミド、N−メチロール−N−プロパン(メタ)アクリルアミドなどの(N−置換)アミド系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸アミノプロピル、(メタ)アクリル酸N,N−ジメチルアミノエチル、(メタ)アクリル酸t−ブチルアミノエチル、3−(3−ピリニジル)プロピル(メタ)アクリレートなどの(メタ)アクリル酸アルキルアミノアルキル系モノマー;N−(メタ)アクリロイルオキシメチレンスクシンイミドやN−(メタ)アクリロイル−6−オキシヘキサメチレンスクシンイミド、N−(メタ)アクリロイル−8−オキシオクタメチレンスクシンイミドなどのスクシンイミド系モノマーなどあげられる。窒素含有モノマーは、例えば、複素環含有アクリルモノマーが好ましく、特にN−アクリロイルモルホリンが好ましい。   Examples of the nitrogen-containing monomer include a heterocyclic ring-containing acrylic having a heterocyclic ring such as a morpholine ring such as N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, and N-acryloylpyrrolidine, a piperidine ring, a pyrrolidine ring, and a piperazine ring. Monomer. Examples of the nitrogen-containing monomer include maleimide, N-cyclohexylmaleimide, N-phenylmaleimide; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N -Hexyl (meth) acrylamide, N-methyl (meth) acrylamide, N-butyl (meth) acrylamide, N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide, N- (N-substituted) amide monomers such as isopropylacrylamide, N-methylol (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-methylol-N-propane (meth) acrylamide; aminoethyl (meth) acrylate, ( T) (Meth) acrylic acid such as aminopropyl acrylate, N, N-dimethylaminoethyl (meth) acrylate, t-butylaminoethyl (meth) acrylate, 3- (3-pyridyl) propyl (meth) acrylate Alkylaminoalkyl monomers; succinimide monomers such as N- (meth) acryloyloxymethylenesuccinimide, N- (meth) acryloyl-6-oxyhexamethylenesuccinimide, N- (meth) acryloyl-8-oxyoctamethylenesuccinimide, etc. It is done. For example, the nitrogen-containing monomer is preferably a heterocyclic ring-containing acrylic monomer, and particularly preferably N-acryloylmorpholine.

カルボキシル基モノマーとしては、例えば、(メタ)アクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、などがあげられる。これらのなかでもアクリル酸が好ましい。   Examples of the carboxyl group monomer include (meth) acrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, and the like. Of these, acrylic acid is preferred.

上記の他、(メタ)アクリロイル基を有する化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、ラウリル(メタ)アクリレート等の炭素数は1〜12のアルキル(メタ)アクリレート;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルなどの(メタ)アクリル酸アルコキシアルキル系モノマー;(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸6−ヒドロキシヘキシル、(メタ)アクリル酸8−ヒドロキシオクチル、(メタ)アクリル酸10−ヒドロキシデシル、(メタ)アクリル酸12−ヒドロキシラウリルや(4−ヒドロキシメチルシクロヘキシル)−メチルアクリレートなどのヒドロキシル基含有モノマー;無水マレイン酸、無水イタコン酸などの酸無水物基含有モノマー;アクリル酸のカプロラクトン付加物;スチレンスルホン酸やアリルスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー;2−ヒドロキシエチルアクリロイルホスフェートなどの燐酸基含有モノマーなどがあげられる。   In addition to the above, compounds having a (meth) acryloyl group include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, and isononyl. Alkyl (meth) acrylates having 1 to 12 carbon atoms such as (meth) acrylate and lauryl (meth) acrylate; (meth) acrylic acid alkoxyalkyl systems such as (meth) acrylic acid methoxyethyl and (meth) acrylic acid ethoxyethyl Monomer: 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxy (meth) acrylate Octyl, (meth) acrylic acid 10-H Hydroxyl-containing monomers such as loxydecyl, 12-hydroxylauryl (meth) acrylate and (4-hydroxymethylcyclohexyl) -methyl acrylate; acid anhydride group-containing monomers such as maleic anhydride and itaconic anhydride; caprolactone addition of acrylic acid Products; sulfones such as styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate, (meth) acryloyloxynaphthalene sulfonic acid Acid group-containing monomers; phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate.

上記硬化性成分としては、芳香環およびヒドロキシ基を有する単官能の(メタ)アクリレート、窒素含有モノマー、カルボキシル基モノマーが好適に用いられる。これらの成分を、硬化性成分として、50重量%以上を含有することが、偏光子および透明保護フィルムに対して接着性の良好な接着剤層を有する偏光板を得るうえで好ましい。さらには、塗工性、加工性などの点からも好ましい。前記硬化性成分の割合は、60重量%以上であるのが好ましく、さらには70重量%以上であるのが好ましく、さらには80重量%以上であるのが好ましい。   As the curable component, a monofunctional (meth) acrylate having an aromatic ring and a hydroxy group, a nitrogen-containing monomer, and a carboxyl group monomer are preferably used. It is preferable to contain these components as curable components in an amount of 50% by weight or more in order to obtain a polarizing plate having an adhesive layer having good adhesion to the polarizer and the transparent protective film. Furthermore, it is preferable also from points, such as coating property and workability. The ratio of the curable component is preferably 60% by weight or more, more preferably 70% by weight or more, and further preferably 80% by weight or more.

上記硬化性成分としては、二官能以上の硬化性成分を用いることができる。二官能以上の硬化性成分としては、二官能以上の(メタ)アクリレート、特に二官能以上のエポキシ(メタ)アクリレートが好ましい。二官能以上のエポキシ(メタ)アクリレートは、多官能のエポキシ化合物と、(メタ)アクリル酸との反応により得られる。多官能のエポキシ化合物は、各種のものを例示できる。多官能のエポキシ化合物としては、例えば、芳香族エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂があげられる。   As the curable component, a bifunctional or higher curable component can be used. The bifunctional or higher curable component is preferably a bifunctional or higher (meth) acrylate, particularly a bifunctional or higher epoxy (meth) acrylate. The bifunctional or higher functional epoxy (meth) acrylate is obtained by reacting a polyfunctional epoxy compound with (meth) acrylic acid. Various examples of the polyfunctional epoxy compound can be exemplified. Examples of the polyfunctional epoxy compound include aromatic epoxy resins, alicyclic epoxy resins, and aliphatic epoxy resins.

芳香族エポキシ樹脂としては、例えば、ビスフェノールAのジグリシジルエーテル、ビスフェールFのジグリシジルエーテル、ビスフェノールSのジグリシジルエーテルのようなビスフェノール型エポキシ樹脂;フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、ヒドロキシベンズアルデヒドフェノールノボラックエポキシ樹脂のようなノボラック型のエポキシ樹脂;テトラヒドロキシフェニルメタンのグリシジルエーテル、テトラヒドロキシベンゾフェノンのグリシジルエーテル、エポキシ化ポリビニルフェノールのような多官能型のエポキシ樹脂などがあげられる。   Examples of the aromatic epoxy resin include bisphenol type epoxy resins such as diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, diglycidyl ether of bisphenol S; phenol novolac epoxy resin, cresol novolac epoxy resin, hydroxybenzaldehyde Examples thereof include novolak-type epoxy resins such as phenol novolac epoxy resins; glycidyl ethers of tetrahydroxyphenylmethane, glycidyl ethers of tetrahydroxybenzophenone, and polyfunctional epoxy resins such as epoxidized polyvinylphenol.

脂環式エポキシ樹脂としては、前記芳香族エポキシ樹脂の水添物、シクロヘキサン系、シクロヘキシルメチルエステル系、シシクロヘキシルメチルエーテル系、スピロ系、トリシクロデカン系等のエポキシ樹脂があげられる。   Examples of the alicyclic epoxy resins include hydrogenated products of the above-mentioned aromatic epoxy resins, cyclohexane-based, cyclohexylmethyl ester-based, cicyclohexylmethyl ether-based, spiro-based, and tricyclodecane-based epoxy resins.

脂肪族エポキシ樹脂としては、脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテルがあげられる。これらの例としては、1,4−ブタンジオールのジグリシジルエーテル、1,6−ヘキサンジオールのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテル、エチレングリコールやプロピレングリコール、グリセリンのような脂肪族多価アルコールに1種又は2種以上のアルキレンオキサイド(エチレンオキサイドやプロピレンオキサイド)を付加することにより得られるポリエーテルポリオールのポリグリシジルエーテルなどがあげられる。   Examples of the aliphatic epoxy resin include polyglycidyl ethers of aliphatic polyhydric alcohols or alkylene oxide adducts thereof. Examples include 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol diglycidyl ether, propylene Polyethers of polyether polyols obtained by adding one or more alkylene oxides (ethylene oxide or propylene oxide) to aliphatic polyhydric alcohols such as glycol diglycidyl ether, ethylene glycol, propylene glycol, and glycerin Examples thereof include glycidyl ether.

前記エポキシ樹脂の、エポキシ当量は、通常30〜3000g/当量、好ましくは50〜1500g/当量の範囲である。   The epoxy equivalent of the epoxy resin is usually in the range of 30 to 3000 g / equivalent, preferably 50 to 1500 g / equivalent.

前記二官能以上のエポキシ(メタ)アクリレートは、脂肪族エポキシ樹脂のエポキシ(メタ)アクリレートが好ましい、特に、二官能の脂肪族エポキシ樹脂のエポキシ(メタ)アクリレートが好ましい。   The bifunctional or higher epoxy (meth) acrylate is preferably an epoxy (meth) acrylate of an aliphatic epoxy resin, particularly preferably an epoxy (meth) acrylate of a bifunctional aliphatic epoxy resin.

上記硬化性成分のなかで、(メタ)アクリロイル基を有する化合物、特に、芳香環およびヒドロキシ基を有する単官能の(メタ)アクリレート、窒素含有(メタ)アクリレート、カルボキシル基含有(メタ)アクリレートは、電子線硬化型接着剤として適しており、当該接着剤を用いることで、偏光子および透明保護フィルム(または、積層フィルムの透明保護フィルム側)に対して良好な接着性を有する偏光板が得られる。例えば、低水分率の偏光子を用いた場合にも、また、透明保護フィルムとして透湿度の低い材料を用いた場合にも、本発明の接着剤は、これらに対して良好な接着性を示し、その結果、寸法安定性の良好な偏光板が得られる。   Among the curable components, a compound having a (meth) acryloyl group, particularly a monofunctional (meth) acrylate having an aromatic ring and a hydroxy group, a nitrogen-containing (meth) acrylate, and a carboxyl group-containing (meth) acrylate, It is suitable as an electron beam curable adhesive, and by using the adhesive, a polarizing plate having good adhesion to a polarizer and a transparent protective film (or a transparent protective film side of a laminated film) can be obtained. . For example, even when a polarizer with a low moisture content is used, and when a material with low moisture permeability is used as the transparent protective film, the adhesive of the present invention exhibits good adhesion to them. As a result, a polarizing plate with good dimensional stability can be obtained.

硬化型接着剤は、硬化性成分を含むが、前記成分に加えて、硬化のタイプに応じて、ラジカル開始剤を添加する。前記接着剤を電子線硬化型で用いる場合には、前記接着剤にはラジカル開始剤を含有させることは特に必要ではないが、紫外線硬化型、熱硬化型で用いる場合には、ラジカル開始剤が用いられる。ラジカル開始剤の使用量は硬化性成分100重量部あたり、通常0.1〜10重量部程度、好ましくは、0.5〜3重量部である。   The curable adhesive contains a curable component, and in addition to the above components, a radical initiator is added depending on the type of curing. When the adhesive is used as an electron beam curable type, it is not particularly necessary that the adhesive contains a radical initiator, but when used as an ultraviolet curable type or a thermosetting type, a radical initiator is used. Used. The usage-amount of a radical initiator is about 0.1-10 weight part normally per 100 weight part of sclerosing | hardenable components, Preferably, it is 0.5-3 weight part.

