JP2009134136A - 偏光板、光学フィルムおよび画像表示装置 - Google Patents

偏光板、光学フィルムおよび画像表示装置 Download PDF

Info

Publication number
JP2009134136A
JP2009134136A JP2007310944A JP2007310944A JP2009134136A JP 2009134136 A JP2009134136 A JP 2009134136A JP 2007310944 A JP2007310944 A JP 2007310944A JP 2007310944 A JP2007310944 A JP 2007310944A JP 2009134136 A JP2009134136 A JP 2009134136A
Authority
JP
Japan
Prior art keywords
polarizing plate
meth
layer
polyimide
transparent protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007310944A
Other languages
English (en)
Inventor
Mie Nakada
美恵 中田
Tsutomu Hani
勉 羽仁
Motoko Kawasaki
元子 河▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2007310944A priority Critical patent/JP2009134136A/ja
Publication of JP2009134136A publication Critical patent/JP2009134136A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】偏光子の少なくとも片面に、接着剤層、複屈折層および透明保護フィルムをこの順で有する偏光板であって、当該偏光板を液晶パネルに適用した場合にも表示ムラを小さく抑えることができる、偏光板を提供すること。
【解決手段】偏光子の少なくとも片面に、接着剤層、複屈折層および透明保護フィルムをこの順で有する偏光板であって、前記複屈折層は、nx≧ny>nz(但し、面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、厚さ方向をZ軸とし、それぞれの軸方向の屈折率をnx、ny、nzとする)の関係を満足し、かつ、前記透明保護フィルムはグルタルイミド単位および(メタ)アクリル酸エステル単位を有する(メタ)アクリル系樹脂を含有してなり、かつ、面内位相差が40nm未満、厚み方向位相差が80nm未満であることを特徴とする偏光板。
【選択図】図1

Description

本発明は、偏光板に関する。当該偏光板はこれ単独で、またはこれを積層した光学フィルムとして液晶表示装置(LCD)、有機EL表示装置、CRT、PDP等の画像表示装置を形成しうる。
液晶表示装置は、液晶のスイッチングによる偏光状態を可視化させたものであり、その表示原理から、偏光子の両面に透明保護フィルムを接着剤層により貼り合わせた偏光板が用いられている。偏光子としては、例えばポリビニルアルコールにヨウ素を吸着させ、延伸した構造のヨウ素系偏光子が高透過率、高偏光度を有することから、最も一般的な偏光子として広く使用されている。透明保護フィルムとしては、透湿度の高いトリアセチルセルロース等が用いられる。
前記偏光板適用される液晶表示装置等の画像表示装置は様々な環境下において用いられる。そのため、前記偏光板には、高温環境下における耐熱性、高湿環境下における耐湿性等の耐久性を有することが望まれる。このような問題を解決するために、偏光子の保護フィルムにポリイミド系樹脂等の吸水率の低い疎水性のフィルムを用いることで、偏光板の耐久性を向上させる方法が開示されている(特許文献1)。また、保護フィルムとして、透明保護フィルムとポリイミド層を有する積層フィルムを用い、当該積層フィルムのポリイミド側を偏光子に貼り合せた偏光板が提案されている(特許文献2)。上記ポリイミド層は、複屈折層として機能するため、当該ポリイミド層を有する積層フィルムを設けた偏光板は、当該ポリイミド層を有する積層フィルム側が液晶セルに配置される。しかし、積層フィルムの透明保護フィルムとしては、通常、トリアセチルセルロース等が用いられるためパネル上に表示ムラが生じる問題がある。
一方、偏光板に用いる透明保護フィルムは、接着剤により偏光子に接着されているが、偏光板を作成するにあたって、偏光子と透明保護フィルムを、貼り合わせる際には、クニック(クニック欠陥)が発生する問題がある。クニックは、偏光子と透明保護フィルムの界面において生じる、局所的な凹凸欠陥である。かかるクニックに対しては、偏光子として、含水量を調整したポリビニルアルコール系フィルムの表面を所定条件下にカレンダーロールで処理されたものを用いて、透明保護フィルムと積層する方法が提案されている(特許文献3)。また、クニックは、ポリビニルアルコール系接着剤として、アセトアセチル基を含有するポリビニルアルコール系樹脂を用いる場合に特に生じやすい。
特開平10−166519号公報 特開2002−90546号公報 特開2006−119203号公報
本発明は、偏光子の少なくとも片面に、接着剤層、複屈折層および透明保護フィルムをこの順で有する偏光板であって、当該偏光板を液晶パネルに適用した場合にも表示ムラを小さく抑えることができる、偏光板を提供することを目的とする。
また本発明は前記偏光板を積層した光学フィルムを提供すること、さらには、当該偏光板、光学フィルムを用いた液晶表示装置等の画像表示装置を提供することを目的とする。
本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す偏光板を見出し、本発明を完成するに至った。
即ち本発明は、偏光子の少なくとも片面に、接着剤層、複屈折層および透明保護フィルムをこの順で有する偏光板であって、
前記複屈折層は、nx≧ny>nz(但し、面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、厚さ方向をZ軸とし、それぞれの軸方向の屈折率をnx、ny、nzとする)の関係を満足し、かつ、
前記透明保護フィルムはグルタルイミド単位および(メタ)アクリル酸エステル単位を有する(メタ)アクリル系樹脂を含有してなり、かつ、面内位相差が40nm未満、厚み方向位相差が80nm未満であることを特徴とする偏光板、に関する。
前記偏光板において、前記(メタ)アクリル系樹脂は、さらに芳香族ビニル単位を有することが好ましい。
前記偏光板において、前記(メタ)アクリル系樹脂は、さらにスチレン系樹脂を含有することが好ましい。
前記偏光板において、前記接着剤層は、ポリビニルアルコール系樹脂、架橋剤および平均粒子径が1〜100nmの金属化合物コロイドを含有してなる樹脂溶液であって、かつ、金属化合物コロイドは、ポリビニルアルコール系樹脂100重量部に対して、200重量部以下の割合で配合されている偏光板用接着剤から形成することができる。
前記金属化合物コロイドは、アルミナコロイド、シリカコロイド、ジルコニアコロイド、チタニアコロイドおよび酸化スズコロイドから選ばれるいずれか少なくとも1種が好ましい。また、金属化合物コロイドは、正電荷を有することが好ましく、特に、アルミナコロイドが好ましい。
前記偏光板において、前記複屈折層としては、ポリイミド層を好適に用いることができる。
また本発明は、前記偏光板が、少なくとも1枚積層されていることを特徴とする光学フィルム、に関する。
また本発明は、前記偏光板または前記光学フィルムが用いられていることを特徴とする画像表示装置、に関する。
本発明では、偏光板の少なくも片面において、複屈折層とともに用いる透明保護フィルムとして、グルタルイミド単位および(メタ)アクリル酸エステル単位を有する(メタ)アクリル系樹脂を含有してなり、かつ、面内位相差が40nm未満、厚み方向位相差が80nm未満であるものを用いる。前記(メタ)アクリル系樹脂は、位相差を小さく制御することができ、偏光板を液晶パネルに適用した場合にも表示ムラを小さく抑えることができる。
また、前記(メタ)アクリル系樹脂は、透湿度が低く、また高温環境下における耐熱性、高湿環境下における耐湿性等の耐久性を有しており、高温・高湿環境下においても全面で剥れや浮きの生じない偏光板を得ることができ、偏光子の透過率、偏光度および色相等の光学特性を長時間高く維持することができる。
また、本発明の偏光板は、複屈折層(例えば、ポリイミド層)の外側に透明保護フィルムを有し、外気に露出されないことで、複屈折層の位相差値が高温環境下で変化することを防止したり、複屈折層の表面に傷が付くことを防止したりすることができる。さらに、複屈折層の位相差値を、複屈折層の厚みや延伸処理等で適宜制御することで、各種駆動モードの液晶表示装置の正面および斜め方向のコントラスト比を向上させることもできる。なお、複屈折層がポリイミド層の場合には、その厚みは、1〜10μmであることが好ましい。このような厚みを採用することにより、偏光板の耐久性が改善される。理論的には明らかではないが、ポリイミド層を非常に薄くすることにより、従来は困難であった偏光子(親水性フィルム)とポリイミド層(疎水性フィルム)との良好な接着が可能となる。その結果、耐熱性に優れかつ吸水率の低いポリイミド層で偏光子を保護することが可能となり、しかも、ポリイミド層と偏光子の良好な密着性は長期間にわたって維持されるので、非常に優れた耐久性を有する偏光板が得られる。
また本発明では、偏光子と少なくとも片面の複屈折層とを接合するための接着剤層の形成に、平均粒子径が1〜100nmの金属化合物コロイドを含有するポリビニルアルコール系接着剤を用いた場合には、かかる金属化合物コロイドの作用によって、クニックの発生が抑えられる。これにより、偏光板を作成する際の歩留まりを向上することができ、偏光板の生産性が向上し、その結果、液晶パネルの生産性が向上する。
前記金属化合物コロイドは、正電荷を有するものが好適である。正電荷を有する金属化合物コロイドは、負電荷を有する金属化合物コロイドに比べて、クニックの発生を抑える効果が大きい。これらのなかでも、正電荷を有する金属化合物コロイドとしては、アルミナコロイドが好適である。
前記接着剤層を形成する偏光板用接着剤としては、ポリビニルアルコール系樹脂を用いることができるが、ポリビニルアルコール系樹脂としてアセトアセチル基を含有するポリビニルアルコール系樹脂を用いる場合に本発明は特に好適である。アセトアセチル基を含有するポリビニルアルコール系樹脂を用いた接着剤は、耐水性に優れる接着剤層を形成することができる。一方、アセトアセチル基を含有するポリビニルアルコール系樹脂を用いた偏光板用接着剤では、クニックの発生が多く観察されたが、本発明の偏光板用接着剤では、前記金属化合物コロイドを配合することにより、アセトアセチル基を含有するポリビニルアルコール系樹脂を用いた偏光板用接着剤における、クニックの発生を抑えることができる。これにより、耐水性を有し、かつクニックの発生を抑えることができる。
