JP2009135555A - 半導体光増幅器及びその製造方法 - Google Patents

半導体光増幅器及びその製造方法 Download PDF

Info

Publication number
JP2009135555A
JP2009135555A JP2009073631A JP2009073631A JP2009135555A JP 2009135555 A JP2009135555 A JP 2009135555A JP 2009073631 A JP2009073631 A JP 2009073631A JP 2009073631 A JP2009073631 A JP 2009073631A JP 2009135555 A JP2009135555 A JP 2009135555A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor substrate
active layer
optical amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009073631A
Other languages
English (en)
Inventor
Mitsunobu Gotoda
光伸 後藤田
Tomoshi Nishikawa
智志 西川
Tetsuya Nishimura
哲也 西村
Yasuki Tokuda
安紀 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009073631A priority Critical patent/JP2009135555A/ja
Publication of JP2009135555A publication Critical patent/JP2009135555A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】利得飽和レベルが高く波形歪みが小さい優れた素子特性を実現しかつ長期信頼性を有する半導体光増幅器を得る。
【解決手段】半導体光増幅器を、第1導電型の半導体基板21と、半導体基板21の一部および半導体基板21上に形成された活性層22および第2導電型のクラッド層23の各層からなり所定の幅を有するリッジメサと、このリッジメサの両側面に接するようにそれぞれ設けられた高抵抗の電流ブロック層24と、半導体基板21上で前記リッジメサに略平行方向に延在しかつ光導波方向に対して直交方向に周期的に配置された複数の半導体層からなるDBR層25と、半導体基板21で活性層22が形成された面とは反対側の面上に設けられた第1電極26と、第2導電型のクラッド層23上に設けられた第2電極27と、で構成する。
【選択図】図5