また前記接着剤には、金属化合物フィラーを含有させることができる。金属化合物フィラーにより、接着剤層の流動性を制御することができ、膜厚を安定化して、良好な外観を有し、面内が均一で接着性のバラツキのない偏光板が得られる。   The adhesive may contain a metal compound filler. With the metal compound filler, the fluidity of the adhesive layer can be controlled, the film thickness can be stabilized, and a polarizing plate having a good appearance, uniform in-plane and no adhesive variation can be obtained.

金属化合物フィラーは、各種のものを用いることができる。金属化合物としては、例えば、アルミナ、シリカ、ジルコニア、チタニア、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸マグネシウム等の金属酸化物;炭酸亜鉛、炭酸バリウム、リン酸カルシウム等の金属塩;セライト、タルク、クレイ、カオリン等の鉱物があげられる。また、これら金属化合物フィラーは、表面改質されたものを用いることができる。   Various types of metal compound fillers can be used. Examples of the metal compound include metal oxides such as alumina, silica, zirconia, titania, aluminum silicate, calcium carbonate and magnesium silicate; metal salts such as zinc carbonate, barium carbonate and calcium phosphate; celite, talc, clay and kaolin And the like. Further, these metal compound fillers may be those having a surface modified.

金属化合物フィラーの平均粒子径は、通常、1〜1000nm程度であり、さらには10〜200nm、さらには10〜100nmであるのが好ましい。金属化合物フィラーの平均粒子径が前記範囲であれば、接着剤層中において、金属化合物を略均一に分散させることができ、接着性を確保し、かつ良好な外観で、面内の均一な接着性を得られる。   The average particle diameter of the metal compound filler is usually about 1 to 1000 nm, more preferably 10 to 200 nm, and further preferably 10 to 100 nm. If the average particle diameter of the metal compound filler is within the above range, the metal compound can be dispersed substantially uniformly in the adhesive layer, ensuring adhesion, and having a good appearance and in-plane uniform adhesion. You can get sex.

金属化合物フィラーの配合量は、硬化性成分100重量部に対して、200重量部以下の割合で配合するのが好ましい。また金属化合物フィラーの配合割合を前記範囲とすることで、偏光子と透明保護フィルム(または、積層フィルムの透明保護フィルム側)との接着性を確保しながら、かつ良好な外観で、面内の均一な接着性を得られる。金属化合物フィラーの配合割合は、1〜100重量部であるのが好ましく、さらには2〜50重量部、さらには5〜30重量部であるのが好ましい。金属化合物フィラーの配合割合が、硬化性成分100重量部に対して、100重量部を超えると、接着剤中における、硬化性成分の割合が小さくなり、接着性の点から好ましくない。なお、金属化合物フィラーの配合割合は、特に制限されないが、接着性を確保しながら、かつ良好な外観で、面内の均一な接着性を得るには、前記範囲の下限値とするのが好ましい。   It is preferable to mix | blend the compounding quantity of a metal compound filler in the ratio of 200 weight part or less with respect to 100 weight part of sclerosing | hardenable components. Moreover, by making the compounding ratio of a metal compound filler into the said range, while ensuring the adhesiveness of a polarizer and a transparent protective film (or the transparent protective film side of a laminated | multilayer film), and with a favorable external appearance, in-plane Uniform adhesion can be obtained. The blending ratio of the metal compound filler is preferably 1 to 100 parts by weight, more preferably 2 to 50 parts by weight, and further preferably 5 to 30 parts by weight. When the compounding ratio of the metal compound filler exceeds 100 parts by weight with respect to 100 parts by weight of the curable component, the ratio of the curable component in the adhesive is reduced, which is not preferable from the viewpoint of adhesiveness. The mixing ratio of the metal compound filler is not particularly limited, but is preferably set to the lower limit of the above range in order to obtain in-plane uniform adhesiveness while ensuring adhesiveness and good appearance. .

なお、偏光板用接着剤には、各種粘着付与剤、紫外線吸収剤、酸化防止剤、耐熱安定剤、可塑剤、レベリング剤、発泡抑制剤、帯電防止割、耐加水分解安定剤等の安定剤などの安定剤等を配合することもできる。また、本願における、金属化合物コロイド、金属化合物フィラーは非導電性の材料であるが、導電性物質の微粒子を含有することもできる。その他、添加剤の例としては、カルボニル化合物などで代表される電子線による硬化速度や感度を上がる増感剤、シランカップリング剤、チタンカップリング剤等のカップリング剤、エチレンオキシドで代表される接着促進剤、透明保護フィルムとの濡れ性を向上させる添加剤、アクリロキシ基化合物や炭化水素系(天然、合成樹脂)などがあげられる。   In addition, the adhesive for polarizing plate includes various tackifiers, ultraviolet absorbers, antioxidants, heat stabilizers, plasticizers, leveling agents, foaming inhibitors, antistatic cracks, hydrolysis stabilizers, and other stabilizers. A stabilizer such as can also be blended. Further, the metal compound colloid and the metal compound filler in the present application are non-conductive materials, but may contain fine particles of a conductive substance. In addition, examples of additives include sensitizers that increase the curing speed and sensitivity by electron beams typified by carbonyl compounds, coupling agents such as silane coupling agents and titanium coupling agents, and adhesives typified by ethylene oxide. Accelerators, additives that improve wettability with the transparent protective film, acryloxy group compounds, hydrocarbons (natural and synthetic resins), and the like.

前記偏光板は、偏光子の両面に透明保護フィルム(または積層フィルム)を接着剤層を介して貼り合せることにより得られるが、接着剤層と、透明保護フィルムまたは偏光子との間には下塗り層や易接着処理層等を設けても良い。易接着処理としては、プラズマ処理、コロナ処理等のドライ処理、アルカリ処理(ケン化処理)等の化学処理、易接着剤層を形成するコーティング処理等があげられる。これらのなかでも、易接着剤層を形成するコーティング処理やアルカリ処理が好適である。易接着剤層の形成には、ポリオール樹脂、ポリカルボン酸樹脂、ポリエステル樹脂、シリコーン樹脂等の各種の易接着材料を使用することができる。なお、易接着剤層の厚みは、通常、0.001〜10μm程度、さらには0.001〜5μm程度、特に0.001〜1μm程度とするのが好ましい。   The polarizing plate is obtained by laminating a transparent protective film (or laminated film) on both sides of a polarizer via an adhesive layer, but undercoat is provided between the adhesive layer and the transparent protective film or the polarizer. A layer, an easy adhesion treatment layer, or the like may be provided. Examples of the easy adhesion treatment include dry treatment such as plasma treatment and corona treatment, chemical treatment such as alkali treatment (saponification treatment), and coating treatment for forming an easy adhesive layer. Among these, a coating treatment or an alkali treatment for forming an easy-adhesive layer is preferable. Various easy-adhesive materials such as polyol resin, polycarboxylic acid resin, polyester resin, and silicone resin can be used for forming the easy-adhesive layer. The thickness of the easy-adhesive layer is usually about 0.001 to 10 μm, more preferably about 0.001 to 5 μm, and particularly preferably about 0.001 to 1 μm.

前記接着剤層が水系接着剤等により形成される場合には、当該接着剤層の厚みは10〜300nm程度である。接着剤層の厚みは、均一な面内厚みを得ることと、十分な接着力を得る点から、さらに好ましくは、10〜200nm、さらに好ましくは20〜150nmである。また、前述の通り、接着剤層の厚みは、偏光板用接着剤に含有されている金属化合物コロイドの平均粒子径よりも大きくなるように設計することが好ましい。   When the adhesive layer is formed of a water-based adhesive or the like, the thickness of the adhesive layer is about 10 to 300 nm. The thickness of the adhesive layer is more preferably 10 to 200 nm, and still more preferably 20 to 150 nm, from the viewpoint of obtaining a uniform in-plane thickness and obtaining a sufficient adhesive force. Further, as described above, the thickness of the adhesive layer is preferably designed to be larger than the average particle diameter of the metal compound colloid contained in the polarizing plate adhesive.

接着剤層の厚みを調整する方法としては、特に制限されるものではないないが、例えば、接着剤溶液の固形分濃度や接着剤の塗布装置を調整する方法があげられる。このような接着剤層厚みの測定方法としては、特に制限されるものではないが、SEM(Scanning Electron Microscopy)や、TEM(Transmission Electron Microscopy)による断面観察測定が好ましく用いられる。接着剤の塗布操作は特に制限されず、ロール法、噴霧法、浸漬法等の各種手段を採用できる。   The method of adjusting the thickness of the adhesive layer is not particularly limited, and examples thereof include a method of adjusting the solid content concentration of the adhesive solution and an adhesive application device. The method for measuring the thickness of the adhesive layer is not particularly limited, but cross-sectional observation measurement using SEM (Scanning Electron Microscopy) or TEM (Transmission Electron Microscopy) is preferably used. The application operation of the adhesive is not particularly limited, and various means such as a roll method, a spray method, and an immersion method can be employed.

水系接着剤を塗布した後は、偏光子と透明保護フィルムをロールラミネーター等により貼り合わせる。前記接着剤の塗布は、透明保護フィルム、偏光子のいずれに行ってもよく、両者に行ってもよい。貼り合わせ後には、乾燥工程を施し、塗布乾燥層からなる接着剤層を形成する。乾燥温度は、5〜150℃程度、好ましくは30〜120℃で、120秒間以上、さらには300秒間以上である。   After applying the water-based adhesive, the polarizer and the transparent protective film are bonded together with a roll laminator or the like. Application | coating of the said adhesive agent may be performed to any of a transparent protective film and a polarizer, and may be performed to both. After the bonding, a drying process is performed to form an adhesive layer composed of a coating dry layer. A drying temperature is about 5-150 degreeC, Preferably it is 30-120 degreeC, is 120 second or more, Furthermore, it is 300 second or more.

一方、前記接着剤層が硬化型接着剤(電子線硬化型接着剤)により形成される場合には、前記接着層の厚みは、好ましくは0.1〜20μm、より好ましくは、0.2〜10μm、さらに好ましくは0.3〜8μmである。厚みが薄い場合は、接着力自体の凝集力が得られず、接着強度が得られないおそれがある。接着剤層の厚みが20μmを超えると、コストアップと接着剤自体の硬化収縮の影響が出て、偏光板の光学特性へ悪影響が発生するおそれがある。   On the other hand, when the adhesive layer is formed of a curable adhesive (electron beam curable adhesive), the thickness of the adhesive layer is preferably 0.1 to 20 μm, more preferably 0.2 to It is 10 μm, more preferably 0.3 to 8 μm. When the thickness is small, the cohesive force of the adhesive force itself cannot be obtained, and the adhesive strength may not be obtained. When the thickness of the adhesive layer exceeds 20 μm, the cost increases and the effect of curing shrinkage of the adhesive itself appears, which may adversely affect the optical properties of the polarizing plate.

偏光子と透明保護フィルムを貼り合わせた後に、電子線等を照射して、接着剤を硬化させる。電子線の照射方向は、任意の適切な方向から照射することができる。好ましくは、透明保護フィルム側から照射する。偏光子側から照射すると、偏光子が電子線によって劣化するおそれがある。   After laminating the polarizer and the transparent protective film, the adhesive is cured by irradiation with an electron beam or the like. The irradiation direction of the electron beam can be irradiated from any appropriate direction. Preferably, it irradiates from the transparent protective film side. When irradiated from the polarizer side, the polarizer may be deteriorated by the electron beam.