以下本発明の偏光板を図面を参照しながら説明する。図1は、本発明の代表的な実施形態による偏光板を説明するための概略断面図である。図1に示すように、本発明の偏光板10は、偏光子11の少なくとも片面に、第一の接着剤層12、第一の複屈折層132および第一の透明保護フィルム131をこの順で有する。第一の複屈折層132および第一の透明保護フィルム131は、順次に偏光子11に積層することができる他、第一の複屈折層132および第一の透明保護フィルム131は、第一の積層フィルム13として用いることができる。図1では、第一の積層フィルム13として用いられる場合が示されている。これら第一の複屈折層132および第一の透明保護フィルム131は両面に設けることもできる。他の片面では、第二の複屈折層132’および第二の透明保護フィルム131’として示す。
図1(a)に示すように、偏光板10は、偏光子11と、偏光子11の片側に第一の接着剤層12を介して貼着された第一の積層フィルム13とを備える。第一の積層フィルム13は、第一の透明保護フィルム131と第一の複屈折層132とを有する。偏光子11と第一の積層フィルム13とは、第一の複屈折層132が偏光子11に対向するようにして貼着されている。即ち、第一の複屈折層132と偏光子11とが、第一の接着剤層12を介して貼着されている。
別の実施形態においては、図1(b)に示すように、第一の積層フィルム13は、第一の透明保護フィルム131と第一の複屈折層132との間に第一のアンカーコート層133をさらに有する。第一のアンカーコート層133を設けることにより、第一の透明保護フィルム131と第一の複屈折層132との密着性および接着耐久性が顕著に改善され得る。図1(a)および(b)に例示した実施形態によれば、液晶パネル(結果として、液晶表示装置)の薄型化に貢献し得る。
本発明においては、第一の積層フィルム13を、偏光子11の片側のみに設けることができる他、偏光子11の他の片側には第二の積層フィルム13’を設けてもよい。図1(c)および(d)は、第一の積層フィルム13と第二の積層フィルム13’が偏光子11の両側に設けられる実施形態を示す。図1(c)の実施形態によれば、第一(および第二)の透明保護フィルム131(131’)と第一(および第二)の複屈折層132(132’)とを有する第一(および第二)の積層フィルム13(13’)が、第一(および第二)の接着剤層12(12’)を介して偏光子11のそれぞれの側に貼着されている。図1(d)の実施形態によれば、第一(および第二の)透明保護フィルム131(131’)と第一(および第二の)アンカーコート層133(133’)と第一(および第二)の複屈折層132(132’)とを有する第一(および第二)の積層フィルム13(13’)が、第一(および第二)の接着剤層12(12’)を介して偏光子11のそれぞれの側に貼着されている。偏光子11の片側に第一の透明保護フィルム131と第一の複屈折層132とを有する第一の積層フィルム13を貼着し、反対側に第二の透明保護フィルム131’と第二のアンカーコート層133’と第二の複屈折層132’とを有する第二の積層フィルム13’を貼着してもよいことは言うまでもない。なお、偏光子11の両側に第一および第二の積層フィルム13および13’を設ける場合、積層フィルム13および13’を構成する材料は、同一であってもよく、それぞれ異なっていてもよい。図1(c)および(d)に例示した実施形態によれば、その対称構造に起因して、得られる偏光板のカール(反り)が非常に小さい。さらに、偏光子の両側を複屈折層で保護しているので、非常に優れた耐久性を有する偏光板が得られ得る。
本発明においては、偏光子11の片側に上記のような第一の積層フィルム13を設けていれば、偏光子11の反対側には、任意の適切な第二の透明保護フィルム14を設けてもよい。図(e)および図(f)は、偏光子11の片側に第一の積層フィルム13が設けられ、反対側に任意の適切な第二の透明保護フィルムが設けられる実施形態を示す。図1(e)の実施形態によれば、第一の透明保護フィルム131と第一の複屈折層132とを有する第一の積層フィルム13が、第一の接着剤層12を介して偏光子11の片側に貼着され、任意の適切な第二の透明保護フィルム14が第二の接着剤層12’を介して偏光子11の反対側に貼着されている。図1(f)の実施形態によれば、第一の透明保護フィルム131と第一のアンカーコート層133と第一の複屈折層132とを有する第一の積層フィルム13が、第一の接着剤層12を介して偏光子11の片側に貼着され、任意の適切な第二の透明保護フィルム14が第二の接着剤層12’を介して偏光子11の反対側に貼着されている。図1(e)および(f)に例示した実施形態によれば、耐久性と生産性および経済性とを両立し得る偏光板が得られ得る。
本発明では、第一の透明保護フィルム131はグルタルイミド単位および(メタ)アクリル酸エステル単位を有する(メタ)アクリル系樹脂を含有する。一方、第二の積層フィルム13’に用いる第二の透明保護フィルム131’、任意の適切な第二の透明保護フィルム14の材料は特に制限されない。また、第一の接着剤層12には、金属化合物コロイドを含有するポリビニルアルコール系接着剤が好適に用いられるが、第二の接着剤層12’にも金属化合物コロイドを含有するポリビニルアルコール系接着剤が好適に用いられる。
偏光子は、特に制限されず、各種のものを使用できる。偏光子としては、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性材料を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等があげられる。これらのなかでもポリビニルアルコール系フィルムとヨウ素などの二色性物質からなる偏光子が好適である。これら偏光子の厚さは特に制限されないが、一般的に、5〜80μm程度であり、好ましくは10〜50μmであり、さらに好ましくは20〜40μmである。
ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3〜7倍に延伸することで作成することができる。必要に応じてホウ酸やヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸してもよし、また延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。
上記偏光子の水分率としては、任意の適切な水分率が採用され得るが、好ましくは5〜40%であり、さらに好ましくは10〜30%であり、最も好ましくは20〜30%である。
本発明の、偏光子の水分率は、任意の適切な方法で調整すればよい。例えば偏光子の製造工程における乾燥工程の条件を調整することにより制御する方法があげられる。
本発明に用いられる偏光子としては、上述した偏光子の他に、例えば、二色性物質を練りこんだ高分子フィルムを延伸して一定方向に配向させた偏光子、二色性物質と液晶性化合物とを含む液晶性組成物を一定方向に配向させたゲスト・ホストタイプのO型偏光子(米国特許5,523,863号、特表平3−503322号公報)、およびリオトロピック液晶を一定方向に配向させたE型偏光子(米国特許6,049,428号)等も用いることができる。
複屈折層とともに、偏光子の少なくとも片側に用いる第一の透明保護フィルムは、グルタルイミド単位および(メタ)アクリル酸エステル単位を有する(メタ)アクリル系樹脂を含有してなるものを用いる。当該(メタ)アクリル系樹脂は、さらに芳香族ビニル単位を有するものが好ましい。
前記(メタ)アクリル系樹脂は、好ましくは、下記一般式(1)で表されるグルタルイミド単位、および一般式(2)で表される(メタ)アクリル酸エステル単位を有する。
ここで、R1およびR2は、それぞれ独立に、水素または炭素数1〜8のアルキル基を示し、R3は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数6〜10のアリール基を示す。
ここで、R4およびR5は、それぞれ独立に、水素または炭素数1〜8のアルキル基を示し、R6は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数6〜10のアリール基を示す。
前記一般式(1)で表される第一の構成単位(以下、グルタルイミド単位と言うことがある)は、好ましくは、R1、R2が水素またはメチル基であり、R3が水素、メチル基、またはシクロヘキシル基である。R1がメチル基であり、R2が水素であり、R3がメチル基である場合が、特に好ましい。前記グルタルイミド単位は、単一の種類でもよく、R1、R2、R3が異なる複数の種類を含んでいても構わない。
前記一般式(2)で表される第二の構成単位(以下、(メタ)アクリル酸エステルまたは(メタ)アクリル酸構成単位と言うことがある)は、好ましくは、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル等が挙げられる。これらの中でメタクリル酸メチルが特に好ましい。これら第二の構成単位は、単一の種類でもよく、R4、R5、R6が異なる複数の種類を含んでいてもかまわない。
前記(メタ)アクリル系樹脂は、より好ましくは、前記一般式(1)で表されるグルタルイミド単位、一般式(2)で表される(メタ)アクリル酸エステル単位および下記一般式(3)で表される芳香族ビニル単位の構造単位を有する。芳香族ビニル単位は、(メタ)アクリル系樹脂を、流延法、溶融押出法等でフィルム化した後、機械的強度向上の目的で延伸する場合に生じる位相差を低減する効果を有する。
ここで、R7は、水素または炭素数1〜8のアルキル基を示し、R8は、炭素数6〜10のアリール基を示す。
前記一般式(3)で表される第三の構成単位(以下、芳香族ビニル単位と言うことがある)は、好ましくは、スチレン、α−メチルスチレン等が挙げられる。これらの中でスチレンが特に好ましい。これら第三の構成単位は、単一の種類でもよく、R7、R8が異なる複数の種類を含んでいてもかまわない。
(メタ)アクリル系樹脂中における、一般式(1)で表されるグルタルイミド単位の含有量は、一般式(1)で表されるグルタルイミド単位および一般式(2)で表される(メタ)アクリル酸エステル単位の合計を基準にして、60〜95重量%が好ましく、より好ましくは65〜90重量%、さらに好ましくは70〜90重量%である。グルタルイミド単位がこの範囲より小さい場合、得られるフィルムの耐熱性が不足したり、透明性が損なわれることがある。また、この範囲を超えると不必要に耐熱性が上がりフィルム化しにくくなる他、得られるフィルムの機械的強度は極端に脆くなり、また、透明性が損なわれることがある。