Description

本発明は、専ら光通信システムに用いられる半導体光増幅器およびその製造方法に関する。
半導体光増幅器は、入力信号光を光増幅した後出力する機能を有し、波長分割多重(WDM)光ファイバ通信システム等において、光信号の散乱や吸収、分岐などによる減衰を補償するために用いられる。
半導体光増幅器では、光信号強度が強い場合に生じる半導体光増幅器の利得飽和に起因する相対的な利得低下によって発生する波形歪み、あるいは複数の波長の光信号を同時に増幅する際に生じる一方の波長の光信号の増幅率が他方の波長の光信号の強度によって変化するクロストークの発生等、が実用上大きな課題であった。
かかる問題を解決するために,特許文献1あるいは非特許文献1に開示された従来の半導体光増幅器では、基板主面に対して活性層の上方および下方に反射率の高いDBR(Distributed Bragg Reflectors)反射鏡を設け、入射光の導波方向に対して垂直方向に各DBR層を一対の反射鏡となして光共振器を構成してレーザ発振させることで活性層内の利得を一定値に固定し、広い波長域で入射信号光の光強度に依存しない一定の利得を実現していた。かかる素子構造では、下部のDBR層を通して活性層への電流注入を行っていた。また、素子構造としてはリッジメサ構造で活性層の側面は半導体層で何ら保護されず、外部に露出していた。
米国特許出願公開第US2003/0095326A1号明細書
D.A.Francis他、"A single―chip linear optical amplifier",Optical Fiber Communication Conference(OFC)2001,ポストデッドラインペーパー,PD13
しかしながら、従来の半導体光増幅器ではDBR層を通して活性層に電流を流しているため、DBR部分の高い抵抗によって余分に熱が発生する結果、上下方向のDBR層によるレーザ発振の閾値電流が熱の影響で上昇し、利得飽和レベルが低くなるという問題点があった。また、リッジメサ構造で活性層の両側面が外部にさらされているため、高い動作電流によって半導体光増幅器の長期信頼性が損なわれるという実用上大きな問題もあった。
この発明は上記のような諸問題を解決するためになされたものであり、DBR部分に電流を流さないようにして不要な熱の発生を防止しかつ活性層の両側面を半導体層で保護することにより、利得飽和レベルが高く波形歪みが小さい優れた素子特性を実現しかつ長期信頼性を有する半導体光増幅器を得ることを目的とし、さらに、かかる半導体光増幅器を容易に提供することを目的とする。
本発明に係る半導体光増幅器は、 第1導電型の半導体基板と、前記半導体基板の一部および前記半導体基板上に形成された活性層および第2導電型のクラッド層の各層からなり所定の幅を有するリッジメサと、前記リッジメサの両側面に接するようにそれぞれ設けられた高抵抗の電流ブロック層と、前記半導体基板上で前記リッジメサに略平行方向に延在しかつ光導波方向に対して直交方向に周期的に配置された複数の半導体層からなるDBR層と、前記半導体基板で前記活性層が形成された面とは反対側の面上に設けられた第1電極と、前記第2導電型のクラッド層上に設けられた第2電極と、を備えることとした。
この発明に係る半導体光増幅器では、各DBR層に電流が流れないため、各DBR層における不要な熱の発生をほぼ完全に防止できる結果、横方向におけるレーザ発振の閾値電流が熱の影響を受けないので熱による閾値電流の上昇といった不具合が回避され利得飽和レベル低下を有効に防止できるので、素子特性に優れた半導体光増幅器が得られる。
また、この発明に係る半導体光増幅器では、活性層の両側面に接するように電流ブロック層が設けられ活性層自体が外部に露出していないので、従来のリッジメサ構造を適用した半導体光増幅器のような活性層の両側面が外部に露出している素子構造に比べて長期信頼性の面で優れている。
実施の形態1による半導体光増幅器の断面図(a)および正面図(b)である。 実施の形態2による半導体光増幅器の断面図である。 実施の形態3による半導体光増幅器の断面図(a)および正面図(b)である。 実施の形態4による半導体光増幅器の上面図である。 実施の形態5による半導体光増幅器の断面図(a)および正面図(b)である。 実施の形態6による半導体光変調器の正面図である。 実施の形態7による半導体光増幅器の製造方法を示す模式図である。 実施の形態8による半導体光増幅器の製造方法を示す模式図である。
実施の形態1.(参考形態)
図1は本発明の実施の形態1による半導体光増幅器の断面図(a)および断面図(a)におけるA−A線に沿った正面図(b)である。図中、1は半絶縁性のInP基板(半絶縁性の半導体基板)、2は第1DBR層、3は第1クラッド層、4は活性層、5はn型導電層(第1導電層)、6はp型導電層(第2導電層)、7は第2クラッド層、8は第2DBR層、9は第1電極、10は第2電極、11、12は第1電極および第2電極にそれぞれ接続された金線である。
実施の形態1による半導体光増幅器の構成を以下に説明する。半絶縁性のインジウムリン(InP)基板1上に、エピタキシャル結晶成長によって半導体多層膜からなる高抵抗の第1DBR層2、高抵抗のInP結晶からなる第1クラッド層3、偏波依存性の少ない引張り歪みバルクのインジウムガリウム砒素リン(InGaAsP)結晶で構成された活性層4、が順次形成されている。活性層4はアンドープで、光導波に最適な所定の幅Wを有している。活性層4の幅Wは1〜2μmの範囲が好適である。なお、活性層4は多重量子井戸構造で構成しても良い。