電子線の照射条件は、前記接着剤を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV〜300kVであり、さらに好ましくは10kV〜250kVである。加速電圧が5kV未満の場合、電子線が接着剤まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて電子線が跳ね返り、透明保護フィルムや偏光子にダメージを与えるおそれがある。照射線量としては、5〜100kGy、さらに好ましくは10〜75kGyである。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、透明保護フィルムや偏光子にダメージを与え、機械的強度の低下や黄変を生じ、所定の光学特性を得ることができない。   Any appropriate condition can be adopted as the electron beam irradiation condition as long as the adhesive can be cured. For example, in the electron beam irradiation, the acceleration voltage is preferably 5 kV to 300 kV, and more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive and may be insufficiently cured. If the acceleration voltage exceeds 300 kV, the penetration force through the sample is too strong and the electron beam rebounds, There is a risk of damaging the polarizer. The irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy. When the irradiation dose is less than 5 kGy, the adhesive becomes insufficiently cured, and when it exceeds 100 kGy, the transparent protective film and the polarizer are damaged, resulting in a decrease in mechanical strength and yellowing, thereby obtaining predetermined optical characteristics. I can't.

電子線照射は、通常、不活性ガス中で照射を行うが、必要であれば大気中や酸素を少し導入した条件で行ってもよい。透明保護フィルムの材料によるが、酸素を適宜導入することによって、最初に電子線があたる透明保護フィルム面にあえて酸素阻害を生じさせ、透明保護フィルムへのダメージを防ぐことができ、接着剤にのみ効率的に電子線を照射させることができる。   Electron beam irradiation is usually performed in an inert gas, but if necessary, it may be performed in the atmosphere or under a condition in which a small amount of oxygen is introduced. Depending on the material of the transparent protective film, by appropriately introducing oxygen, the transparent protective film surface where the electron beam first hits can be obstructed to prevent oxygen damage and prevent damage to the transparent protective film. An electron beam can be irradiated efficiently.

前記製造方法を連続ラインで行う場合、ライン速度は、接着剤の硬化時間によるが、好ましくは1〜500m/min、より好ましくは5〜300m/min、さらに好ましくは10〜100m/minである。ライン速度が小さすぎる場合は、生産性が乏しい、または透明保護フィルムへのダメージが大きすぎ、耐久性試験などに耐えうる偏光板が作製できない。ライン速度が大きすぎる場合は、接着剤の硬化が不十分となり、目的とする接着性が得られない場合がある。   When performing the said manufacturing method by a continuous line, although it depends on the hardening time of an adhesive agent, Preferably it is 1-500 m / min, More preferably, it is 5-300 m / min, More preferably, it is 10-100 m / min. When the line speed is too low, productivity is poor, or damage to the transparent protective film is too great, and a polarizing plate that can withstand a durability test or the like cannot be produced. When the line speed is too high, the adhesive is not sufficiently cured, and the target adhesiveness may not be obtained.

また、本発明の偏光板は、液晶表示装置等の画像表示装置の形成に用いられる光学層を積層した光学フィルムとして用いることができる。例えば反射板や反透過板、位相差板(1/2や1/4等の波長板を含む)、輝度向上フィルムなどの液晶表示装置等の形成に用いられることのある光学層となるものがあげられる。これらは単独で光学フィルムとして用いることができる他、前記偏光板に、実用に際して積層して、1層または2層以上用いることができる。   Moreover, the polarizing plate of this invention can be used as an optical film which laminated | stacked the optical layer used for formation of image display apparatuses, such as a liquid crystal display device. For example, an optical layer that may be used for forming a liquid crystal display device such as a reflection plate, an anti-transmission plate, a phase difference plate (including wavelength plates such as 1/2 and 1/4), and a brightness enhancement film. can give. These can be used alone as an optical film, or can be laminated on the polarizing plate for practical use and used as one layer or two or more layers.

特に、偏光板に更に反射板または半透過反射板が積層されてなる反射型偏光板または半透過型偏光板、偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板、あるいは偏光板に更に輝度向上フィルムが積層されてなる偏光板が好ましい。   In particular, a reflective polarizing plate or a semi-transmissive polarizing plate in which a polarizing plate is further laminated with a reflecting plate or a semi-transmissive reflecting plate, an elliptical polarizing plate or a circular polarizing plate in which a retardation plate is further laminated on a polarizing plate, or A polarizing plate obtained by further laminating a brightness enhancement film on the polarizing plate is preferable.

反射型偏光板は、偏光板に反射層を設けたもので、視認側(表示側)からの入射光を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バックライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやすいなどの利点を有する。反射型偏光板の形成は、必要に応じ透明保護層等を介して偏光板の片面に金属等からなる反射層を付設する方式などの適宜な方式にて行うことができる。   A reflective polarizing plate is a polarizing plate provided with a reflective layer, and is used to form a liquid crystal display device or the like that reflects incident light from the viewing side (display side). Such a light source can be omitted, and the liquid crystal display device can be easily thinned. The reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer made of metal or the like is attached to one surface of the polarizing plate via a transparent protective layer or the like as necessary.

反射型偏光板の具体例としては、必要に応じマット処理した透明保護フィルムの片面に、アルミニウム等の反射性金属からなる箔や蒸着膜を付設して反射層を形成したものなどがあげられる。また、前記透明保護フィルムに微粒子を含有させて表面微細凹凸構造とし、その上に微細凹凸構造の反射層を有するものなどもあげられる。前記した微細凹凸構造の反射層は、入射光を乱反射により拡散させて指向性やギラギラした見栄えを防止し、明暗のムラを抑制しうる利点などを有する。また微粒子含有の保護フィルムは、入射光及びその反射光がそれを透過する際に拡散されて明暗ムラをより抑制しうる利点なども有している。透明保護フィルムの表面微細凹凸構造を反映させた微細凹凸構造の反射層の形成は、例えば真空蒸着方式、イオンプレーティング方式、スパッタリング方式やメッキ方式などの適宜な方式で金属を透明保護層の表面に直接付設する方法などにより行うことができる。   Specific examples of the reflective polarizing plate include those in which a reflective layer is formed by attaching a foil or a vapor deposition film made of a reflective metal such as aluminum on one side of a transparent protective film matted as necessary. In addition, the transparent protective film may contain fine particles to form a surface fine concavo-convex structure, and a reflective layer having a fine concavo-convex structure thereon. The reflective layer having the fine concavo-convex structure has an advantage that incident light is diffused by irregular reflection to prevent directivity and glaring appearance and to suppress unevenness in brightness and darkness. Moreover, the protective film containing fine particles also has an advantage that incident light and its reflected light are diffused when passing through it and light and dark unevenness can be further suppressed. The reflective layer of the fine concavo-convex structure reflecting the surface fine concavo-convex structure of the transparent protective film is formed by, for example, applying metal to the surface of the transparent protective layer by an appropriate method such as a vacuum deposition method, an ion plating method, a sputtering method, or a plating method. It can be performed by a method of attaching directly to the screen.

反射板は前記の偏光板の透明保護フィルムに直接付与する方式に代えて、その透明フィルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとして用いることもできる。なお反射層は、通常、金属からなるので、その反射面が透明保護フィルムや偏光板等で被覆された状態の使用形態が、酸化による反射率の低下防止、ひいては初期反射率の長期持続の点や、保護層の別途付設の回避の点などより好ましい。   Instead of the method of directly applying the reflecting plate to the transparent protective film of the polarizing plate, the reflecting plate can be used as a reflecting sheet provided with a reflecting layer on an appropriate film according to the transparent film. Since the reflective layer is usually made of metal, the usage form in which the reflective surface is covered with a transparent protective film, a polarizing plate or the like is used to prevent the reflectance from being lowered due to oxidation, and thus to maintain the initial reflectance for a long time. In addition, it is more preferable to avoid a separate attachment of the protective layer.

なお、半透過型偏光板は、上記において反射層で光を反射し、かつ透過するハーフミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光板は、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使用する場合には、視認側(表示側)からの入射光を反射させて画像を表示し、比較的暗い雰囲気においては、半透過型偏光板のバックサイドに内蔵されているバックライト等の内蔵電源を使用して画像を表示するタイプの液晶表示装置などを形成できる。すなわち、半透過型偏光板は、明るい雰囲気下では、バックライト等の光源使用のエネルギーを節約でき、比較的暗い雰囲気下においても内蔵電源を用いて使用できるタイプの液晶表示装置などの形成に有用である。   The semi-transmissive polarizing plate can be obtained by using a semi-transmissive reflective layer such as a half mirror that reflects and transmits light with the reflective layer. A transflective polarizing plate is usually provided on the back side of a liquid crystal cell, and displays an image by reflecting incident light from the viewing side (display side) when a liquid crystal display device is used in a relatively bright atmosphere. In a relatively dark atmosphere, a liquid crystal display device of a type that displays an image using a built-in power source such as a backlight built in the back side of the transflective polarizing plate can be formed. In other words, the transflective polarizing plate can be used to form liquid crystal display devices that can save energy when using a light source such as a backlight in a bright atmosphere and can be used with a built-in power supply even in a relatively dark atmosphere. It is.

偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板について説明する。直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を直線偏光に変えたり、あるいは直線偏光の偏光方向を変える場合に、位相差板などが用いられる。特に、直線偏光を円偏光に変えたり、円偏光を直線偏光に変える位相差板としては、いわゆる1/4波長板(λ/4板とも言う)が用いられる。1/2波長板(λ/2板とも言う)は、通常、直線偏光の偏光方向を変える場合に用いられる。   An elliptically polarizing plate or a circularly polarizing plate in which a retardation plate is further laminated on a polarizing plate will be described. A phase difference plate or the like is used when changing linearly polarized light to elliptically polarized light or circularly polarized light, changing elliptically polarized light or circularly polarized light to linearly polarized light, or changing the polarization direction of linearly polarized light. In particular, a so-called quarter-wave plate (also referred to as a λ / 4 plate) is used as a retardation plate that changes linearly polarized light into circularly polarized light or changes circularly polarized light into linearly polarized light. A half-wave plate (also referred to as a λ / 2 plate) is usually used when changing the polarization direction of linearly polarized light.

楕円偏光板はスーパーツイストネマチック(STN)型液晶表示装置の液晶層の複屈折により生じた着色(青又は黄)を補償(防止)して、前記着色のない白黒表示する場合などに有効に用いられる。更に、三次元の屈折率を制御したものは、液晶表示装置の画面を斜め方向から見た際に生じる着色も補償(防止)することができて好ましい。円偏光板は、例えば画像がカラー表示になる反射型液晶表示装置の画像の色調を整える場合などに有効に用いられ、また、反射防止の機能も有する。   The elliptically polarizing plate is effectively used for black and white display without the above color by compensating (preventing) the coloration (blue or yellow) generated by the birefringence of the liquid crystal layer of the super twist nematic (STN) type liquid crystal display device. It is done. Further, the one in which the three-dimensional refractive index is controlled is preferable because it can compensate (prevent) coloring that occurs when the screen of the liquid crystal display device is viewed from an oblique direction. The circularly polarizing plate is effectively used, for example, when adjusting the color tone of an image of a reflective liquid crystal display device in which an image is displayed in color, and also has an antireflection function.