(メタ)アクリル系樹脂が、前記一般式(3)で表される芳香族ビニル単位を有するとき、一般式(1)で表されるグルタルイミド単位、一般式(2)で表される(メタ)アクリル酸エステル単位および一般式(3)で表される芳香族ビニル単位の合計を基準にして、一般式(1)で表されるグルタルイミド単位および一般式(2)で表される(メタ)アクリル酸エステル単位の合計が、好ましくは50〜90重量%、より好ましくは55〜90重量%、さらに好ましくは、60〜85重量%である。なお、この場合においても、一般式(1)で表されるグルタルイミド単位および一般式(2)で表される(メタ)アクリル酸エステル単位の割合は前記と同じである。そして、一般式(3)で表される芳香族ビニル単位の含有量は、一般式(1)で表されるグルタルイミド単位、一般式(2)で表される(メタ)アクリル酸エステル単位および一般式(3)で表される芳香族ビニル単位の合計を基準にして、好ましくは10〜50重量%、より好ましくは10〜45重量%、さらに好ましくは15〜40重量%である。芳香族ビニル単位がこの範囲より大きい場合、得られるフィルムの耐熱性が不足するとともに、光弾性係数が大きくなることがあり、この範囲より小さい場合、フィルムの機械的強度が低下することがある。
前記(メタ)アクリル系樹脂は、さらにスチレン系樹脂を加えることにより、(メタ)アクリル系樹脂が、芳香族ビニル単位を有する場合と同様の効果を得ることができる。スチレン系樹脂としては、例えば、アクリロニトリル−スチレン共重合体等があげられる。この場合、スチレン系樹脂中の芳香族ビニル単位の含有量が上記範囲となるようにするのが好ましい。
前記(メタ)アクリル系樹脂には、第四の構成単位が含有されていてもかまわない。第四の構成単位として、アクリロニトリルやメタクリロニトリル等のニトリル系単量体、マレイミド、N−メチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミドなどのマレイミド系単量体などを用いることができる。
前記(メタ)アクリル系樹脂は、リニア(線状)ポリマーであっても、またブロックポリマー、コアシェルポリマー、分岐ポリマー、ラダーポリマー、架橋ポリマーであっても構わない。ブロックポリマーはA−B型、A−B−C型、A−B−A型、またはこれら以外のいずれのタイプであっても問題ない。コアシェルポリマーはただ一層のコアおよびただ一層のシェルのみからなるものであっても、それぞれが多層になっていても問題ない。
なお、前記(メタ)アクリル系樹脂は、米国特許3284425号明細書、米国特許4246374号明細書、特開平2−153904号公報等に記載されているグルタルイミド樹脂と同様に、イミド化可能な単位を有する樹脂としてメタクリル酸メチルエステルなどを主原料として得られる樹脂を用い、該イミド化可能な単位を有する樹脂をアンモニアまたは置換アミンを用いてイミド化することにより得られる。
前記(メタ)アクリル系樹脂は、例えば、メタクリル酸メチルとスチレンの共重合体(以下、MS樹脂と呼ぶ)を、上記の方法でイミド化することにより得ることができる。本発明では、スチレン含有量10〜50重量%のMS樹脂をイミド化するのが好ましく、スチレン含量15〜40重量%のMS樹脂をイミド化するのがより好ましく、スチレン含量20〜30重量%のMS樹脂をイミド化するのが更に好ましい。
グルタルイミド単位、(メタ)アクリル酸エステル単位、および芳香族ビニル単位を有する(メタ)アクリル系樹脂としては、特開2006−309033号公報、特開2006−317560号公報、特開2006−328329号公報、特開2006−328334号公報、特開2006−337491号公報、特開2006−337492号公報、特開2006−337493号公報、特開2006−337569号公報などに記載のものがあげられる。
また、前記(メタ)アクリル系樹脂は、1×104ないし5×105の重量平均分子量を有することが好ましい。重量平均分子量が上記の値以下の場合には、フィルムにした場合の機械的強度が不足し、上記の値以上の場合には、溶融時の粘度が高く、フィルムの生産性が低下することがある。重量平均分子量は、ゲル浸透クロマトグラフ(GPCシステム,東ソー製)を用いて、ポリスチレン換算により求めた。溶剤はテトラヒドロフランを用いた。
前記(メタ)アクリル系樹脂のガラス転移温度は100℃以上であることが好ましく、120℃以上であることがより好ましく、130℃以上であることが更に好ましい。
前記(メタ)アクリル系樹脂は光弾性係数が小さいことが好ましい。本発明で使用する(メタ)アクリル系樹脂の光弾性係数は、20×10-122/N以下であることが好ましく、10×10-122/N以下であることがより好ましく、5×10-122/N以下であることが更に好ましい。光弾性係数の絶対値が20×10-122/Nより大きい場合は、応力により光学歪が生じ、光漏れが起きやすくなる。特に高温高湿度環境下において、その傾向が著しくなる。
光弾性係数とは、等方性の固体に外力を加えて応力(△F)を起こさせると、一時的に光学異方性を呈し、複屈折(△n)を示すようになるが、その応力と複屈折の比を光弾性係数(c)と呼び、次式:c=△n/△F、で示される。
前記(メタ)アクリル系樹脂は、ASTM−D−1003に準じた方法で測定される全光線透過率が、好ましくは85%以上、より好ましくは88%以上であり、さらに好ましくは90%以上である。また、フィルムの濁度は、好ましくは2%以下、より好ましくは1%以下、更に好ましくは0.5%以下である。
第一の透明保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、薄層性などの点より1〜500μm程度である。特に1〜300μmが好ましく、5〜200μmがより好ましい。薄型化の点からは、透明保護フィルムの厚さは5〜100μmが好ましい。なお、クニックは、第一の透明保護フィルムが、薄型化するほど生じやすくなる。
本発明の前記(メタ)アクリル系樹脂を含有する第一の透明保護フィルムは、通常、前記(メタ)アクリル系樹脂を溶融押出等によりフィルム化することにより得られる。得られたフィルムは、フィルム強度を向上させるために一軸または二軸延伸することができる。延伸することにより位相差を生じる場合があるが、芳香族ビニル単位やスチレン系樹脂の含有量と延伸倍率を制御することにより所望の位相差とすることができる。延伸倍率は、通常、縦横それぞれ、1〜3倍程度である。
また本発明の(メタ)アクリル系樹脂を含有する第一の透明保護フィルムは、透湿度300g/m2以下を満足することができ、耐久性の点で好ましい。透湿度は、さらには250g/m2以下であるのが好ましく、さらには200g/m2以下であるのが好ましい。
上記の通り、本発明では、偏光子の少なくとも片側に、第一の複屈折層とともに、前記(メタ)アクリル系樹脂を含有してなる第一の透明保護フィルムを用いるが、他の片側において第一の複屈折層とともに用いる第二の透明保護フィルムまたは任意の適切な第二の透明保護フィルムは、前記第一の透明保護フィルムと同様の厚みを採用できる。また、前記他の片側の第二の透明保護フィルムを形成する材料としては、前記第一の透明保護フィルムに例示の材料を用いることができる他、各種の材料を用いることができる。当該他の片側の第二の透明保護フィルムを形成する材料としては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロース等のセルロース系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー、ポリカーボネート系ポリマーなどがあげられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または前記ポリマーのブレンド物なども前記透明保護フィルムを形成するポリマーの例としてあげられる。なお、偏光子には、通常、第二の透明保護フィルムが接着剤層により貼り合わされるが、第二の透明保護フィルムとして、(メタ)アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化性樹脂または紫外線硬化型樹脂を用いることができる。
本発明の透明保護フィルム(第一および第二のいずれも含む)の位相差は、面内位相差が40nm未満、かつ、厚み方向位相差が80nm未満である。面内位相差Reは、Re=(nx−ny)×d、で表わされる。厚み方向位相差Rthは、Rth=(nx−nz)×d、で表される。また、Nz係数は、Nz=(nx−nz)/(nx−ny)、で表される。[ただし、フィルムの遅相軸方向、進相軸方向及び厚さ方向の屈折率をそれぞれnx、ny、nzとし、d(nm)はフィルムの厚みとする。遅相軸方向は、フィルム面内の屈折率の最大となる方向とする。]。なお、透明保護フィルムは、できるだけ色付きがないことが好ましい。厚み方向の位相差値が−90nm〜+75nmである保護フィルムが好ましく用いられる。かかる厚み方向の位相差値(Rth)が−90nm〜+75nmのものを使用することにより、透明保護フィルムに起因する偏光板の着色(光学的な着色)をほぼ解消することができる。厚み方向位相差値(Rth)は、さらに好ましくは−80nm〜+60nm、特に−70nm〜+45nmが好ましい。
なお、本発明で用いる透明保護フィルム(以下、特記のない限り、透明保護フィルムは第一および第二のいずれも含む)中には任意の適切な添加剤が1種類以上含まれていてもよい。その他の添加剤としては、例えば、ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;フェニルサリチレート、(2,2’−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−ヒドロキシベンゾフェノン等の紫外線吸収剤;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーや無機フィラー;樹脂改質剤;有機充填剤や無機充填剤;可塑剤;滑剤;帯電防止剤;難燃剤;などが挙げられる。
本発明の透明保護フィルム中の添加剤の含有割合は、好ましくは0〜5重量%、より好ましくは0〜2重量%、さらに好ましくは0〜0.5重量%である。
前記透明保護フィルムの偏光子を接着させない面は、ハードコート層や反射防止処理、スティッキング防止や、拡散ないしアンチグレアを目的とした処理を施したものであってもよい。
ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例えばアクリル系、シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑り特性等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて形成することができる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるものであり、従来に準じた反射防止膜などの形成により達成することができる。また、スティッキング防止処理は隣接層との密着防止を目的に施される。
またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を阻害することの防止等を目的に施されるものであり、例えばサンドブラスト方式やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて透明保護フィルムの表面に微細凹凸構造を付与することにより形成することができる。前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が0.5〜50μmのシリカ、アルミナ、チタニア、ジルコニア、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン等からなる導電性のこともある無機系微粒子、架橋又は未架橋のポリマー等からなる有機系微粒子などの透明微粒子が用いられる。表面微細凹凸構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形成する透明樹脂100重量部に対して一般的に2〜50重量部程度であり、5〜25重量部が好ましい。アンチグレア層は偏光板透過光を拡散して視角などを拡大するための拡散層(視角拡大機能など)を兼ねるものであってもよい。
なお、前記反射防止層、スティッキング防止層、拡散層やアンチグレア層等は、透明保護フィルムそのものに設けることができるほか、別途光学層として透明保護フィルムとは別体のものとして設けることもできる。
複屈折層(第一および第二のいずれの場合を含む、以下同様)はnx≧ny>nz(但し、面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、厚さ方向をZ軸とし、それぞれの軸方向の屈折率をnx、ny、nzとする)の関係を満足するものである。当該複屈折層としては、ネガティブCプレート、二軸性位相差フィルムがあげられる。
上記複屈折層としては、例えば、ポリイミド層を用いることができる。上記ポリイミド層は、例えば、ポリイミド溶液を透明保護フィルムの表面に塗工し乾燥させて得ることができる。ポリイミド層は、必要に応じて任意の適切な添加剤をさらに含有し得る。添加剤の具体例としては、可塑剤、熱安定剤、光安定剤、滑剤、抗酸化剤、紫外線吸収剤、難燃剤、着色剤、帯電防止剤、相溶化剤、架橋剤、および増粘剤等が挙げられる。使用される添加剤の種類および量は、目的に応じて適宜設定され得る。添加剤の使用量は、ポリイミド層中の全固形分100重量部に対して、好ましくは10重量部以下であり、さらに好ましくは5重量部以下であり、最も好ましくは3重量部以下である。
ポリイミド層を構成するポリイミドとしては、任意の適切なポリイミドが採用され得る。具体例としては、芳香族ポリイミド、熱可塑性ポリイミド、熱硬化性ポリイミド、含フッ素ポリイミド、感光性ポリイミド、脂環式ポリイミド、液晶性ポリイミド、およびポリシロキサンブロックポリイミド等が挙げられる。これらのポリイミドは、単独で、または2種以上を組み合わせて用いられ得る。さらに、ポリイミドとポリイミドの前駆体であるポリアミック酸をブレンドした樹脂組成物等も用いることができる。
本明細書において、「芳香族ポリイミド」とは、分子中に芳香環構造を有するポリイミドをいう。上記芳香族ポリイミドの具体例としては、DuPont社製商品名「KAPTON」等が挙げられる。「熱可塑性ポリイミド」とは、加熱により化学反応を起こさず軟化して塑性を示し、冷却すると固化するものをいう。上記熱可塑性ポリイミドの具体例としては、三井化学(株)製商品名「AURUM」等が挙げられる。また「熱硬化性ポリイミド」とは、分子中に末端官能基を有し重量平均分子量1000〜7000のオリゴマーの末端基が熱解裂によって架橋硬化するものをいう。上記熱硬化性ポリイミドの具体例としては、Phone−Poulenc社製商品名「Kerimid601」等が挙げられる。「含フッ素ポリイミド」とは、分子中に−CF−基、や−CF基等のC−F結合を有するものをいう。「感光性ポリイミド」とは、分子中に光により分解反応や、架橋反応を生じる光反応性基(例えば、シンナモイル基やジアゾ基など)を有し、反応前後で溶解度差を生じるものをいう。「脂環式ポリイミド」とは、分子中に脂環構造を有するポリイミドをいう。「液晶性ポリイミド」とは、加熱あるいは溶媒の添加により液晶相を呈すポリイミドをいう。「ポリシロキサンブロックポリイミド」とは、分子構造中にポリジメチルシロキサン構造を有するものをいう。
上記ポリイミドは、代表的には、テトラカルボン酸二無水物とジアミンとの反応によって得ることができる。上記テトラカルボン酸二無水物とジアミンとを反応させる方法としては、任意の適切な方法が採用され得る。例えば、2段階で進行する化学イミド化であってもよく、1段階で進行する熱イミド化であってもよい。
上記化学イミド化の具体例としては、ジアミンをジメチルアセトアミドや、N−メチルピロリドンのような極性アミド系溶剤に溶解させ、この溶液中にテトラカルボン酸二無水物を固体のまま加えて室温下で攪拌すると、固体のテトラカルボン酸二無水物の溶解とともに、上記ジアミンとの間で発熱を伴って開環重合付加反応が起こり、重合溶液の粘度上昇が見られポリアミック酸が生成する(第1ステップ)。次いで、上記ポリアミック酸を含む反応溶液に無水酢酸などの脱水剤を添加し、加熱すると脱水環化反応が起こり、ポリイミドが生成する(第2ステップ)という方法が挙げられる。
上記熱イミド化の具体例としては、ディーンスターク装置を備えた反応容器中で、ジアミンとテトラカルボン酸二無水物とイソキノリン(触媒)をm−クレゾール等の高沸点の有機溶剤に溶解させ、この溶液を攪拌しながら、175〜180℃で加熱すると、脱水環化反応が起こり、ポリイミドが生成するという方法が挙げられる。
本発明に用いられるテトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、複素環式芳香族テトラカルボン酸二無水物、2,2′−置換ビフェニルテトラカルボン酸二無水物等が挙げられる。
上記ピロメリット酸二無水物としては、例えば、ピロメリット酸二無水物、3,6−ジフェニルピロメリット酸二無水物、3,6−ビス(トリフルオロメチル)ピロメリット酸二無水物、3,6−ジブロモピロメリット酸二無水物、3,6−ジクロロピロメリット酸二無水物等が挙げられる。上記ベンゾフェノンテトラカルボン酸二無水物としては、例えば、3,3′,4,4′−ベンゾフェノンテトラカルボン酸二無水物、2,3,3′,4′−ベンゾフェノンテトラカルボン酸二無水物、2,2′,3,3′−ベンゾフェノンテトラカルボン酸二無水物等が挙げられる。また、上記ナフタレンテトラカルボン酸二無水物としては、例えば、2,3,6,7−ナフタレン−テトラカルボン酸二無水物、1,2,5,6−ナフタレン−テトラカルボン酸二無水物、2,6−ジクロロ−ナフタレン−1,4,5,8−テトラカルボン酸二無水物等が挙げられる。
上記複素環式芳香族テトラカルボン酸二無水物としては、例えば、チオフェン−2,3,4,5−テトラカルボン酸二無水物、ピラジン−2,3,5,6−テトラカルボン酸二無水物、ピリジン−2,3,5,6−テトラカルボン酸二無水物等が挙げられる。また、上記2,2′−置換ビフェニルテトラカルボン酸二無水物としては、例えば、2,2′−ジブロモ−4,4′,5,5′−ビフェニルテトラカルボン酸二無水物、2,2′−ジクロロ−4,4′,5,5′−ビフェニルテトラカルボン酸二無水物、2,2′−ビス(トリフルオロメチル)−4,4′,5,5′−ビフェニルテトラカルボン酸二無水物等が挙げられる。
また、上記芳香族テトラカルボン酸二無水物のその他の例としては、3,3′,4,4′−ビフェニルテトラカルボン酸二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(2,5,6−トリフルオロ−3,4−ジカルボキシフェニル)メタン二無水物、2,2′−ビス(3,4−ジカルボキシフェニル)−ヘキサフルオロプロパン二無水物、4,4′−ビス(3,4−ジカルボキシフェニル)−2,2−ジフェニルプロパン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、4,4′−オキシジフタル酸二無水物、ビス(3,4−ジカルボキシフェニル)スルホン酸二無水物、3,3′,4,4′−ジフェニルスルホンテトラカルボン酸二無水物、4,4′−[4,4′−イソプロピリデン−ジ(p−フェニレンオキシ)]ビス(フタル酸無水物)、N,N−(3,4−ジカルボキシフェニル)−N−メチルアミン二無水物、ビス(3,4−ジカルボキシフェニル)ジエチルシラン二無水物等も挙げられる。これらの中でも、本発明に好適なテトラカルボン酸二無水物としては、2,2′−置換ビフェニルテトラカルボン酸二無水物が挙げられる。さらに好ましくは、2,2′−ビス(トリハロメチル)−4,4′,5,5′−ビフェニルテトラカルボン酸二無水物であり、特に好ましくは、2,2′−ビス(3,4−ジカルボキシフェニル)−ヘキサフルオロプロパン二無水物である。
本発明に用いられるジアミンとしては、特に制限はなく、例えば、ベンゼンジアミン、ジアミノベンゾフェノン、ナフタレンジアミン、複素環式芳香族ジアミン、およびその他の芳香族ジアミンが挙げられる。
上記ベンゼンジアミンとしては、例えば、o−、m−およびp−フェニレンジアミン、2,4−ジアミノトルエン、1,4−ジアミノ−2−メトキシベンゼン、1,4−ジアミノ−2−フェニルベンゼンおよび1,3−ジアミノ−4−クロロベンゼンのようなベンゼンジアミン等が挙げられる。上記ジアミノベンゾフェノンの例としては、2,2′−ジアミノベンゾフェノン、および3,3′−ジアミノベンゾフェノン等が挙げられる。前記ナフタレンジアミンとしては、例えば、1,8−ジアミノナフタレン、および1,5−ジアミノナフタレン等が挙げられる。上記複素環式芳香族ジアミンの例としては、2,6−ジアミノピリジン、2,4−ジアミノピリジン、および2,4−ジアミノ−S−トリアジン等が挙げられる。
また、上記ジアミンとしては、これらの他に、4,4′−ジアミノビフェニル、4,4′−ジアミノジフェニルメタン、4,4′−(9−フルオレニリデン)-ジアニリン、2,2'−ビス(トリフルオロメチル)−4,4'−ジアミノビフェニル、3,3'−ジクロロ−4,4'−ジアミノジフェニルメタン、2,2'−ジクロロ−4,4'−ジアミノビフェニル、2,2',5,5'−テトラクロロベンジジン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、4,4′−ジアミノジフェニルエーテル、3,4′−ジアミノジフェニルエーテル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4′−ビス(4−アミノフェノキシ)ビフェニル、4,4′−ビス(3−アミノフェノキシ)ビフェニル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、4,4′−ジアミノジフェニルチオエーテル、4,4′−ジアミノジフェニルスルホン等も挙げられる。これらの中でも、本発明に好適なジアミンとしては、2,2−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルが挙げられる。