第1クラッド層3上で活性層4の両側面に接するようにn型導電層(第1導電層)5およびp型導電層(第2導電層)6が設けられている。各導電層5,6を構成する半導体結晶のバンドギャップエネルギーは、活性層4を構成する半導体結晶のバンドギャップエネルギーよりも大きくなるように設定する。活性層4内に光およびキャリアを有効に閉じ込めるためである。各導電層5,6の半導体結晶材料としては、インジウムリン(InP)が好適である。
活性層4、n型導電層5およびp型導電層6を覆うようにエピタキシャル結晶成長によって第2クラッド層7が形成されている。第2クラッド層7は高抵抗のInP結晶からなる。
第2クラッド層7上で下部の活性層4と対向する位置に半導体多層膜からなる高抵抗の第2DBR層8が設けられている。
第2クラッド層7には底面がn型導電層5に達するエッチング溝およびp型導電層6に達するエッチング溝がそれぞれ設けられ、さらに各エッチング溝中には金属からなりn型導電層5と電気的に接続された第1電極9およびp型導電層6と電気的に接続された第2電極10がそれぞれ設けられている。各電極9,10には外部の電源等と電気的に接続するための金線11,12が設けられている。
次に、実施の形態1の半導体光増幅器の動作について説明する。第1電極9が負、第2電極10が正となるように電圧を印加すると、電流が第2電極10、p型導電層6、活性層4、n型導電層5、第1電極9の順に流れる。因みに、このような電流注入方法は、電流が活性層4内をInP基板1の主面に対して平行方向に流れるので、横方向電流注入とよばれる。活性層4に注入されたキャリアによって活性層4内で発光再結合が生じるが、発生した光は第1DBR層2、第2DBR層8を一対の反射鏡とした光共振器、つまり半導体基板1の主面に対して上下方向の光共振器によって光増幅され、活性層4への注入電流が所定の閾値電流を越えると上下方向のDBR層2,8間でレーザ発振が生じる。
かかる状態の半導体光増幅器に対して一方の端面から活性層4内に入射された信号光は、活性層4を導波するに伴い光増幅された後、他方の端面から外部に出力光として出射される。活性層4内の利得は上述の上下方向の各DBR層2,8間のレーザ発振によって広い波長域にわたって一定値に固定されているので、広い波長域で入射信号光の光強度に依存しない光増幅が実現できる。
実施の形態1の半導体光増幅器では上述したようにいわゆる横方向電流注入構造を採用したので、従来の半導体光増幅器とは異なりDBR層に電流が流れない素子構造となっている。つまり、第1DBR層2および第2DBR層8は電流経路となっていない。よって、従来、抵抗値の高いDBR層に電流を流すことにより生じた不要な熱の発生をほぼ完全に防止できるので、上下方向の各DBR層2,8間のレーザ発振の閾値電流値が熱の影響を受けないため熱による閾値電流の上昇といった不具合が回避され、この結果、利得飽和レベル低下を防げるので、波形歪みが小さいという素子特性に優れた半導体光増幅器が得られる。なお、各DBR層は上述したように電流経路となっていないので低抵抗化を目的とした不純物ドーピングを行う必要がないため、従来の素子構造において生じたような各DBR層での不純物ドーパントに起因する光吸収を効果的に抑制できるので、一層レーザ発振の閾値電流の低減が図れる。
また、実施の形態1の半導体光増幅器では、活性層4の両側面に接するようにn型導電層5およびp型導電層6が設けられ活性層4自体が外部に露出していないので、従来のリッジメサ構造を適用した半導体光増幅器のような側面が外部に露出している素子構造に比べて、長期信頼性に優れた半導体光増幅器が容易に得られる。
なお、上述の説明では第1DBR層2および第2DBR層8は半導体層で構成するとしたが、各DBR層のいずれか一方、あるいは双方を半導体以外の材料、例えば、誘電体多層膜で構成しても良い。波長1.3〜1.55μmのいわゆる長波帯の半導体多層膜DBR反射鏡では、高屈折率材料(例えばInGaAsP)と低屈折率材料(例えばInP)間の屈折率差が小さいため、高反射率を得るには高屈折率材料と低屈折率材料の多数のペアを成膜しなければならず、かかる半導体DBR層の成膜には非常に長い結晶成長時間を要するので、上述のように各DBR層2,8を誘電体多層膜で構成することにより、結晶成長時間が大幅に短縮できると共に、反射鏡を活性層4とは独立に最適化できる利点がある。
また、上述の説明では活性層4はアンドープとしたが、ライトドープしても良い。上記の活性層4が高純度のアンドープ結晶層であると、横方向に電流注入を行う際に活性層4自体が高抵抗体として働き、不要な熱が発生するおそれがある。そこで、活性層4の発光品質が劣化しない範囲でライトドープしておくことで、活性層部分の直流抵抗値を低減すると素子特性上極めて有利である。活性層4のライトドープは、活性層4のエピタキシャル結晶成長時に同時にドーピングするか、あるいはnおよびp型導電層5,6の結晶成長時もしくは結晶成長後にアニールして、アンドープ活性層4中へのドーパントの熱的な拡散を促進(ドライブイン拡散)する方法等により実現できる。
実施の形態2.(参考形態)
図2は本発明の実施の形態2による半導体光増幅器の断面図である。図中、15はバッファ層である。実施の形態2による半導体光増幅器は、実施の形態1の半導体光増幅器において、活性層4とn型導電層5およびp型導電層6の間に、活性層4と各導電層5、6の中間のバンドギャップエネルギーを有するバッファ層15を設けた点に特徴がある。かかるバッファ層15の導入によって、バンドダイアグラムにおける活性層4と各導電層5,6のヘテロ界面でのバンド不連続に起因するノッチの影響を低減することができ、結果的に電流注入時の活性層4の直流抵抗を下げることが可能となるので、素子動作時における活性層4での発熱が抑制される結果、素子特性に優れ長期信頼性を有する半導体光増幅器が得られる。