位相差板としては、高分子素材を一軸または二軸延伸処理してなる複屈折性フィルム、液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したものなどがあげられる。位相差板の厚さも特に制限されないが、20〜150μm程度が一般的である。   Examples of the retardation plate include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, a liquid crystal polymer alignment film, and a liquid crystal polymer alignment layer supported by a film. The thickness of the retardation plate is not particularly limited, but is generally about 20 to 150 μm.

高分子素材としては、例えば、ポリビニルアルコール、ポリビニルブチラール、ポリメチルビニルエーテル、ポリヒドロキシエチルアクリレート、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリフェニレンスルファイド、ポリフェニレンオキサイド、ポリアリルスルホン、ポリアミド、ポリイミド、ポリオレフィン、ポリ塩化ビニル、セルロース系重合体、ノルボルネン系樹脂、またはこれらの二元系、三元系各種共重合体、グラフト共重合体、ブレンド物などがあげられる。これらの高分子素材は延伸等により配向物(延伸フィルム)となる。   Examples of the polymer material include polyvinyl alcohol, polyvinyl butyral, polymethyl vinyl ether, polyhydroxyethyl acrylate, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polycarbonate, polyarylate, polysulfone, polyethylene terephthalate, polyethylene naphthalate, polyether sulfone, Polyphenylene sulfide, polyphenylene oxide, polyallylsulfone, polyamide, polyimide, polyolefin, polyvinyl chloride, cellulose polymer, norbornene resin, or binary, ternary various copolymers, graft copolymers, Examples include blends. These polymer materials become an oriented product (stretched film) by stretching or the like.

液晶ポリマーとしては、例えば、液晶配向性を付与する共役性の直線状原子団(メソゲン)がポリマーの主鎖や側鎖に導入された主鎖型や側鎖型の各種のものなどをあげられる。主鎖型の液晶ポリマーの具体例としては、屈曲性を付与するスペーサー部でメソゲン基を結合した構造の、例えばネマチック配向性のポリエステル系液晶性ポリマー、ディスコティックポリマーやコレステリックポリマーなどがあげられる。側鎖型の液晶ポリマーの具体例としては、ポリシロキサン、ポリアクリレート、ポリメタクリレート又はポリマロネートを主鎖骨格とし、側鎖として共役性の原子団からなるスペーサー部を介してネマチック配向付与性のパラ置換環状化合物単位からなるメソゲン部を有するものなどがあげられる。これらの液晶ポリマーは、例えば、ガラス板上に形成したポリイミドやポリビニルアルコール等の薄膜の表面をラビング処理したもの、酸化ケイ素を斜方蒸着したものなどの配向処理面上に液晶性ポリマーの溶液を展開して熱処理することにより行われる。   Examples of the liquid crystal polymer include various main chain types and side chain types in which a conjugated linear atomic group (mesogen) imparting liquid crystal alignment is introduced into the main chain or side chain of the polymer. . Specific examples of the main chain type liquid crystal polymer include a nematic alignment polyester liquid crystal polymer, a discotic polymer, and a cholesteric polymer having a structure in which a mesogen group is bonded at a spacer portion that imparts flexibility. Specific examples of the side chain type liquid crystal polymer include polysiloxane, polyacrylate, polymethacrylate, or polymalonate as a main chain skeleton, and a nematic alignment-providing para-substitution through a spacer portion composed of a conjugated atomic group as a side chain. Examples thereof include those having a mesogenic part composed of a cyclic compound unit. These liquid crystal polymers can be prepared by, for example, applying a solution of a liquid crystalline polymer on an alignment surface such as a surface of a thin film such as polyimide or polyvinyl alcohol formed on a glass plate, or an oblique deposition of silicon oxide. This is done by developing and heat treatment.

位相差板は、例えば各種波長板や液晶層の複屈折による着色や視覚等の補償を目的としたものなどの使用目的に応じた適宜な位相差を有するものであって良く、2種以上の位相差板を積層して位相差等の光学特性を制御したものなどであっても良い。   The retardation plate may have an appropriate retardation according to the purpose of use, such as those for the purpose of compensating for coloration, vision, etc. due to birefringence of various wavelength plates and liquid crystal layers. It may be one in which retardation plates are stacked and optical characteristics such as retardation are controlled.

また、上記の楕円偏光板や反射型楕円偏光板は、偏光板又は反射型偏光板と位相差板を適宜な組合せで積層したものである。かかる楕円偏光板等は、(反射型)偏光板と位相差板の組合せとなるようにそれらを液晶表示装置の製造過程で順次別個に積層することによっても形成しうるが、前記の如く予め楕円偏光板等の光学フィルムとしたものは、品質の安定性や積層作業性等に優れて液晶表示装置などの製造効率を向上させうる利点がある。   The elliptical polarizing plate and the reflective elliptical polarizing plate are obtained by laminating a polarizing plate or a reflective polarizing plate and a retardation plate in an appropriate combination. Such an elliptically polarizing plate or the like can also be formed by sequentially laminating them sequentially in the manufacturing process of the liquid crystal display device so as to be a combination of a (reflective) polarizing plate and a retardation plate. An optical film such as a polarizing plate has an advantage that it can improve the production efficiency of a liquid crystal display device and the like because of excellent quality stability and lamination workability.

偏光板と輝度向上フィルムを貼り合せた偏光板は、通常液晶セルの裏側サイドに設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックライトや裏側からの反射などにより自然光が入射すると所定偏光軸の直線偏光または所定方向の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フィルムを偏光板と積層した偏光板は、バックライト等の光源からの光を入射させて所定偏光状態の透過光を得ると共に、前記所定偏光状態以外の光は透過せずに反射される。この輝度向上フィルム面で反射した光を更にその後ろ側に設けられた反射層等を介し反転させて輝度向上フィルムに再入射させ、その一部又は全部を所定偏光状態の光として透過させて輝度向上フィルムを透過する光の増量を図ると共に、偏光子に吸収させにくい偏光を供給して液晶表示画像表示等に利用しうる光量の増大を図ることにより輝度を向上させうるものである。すなわち、輝度向上フィルムを使用せずに、バックライトなどで液晶セルの裏側から偏光子を通して光を入射した場合には、偏光子の偏光軸に一致していない偏光方向を有する光は、ほとんど偏光子に吸収されてしまい、偏光子を透過してこない。すなわち、用いた偏光子の特性よっても異なるが、およそ50%の光が偏光子に吸収されてしまい、その分、液晶画像表示等に利用しうる光量が減少し、画像が暗くなる。輝度向上フィルムは、偏光子に吸収されるような偏光方向を有する光を偏光子に入射させずに輝度向上フィルムで一反反射させ、更にその後ろ側に設けられた反射層等を介して反転させて輝度向上フィルムに再入射させることを繰り返し、この両者間で反射、反転している光の偏光方向が偏光子を通過し得るような偏光方向になった偏光のみを、輝度向上フィルムは透過させて偏光子に供給するので、バックライトなどの光を効率的に液晶表示装置の画像の表示に使用でき、画面を明るくすることができる。   A polarizing plate obtained by bonding a polarizing plate and a brightness enhancement film is usually provided on the back side of a liquid crystal cell. The brightness enhancement film reflects a linearly polarized light with a predetermined polarization axis or a circularly polarized light in a predetermined direction when natural light is incident due to a backlight such as a liquid crystal display device or reflection from the back side, and transmits other light. In addition, a polarizing plate in which a brightness enhancement film is laminated with a polarizing plate allows light from a light source such as a backlight to enter to obtain transmitted light in a predetermined polarization state, and reflects light without transmitting the light other than the predetermined polarization state. The The light reflected on the surface of the brightness enhancement film is further inverted through a reflective layer or the like provided behind the brightness enhancement film and re-incident on the brightness enhancement film, and part or all of the light is transmitted as light having a predetermined polarization state. Luminance can be improved by increasing the amount of light transmitted through the enhancement film and increasing the amount of light that can be used for liquid crystal display image display or the like by supplying polarized light that is difficult to be absorbed by the polarizer. That is, when light is incident through the polarizer from the back side of the liquid crystal cell without using a brightness enhancement film, light having a polarization direction that does not coincide with the polarization axis of the polarizer is almost polarized. It is absorbed by the polarizer and does not pass through the polarizer. That is, although depending on the characteristics of the polarizer used, approximately 50% of the light is absorbed by the polarizer, and accordingly, the amount of light that can be used for liquid crystal image display or the like is reduced and the image becomes dark. The brightness enhancement film reflects light that has a polarization direction that is absorbed by the polarizer without being incident on the polarizer, and is reflected by the brightness enhancement film, and then inverted through a reflective layer or the like provided behind the brightness enhancement film. The brightness enhancement film transmits only the polarized light in which the polarization direction of the light reflected and inverted between the two is allowed to pass through the polarizer. Since the light is supplied to the polarizer, light such as a backlight can be efficiently used for displaying an image on the liquid crystal display device, and the screen can be brightened.

輝度向上フィルムと上記反射層等の間に拡散板を設けることもできる。輝度向上フィルムによって反射した偏光状態の光は上記反射層等に向かうが、設置された拡散板は通過する光を均一に拡散すると同時に偏光状態を解消し、非偏光状態となる。すなわち、自然光状態の光が反射層等に向かい、反射層等を介して反射し、再び拡散板を通過して輝度向上フィルムに再入射することを繰り返す。このように輝度向上フィルムと上記反射層等の間に、偏光を元の自然光にもどす拡散板を設けることにより表示画面の明るさを維持しつつ、同時に表示画面の明るさのむらを少なくし、均一で明るい画面を提供することができる。かかる拡散板を設けることにより、初回の入射光は反射の繰り返し回数が程よく増加し、拡散板の拡散機能と相俟って均一の明るい表示画面を提供することができたものと考えられる。   A diffusion plate may be provided between the brightness enhancement film and the reflective layer. The polarized light reflected by the brightness enhancement film is directed to the reflective layer or the like, but the installed diffuser plate uniformly diffuses the light passing therethrough and simultaneously cancels the polarized state and becomes a non-polarized state. That is, the light in the natural light state is directed toward the reflection layer or the like, reflected through the reflection layer or the like, and again passes through the diffusion plate and reenters the brightness enhancement film. In this way, by providing a diffuser plate that returns polarized light to the original natural light between the brightness enhancement film and the reflective layer, the brightness of the display screen is maintained, and at the same time, the brightness of the display screen is reduced and uniform. Can provide a bright screen. By providing such a diffuser plate, it is considered that the first incident light has a moderate increase in the number of repetitions of reflection, and in combination with the diffusion function of the diffuser plate, a uniform bright display screen can be provided.

前記の輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が相違する薄膜フィルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他の光は反射する特性を示すもの、コレステリック液晶ポリマーの配向フィルムやその配向液晶層をフィルム基材上に支持したものの如き、左回り又は右回りのいずれか一方の円偏光を反射して他の光は透過する特性を示すものなどの適宜なものを用いうる。   The brightness enhancement film has a characteristic of transmitting linearly polarized light having a predetermined polarization axis and reflecting other light, such as a multilayer thin film of dielectric material or a multilayer laminate of thin film films having different refractive index anisotropies. Such as an alignment film of a cholesteric liquid crystal polymer or an alignment liquid crystal layer supported on a film substrate, which reflects either left-handed or right-handed circularly polarized light and transmits other light. Appropriate things such as a thing can be used.