本発明に用いられるポリイミドとしては、上記のテトラカルボン酸二無水物とジアミンとを反応させて得られる少なくとも1つを適宜選択して用いることができる。ただし、ポリイミドはこれらに限定されず、本発明の効果が得られる限りにおいて、任意の適切なポリイミドが採用され得る。透明性、溶解性、機械的強度、熱安定性、水分遮断性、位相差値の安定性等に優れるポリイミドが好ましく用いられる。本発明においては、透明性、溶解性に特に優れるという理由で、分子中にC−F結合を有する含フッ素ポリイミドが好ましく用いられる。含フッ素ポリイミドの具体例としては、日本ポリイミド研究会編「最新ポリイミド」p.274〜p.275(2002年版)に開示されているポリイミドが挙げられる。さらに好ましくは、テトラカルボン酸二無水物として2,2′−ビス(3,4−ジカルボキシフェニル)−ヘキサフルオロプロパン二無水物を用い、ジアミンとして2,2−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルを用いて得られる下記式(4)で表される繰り返し単位からなるポリイミドが用いられる。
本発明に用いられるポリイミドの重量平均分子量(Mw)としては、ジメチルホルムアミド溶液(10mMの臭化リチウムと10mMのリン酸を加えメスアップして1Lのジメチルホルムアミド溶液としたもの)を展開溶媒とするポリエチレンオキサイド標準の重量平均分子量(Mw)が、好ましくは20,000〜180,000であり、さらに好ましくは50,000〜150,000であり、最も好ましくは70,000〜130,000である。上記の範囲であれば、機械的強度に優れたポリイミド層を得ることができる。また、本発明の偏光板が高温・高湿下に曝されても光学特性が変化しにくいという効果も有する。
本発明に用いられるポリイミドのイミド化率としては、任意の適切なイミド化率が採用され得る。イミド化率は、好ましくは90%以上であり、さらに好ましくは95%以上であり、最も好ましくは98%以上である。上記イミド化率は、核磁気共鳴(NMR)スペクトルにて、ポリイミドの前駆体であるポリアミック酸由来のプロトンピークと、ポリイミド由来のプロトンピークとのピーク積分強度比から求めることができる。
上記ポリイミド層の厚みは、好ましくは1〜10μmであり、さらに好ましくは1〜8μmであり、特に好ましくは1〜6μmであり、最も好ましくは1〜5μmである。このように非常に薄いポリイミド層を、特定の接着剤層(後述)を介して偏光子と貼り合わせることにより、ポリイミド層と偏光子との接着性が格段に改善され得る。その結果、偏光子に積層しても全面で剥れや浮きの生じない偏光板を得ることができる。また、一般的に、ポリイミドは光弾性係数の絶対値が大きいので、偏光子と積層して液晶表示装置に用いた場合には、偏光子の収縮応力やバックライトの熱による位相差値のズレやムラが生じやすいという問題を生じる場合がある。しかし、本発明に用いられるポリイミド層は、薄層で大きな位相差値を得ることができるため、光学的均一性の優れた表示特性を得ることができる。
上記ポリイミド層の残留揮発成分量としては、特に制限はないが、好ましくは0を超え5%以下、さらに好ましくは0を超え3%以下である。このような範囲であれば、位相差値の安定性に優れたポリイミド層が得られる。上記ポリイミド層の残留揮発成分量は、250℃で10分間加熱したときの、加熱前後の重量減少量から求めることができる。
上記ポリイミド層の23℃における波長590nmの光で測定した透過率は、好ましくは80%以上であり、さらに好ましくは85%以上であり、最も好ましくは90%以上である。通常、ポリイミドは黄色または褐色に着色し易く、例えば厚みが1μmを超えるポリイミド層では透過率の高いものが得られにくい。しかし、本発明によれば、分子構造中にかさ高い原子または置換基を有するポリイミド(例えば、フッ素原子(例えば、C−F結合)を有するポリイミド)を用いることにより、所望の厚み方向の位相差値を非常に薄い層厚で実現することができ、かつ、非常に透過率の高いポリイミド層を得ることができる。
上記ポリイミド層は、ポリイミド溶液を透明保護フィルムの表面に塗工し乾燥させる際の溶剤の蒸発過程で、ポリイミド自身の性質により分子が自発的に配向するため、ネガティブCプレートとして用いることができる。本明細書において、「ネガティブCプレート」とは、フィルム面内の主屈折率をnx、nyとし、厚み方向の屈折率をnzとしたとき、屈折率分布がnx≒ny>nzを満足するものをいう(厚み方向に光軸を有する負の一軸性位相差フィルムともいう)。上記ネガティブCプレートは、厳密にnx=nyに限定されず、液晶表示装置の表示特性に実用上悪影響を及ぼさない程度に、フィルム面内の複屈折率が小さいものであれば、ネガティブCプレートに包含される。具体的には、上記ポリイミド層のReは、好ましくは0〜10nmであり、さらに好ましくは0〜5nmであり、最も好ましくは0〜3nmである。
ネガティブCプレートとしても機能し得る場合のポリイミド層のRthは、好ましくは50〜800nmであり、さらに好ましくは80〜400nmであり、最も好ましくは100〜300nmである。このようなRthの範囲であれば、例えばVAモードまたはOCBモードの厚み方向の位相差値をポリイミド層単独で光学補償できるので、液晶パネルの薄型化に貢献できる。ポリイミド層のRthは、液晶表示装置の配向モードや液晶表示装置に用いられる他の位相差板の種類に応じて最適化され得る。ポリイミド層のRthは、その厚みを変化させることによって、適切に調整され得る。
ネガティブCプレートとして機能し得る場合のポリイミド層の厚み方向の複屈折率(Δn[xz])は、好ましくは0.005〜0.15であり、さらに好ましくは0.01〜0.08であり、最も好ましくは0.02〜0.06である。なお、上記ポリイミド層のΔn[xz]は、使用されるポリイミドの種類を適切に選択することにより調整することができる。具体的には、ポリイミドの分子構造が剛直なものを選択すればΔn[xz]を大きくすることができ、柔軟なものを選択すればΔn[xz]を小さくすることができる。
上記ポリイミド層は、ポリイミド溶液を塗工・乾燥後に延伸してフィルム面内に張力を加え、延伸方向に分子の配向を高めることによって、二軸性位相差フィルムとして用いることもできる。本明細書において、「二軸性位相差フィルム」とは、フィルム面内の主屈折率をnx、nyとし、厚み方向の屈折率をnzとしたとき、屈折率分布がnx>ny>nzを満足するものをいう。なお、上記のnx>ny>nzを満足するとは、Rth>Reを満足するとも言い換えることができる。上記ポリイミド層は、透明保護フィルムと共に積層フィルムの形で延伸することで、非常に薄いにもかかわらず幅方向に均一に張力を加えることができる。上記の方法によれば、位相差値の均一性、厚み均一性に優れたポリイミド層を得ることができる。
上記延伸方法としては、任意の適切な方法が採用され得る。具体例としては、縦一軸延伸法、横一軸延伸法、縦横同時二軸延伸法、縦横逐次二軸延伸法等が挙げられる。延伸手段としては、ロール延伸機、テンター延伸機や二軸延伸機等の任意の適切な延伸機が用いられ得る。また、加熱延伸を行う場合には、温度を連続的に変化させてもよく、段階的に変化させてもよい。延伸工程を、2回以上に分割してもよい。延伸方向は、フィルム長手方向(MD方向)であってもよく、幅方向(TD方向)であってもよい。また、特開2003−262721号公報の図1に記載の延伸法を用いて、斜め方向に延伸(斜め延伸)してもよい。
二軸性位相差フィルムとしても機能し得る場合のポリイミド層のReは、好ましくは10〜350nmであり、さらに好ましくは30〜200nmであり、最も好ましくは40〜100nmである。ポリイミド層のReは、液晶表示装置の配向モードや液晶表示装置に用いられる他の位相差板の種類に応じて最適化され得る。ポリイミド層のReは、ポリイミド層の厚み、延伸温度、延伸倍率等を変化させることにより適切に調整され得る。
二軸性位相差フィルムとしても機能し得る場合のポリイミド層のフィルム面内の複屈折率(Δn[xy])は、好ましくは0.00050〜0.10であり、さらに好ましくは0.0010〜0.0050であり、最も好ましくは0.0015〜0.035である。ポリイミド層のΔn[xy]は、液晶表示装置の配向モードや液晶表示装置に用いられる他の位相差板の種類に応じて最適化され得る。ポリイミド層のΔn[xy]は、ポリイミド層の厚み、延伸温度、延伸倍率等を変化させることにより適切に調整され得る。
二軸性位相差フィルムとしても機能し得る場合のポリイミド層の遅相軸の角度(配向角ともいう)のバラツキは、小さければ小さいほど、液晶表示装置の正面方向のコントラスト比を高くすることができる。配向角のバラツキとしては、フィルム幅方向で等間隔に設けた5点の測定箇所の配向角のバラツキの範囲が、好ましくは±2.0°〜±1.0°であり、さらに好ましくは±1.0°〜±0.5°であり、最も好ましくは±0.5°以下である。なお、上記配向角は、王子計測機器(株)製製品名「KOBRA21−ADH」を用いて求めることができる。
二軸性位相差フィルムとしても機能し得る場合のポリイミド層のRthは、好ましくは50〜900nmであり、さらに好ましくは80〜500nmであり、最も好ましくは100〜400nmである。ポリイミド層のRthは、液晶表示装置の配向モードや液晶表示装置に用いられる他の位相差板の種類に応じて最適化され得る。ポリイミド層のRthは、ポリイミド層の厚み、延伸温度、延伸倍率等を変化させることにより適切に調整され得る。
二軸性位相差フィルムとしても機能し得る場合のポリイミド層の厚み方向の複屈折率(Δn[xz])は、好ましくは0.007〜0.23であり、さらに好ましくは0.015〜0.12であり、最も好ましくは0.03〜0.09である。ポリイミド層のΔn[xz]は、液晶表示装置の配向モードや液晶表示装置に用いられる他の位相差板の種類に応じて最適化され得る。ポリイミド層のΔn[xz]は、使用されるポリイミドの種類、延伸温度、延伸倍率等を変化させることにより適切に調整され得る。
ポリイミド層を二軸性位相差フィルムとして用いる場合、偏光子の吸収軸とポリイミド層の遅相軸との関係は、特に制限はないが、平行、直交または45°のいずれかであることが好ましい。ポリイミド層の遅相軸と偏光子の吸収軸とのバラツキは、両者が平行に配置される場合、好ましくは0±1.0°であり、さらに好ましくは0±0.5°であり、最も好ましくは0±0.3°である。両者が直交に配置される場合、バラツキは、好ましくは90±1.0°であり、さらに好ましくは90±0.5°であり、最も好ましくは90±0.3°である。両者が45°で配置される場合、バラツキは、好ましくは45±1.0°であり、さらに好ましくは45±0.5°であり、最も好ましくは45±0.3°である。