実施の形態3.(参考形態)
図3は本発明の実施の形態3による半導体光増幅器の断面図(a)および断面図(a)におけるB−B線に沿った正面図(b)である。実施の形態3による半導体光増幅器は、実施の形態1、2の半導体光増幅器の素子構造において、第1DBR層2を異種基板上に成長させた半導体層、例えばガリウム砒素(GaAs)基板上のAlGaAs/GaAs多層膜で構成し、近年発達の著しい基板貼り合わせ技術を用いて貼り合わせたものである(図3)。つまり、図3中のC−C線を境界として上下のウエハを別個に形成後、貼り合わせている。
かかる方法の採用により第1DBR層2を構成する材料の選択肢が増すので、従来InGaAsP/InP系材料では高反射率の反射鏡が得られにくかった長波長領域で簡易に高反射率の反射鏡を用いることができ、上下方向の光共振器によるレーザ発振の閾値電流低下が容易に実現可能となるため、素子動作時における活性層4での発熱が抑制される結果、良好な素子特性を有し、より長期信頼性に優れた半導体光増幅器が得られる。
実施の形態4.(参考形態)
図4は本発明の実施の形態4による半導体光増幅器の上面図である。図中、9a、9bは光導波方向に2つに分割された第1電極であり、10a、10bは同じく光導波方向に2つに分割された第2電極である。実施の形態4による半導体光増幅器では、実施の形態1の半導体光増幅器における第1および第2電極9,10が、光導波方向に対して電気的に分離された2つ以上の分割電極で構成されている点に特徴がある。なお、第1電極9a、9b間あるいは第2電極10a、10b間を電気的に完全に分離するのは難しいが、実用上充分な程度に電極間の分離抵抗を高抵抗化しておく。
信号光は半導体光増幅器内部の活性層4を導波する間に、誘導放出光が重ね合わされて光増幅される。入射端面近傍に比べて出射端面近傍では誘導放出光成分が増大するため、出射端面近傍の方が同じ電流注入密度ではキャリアが多く消費されて利得飽和が起こりやすくなる。従って、第1および第2電極をそれぞれ複数の分割電極として、入射側から離れた側の分割電極ほど多くの電流を注入可能なように構成することで、利得飽和レベルの低下を有効に防止できる。これにより高い出力レベルまで一定の利得で光信号の増幅を行うことができ、素子特性の向上が図れる。
実施の形態5.
図5は本発明の実施の形態5における半導体光増幅器の断面図(a)および断面図(a)におけるD−D線に沿った正面図(b)である。図中、21はクラッド層を兼ねた第1導電型の半導体基板(InP基板)、22は活性層、23は第2導電型のクラッド層(InPクラッド層)、24は電流ブロック層、25はDBR層、26は第1電極、27は第2電極、をそれぞれ示す。
実施の形態5の半導体光増幅器では、図5に示すように、半導体基板21上でリッジメサの両側面に断面が矩形を呈しつつリッジメサに略平行に延在しかつ光導波方向に直交する方向に周期的に配置された複数の半導体層(屈折率3.2)および空気(屈折率1)あるいはベンゾシクロブテン(BCB、Benzocyclobutene,屈折率1.546、図示せず)等の低屈折率で低導電性のポリマー材料のペアでDBR層25を構成している。このようなDBR層25を半導体レーザの端面高反射鏡に用いた例は、J.WiedmannらによってJpn.J.Appl.Phys.Vol.40(2001.12) pp6845〜6851,Part1,No.12に開示されている。
実施の形態5の半導体光増幅器は、実施の形態1の半導体光増幅器と比べて、リッジメサに平行に延在した、つまり光導波方向に平行に延在したDBR層25を形成している点が異なる。なお、リッジメサの両側面は、バンドギャップエネルギーが活性層22よりも大きいInP結晶等の半導体材料からなる電流ブロック層24で覆われている。リッジメサ形成後、選択結晶成長により埋め込み成長された半導体層24aをリソグラフィ技術とドライエッチング技術によって所定の部分エッチング除去して光導波方向に略平行にかつ光導波方向に直交する方向に複数の半導体層を所定の周期で形成し、各半導体層間の溝の部分は空気のままかあるいは上述のポリマー材料等で埋め込むことによってDBR層25が形成されている。DBR層25においては半導体層/空気あるいはポリマー材料間では屈折率差が大きいため、3周期以上のペアで95%以上の高い反射率が得られる。なお、活性層22には上下方向に電流注入、つまりいわゆる縦方向電流注入を行う。電流注入により利得が与えられた活性層22は横方向、つまり光導波方向に対して直交する方向では高反射率のDBR反射鏡25で囲まれた光共振器の内部に位置するので、電流注入により横方向にレーザ発振が生じ、一旦かかるレーザ発振が生じると活性層22内の利得は一定値に固定され、利得レベルの飽和が防止される。
実施の形態5の半導体光増幅器では、上述したようにいわゆる縦方向電流注入構造を採用したにもかかわらずDBR層には何ら電流注入されない、つまり、実施の形態1の半導体光増幅器と同様、DBR層に電流が流れない素子構造となっているため、従来、相対的に抵抗値の高いDBR層に電流を流すことにより生じた不要な熱の発生をほぼ完全に防止できるので、横方向におけるレーザ発振の閾値電流値が熱の影響を受けないため熱による閾値電流の上昇といった不具合が回避され、この結果、利得飽和レベル低下を防げるので、例えば波形歪みが小さいといった素子特性に優れた半導体光増幅器が得られる。
また、実施の形態5の半導体光増幅器では、活性層の両側面に接するように電流ブロック層が設けられ活性層自体が外部に露出していないので、従来のリッジメサ構造を適用した半導体光増幅器のような側面が外部に露出している素子構造に比べて長期信頼性に優れた半導体光増幅器が容易に得られる。