従って、前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フィルムでは、その透過光をそのまま偏光板に偏光軸を揃えて入射させることにより、偏光板による吸収ロスを抑制しつつ効率よく透過させることができる。一方、コレステリック液晶層の如く円偏光を透過するタイプの輝度向上フィルムでは、そのまま偏光子に入射させることもできるが、吸収ロスを抑制する点よりその円偏光を、位相差板を介し直線偏光化して偏光板に入射させることが好ましい。なお、その位相差板として1/4波長板を用いることにより、円偏光を直線偏光に変換することができる。   Therefore, in the brightness enhancement film of the type that transmits linearly polarized light having the predetermined polarization axis as described above, the transmitted light is directly incident on the polarizing plate with the polarization axis aligned, thereby efficiently transmitting while suppressing absorption loss due to the polarizing plate. Can be made. On the other hand, in a brightness enhancement film of a type that transmits circularly polarized light such as a cholesteric liquid crystal layer, it can be incident on a polarizer as it is, but from the point of suppressing absorption loss, the circularly polarized light is converted into linearly polarized light through a retardation plate. It is preferably incident on the polarizing plate. Note that circularly polarized light can be converted to linearly polarized light by using a quarter wave plate as the retardation plate.

可視光域等の広い波長で1/4波長板として機能する位相差板は、例えば波長550nmの淡色光に対して1/4波長板として機能する位相差板と他の位相差特性を示す位相差層、例えば1/2波長板として機能する位相差層とを重畳する方式などにより得ることができる。従って、偏光板と輝度向上フィルムの間に配置する位相差板は、1層または2層以上の位相差層からなるものであってよい。   A retardation plate that functions as a quarter-wave plate at a wide wavelength in the visible light region or the like exhibits, for example, a retardation plate that functions as a quarter-wave plate for light-colored light having a wavelength of 550 nm and other retardation characteristics. It can be obtained by a method in which a phase difference layer, for example, a phase difference layer that functions as a half-wave plate is superimposed. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or more retardation layers.

なお、コレステリック液晶層についても、反射波長が相違するものの組合せにして2層又は3層以上重畳した配置構造とすることにより、可視光域等の広い波長範囲で円偏光を反射するものを得ることができ、それに基づいて広い波長範囲の透過円偏光を得ることができる。   In addition, a cholesteric liquid crystal layer having a reflection structure that reflects circularly polarized light in a wide wavelength range such as a visible light range can be obtained by combining two or more layers with different reflection wavelengths to form an overlapping structure. Based on this, transmitted circularly polarized light in a wide wavelength range can be obtained.

また、偏光板は、上記の偏光分離型偏光板の如く、偏光板と2層又は3層以上の光学層とを積層したものからなっていても良い。従って、上記の反射型偏光板や半透過型偏光板と位相差板を組み合わせた反射型楕円偏光板や半透過型楕円偏光板などであっても良い。   Further, the polarizing plate may be formed by laminating a polarizing plate and two or more optical layers as in the above-described polarization separation type polarizing plate. Therefore, a reflective elliptical polarizing plate or a semi-transmissive elliptical polarizing plate in which the above-described reflective polarizing plate or semi-transmissive polarizing plate and a retardation plate are combined may be used.

本発明の偏光板または当該偏光板に前記光学層を積層した光学フィルムは、液晶表示装置等の製造過程で順次別個に積層する方式にても形成することができるが、予め積層して光学フィルムとしたものは、品質の安定性や組立作業等に優れていて液晶表示装置などの製造工程を向上させうる利点がある。積層には粘着層等の適宜な接着手段を用いうる。前記の偏光板やその他の光学フィルムの接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。   The polarizing film of the present invention or the optical film in which the optical layer is laminated on the polarizing plate can be formed by a method of sequentially laminating separately in the manufacturing process of a liquid crystal display device or the like. These are excellent in quality stability and assembly work, and have the advantage of improving the manufacturing process of liquid crystal display devices and the like. For the lamination, an appropriate adhesive means such as an adhesive layer can be used. When adhering the polarizing plate and other optical films, their optical axes can be set at an appropriate arrangement angle in accordance with the target retardation characteristics.

前述した偏光板や、偏光板を少なくとも1層積層されている光学フィルムには、液晶セル等の他部材と接着するための粘着層を設けることもできる。粘着層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、アクリル系粘着剤の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いうる。   An adhesive layer for adhering to other members such as a liquid crystal cell may be provided on the polarizing plate described above or an optical film in which at least one polarizing plate is laminated. The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited. For example, an acrylic polymer, silicone-based polymer, polyester, polyurethane, polyamide, polyether, fluorine-based or rubber-based polymer is appropriately selected. Can be used. In particular, those having excellent optical transparency such as an acrylic pressure-sensitive adhesive, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and being excellent in weather resistance, heat resistance and the like can be preferably used.

また上記に加えて、吸湿による発泡現象や剥がれ現象の防止、熱膨張差等による光学特性の低下や液晶セルの反り防止、ひいては高品質で耐久性に優れる液晶表示装置の形成性などの点より、吸湿率が低くて耐熱性に優れる粘着層が好ましい。   In addition to the above, in terms of prevention of foaming and peeling phenomena due to moisture absorption, deterioration of optical properties and liquid crystal cell warpage due to differences in thermal expansion, etc., as well as formability of liquid crystal display devices with high quality and excellent durability An adhesive layer having a low moisture absorption rate and excellent heat resistance is preferred.

粘着層は、例えば天然物や合成物の樹脂類、特に、粘着性付与樹脂や、ガラス繊維、ガラスビーズ、金属粉、その他の無機粉末等からなる充填剤や顔料、着色剤、酸化防止剤などの粘着層に添加されることの添加剤を含有していてもよい。また微粒子を含有して光拡散性を示す粘着層などであってもよい。   The adhesive layer is, for example, natural or synthetic resins, in particular, tackifier resins, fillers or pigments made of glass fibers, glass beads, metal powders, other inorganic powders, colorants, antioxidants, etc. It may contain an additive to be added to the adhesive layer. Moreover, the adhesion layer etc. which contain microparticles | fine-particles and show light diffusibility may be sufficient.

偏光板や光学フィルムの片面又は両面への粘着層の付設は、適宜な方式で行いうる。その例としては、例えばトルエンや酢酸エチル等の適宜な溶剤の単独物又は混合物からなる溶媒にベースポリマーまたはその組成物を溶解又は分散させた10〜40重量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜な展開方式で偏光板上または光学フィルム上に直接付設する方式、あるいは前記に準じセパレータ上に粘着層を形成してそれを偏光板上または光学フィルム上に移着する方式などがあげられる。   Attachment of the adhesive layer to one or both sides of the polarizing plate or the optical film can be performed by an appropriate method. For example, a pressure sensitive adhesive solution of about 10 to 40% by weight in which a base polymer or a composition thereof is dissolved or dispersed in a solvent composed of a suitable solvent alone or a mixture such as toluene and ethyl acetate is prepared. A method in which it is directly attached on a polarizing plate or an optical film by an appropriate development method such as a casting method or a coating method, or an adhesive layer is formed on a separator according to the above, and this is applied to a polarizing plate or an optical film. The method of moving up is mentioned.

粘着層は、異なる組成又は種類等のものの重畳層として偏光板や光学フィルムの片面又は両面に設けることもできる。また両面に設ける場合に、偏光板や光学フィルムの表裏において異なる組成や種類や厚さ等の粘着層とすることもできる。粘着層の厚さは、使用目的や接着力などに応じて適宜に決定でき、一般には1〜40μmであり、5〜30μmが好ましく、特に10〜25μmが好ましい。1μmより薄いと耐久性が悪くなり、また40μmより厚いと発泡などによる浮きや剥がれが生じやすく外観不良となる、   The pressure-sensitive adhesive layer can be provided on one side or both sides of a polarizing plate or an optical film as a superimposed layer of different compositions or types. Moreover, when providing in both surfaces, it can also be set as the adhesion layers of a different composition, a kind, thickness, etc. in the front and back of a polarizing plate or an optical film. The thickness of the pressure-sensitive adhesive layer can be appropriately determined according to the purpose of use and adhesive force, and is generally 1 to 40 μm, preferably 5 to 30 μm, particularly preferably 10 to 25 μm. If it is thinner than 1 μm, the durability will be poor, and if it is thicker than 40 μm, it will be liable to float or peel off due to foaming, resulting in poor appearance.

粘着層の露出面に対しては、実用に供するまでの間、その汚染防止等を目的にセパレータが仮着されてカバーされる。これにより、通例の取扱状態で粘着層に接触することを防止できる。セパレータとしては、上記厚さ条件を除き、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体等の適宜な薄葉体を、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデン等の適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なものを用いうる。   On the exposed surface of the adhesive layer, a separator is temporarily attached and covered for the purpose of preventing contamination until it is put to practical use. Thereby, it can prevent contacting an adhesion layer in the usual handling state. As the separator, except for the above thickness conditions, for example, a suitable thin leaf body such as a plastic film, rubber sheet, paper, cloth, non-woven fabric, net, foam sheet, metal foil, laminate thereof, and the like, silicone type or Appropriate conventional ones such as those coated with an appropriate release agent such as long-chain alkyl, fluorine-based, or molybdenum sulfide can be used.

偏光板と粘着剤層との間の密着性を向上させるために、その層間にアンカー層を設けることもできる。   In order to improve the adhesion between the polarizing plate and the pressure-sensitive adhesive layer, an anchor layer can be provided between the layers.

上記アンカー層の形成材としては、好ましくは、ポリウレタン、ポリエステル、分子中にアミノ基を含むポリマー類から選ばれるアンカー剤が用いられ、特に好ましくは、分子中にアミノ基を含んだポリマー類である。分子中にアミノ基を含むポリマー類は、分子中のアミノ基が粘着剤中のカルボキシル基等と反応またはイオン性相互作用などの相互作用を示すため、良好な密着性が確保される。   As the material for forming the anchor layer, an anchor agent selected from polyurethane, polyester, and polymers containing an amino group in the molecule is preferably used, and polymers containing an amino group in the molecule are particularly preferred. . Polymers containing an amino group in the molecule ensure good adhesion because the amino group in the molecule exhibits an interaction such as a reaction or ionic interaction with the carboxyl group in the pressure-sensitive adhesive.

分子中にアミノ基を含むポリマー類としては、例えば、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリビニルピリジン、ポリビニルピロリジン、ジメチルアミノエチルアクリレート等の含アミノ基含有モノマーの重合体などをあげることができる。   Examples of polymers containing an amino group in the molecule include polymers of amino-containing group-containing monomers such as polyethyleneimine, polyallylamine, polyvinylamine, polyvinylpyridine, polyvinylpyrrolidine, dimethylaminoethyl acrylate, and the like.

上記アンカー層には、帯電防止性を付与するために、帯電防止剤を添加することもできる。帯電防止性付与のための帯電防止剤としては、イオン性界面活性剤系、ポリアニリン、ポリチオフェン、ポリピロール、ポリキノキサリン等の導電性ポリマー系、酸化スズ、酸化アンチモン、酸化インジウム等の金属酸化物系などがあげられるが、特に光学特性、外観、帯電防止効果、および帯電防止効果の加熱、加湿時での安定性という観点から、導電性ポリマー系が好ましく使用される。この中でも、ポリアニリン、ポリチオフェンなどの水溶性導電性ポリマー、もしくは水分散性導電性ポリマーが特に好ましく使用される。帯電防止層の形成材料として水溶性導電性ポリマーや水分散性導電性ポリマーを用いた場合、塗工に際して有機溶剤による光学フィルム基材への変質を抑えることができる。   An antistatic agent may be added to the anchor layer in order to impart antistatic properties. Antistatic agents for imparting antistatic properties include ionic surfactant systems, conductive polymer systems such as polyaniline, polythiophene, polypyrrole, and polyquinoxaline, metal oxide systems such as tin oxide, antimony oxide, and indium oxide. In particular, from the viewpoint of optical properties, appearance, antistatic effect, and antistatic effect heating and stability during humidification, a conductive polymer system is preferably used. Among these, water-soluble conductive polymers such as polyaniline and polythiophene or water-dispersible conductive polymers are particularly preferably used. When a water-soluble conductive polymer or a water-dispersible conductive polymer is used as a material for forming the antistatic layer, it is possible to suppress deterioration of the optical film substrate due to an organic solvent during coating.