nx≧ny>nzの関係を満足する複屈折層としては、ポリイミド層以外のネガティブCプレート、二軸性位相差フィルムがあげられる。
ネガティブCプレートとしては、例えば、複屈折性を有するプラスチック材料を二軸延伸処理したフィルム、可視光領域(380nm〜780nm)以外に選択反射波長を有するコレステリック液晶のプラナー配向状態を固定したものや、ディスコティック液晶のカラムナー配向やネマチック配向を利用したもの、負の1軸性結晶を面内に配向させたものや、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン、ポリアミドイミドおよびポリエステルイミドなどの光学的に透明な材料の配向フィルムなどがあげられる。また、二軸性位相差フィルムは、Nz係数が2.0以上になるように二軸延伸処理したフィルムがあげられる。これらネガティブCプレート、二軸性位相差フィルムのRe、Rth、厚み等は、ポリイミド層と同様のものが好ましい。
なお、複屈折性を有するプラスチック材料としては可視光域において透明性に優れ、透過率が80%以上であるものが好ましい。かかるプラスチック材料としては、セルロース系、ポリカーボネート系、ポリビニルアルコール系、ポリメチルメタクリレート、ポリスチレン、アクリロニトリル・スチレン共重合体、スチレン・無水マレイミド共重合体、マレイミド・スチレン共重合体などがあげられる。
可視光領域(380nm〜780nm)以外に選択反射波長を有するコレステリック液晶のプラナー配向状態を固定したネガティブCプレートは、コレステリック液晶の選択反射波長としては、可視光領域に色付きなどがないことが望ましい。そのため、選択反射光が可視領域にない必要がある。選択反射はコレステリックのカイラルピッチと液晶の屈折率によって一義的に決定される。選択反射の中心波長の値は近赤外領域にあっても良いが、旋光の影響などを受けるため、やや複雑な現象が発生するため、350nm以下の紫外部にあることがより望ましい。
ディスコティック液晶を用いたCプレートとしては、液晶材料として面内に分子の広がりを有したフタロシアニン類やトリフェニレン類化合物のごとく負の1軸性を有するディスコティック液晶材料を、ネマチック相やカラムナー相を発現させて固定したものである。負の1軸性無機層状化合物としては、たとえば、特開平6−82777号公報などに詳しい。
複屈折層は、通常、透明保護フィルムとともに、積層フィルムとして用いられる。透明保護フィルムと複屈折層とは、直接積層されていてもよく、アンカーコート層を介して積層されていてもよい。
積層フィルムの全体厚みは、好ましくは10〜200μmであり、さらに好ましくは20〜160μmであり、最も好ましくは30〜110μmである。上記の範囲であれば、十分な機械的強度を有するものとすることができる。
上記積層フィルムの23℃における波長590nmの光で測定した透過率は、好ましくは80%以上であり、さらに好ましくは85%以上であり、最も好ましくは90%以上である。
上記積層フィルムのReは、好ましくは0を超え700nm以下であり、さらに好ましくは0を超え350nm以下であり、最も好ましくは0を超え200nm以下である。上記の範囲とすることによって、液晶表示装置に用いた際の斜め方向のコントラスト比をより一層改善することができる。
上記積層保護膜のRthは、好ましくは50〜1100nmであり、さらに好ましくは80〜650nmであり、最も好ましくは100〜480nmである。上記の範囲とすることによって、液晶表示装置に用いた際の斜め方向のコントラスト比をより一層改善することができる。
上記アンカーコート層を構成する材料としては、透明保護フィルムと複屈折層との密着性および接着性を改善し得る任意の適切な材料が用いられ得る。加えて、透明性、熱安定性、低複屈折性などに優れる材料が好ましい。このような材料としては、ポリエステル、ポリアクリル、ポリウレタンおよびポリ塩化ビニリデン等を主成分とする熱可塑性樹脂が挙げられる。
上記アンカーコート層は、必要に応じて任意の適切な添加剤をさらに含有し得る。添加剤の具体例としては、可塑剤、熱安定剤、光安定剤、滑剤、抗酸化剤、紫外線吸収剤、難燃剤、着色剤、帯電防止剤、相溶化剤、架橋剤、および増粘剤等が挙げられる。使用される添加剤の種類および量は、目的に応じて適宜設定され得る。例えば、添加剤の使用量は、アンカーコート層中の全固形分100重量部に対して、好ましくは、通常、10重量部以下であり、さらに好ましくは5重量部以下であり、最も好ましくは3重量部以下である。
上記アンカーコート層を構成する材料としては、上記の熱可塑性樹脂のなかでも、ポリエステルを主成分とするものが好ましく用いられる。さらに好ましくは、ポリウレタンとポリエステルを共重合させた変性ポリエステルを主成分とするものが用いられる。このような変性ポリエステルは、特開平8−122969号公報の[0025]〜[0032]に記載されている方法により製造される。変性ポリエステルの具体例としては、東洋紡(株)製 商品名「バイロンURシリーズ」(有機溶剤系分散液)が挙げられる。
上記アンカーコート層のガラス転移温度(Tg)は、好ましくは−20〜+20℃であり、さらに好ましくは−10〜+10℃であり、特に好ましくは−5〜+5℃である。なお、ガラス転移温度は、示差走査熱量(DSC)測定によるJISK7121−1987に準じた方法で測定することができる。
上記アンカーコート層の厚みとしては、任意の適切な厚みが採用され得る。アンカーコート層の厚みは、好ましくは0.2〜1.5μmであり、さらに好ましくは0.4〜1.2μmであり、最も好ましくは、0.7〜1.0μmである。上記の範囲であれば、本発明の偏光板が高温・高湿の環境下に曝されても、複屈折層と透明保護フィルムとの層間の剥がれや浮きの生じない耐久性に優れた偏光板を得ることができる。
上記アンカーコート層は、例えば、上記ポリエステル等の熱可塑性樹脂を所定割合で含有する塗工液を透明保護フィルムの表面に、塗工し乾燥することで形成される。上記塗工溶液の調製方法としては、任意の適切な方法が採用され得る。例えば、市販の溶液または分散液を用いてもよいし、市販の溶液または分散液にさらに溶剤を添加して用いてもよいし、固形分を各種溶剤に溶解または分散して用いてもよい。塗工液の塗工方法としては、任意の適切な方法が採用され得る。例えば、コータを用いた塗工方式を用いることができる。
上記塗工液の全固形分濃度は、アンカーコート層形成材料の種類、溶解性、塗工粘度、ぬれ性、塗工後の厚みなどによって変化し得る。表面均一性の高いアンカーコート層を得るためには、全固形分濃度は、溶剤100重量部に対して、好ましくは固形分が2〜100重量部であり、さらに好ましくは10〜80重量部であり、最も好ましくは20〜60重量部である。
上記塗工液の粘度としては、塗工可能な範囲において任意の適切な粘度が採用され得る。当該粘度としては、23℃におけるせん断速度1000(1/s)で測定した値が、好ましくは2〜50(mPa・s)であり、さらに好ましくは5〜40(mPa・s)であり、最も好ましくは10〜30(mPa・s)である。上記の範囲であれば、表面均一性に優れたアンカーコート層を形成することができる。
前記偏光子と第一の複屈折層(他方の面では、例えば第二の透明保護フィルムまたは第二の複屈折層)の貼り合わせに用いる接着剤層は光学的に透明であれば、特に制限されず水系、溶剤系、ホットメルト系、ラジカル硬化型の各種形態のものが用いられるが、水系接着剤またはラジカル硬化型接着剤が好適である。
接着剤層を形成する水系接着剤としては特に限定されるものではないが、例えば、ビニルポリマー系、ゼラチン系、ビニル系ラテックス系、ポリウレタン系、イソシアネート系、ポリエステル系、エポキシ系等を例示できる。このような水系接着剤からなる接着剤層は、水溶液の塗布乾燥層などとして形成しうるが、その水溶液の調製に際しては、必要に応じて、架橋剤や他の添加剤、酸等の触媒も配合することができる。前記水系接着剤としては、ビニルポリマーを含有する接着剤などを用いることが好ましく、ビニルポリマーとしては、ポリビニルアルコール系樹脂が好ましい。またポリビニルアルコール系樹脂には、ホウ酸やホウ砂、グルタルアルデヒドやメラミン、シュウ酸などの水溶性架橋剤を含有することができる。特に偏光子としてポリビニルアルコール系のポリマーフィルムを用いる場合には、ポリビニルアルコール系樹脂を含有する接着剤を用いることが、接着性の点から好ましい。さらには、アセトアセチル基を有するポリビニルアルコール系樹脂を含む接着剤が耐久性を向上させる点からより好ましい。
ポリビニルアルコール系樹脂は、ポリ酢酸ビニルをケン化して得られたポリビニルアルコール;その誘導体;更に酢酸ビニルと共重合性を有する単量体との共重合体のケン化物;ポリビニルアルコールをアセタール化、ウレタン化、エーテル化、グラフト化、リン酸エステル化等した変性ポリビニルアルコールがあげられる。前記単量体としては、(無水)マレイン酸、フマール酸、クロトン酸、イタコン酸、(メタ)アクリル酸等の不飽和カルボン酸及びそのエステル類;エチレン、プロピレン等のα−オレフィン、(メタ)アリルスルホン酸(ソーダ)、スルホン酸ソーダ(モノアルキルマレート)、ジスルホン酸ソーダアルキルマレート、N−メチロールアクリルアミド、アクリルアミドアルキルスルホン酸アルカリ塩、N−ビニルピロリドン、N−ビニルピロリドン誘導体等があげられる。これらポリビニルアルコール系樹脂は一種を単独でまたは二種以上を併用することができる。
前記ポリビニルアルコール系樹脂は特に限定されないが、接着性の点からは、平均重合度100〜5000程度、好ましくは1000〜4000、平均ケン化度85〜100モル%程度、好ましくは90〜100モル%である。
アセトアセチル基を含有するポリビニルアルコール系樹脂は、ポリビニルアルコール系樹脂とジケテンとを公知の方法で反応して得られる。例えば、ポリビニルアルコール系樹脂を酢酸等の溶媒中に分散させておき、これにジケテンを添加する方法、ポリビニルアルコール系樹脂をジメチルホルムアミドまたはジオキサン等の溶媒にあらかじめ溶解しておき、これにジケテンを添加する方法等があげられる。またポリビニルアルコールにジケテンガスまたは液状ジケテンを直接接触させる方法があげられる。
アセトアセチル基を含有するポリビニルアルコール系樹脂のアセトアセチル基変性度は、0.1モル%以上であれば特に制限はなない。0.1モル%未満では接着剤層の耐水性が不充分であり不適当である。アセトアセチル基変性度は、好ましくは0.1〜40モル%程度、さらに好ましくは1〜20モル%、特に好ましくは2〜7モル%である。アセトアセチル基変性度が40モル%を超えると、耐水性の向上効果が小さい。アセトアセチル基変性度はNMRにより測定した値である。