実施の形態6.(参考形態)
図6は本発明の実施の形態5の半導体光増幅器に対して、電界吸収型光変調器を入射側に集積した素子構造の正面図である。図中、28,29は金線、32は光増幅領域、33は光変調領域をそれぞれ示す。光増幅領域32と光変調領域33はそれぞれ電気的に分離されており、別個の電極26,27および30,31によって独立に駆動する。光変調領域33によって発生した信号光は光増幅領域32によって光増幅される。
実施の形態6の半導体光変調器では、上述したように光増幅領域の利得レベルの波長依存性が極めて小さくかつ利得飽和も生じにくいので高周波でも信号歪みのほとんどない光増幅が行うことができるため、光変調領域の入力信号レベルが安定に増幅されS/N比の高い変調が可能となり、素子特性に優れた半導体光変調器が得られる。
実施の形態7.(参考形態)
図7は本発明の実施の形態1における半導体光増幅器の一連の製造方法を示す模式図である。以下、本実施の形態の半導体光増幅器の製造方法について説明する。
先ず、エピタキシャル結晶成長によって、半絶縁性のInP基板1上に、半導体多層膜からなる高抵抗の第1DBR層2、高抵抗のInP結晶からなる第1クラッド層3、偏波依存性の少ない引張り歪みバルクInGaAsP結晶で構成された活性層4、を順次形成する(図7(a))。エピタキシャル結晶成長方法としては、例えばMOCVD法、MBE法等の気相結晶成長法が好適である。
かかるエピタキシャル結晶成長後、リソグラフィ技術とウエットあるいはドライエッチング技術によって、活性層4を、断面が光導波に最適な所定の幅Wを呈するストライプ状に加工する(図7(b))。なお、活性層4の幅Wは1〜2μmの範囲が好適である。
選択結晶成長法により、第1クラッド層3上で活性層4の一側面に接するように第1導電層5を形成する(図7(c))。この際、活性層4の上部に絶縁膜を形成して選択成長マスクとするので、活性層4上には結晶成長は行われない。同様な方法によって第2導電層6を形成する(図7(d))。
さらに、活性層4、n型導電層5およびp型導電層6を覆うように、第2クラッド層7および第2DBR層8を順次エピタキシャル結晶成長する。エピタキシャル結晶成長後、第2DBR層8を、活性層4の幅Wより若干広めの幅になるようにリソグラフィ技術とウエットあるいはドライエッチング技術によって、ストライプ状に加工する(図7(e))。
第2クラッド層7中で、それぞれ底面がn型導電層5およびp型導電層6に達するような2つのエッチング溝を、リソグラフィ技術とウエットあるいはドライエッチング技術によって形成する。かかるエッチング溝の内表面を金属膜で被覆するか、あるいはエッチング溝自体を金属で埋め込んで第1電極9および第2電極10をそれぞれ形成し、各電極9,10の上面に金線11,12を圧着することにより素子構造の主要部が完成する(図7(f))。
実施の形態7の半導体光増幅器の製造方法によると、素子特性および信頼性に優れた半導体光増幅器を容易に製造できる。
実施の形態8.
図8は本発明の実施の形態5における半導体光増幅器の製造方法を示す模式図である。
以下、本実施の形態の半導体光増幅器の製造方法について説明する。
先ず、エピタキシャル結晶成長によって、第1クラッド層を兼ねた第1導電型の半導体基板21上に、活性層22、第2導電型の第2クラッド層23を順次形成する(図8(a))。エピタキシャル結晶成長方法としては、例えばMOCVD法、MBE法等の気相結晶成長法が好適である。
かかる結晶成長後、リソグラフィ技術とドライエッチング技術によって、第1導電型の半導体基板21の一部、活性層22、第2導電型の第2クラッド層23を光導波に最適な所定の幅Wを呈するリッジメサ形状に加工する(図8(b))。なお、活性層22の幅Wは1〜2μmの範囲が好適である。
選択結晶成長法により、第1導電型の半導体基板21上でリッジメサ形状を埋め込むように電流ブロック層24に相当する結晶層24aを形成する(図8(c))。この際、リッジメサの上部に絶縁膜を形成して選択成長マスクとするので(図示せず)、リッジメサ上には結晶成長は行われない。
次に、半導体基板21の裏面側に第1電極26を、リッジメサを覆うように第2電極27を、それぞれEB蒸着、スパッタ法等の金属膜成膜方法により形成した後、リソグラフィ技術とドライエッチング技術によって所定のパターンに加工する。
電流ブロック層およびDBR層25に相当する結晶層24aのうち、リッジメサの両側面に接する部分から一定の層厚分を残してドライエッチングにより除去することによって、リッジメサの両側面を覆うように電流ブロック層24を形成する(図8(d))。かかるドライエッチング時に同時にDBR層25も形成する。
第2電極27の上面に金線28を圧着することにより素子構造の主要部が完成する(図8(f))。
実施の形態8の半導体光増幅器の製造方法によると、素子特性および信頼性に優れた半導体光増幅器を容易に製造できる。
1 半絶縁性のInP基板(半導体基板)、 2 第1DBR層、 3 第1クラッド層、 4 活性層、 5 n型導電層(第1導電層)、 6 p型導電層(第2導電層)、 7 第2クラッド層、 8 第2DBR層、 9 第1電極、 9a、9b 光導波方向に2つに分割された第1電極、 10 第2電極、 10a、10b 光導波方向に2つに分割された第2電極、 11、12 第1電極および第2電極にそれぞれ接続された金線、 15 バッファ層、 21 第1導電型の半導体基板、 22 活性層、 23 第2導電型のクラッド層、 24 電流ブロック層、 25 DBR層、 26 第1電極、 27 第2電極、 28,29 金線、 32 光増幅領域、 33 光変調領域。