なお本発明において、上記した偏光板を形成する偏光子や透明保護フィルムや光学フィルム等、また粘着層などの各層には、例えばサリチル酸エステル系化合物やベンゾフェノール系化合物、ベンゾトリアゾール系化合物やシアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などの方式により紫外線吸収能をもたせたものなどであってもよい。   In the present invention, the polarizer, the transparent protective film, the optical film, and the like that form the polarizing plate described above, and each layer such as an adhesive layer include, for example, a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, and a cyanoacrylate. It may be a compound having an ultraviolet absorbing ability by a method such as a method of treating with an ultraviolet absorber such as a compound based on nickel or a nickel complex salt compound.

本発明の偏光板または光学フィルムは液晶表示装置等の各種装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと偏光板または光学フィルム、及び必要に応じての照明システム等の構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明においては本発明による偏光板または光学フィルムを用いる点を除いて特に限定はなく、従来に準じうる。   The polarizing plate or the optical film of the present invention can be preferably used for forming various devices such as a liquid crystal display device. The liquid crystal display device can be formed according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing plate or an optical film, and an illumination system as necessary, and incorporating a drive circuit. There is no limitation in particular except the point which uses the polarizing plate or optical film by invention, and it can apply according to the former.

上記液晶表示装置の種類には特に制限はなく、透過型、反射型、反射半透過型いずれの形でも使用することができる。上記液晶表示装置に用いられる液晶セルとしては、例えばツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モードや、水平配向(ECB)モード、垂直配向(VA)モード、インプレーンスイッチング(IPS)モード、ベンドネマチック(OCB)モード、強誘電性液晶(SSFLC)モード、反強誘電液晶(AFLC)モードの液晶セルなど種々の液晶セルが挙げられる。このうち、本発明の位相差フィルム及び偏光板は、特にTNモード、ECBモードの液晶表示装置に用いることが好ましい。   The type of the liquid crystal display device is not particularly limited, and any of a transmissive type, a reflective type, and a reflective transflective type can be used. Examples of the liquid crystal cell used in the liquid crystal display device include a twisted nematic (TN) mode, a super twisted nematic (STN) mode, a horizontal alignment (ECB) mode, a vertical alignment (VA) mode, and an in-plane switching (IPS) mode. And various liquid crystal cells such as a liquid crystal cell of a bend nematic (OCB) mode, a ferroelectric liquid crystal (SSFLC) mode, and an antiferroelectric liquid crystal (AFLC) mode. Among these, the retardation film and the polarizing plate of the present invention are particularly preferably used for TN mode and ECB mode liquid crystal display devices.

液晶セルの片側又は両側に偏光板または光学フィルムを配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。その場合、本発明による偏光板または光学フィルムは液晶セルの片側又は両側に設置することができる。両側に偏光板または光学フィルムを設ける場合、それらは同じものであってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に1層又は2層以上配置することができる。   An appropriate liquid crystal display device such as a liquid crystal display device in which a polarizing plate or an optical film is disposed on one side or both sides of a liquid crystal cell, or a backlight or a reflector used in an illumination system can be formed. In that case, the polarizing plate or optical film by this invention can be installed in the one side or both sides of a liquid crystal cell. When providing a polarizing plate or an optical film on both sides, they may be the same or different. Further, when forming a liquid crystal display device, for example, a single layer or a suitable part such as a diffusing plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusing plate, a backlight, etc. Two or more layers can be arranged.

図2は、本発明の好ましい実施形態による液晶パネルの概略断面図である。この液晶パネルは、液晶セル20と、液晶セル20の両側に配置された、本発明の偏光板10とを備える。図2に示すように、偏光板10は、液晶光学補償層Dの側が、液晶セル20の側になるように配置するのが好ましい。図2では、液晶セル20の両側に偏光板10を有するが、本発明の偏光板10は片側のみに設けることもできる。両側に設ける偏光板は、代表的には、その吸収軸が直交するようにして配置されている。液晶セル20は、一対のガラス基板と、該基板間に配された表示媒体としての液晶層とを有する。一方の基板(アクティブマトリクス基板)には、液晶の電気光学特性を制御するスイッチング素子(代表的にはTFT)と、このアクティブ素子にゲート信号を与える走査線およびソース信号を与える信号線とが設けられている。他方のガラス基板(カラーフィルター基板)には、カラーフィルターが設けられる。なお、カラーフィルターは、アクティブマトリクス基板に設けてもよい。一対の基板の間隔(セルギャップ)は、スペーサーによって制御されている。基板の液晶層と接する側には、例えば配向膜が設けられている。   FIG. 2 is a schematic cross-sectional view of a liquid crystal panel according to a preferred embodiment of the present invention. The liquid crystal panel includes a liquid crystal cell 20 and the polarizing plate 10 of the present invention disposed on both sides of the liquid crystal cell 20. As shown in FIG. 2, the polarizing plate 10 is preferably arranged so that the liquid crystal optical compensation layer D side is the liquid crystal cell 20 side. In FIG. 2, although the polarizing plate 10 is provided on both sides of the liquid crystal cell 20, the polarizing plate 10 of the present invention can be provided only on one side. The polarizing plates provided on both sides are typically arranged so that their absorption axes are orthogonal. The liquid crystal cell 20 has a pair of glass substrates and a liquid crystal layer as a display medium disposed between the substrates. One substrate (active matrix substrate) is provided with a switching element (typically a TFT) for controlling the electro-optical characteristics of the liquid crystal, and a scanning line for supplying a gate signal to the active element and a signal line for supplying a source signal. It has been. The other glass substrate (color filter substrate) is provided with a color filter. Note that the color filter may be provided on the active matrix substrate. The distance (cell gap) between the pair of substrates is controlled by a spacer. For example, an alignment film is provided on the side of the substrate in contact with the liquid crystal layer.

本発明の偏光板および液晶パネルが用いられる用途としては、パーソナルコンピューター、液晶テレビ、携帯電話、携帯情報端末(PDA)等の液晶表示装置や、有機エレクトロルミネッセンスディスプレイ(有機EL)、プロジェクター、プロジェクションテレビ、プラズマテレビ等の画像表示装置があげられる。なかでも、本発明の偏光板および液晶パネルは、液晶表示装置に好適に用いられ、液晶テレビに特に好適に用いられる。   Applications of the polarizing plate and the liquid crystal panel of the present invention include liquid crystal display devices such as personal computers, liquid crystal televisions, mobile phones, and personal digital assistants (PDAs), organic electroluminescence displays (organic EL), projectors, and projection televisions. And an image display device such as a plasma television. Especially, the polarizing plate and liquid crystal panel of this invention are used suitably for a liquid crystal display device, and are used especially suitably for a liquid crystal television.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、各例中、部および%は特記ない限り重量基準である。   Examples and the like specifically showing the configuration and effects of the present invention will be described below. In each example, parts and% are based on weight unless otherwise specified.

(位相差の測定)
透明保護フィルムの波長590nmにおける屈折率nx、ny、nzを、平行ニコル回転法を原理とする自動複屈折測定装置(王子計測機器株式会社製,自動複屈折計KOBRA21ADH)により計測し、面内位相差Re、厚み方向位相差Rthを算出した。
(Measurement of phase difference)
The refractive index nx, ny, nz at a wavelength of 590 nm of the transparent protective film is measured by an automatic birefringence measuring device (manufactured by Oji Scientific Instruments, automatic birefringence meter KOBRA21ADH) based on the parallel Nicol rotation method. A phase difference Re and a thickness direction phase difference Rth were calculated.

(透湿度)
JIS Z0208の透湿度試験(カップ法)に準じて、温度40℃、湿度92%RHの雰囲気中、面積1m2の試料を24時間に通過する水蒸気のg数を測定した値である。
(Moisture permeability)
According to the moisture permeability test (cup method) of JIS Z0208, this is a value obtained by measuring the number of g of water vapor passing through a sample of area 1 m 2 in 24 hours in an atmosphere of a temperature of 40 ° C. and a humidity of 92% RH.

(接着剤水溶液の粘度)
調製した接着剤水溶液(常温:23℃)を、レオメーター(RSI‐HS,HAAKE社製)により測定した。
(Viscosity of adhesive aqueous solution)
The prepared adhesive aqueous solution (normal temperature: 23 ° C.) was measured with a rheometer (RSI-HS, manufactured by HAAKE).

(コロイドの平均粒子径)
アルミナコロイド水溶液を粒度分布計(日機装社製,ナノトラックUPA150)により、動的光散乱法(光相関法)で測定した。
(Average colloid particle size)
The alumina colloidal aqueous solution was measured by a dynamic light scattering method (light correlation method) with a particle size distribution meter (manufactured by Nikkiso Co., Ltd., Nanotrac UPA150).

<偏光子の作製>
平均重合度2400、ケン化度99.9モル%、厚さ75μmのポリビニルアルコールフィルムを、30℃の温水中に60秒間浸漬して膨潤させた。次いで、0.3重量%(重量比:ヨウ素/ヨウ化カリウム=0.5/8)の30℃のヨウ素溶液中で1分間染色しながら、3.5倍まで延伸した。次いで、65℃の3重量%のホウ酸エステル水溶液中に10秒間浸漬しながら総合延伸倍率が6倍まで延伸した。その後、40℃のオーブンで3分間乾燥を行い、厚さ30μmの偏光子を得た。
<Production of polarizer>
A polyvinyl alcohol film having an average polymerization degree of 2400, a saponification degree of 99.9 mol%, and a thickness of 75 μm was immersed in warm water at 30 ° C. for 60 seconds to swell. Subsequently, the film was stretched to 3.5 times while dyeing in an iodine solution of 0.3 wt% (weight ratio: iodine / potassium iodide = 0.5 / 8) at 30 ° C. for 1 minute. Next, the total draw ratio was stretched to 6 times while being immersed in a 3% by weight boric acid ester aqueous solution at 65 ° C. for 10 seconds. Then, it dried for 3 minutes in 40 degreeC oven, and obtained the 30-micrometer-thick polarizer.