架橋剤としては、ポリビニルアルコール系接着剤に用いられているものを特に制限なく使用できる。前記ポリビニルアルコール系樹脂と反応性を有する官能基を少なくとも2つ有する化合物を使用できる。例えば、エチレンジアミン、トリエチレンジアミン、ヘキサメチレンジアミン等のアルキレン基とアミノ基を2個有するアルキレンジアミン類;トリレンジイソシアネート、水素化トリレンジイソシアネート、トリメチロールプロパントリレンジイソシアネートアダクト、トリフェニルメタントリイソシアネート、メチレンビス(4−フェニルメタントリイソシアネート、イソホロンジイソシアネートおよびこれらのケトオキシムブロック物またはフェノールブロック物等のイソシアネート類;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジまたはトリグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジグリシジルアミン等のエポキシ類;ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド等のモノアルデヒド類;グリオキザール、マロンジアルデヒド、スクシンジアルデヒド、グルタルジアルデヒド、マレインジアルデヒド、フタルジアルデヒド等のジアルデヒド類;メチロール尿素、メチロールメラミン、アルキル化メチロール尿素、アルキル化メチロール化メラミン、アセトグアナミン、ベンゾグアナミンとホルムアルデヒドとの縮合物等のアミノ−ホルムアルデヒド樹脂、;更にナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム、鉄、ニッケル等の二価金属、又は三価金属の塩及びその酸化物があげられる。これらのなかでもアミノ−ホルムアルデヒド樹脂やジアルデヒド類が好ましい。アミノ−ホルムアルデヒド樹脂としてはメチロール基を有する化合物が好ましく、ジアルデヒド類としてはグリオキザールが好適である。なかでもメチロール基を有する化合物である、メチロールメラミンが特に好適である。また、架橋剤としては、シランカップリング剤、チタンカップリング剤などのカップリング剤を用いることができる。
前記架橋剤の配合量は、ポリビニルアルコール系樹脂の種類等に応じて適宜設計できるが、ポリビニルアルコール系樹脂100重量部に対して、通常、4〜60重量部程度、好ましくは10〜55重量部程度、さらに好ましくは20〜50重量部である。かかる範囲において、良好な接着性が得られる。
耐久性を向上させるには、アセトアセチル基を含有するポリビニルアルコール系樹脂を用いる。この場合にも、ポリビニルアルコール系樹脂100重量部に対して、前記同様、架橋剤を4〜60重量部程度、好ましくは10〜55重量部程度、さらに好ましくは20〜50重量部の範囲で用いるのが好ましい。架橋剤の配合量が多くなりすぎると、架橋剤の反応が短時間で進行し、接着剤がゲル化する傾向がある。その結果、接着剤としての可使時間(ポットライフ)が極端に短くなり、工業的な使用が困難になる。かかる観点からは、架橋剤の配合量は、上記配合量で用いられるが、本発明の樹脂溶液は、金属化合物コロイドを含有しているため、前記のように架橋剤の配合量が多い場合であっても、安定性よく用いることができる。
本発明の偏光板用接着剤としては、ポリビニルアルコール系樹脂、架橋剤および平均粒子径が1〜100nmの金属化合物コロイドを含有してなる樹脂溶液が好ましく用いられる。当該樹脂溶液は、通常、水溶液として用いられる。樹脂溶液濃度は特に制限はないが、塗工性や放置安定性等を考慮すれば、0.1〜15重量%、好ましくは0.5〜10重量%である。
金属化合物コロイドは、微粒子が分散媒中に分散しているものであり、微粒子の同種電荷の相互反発に起因して静電的安定化し、永続的に安定性を有するものである。金属化合物コロイド(微粒子)の平均粒子径は1〜100nmである。前記コロイドの平均粒子径が前記範囲であれば、接着剤層中において、金属化合物を略均一に分散させることができ、接着性を確保し、かつクニックを抑えることができる。前記平均粒子径の範囲は、可視光線の波長領域よりもかなり小さく、形成される接着剤層中において、金属化合物によって透過光が散乱したとしても、偏光特性には悪影響を及ぼさない。金属化合物コロイドの平均粒子径は、1〜100nm、さらには1〜50nmであるのが好ましい。
金属化合物コロイドとしては、各種のものを用いることができる。例えば、金属化合物コロイドとしては、アルミナ、シリカ、ジルコニア、チタニア、酸化スズ、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸マグネシウム等の金属酸化物のコロイド;炭酸亜鉛、炭酸バリウム、リン酸カルシウム等の金属塩のコロイド;セライト、タルク、クレイ、カオリン等の鉱物のコロイドがあげられる。
金属化合物コロイドは、分散媒に分散してコロイド溶液の状態で存在している。分散媒は、主として水である。水の他に、アルコール類等の他の分散媒を用いることもできる。コロイド溶液中の金属化合物コロイドの固形分濃度は、特に制限されないが、通常、1〜50重量%程度、さらには、1〜30重量%のものが一般的である。また、金属化合物コロイドは、安定剤として硝酸、塩酸、酢酸などの酸を含有するものを用いることができる。
金属化合物コロイドは、静電的に安定化しており、正電荷を有するものと、負電荷を有するものに分けられるが、金属化合物コロイドは非導電性の材料である。正電荷と負電荷とは、接着剤調製後の溶液におけるコロイド表面電荷の電荷状態により、区別される。金属化合物コロイドの電荷は、例えば、ゼータ電位測定機により、ゼータ電位を測定することにより確認できる。金属化合物コロイドの表面電荷は、一般に、pHにより変化する。従って、本願のコロイド溶液の状態の電荷は、調整された接着剤溶液のpHにより影響される。接着剤溶液のpHは、通常、2〜6、好ましくは2.5〜5、さらに好ましくは3〜5、さらには3.5〜4.5の範囲に設定される。本発明では、正電荷を有する金属化合物コロイドが、負電荷を有する金属化合物コロイドに比べて、クニックの発生を抑える効果が大きい。正電荷を有する金属化合物コロイドとしては、アルミナコロイド、ジルコニアコロイド、チタニアコロイド、酸化スズコロイド等があげられる。これらのなかでも、特に、アルミナコロイドが好適である。
金属化合物コロイドは、ポリビニルアルコール系樹脂100重量部に対して、200重量部以下の割合(固形分の換算値)で配合される。また金属化合物コロイドの配合割合を前記範囲とすることで、偏光子と第一の複屈折層(他方の面では、例えば第二の透明保護フィルムまたは第二の複屈折層)との接着性を確保しながら、クニックの発生を抑えることができる。金属化合物コロイドの配合割合は、10〜200重量部であるのが好ましく、さらには20〜175重量部、さらには30〜150重量部であるのが好ましい。金属化合物コロイドの配合割合が、ポリビニルアルコール系樹脂100重量部に対して、200重量部を超えると、接着剤中における、ポリビニルアルコール系樹脂の割合が小さくなり、接着性の点から好ましくない。なお、金属化合物コロイドの配合割合は、特に制限されないが、有効にクニックを抑えるには、前記範囲の下限値とするのが好ましい。
偏光板用接着剤である樹脂溶液の粘度は特に制限されないが、1〜50mPa・sの範囲のものが用いられる。偏光板の作成にあたって生じるクニックは、樹脂溶液の粘度が下がるに従って、クニックの発生も多くなる傾向があるが、本発明の偏光板用接着剤によれば、1〜20mPa・sの範囲のような低粘度の範囲においても、クニックの発生を抑えることができ、樹脂溶液の粘度に拘らず、クニックの発生を抑えることができる。アセトアセチル基を含有するポリビニルアルコール系樹脂は、一般的なポリビニルアルコール樹脂に比べて、重合度を高くすることができず、前記のような低粘度で用いられていたが、本発明では、アセトアセチル基を含有するポリビニルアルコール系樹脂を用いる場合にも、樹脂溶液の低粘度によって生じるクニックの発生を抑えられる。
偏光板用接着剤である樹脂溶液の調製法は特に制限されない。通常は、ポリビニルアルコール系樹脂および架橋剤を混合し、適宜に濃度を調製したものに、金属化合物コロイドを配合することで、樹脂溶液が調製される。また、ポリビニルアルコール系樹脂として、アセトアセチル基を含有するポリビニルアルコール系樹脂を用いたり、架橋剤の配合量が多いような場合には、溶液の安定性を考慮して、ポリビニルアルコール系樹脂と金属化合物コロイドを混合した後に、架橋剤を、得られる樹脂溶液の使用時期等を考慮しながら、混合することができる。なお、偏光板用接着剤である樹脂溶液の濃度は、樹脂溶液を調製した後に適宜に調整することもできる。
ラジカル硬化型接着剤としては、電子線硬化型、紫外線硬化型等の活性エネルギー線硬化型、熱硬化型等の各種のものを例示できるが、短時間で硬化可能な、活性エネルギー線硬化型が好ましい。特に、電子線硬化型が好ましい。電子線硬化型接着剤を用いることができる。偏光子と透明保護フィルムを貼り合せるために用いる接着剤の硬化方法に電子線を用いる(即ちドライラミネーション)ことによって、紫外線硬化法のような、加熱工程が不要になり、生産性を非常に高くすることができる。
硬化性成分としては、(メタ)アクリロイル基を有する化合物、ビニル基を有する化合物があげられる。これら硬化性成分は、単官能または二官能以上のいずれも用いることができる。またこれら硬化性成分は、1種を単独で、または2種以上を組み合わせて用いることができる。これら硬化性成分としては、例えば、(メタ)アクリロイル基を有する化合物が好適であり、例えば、各種のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートや、各種の(メタ)アクリレート系モノマー等があげられる。
上記硬化性成分のなかでも、エポキシ(メタ)アクリレート、特に、芳香環およびヒドロキシ基を有する単官能の(メタ)アクリレートが好ましい。また、(メタ)アクリロイル基を有する化合物としては、窒素含有モノマーおよび/またはカルボキシル基モノマーが好適に用いられる。これらモノマーは、接着性の点で好ましい。(メタ)アクリレートは、アクリレートおよび/またはメタクリレートを意味する。本発明では(メタ)アクリレートはこの意味である。
また、硬化性成分として、(メタ)アクリロイル基を有する化合物、特に、芳香環およびヒドロキシ基を有する単官能の(メタ)アクリレート、窒素含有(メタ)アクリレート、カルボキシル基含有(メタ)アクリレートを用いる場合には、当該硬化性成分は、電子線硬化型接着剤として適しており、当該接着剤を用いることで、偏光子および透明保護フィルムに対して良好な接着性を有する偏光板が得られる。例えば、低水分率の偏光子を用いた場合にも、また、透明保護フィルムとして透湿度の低い材料を用いた場合にも、本発明の接着剤は、これらに対して良好な接着性を示し、その結果、寸法安定性の良好な偏光板が得られる。