Claims (2)

  1. 第1導電型の半導体基板と、
    前記半導体基板の一部および前記半導体基板上に形成された活性層および第2導電型のクラッド層の各層からなり所定の幅を有するリッジメサと、
    前記リッジメサの両側面に接するようにそれぞれ設けられた高抵抗の電流ブロック層と、
    前記半導体基板上で前記リッジメサに略平行方向に延在しかつ光導波方向に対して直交方向に周期的に配置された複数の半導体層からなるDBR層と、
    前記半導体基板で前記活性層が形成された面とは反対側の面上に設けられた第1電極と、
    前記第2導電型のクラッド層上に設けられた第2電極と、
    を備えたことを特徴とする半導体光増幅器。
  2. 第1導電型の半導体基板上に活性層、第2導電型のクラッド層を順次エピタキシャル結晶成長する工程と、
    前記半導体基板の一部、前記活性層および前記第2導電型のクラッド層を所定の幅にエッチングしてリッジメサを形成する工程と、
    前記リッジメサを埋め込むように高抵抗の半導体層を選択結晶成長する工程と、
    前記半導体基板で前記活性層が形成された面とは反対側の面上に第1電極を形成する工程と、
    前記第2導電型のクラッド層上に第2電極を形成する工程と、
    前記リッジメサの両側面に接するように設けられた高抵抗の電流ブロック層と前記半導体基板上で前記リッジメサに略平行方向に延在しかつ光導波方向に対して直交方向に周期的に配置された複数の半導体層で構成されたDBR層とを、リソグラフィ技術とドライエッチング技術により形成する工程と、
    を含んでなる半導体光増幅器の製造方法。
JP2009073631A 2009-03-25 2009-03-25 半導体光増幅器及びその製造方法 Pending JP2009135555A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073631A JP2009135555A (ja) 2009-03-25 2009-03-25 半導体光増幅器及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073631A JP2009135555A (ja) 2009-03-25 2009-03-25 半導体光増幅器及びその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003311747A Division JP2005079541A (ja) 2003-09-03 2003-09-03 半導体光増幅器及びその製造方法