<透明保護フィルム>
以下に示すものを用いた。
透明保護フィルム1:MS樹脂(MS−200;メタクリル酸メチル/スチレン(モル比)=80/20の共重合体,新日鐵化学(株)製)をモノメチルアミンでイミド化(イミド化率:90%)した。得られたイミド化されたMS樹脂は、一般式(1)で表されるグルタルイミド単位(式中、R1およびR3はメチル基、R2は水素原子である)、一般式(2)で表される(メタ)アクリル酸エステル単位(R4は水素原子、R5およびR6はメチル基である)、および一般式(3)で表される芳香族ビニル単位(R7は水素原子、R8はフェニル基である)、を有する。なお、前記イミド化には、口径15mmの噛合い型同方向回転式二軸押出機を用いた。押出機の各温調ゾーンの設定温度を230℃、スクリュー回転数150rpm、MS樹脂を2.0kg/hrで供給し、モノメチルアミンの供給量はMS樹脂に対して40重量部とした。ホッパーからMS樹脂を投入し、ニーディングブロックによって樹脂を溶融、充満させた後、ノズルからモノメチルアミンを注入した。反応ゾーンの末端にはシールリングを入れて樹脂を充満させた。反応後の副生成物および過剰のメチルアミンをベント口の圧力を−0.08MPaに減圧して脱揮した。押出機出口に設けられたダイスからストランドとして出てきた樹脂は、水槽で冷却した後、ペレタイザでペレット化した。前記イミド化されたMS樹脂を溶融押出製膜し、次いで、縦2倍、横2倍に二軸延伸した透明保護フィルム(厚さ40μm,Re=2nm,Rth=2nm)を用いた。
<Transparent protective film>
The following were used.
Transparent protective film 1: MS resin (MS-200; copolymer of methyl methacrylate / styrene (molar ratio) = 80/20, manufactured by Nippon Steel Chemical Co., Ltd.) is imidized with monomethylamine (imidization ratio: 90%). The obtained imidized MS resin has a glutarimide unit represented by the general formula (1) (wherein R 1 and R 3 are methyl groups, R 2 is a hydrogen atom), and the general formula (2) A (meth) acrylic acid ester unit represented by (R 4 is a hydrogen atom, R 5 and R 6 are methyl groups), and an aromatic vinyl unit represented by the general formula (3) (R 7 is a hydrogen atom) , R 8 is a phenyl group). For the imidization, a mesh type co-rotating twin screw extruder having a diameter of 15 mm was used. The set temperature of each temperature control zone of the extruder was 230 ° C., the screw rotation speed was 150 rpm, MS resin was supplied at 2.0 kg / hr, and the supply amount of monomethylamine was 40 parts by weight with respect to the MS resin. MS resin was introduced from the hopper, and the resin was melted and filled with a kneading block, and then monomethylamine was injected from the nozzle. A seal ring was placed at the end of the reaction zone to fill the resin. By-products after the reaction and excess methylamine were devolatilized by reducing the pressure at the vent port to -0.08 MPa. The resin that came out as a strand from a die provided at the exit of the extruder was cooled in a water tank and then pelletized with a pelletizer. The imidized MS resin was melt-extruded, and then a transparent protective film (thickness 40 μm, Re = 2 nm, Rth = 2 nm) biaxially stretched twice in length and twice in width was used.

得られたイミド化されたMS樹脂中の一般式(1)の割合(イミド化率)は、生成物のペレットをそのまま用いて、SensIRTecnologies社製TravelIRを用いて、室温にてIRスペクトルを測定した。得られたスペクトルより、1720cm-1のエステルカルボニル基に帰属される吸収強度(Absester)と、1660cm-1のイミドカルボニル基に帰属される吸収強度(Absimide)の比からイミド化率(Im%(IR))を求めた。ここで、イミド化率とは全カルボニル基中のイミドカルボニル基の占める割合をいう。 In the obtained imidized MS resin, the ratio of the general formula (1) (imidation rate) was measured at room temperature using the product pellets as they were and using the TravelIR manufactured by SensIR Technologies, Inc. . From the obtained spectrum, the absorption intensity (Abs Ester) attributed to the ester carbonyl group of 1720 cm -1, the imidization ratio from the ratio of the absorption intensity assignable to an imide carbonyl group of 1660cm -1 (Abs imide) (Im % (IR)). Here, the imidation rate refers to the proportion of the imide carbonyl group in all carbonyl groups.

透明保護フィルム2:厚さ40μmのトリアセチルセルロースフィルム(富士フィルム(株)製,Re=1nm,Rth=50nm)を用いた。
透明保護フィルム3:厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡績(株)製,商品名:コスモシャインA4100(片面易接着処理層付),Re=100nm)を用いた。
Transparent protective film 2: A 40 μm thick triacetyl cellulose film (Fuji Film Co., Ltd., Re = 1 nm, Rth = 50 nm) was used.
Transparent protective film 3: A polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine A4100 (with one-side easy adhesion treatment layer), Re = 100 nm) having a thickness of 50 μm was used.

<積層フィルム>
富士フイルム社製のワイドビュー(WV)フィルムを用いた。WVフィルムは、透明基材フィルムであるセルロース系高分子フィルム(透明保護フィルム2)上に、ディスコティック液晶分子が傾斜配向しているディスコティック液晶層(DIS:表1中で略)を有していた。
<Laminated film>
A wide view (WV) film manufactured by FUJIFILM Corporation was used. The WV film has a discotic liquid crystal layer (DIS: abbreviated in Table 1) in which discotic liquid crystal molecules are tilted and aligned on a cellulose polymer film (transparent protective film 2) which is a transparent substrate film. It was.

なお、WVフィルムを、ディスコティック液晶分子の傾斜配向層に分離し、王子計測機器社製のKOBRA−21ADHにて、λ=590nmにおける特性を測定した。面内の最大屈折率をnx、面内の最大屈折率を有する方向に直交する方向の屈折率をny、厚み方向の屈折率をnzとした。厚みをdとした。透明支持体は、Δnd=(nx−ny)×d=12nm、Rth=(nx−nz)×d=100nmであった。一方、傾斜配向層は、光軸が傾斜している方向に−50°〜50°まで入射角を変えて位相差を測定した結果、Δnd=30nm、Rth=150nm、平均傾斜角θ=17°であった。   The WV film was separated into an inclined alignment layer of discotic liquid crystal molecules, and the characteristics at λ = 590 nm were measured with KOBRA-21ADH manufactured by Oji Scientific Instruments. The in-plane maximum refractive index was nx, the refractive index in the direction orthogonal to the direction having the in-plane maximum refractive index was ny, and the refractive index in the thickness direction was nz. The thickness was d. The transparent support had Δnd = (nx−ny) × d = 12 nm and Rth = (nx−nz) × d = 100 nm. On the other hand, the tilted alignment layer measured the phase difference by changing the incident angle from −50 ° to 50 ° in the direction in which the optical axis is tilted. As a result, Δnd = 30 nm, Rth = 150 nm, average tilt angle θ = 17 °. Met.

<接着剤の調製>
アセトアセチル基を含有するポリビニルアルコール系樹脂(平均重合度:1200,ケン化度:98.5モル%,アセトアセチル化度:5モル%)100部に対し、メチロールメラミン50部を、30℃の温度条件下に、純水に溶解し、固形分濃度3.7%に調整した水溶液を調製した。前記水溶液100部に対し、アルミナコロイド水溶液(平均粒子径15nm,固形分濃度10%,正電荷)18部を加えて接着剤水溶液を調製した。接着剤水溶液の粘度は9.6mPa・sであった。接着剤水溶液のpHは、4−4.5の範囲であった。これを接着剤1とする。また、前記接着剤1において、アルミナコロイド水溶液を加えなかった接着剤水溶液を調製した。接着剤水溶液の粘度は7.0mPa・sであった。接着剤水溶液のpHは、4−4.5の範囲であった。これを接着剤2とする。
<Preparation of adhesive>
Polyvinyl alcohol-based resin containing acetoacetyl group (average polymerization degree: 1200, saponification degree: 98.5 mol%, acetoacetylation degree: 5 mol%) to 100 parts, Under temperature conditions, an aqueous solution dissolved in pure water and adjusted to a solid content concentration of 3.7% was prepared. An aqueous adhesive solution was prepared by adding 18 parts of an aqueous colloidal alumina solution (average particle size 15 nm, solid content concentration 10%, positive charge) to 100 parts of the aqueous solution. The viscosity of the adhesive aqueous solution was 9.6 mPa · s. The pH of the aqueous adhesive solution was in the range of 4-4.5. This is referred to as an adhesive 1. Also, an adhesive aqueous solution was prepared by adding no alumina colloid aqueous solution to the adhesive 1. The viscosity of the aqueous adhesive solution was 7.0 mPa · s. The pH of the aqueous adhesive solution was in the range of 4-4.5. This is referred to as an adhesive 2.

実施例1
<偏光板の作成>
前記WVフィルムの透明基材フィルム(本発明の透明保護フィルム2に相当)側を、ケン化処理した後、そのケン化処理面に、上記接着剤2を乾燥後の接着剤層の厚みが80nmとなるように塗布したものを用意した。また、上記透明保護フィルム1の片面に、上記接着剤2を乾燥後の接着剤層の厚みが80nmとなるように塗布したもの用意した。接着剤の塗布は、その調製から30分間後に23℃の温度条件下で行なった。次いで、23℃の温度条件下で偏光子の両面に、前記接着剤付きの透明保護フィルム(WVフィルムおよび透明保護フィルム1)をロール機で貼り合せた後、55℃で6分間乾燥して偏光板を作成した。
Example 1
<Creation of polarizing plate>
After the transparent substrate film (corresponding to the transparent protective film 2 of the present invention) side of the WV film is saponified, the adhesive layer after drying the adhesive 2 on the saponified surface has a thickness of 80 nm. What was apply | coated so that it might become was prepared. Moreover, what applied the said adhesive agent 2 so that the thickness of the adhesive bond layer after drying was set to 80 nm on the single side | surface of the said transparent protective film 1 was prepared. Application of the adhesive was performed under a temperature condition of 23 ° C. 30 minutes after the preparation. Next, the transparent protective film with adhesive (WV film and transparent protective film 1) was bonded to both sides of the polarizer under a temperature condition of 23 ° C. with a roll machine, and then dried at 55 ° C. for 6 minutes to be polarized. A board was created.

実施例2〜4、比較例1
実施例1において、偏光板の作成にあたり、透明保護フィルムの種類、接着剤の種類を表1に示すように変えたこと以外は実施例1と同様にして作成した。
Examples 2-4, Comparative Example 1
In Example 1, the polarizing plate was prepared in the same manner as in Example 1 except that the type of transparent protective film and the type of adhesive were changed as shown in Table 1.

なお、各例の積層フィルムの作成は、透明保護フィルム上に、上記WVフィルムと同様の方法により、ディスコティック液晶層を形成した。   In addition, preparation of the laminated film of each example formed the discotic liquid crystal layer on the transparent protective film by the method similar to the said WV film.

(評価)
得られた偏光板について下記評価を行った。結果を表1に示す。
(Evaluation)
The following evaluation was performed about the obtained polarizing plate. The results are shown in Table 1.