Publications (1)

Publication Number Publication Date
JP2009135555A true JP2009135555A (ja) 2009-06-18

Family

ID=40867054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073631A Pending JP2009135555A (ja) 2009-03-25 2009-03-25 半導体光増幅器及びその製造方法

Country Status (1)

Country Link
JP (1) JP2009135555A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079993A (ja) * 2017-10-26 2019-05-23 日本電信電話株式会社 半導体光素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334595A (ja) * 1989-06-30 1991-02-14 Matsushita Electric Ind Co Ltd 半導体レーザ及びその製造方法
JPH04273492A (ja) * 1991-02-28 1992-09-29 Toshiba Corp 半導体レーザ装置
JPH06252504A (ja) * 1993-02-26 1994-09-09 Nec Corp 面発光レーザとその製造方法
US20030095326A1 (en) * 1999-03-22 2003-05-22 Dijaili Sol P. Low-noise, high-power optical amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334595A (ja) * 1989-06-30 1991-02-14 Matsushita Electric Ind Co Ltd 半導体レーザ及びその製造方法
JPH04273492A (ja) * 1991-02-28 1992-09-29 Toshiba Corp 半導体レーザ装置
JPH06252504A (ja) * 1993-02-26 1994-09-09 Nec Corp 面発光レーザとその製造方法
US20030095326A1 (en) * 1999-03-22 2003-05-22 Dijaili Sol P. Low-noise, high-power optical amplifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079993A (ja) * 2017-10-26 2019-05-23 日本電信電話株式会社 半導体光素子

Similar Documents

Publication Publication Date Title
JP5717726B2 (ja) 大出力パワー用の横結合を持つdfbレーザダイオード
US6714574B2 (en) Monolithically integrated optically-pumped edge-emitting semiconductor laser
US20070223549A1 (en) High-Power Optoelectronic Device with Improved Beam Quality Incorporating A Lateral Mode Filtering Section
JP5391240B2 (ja) 面発光レーザ、光源、および光モジュール
US10020638B2 (en) Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
JP2011216557A (ja) 面発光レーザ、面発光レーザアレイ、光源、および光モジュール
JP5323553B2 (ja) 半導体光増幅素子
JP5505226B2 (ja) 半導体光増幅器
US8599895B2 (en) Semiconductor laser device and manufacturing method thereof
US6603785B2 (en) Semiconductor laser device
JP2007219561A (ja) 半導体発光装置
US10511150B2 (en) Wavelength-variable laser
JP5653609B2 (ja) 光半導体装置、光ファイバ増幅器用励起光源及び光半導体装置の製造方法
JP2004179206A (ja) 光半導体装置および光伝送モジュール、光増幅モジュール
RU2443044C1 (ru) Инжекционный лазер
JP2004266095A (ja) 半導体光増幅器
JP2005079541A (ja) 半導体光増幅器及びその製造方法
JP2009135555A (ja) 半導体光増幅器及びその製造方法
JP2005142230A (ja) 変調器集積半導体レーザ、光変調システムおよび光変調方法
JP2004311556A (ja) 半導体レーザ並びにそれを用いた光モジュール及び機能集積型レーザ
JP4043672B2 (ja) 半導体レーザ素子
RU2444101C1 (ru) Инжекционный лазер
US11581706B2 (en) Wavelength-variable laser
JP4961732B2 (ja) 光変調器集積光源
JP2004253494A (ja) 通信用光制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Effective date: 20120321

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731