(表示ムラ)
偏光板を、偏光子の吸収軸が長辺に対して45°となり、17インチモニターに合致するように切り出した。当該偏光板の積層フィルム面(液晶光学補償層側)にアクリル系粘着剤層を貼り付けた。この粘着剤層付きの偏光板を、TN型液晶セルの両面に、偏光板(偏光子)の吸収軸が直交するように貼り付けたものをサンプル(液晶パネル)とした。サンプルについて、加熱試験(80℃,24時間)、加湿試験(60℃,90%RH,24時間)を行った。試験後、目視での観察および輝度を測定した。
輝度は、図3に示す、(1)乃至(9)の箇所について測定し、下記式により面内均一性を評価した。
面内均一性(輝度:cd/cm)=((2)+(4)+(6)+(8))/4−((1)+(3)+(5)+(7)+(9))/5
(Display unevenness)
The polarizing plate was cut out so that the absorption axis of the polarizer was 45 ° with respect to the long side and matched with a 17-inch monitor. An acrylic pressure-sensitive adhesive layer was attached to the laminated film surface (liquid crystal optical compensation layer side) of the polarizing plate. A sample (liquid crystal panel) was prepared by sticking this polarizing plate with an adhesive layer on both surfaces of a TN type liquid crystal cell so that the absorption axes of the polarizing plates (polarizers) were orthogonal to each other. The sample was subjected to a heating test (80 ° C., 24 hours) and a humidification test (60 ° C., 90% RH, 24 hours). After the test, visual observation and luminance were measured.
Luminance was measured at locations (1) to (9) shown in FIG. 3, and the in-plane uniformity was evaluated by the following formula.
In-plane uniformity (luminance: cd / cm 2 ) = ((2) + (4) + (6) + (8)) / 4-((1) + (3) + (5) + (7) + (9)) / 5

(密着性)
偏光板の端部において、偏光子と透明保護フィルムとの間にカッターの刃先を挿入した。当該挿入部において、偏光子と透明保護フィルムとを掴み、それぞれ反対方向に引っ張った。このとき、偏光子および/または透明保護フィルムが破断して剥離できなかった場合は、密着性が良好:「○」と判断した。一方、偏光子と透明保護フィルムとの間で一部または全部は剥離した場合は、密着性に乏しい:「×」と判断した。
(Adhesion)
At the end of the polarizing plate, a cutter edge was inserted between the polarizer and the transparent protective film. In the insertion portion, the polarizer and the transparent protective film were gripped and pulled in opposite directions. At this time, when the polarizer and / or the transparent protective film was broken and could not be peeled off, the adhesion was judged to be good: “◯”. On the other hand, when a part or all peeled between the polarizer and the transparent protective film, the adhesion was poor: “x” was judged.

(剥がれ量)
偏光板を、偏光子の吸収軸方向に50mm、吸収軸に直交する方向に25mmになるように切り出してサンプルを調製した。当該サンプルを、60℃の温水に浸漬し、時間経過とともにサンプルの端部の剥がれ量(mm)を測定した。剥がれ量(mm)の測定は、ノギスにより行なった。5時間経過後の剥がれ量(mm)を表1に示す。
(Peeling amount)
A sample was prepared by cutting the polarizing plate so as to be 50 mm in the absorption axis direction of the polarizer and 25 mm in the direction perpendicular to the absorption axis. The sample was immersed in warm water at 60 ° C., and the amount of peeling (mm) at the end of the sample was measured over time. The amount of peeling (mm) was measured with a caliper. The amount of peeling (mm) after 5 hours is shown in Table 1.

(外観評価:クニック欠陥)
偏光板を1000mm×1000mmになるように切り出してサンプルを調製した。サンプルの偏光板を、蛍光灯下に置いた。サンプルの偏光板の光源側に別の偏光板を、それぞれの吸収軸が直行するように設置し、この状態で、光抜けする箇所(クニック欠陥)の個数をカウントした。
(Appearance evaluation: Knick defect)
A sample was prepared by cutting out the polarizing plate to be 1000 mm × 1000 mm. A sample polarizing plate was placed under a fluorescent lamp. Another polarizing plate was installed on the light source side of the polarizing plate of the sample so that the respective absorption axes were perpendicular to each other, and in this state, the number of points through which light was lost (knic defects) was counted.

本発明の代表的な実施形態による偏光板を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the polarizing plate by typical embodiment of this invention. 本発明の好ましい実施形態による液晶パネルの概略断面図である。It is a schematic sectional drawing of the liquid crystal panel by preferable embodiment of this invention. 実施例の表示ムラの評価に係る、液晶パネルの輝度の測定箇所を示すものである。The measurement part of the brightness | luminance of a liquid crystal panel based on evaluation of the display nonuniformity of an Example is shown.

符号の説明Explanation of symbols

10 偏光板
11 偏光子
12、12’ 接着剤層
13 積層フィルム
A、B 透明保護フィルム
D 液晶光学補償層
20 液晶セル
DESCRIPTION OF SYMBOLS 10 Polarizing plate 11 Polarizer 12, 12 ′ Adhesive layer 13 Laminated film A, B Transparent protective film D Liquid crystal optical compensation layer 20 Liquid crystal cell

Claims (10)

偏光子の片面に、接着剤層、透明保護フィルムAおよび液晶光学補償層をこの順で有し、他の片面に接着剤層、透明保護フィルムBをこの順で有する偏光板であって、
前記液晶光学補償層は、液晶の光軸を傾斜配向させて得られる液晶光学補償層であり、かつ、
前記透明保護フィルムAおよび透明保護フィルムBのいずれか少なくとも一方は、グルタルイミド単位および(メタ)アクリル酸エステル単位を有する(メタ)アクリル系樹脂を含有してなり、かつ、面内位相差が40nm未満、厚み方向位相差が80nm未満であることを特徴とする偏光板。
A polarizing plate having an adhesive layer, a transparent protective film A and a liquid crystal optical compensation layer in this order on one side of a polarizer, and an adhesive layer and a transparent protective film B in this order on the other side,
The liquid crystal optical compensation layer is a liquid crystal optical compensation layer obtained by tilting the optical axis of liquid crystal, and
At least one of the transparent protective film A and the transparent protective film B contains a (meth) acrylic resin having a glutarimide unit and a (meth) acrylic acid ester unit, and has an in-plane retardation of 40 nm. The polarizing plate is characterized by having a thickness direction retardation of less than 80 nm.
前記接着剤層は、ポリビニルアルコール系樹脂、架橋剤および平均粒子径が1〜100nmの金属化合物コロイドを含有してなる樹脂溶液であって、かつ、
金属化合物コロイドは、ポリビニルアルコール系樹脂100重量部に対して、200重量部以下の割合で配合されている偏光板用接着剤から形成されたものであることを特徴とする請求項1記載の偏光板。
The adhesive layer is a resin solution containing a polyvinyl alcohol resin, a crosslinking agent, and a metal compound colloid having an average particle size of 1 to 100 nm, and
2. The polarized light according to claim 1, wherein the metal compound colloid is formed from an adhesive for polarizing plates blended at a ratio of 200 parts by weight or less with respect to 100 parts by weight of the polyvinyl alcohol resin. Board.
金属化合物コロイドが、アルミナコロイド、シリカコロイド、ジルコニアコロイド、チタニアコロイドおよび酸化スズコロイドから選ばれるいずれか少なくとも1種であることを特徴とする請求項2記載の偏光板。   The polarizing plate according to claim 2, wherein the metal compound colloid is at least one selected from alumina colloid, silica colloid, zirconia colloid, titania colloid and tin oxide colloid. 金属化合物コロイドが、正電荷を有することを特徴とする請求項2または3記載の偏光板。   4. The polarizing plate according to claim 2, wherein the metal compound colloid has a positive charge. 金属化合物コロイドが、アルミナコロイドであることを特徴とする請求項4記載の偏光板。   The polarizing plate according to claim 4, wherein the metal compound colloid is an alumina colloid. 前記(メタ)アクリル系樹脂は、さらに芳香族ビニル単位を有することを特徴とする請求項1〜5のいずれかに記載の偏光板。   The polarizing plate according to claim 1, wherein the (meth) acrylic resin further has an aromatic vinyl unit. 前記(メタ)アクリル系樹脂は、さらにスチレン系樹脂を含有することを特徴とする請求項1〜5のいずれかに記載の偏光板。   The polarizing plate according to claim 1, wherein the (meth) acrylic resin further contains a styrene resin. 前記液晶光学補償層が、ディスコティック液晶層であることを特徴とする請求項1〜7のいずれかに記載の偏光板。   The polarizing plate according to claim 1, wherein the liquid crystal optical compensation layer is a discotic liquid crystal layer. 請求項1〜8のいずれかに記載の偏光板が、少なくとも1枚積層されていることを特徴とする光学フィルム。   9. An optical film, wherein at least one polarizing plate according to claim 1 is laminated. 請求項1〜8のいずれかに記載の偏光板または請求項9記載の光学フィルムが用いられていることを特徴とする画像表示装置。   An image display device comprising the polarizing plate according to claim 1 or the optical film according to claim 9.
JP2007316285A 2007-12-06 2007-12-06 Polarizing plate, optical film and image display device Pending JP2009139662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007316285A JP2009139662A (en) 2007-12-06 2007-12-06 Polarizing plate, optical film and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007316285A JP2009139662A (en) 2007-12-06 2007-12-06 Polarizing plate, optical film and image display device

Publications (1)

Publication Number Publication Date
JP2009139662A true JP2009139662A (en) 2009-06-25

Family

ID=40870322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007316285A Pending JP2009139662A (en) 2007-12-06 2007-12-06 Polarizing plate, optical film and image display device

Country Status (1)

Country Link
JP (1) JP2009139662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026939A (en) * 2015-07-27 2017-02-02 日東電工株式会社 Polarizing plate and liquid crystal display device
WO2019203551A1 (en) * 2018-04-20 2019-10-24 효성화학 주식회사 Acrylic film having low water vapor transmittance, and polarizing plate and panel, which comprise same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337492A (en) * 2005-05-31 2006-12-14 Kaneka Corp Polarizer protecting film and polarizing plate using same
WO2007145081A1 (en) * 2006-06-14 2007-12-21 Nitto Denko Corporation Polarizer protective film, polarizing plate, and image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337492A (en) * 2005-05-31 2006-12-14 Kaneka Corp Polarizer protecting film and polarizing plate using same
WO2007145081A1 (en) * 2006-06-14 2007-12-21 Nitto Denko Corporation Polarizer protective film, polarizing plate, and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026939A (en) * 2015-07-27 2017-02-02 日東電工株式会社 Polarizing plate and liquid crystal display device
WO2019203551A1 (en) * 2018-04-20 2019-10-24 효성화학 주식회사 Acrylic film having low water vapor transmittance, and polarizing plate and panel, which comprise same

Similar Documents

Publication Publication Date Title
JP5231181B2 (en) Polarizing plate, manufacturing method thereof, optical film, and image display device
JP5231157B2 (en) Polarizing plate, manufacturing method thereof, optical film, and image display device
JP4805240B2 (en) Adhesive optical film and image display device
JP5231158B2 (en) Polarizing plate, optical film and image display device
JP5184944B2 (en) Depolarizing film, manufacturing method thereof, optical film, and liquid crystal display device
WO2007111138A1 (en) Optical adhesive, optical film with adhesive and image display
JP5167083B2 (en) Polarizing plate, manufacturing method thereof, optical film, and image display device
JP4188407B2 (en) Adhesive optical film and image display device
JP5204616B2 (en) Polarizing plate, optical film and image display device
JP2009139712A (en) Polarizing plate, optical film and image display device
JP2009098665A (en) Polarizing plate and liquid crystal display device
JP4870653B2 (en) Polarizing plate, manufacturing method thereof, optical film, and image display device
JP5204629B2 (en) Polarizing plate, optical film and image display device
JP2009139735A (en) Polarizing plate, its manufacturing method, optical film, and image display device
JP5041532B2 (en) Polarizing plate, optical film and image display device
JP2009134121A (en) Polarizing plate, optical film and image display device
JP5204608B2 (en) Polarizing plate, optical film and image display device
JP5167059B2 (en) Polarizing plate, optical film and image display device
JP2009139744A (en) Polarizing plate, method of manufacturing the same, optical film, and image display device
JP2009139720A (en) Polarizing plate, method of manufacturing the same, optical film, and image display device
JP2009139754A (en) Polarizing plate, optical film and image display device
JP2009139662A (en) Polarizing plate, optical film and image display device
JP4874219B2 (en) Polarizing plate, optical film and image display device
JP2009145497A (en) Laminated film, laminated polarizing plate, and method for manufacturing laminated film
JP2009139723A (en) Polarizing plate, its manufacturing method, optical film, and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004