上記硬化性成分を用いる場合には、寸法変化が小さい偏光板を作製できるため、偏光板の大型化にも容易に対応でき、歩留まり、取り数の観点から生産コストを抑えることができる。また、本発明で得られた偏光板は寸法安定性がよいことから、バックライトの外部熱による画像表示装置のムラの発生を抑えることができる。
芳香環およびヒドロキシ基を有する単官能の(メタ)アクリレートは、芳香環およびヒドロキシ基を有する、各種の単官能の(メタ)アクリレートを用いることができる。ヒドロキシ基は、芳香環の置換基として存在してもよいが、本発明では、芳香環と(メタ)アクリレートとを結合する有機基(炭化水素基、特に、アルキレン基に結合したもの)として存在するものが好ましい。
前記芳香環およびヒドロキシ基を有する単官能の(メタ)アクリレートとしては、例えば、芳香環を有する単官能のエポキシ化合物と、(メタ)アクリル酸との反応物があげられる。芳香環を有する単官能のエポキシ化合物としては、例えば、フェニルグリシジルエーテル、t‐ブチルフェニルグリシジルエーテル、フェニルポリエチレングリコールグリシジルエーテル等があげられる。芳香環およびヒドロキシ基を有する単官能の(メタ)アクリレートの、具体例としては、例えば、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−t−ブチルフェノキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−フェニルポリエチレングリコールプロピル(メタ)アクリレート等があげられる。
窒素含有モノマーとしては、例えば、N−アクリロイルモルホリン、N−アクリロイルピペリジン、N−メタクリロイルピペリジン、N−アクリロイルピロリジン等のモルホリン環、ピペリジン環、ピロリジン環、ピペラジン環等の複素環を有する複素環含有アクリルモノマーがあげられる。また、窒素含有モノマーとしては、例えば、マレイミド、N−シクロへキシルマレイミド、N−フェニルマレイミド;(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−ヘキシル(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−ブチル(メタ)アクリルアミド、N−ブチル(メタ)アクリルアミドやN−メチロール(メタ)アクリルアミド、N−メチロールプロパン(メタ)アクリルアミド、N−イソプロピルアクリルアミド、N−メチロール(メタ)アクリルアミド、N−ヒドロキシエチル(メタ)アクリルアミド、N−メチロール−N−プロパン(メタ)アクリルアミドなどの(N−置換)アミド系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸アミノプロピル、(メタ)アクリル酸N,N−ジメチルアミノエチル、(メタ)アクリル酸t−ブチルアミノエチル、3−(3−ピリニジル)プロピル(メタ)アクリレートなどの(メタ)アクリル酸アルキルアミノアルキル系モノマー;N−(メタ)アクリロイルオキシメチレンスクシンイミドやN−(メタ)アクリロイル−6−オキシヘキサメチレンスクシンイミド、N−(メタ)アクリロイル−8−オキシオクタメチレンスクシンイミドなどのスクシンイミド系モノマーなどあげられる。窒素含有モノマーは、例えば、複素環含有アクリルモノマーが好ましく、特にN−アクリロイルモルホリンが好ましい。
カルボキシル基モノマーとしては、例えば、(メタ)アクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、などがあげられる。これらのなかでもアクリル酸が好ましい。
上記の他、(メタ)アクリロイル基を有する化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、ラウリル(メタ)アクリレート等の炭素数は1〜12のアルキル(メタ)アクリレート;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルなどの(メタ)アクリル酸アルコキシアルキル系モノマー;(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸6−ヒドロキシヘキシル、(メタ)アクリル酸8−ヒドロキシオクチル、(メタ)アクリル酸10−ヒドロキシデシル、(メタ)アクリル酸12−ヒドロキシラウリルや(4−ヒドロキシメチルシクロヘキシル)−メチルアクリレートなどのヒドロキシル基含有モノマー;無水マレイン酸、無水イタコン酸などの酸無水物基含有モノマー;アクリル酸のカプロラクトン付加物;スチレンスルホン酸やアリルスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー;2−ヒドロキシエチルアクリロイルホスフェートなどの燐酸基含有モノマーなどがあげられる。
上記硬化性成分としては、芳香環およびヒドロキシ基を有する単官能の(メタ)アクリレート、窒素含有モノマー、カルボキシル基モノマーが好適に用いられる。これらの成分を、硬化性成分として、50重量%以上を含有することが、偏光子および透明保護フィルムに対して接着性の良好な接着剤層を有する偏光板を得るうえで好ましい。さらには、塗工性、加工性などの点からも好ましい。前記硬化性成分の割合は、60重量%以上であるのが好ましく、さらには70重量%以上であるのが好ましく、さらには80重量%以上であるのが好ましい。
上記硬化性成分としては、二官能以上の硬化性成分を用いることができる。二官能以上の硬化性成分としては、二官能以上の(メタ)アクリレート、特に二官能以上のエポキシ(メタ)アクリレートが好ましい。二官能以上のエポキシ(メタ)アクリレートは、多官能のエポキシ化合物と、(メタ)アクリル酸との反応により得られる。多官能のエポキシ化合物は、各種のものを例示できる。多官能のエポキシ化合物としては、例えば、芳香族エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂があげられる。
芳香族エポキシ樹脂としては、例えば、ビスフェノールAのジグリシジルエーテル、ビスフェールFのジグリシジルエーテル、ビスフェノールSのジグリシジルエーテルのようなビスフェノール型エポキシ樹脂;フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、ヒドロキシベンズアルデヒドフェノールノボラックエポキシ樹脂のようなノボラック型のエポキシ樹脂;テトラヒドロキシフェニルメタンのグリシジルエーテル、テトラヒドロキシベンゾフェノンのグリシジルエーテル、エポキシ化ポリビニルフェノールのような多官能型のエポキシ樹脂などがあげられる。
脂環式エポキシ樹脂としては、前記芳香族エポキシ樹脂の水添物、シクロヘキサン系、シクロヘキシルメチルエステル系、シシクロヘキシルメチルエーテル系、スピロ系、トリシクロデカン系等のエポキシ樹脂があげられる。
脂肪族エポキシ樹脂としては、脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテルがあげられる。これらの例としては、1,4−ブタンジオールのジグリシジルエーテル、1,6−ヘキサンジオールのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテル、エチレングリコールやプロピレングリコール、グリセリンのような脂肪族多価アルコールに1種又は2種以上のアルキレンオキサイド(エチレンオキサイドやプロピレンオキサイド)を付加することにより得られるポリエーテルポリオールのポリグリシジルエーテルなどがあげられる。
前記エポキシ樹脂の、エポキシ当量は、通常30〜3000g/当量、好ましくは50〜1500g/当量の範囲である。
前記二官能以上のエポキシ(メタ)アクリレートは、脂肪族エポキシ樹脂のエポキシ(メタ)アクリレートが好ましい、特に、二官能の脂肪族エポキシ樹脂のエポキシ(メタ)アクリレートが好ましい。
上記硬化性成分のなかで、(メタ)アクリロイル基を有する化合物、特に、芳香環およびヒドロキシ基を有する単官能の(メタ)アクリレート、窒素含有(メタ)アクリレート、カルボキシル基含有(メタ)アクリレートは、電子線硬化型接着剤として適しており、当該接着剤を用いることで、偏光子および第一の複屈折層(他方の面では、例えば第二の透明保護フィルムまたは第二の複屈折層)に対して良好な接着性を有する偏光板が得られる。例えば、低水分率の偏光子を用いた場合にも、また、透明保護フィルムとして透湿度の低い材料を用いた場合にも、本発明の接着剤は、これらに対して良好な接着性を示し、その結果、寸法安定性の良好な偏光板が得られる。
硬化型接着剤は、硬化性成分を含むが、前記成分に加えて、硬化のタイプに応じて、ラジカル開始剤を添加する。前記接着剤を電子線硬化型で用いる場合には、前記接着剤にはラジカル開始剤を含有させることは特に必要ではないが、紫外線硬化型、熱硬化型で用いる場合には、ラジカル開始剤が用いられる。ラジカル開始剤の使用量は硬化性成分100重量部あたり、通常0.1〜10重量部程度、好ましくは、0.5〜3重量部である。
また前記接着剤には、金属化合物フィラーを含有させることができる。金属化合物フィラーにより、接着剤層の流動性を制御することができ、膜厚を安定化して、良好な外観を有し、面内が均一で接着性のバラツキのない偏光板が得られる。
金属化合物フィラーは、各種のものを用いることができる。金属化合物としては、例えば、アルミナ、シリカ、ジルコニア、チタニア、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸マグネシウム等の金属酸化物;炭酸亜鉛、炭酸バリウム、リン酸カルシウム等の金属塩;セライト、タルク、クレイ、カオリン等の鉱物があげられる。また、これら金属化合物フィラーは、表面改質されたものを用いることができる。
金属化合物フィラーの平均粒子径は、通常、1〜1000nm程度であり、さらには10〜200nm、さらには10〜100nmであるのが好ましい。金属化合物フィラーの平均粒子径が前記範囲であれば、接着剤層中において、金属化合物を略均一に分散させることができ、接着性を確保し、かつ良好な外観で、面内の均一な接着性を得られる。
金属化合物フィラーの配合量は、硬化性成分100重量部に対して、200重量部以下の割合で配合するのが好ましい。また金属化合物フィラーの配合割合を前記範囲とすることで、偏光子と第一の複屈折層(他方の面では、例えば第二の透明保護フィルムまたは第二の複屈折層)との接着性を確保しながら、かつ良好な外観で、面内の均一な接着性を得られる。金属化合物フィラーの配合割合は、1〜100重量部であるのが好ましく、さらには2〜50重量部、さらには5〜30重量部であるのが好ましい。金属化合物フィラーの配合割合が、硬化性成分100重量部に対して、100重量部を超えると、接着剤中における、硬化性成分の割合が小さくなり、接着性の点から好ましくない。なお、金属化合物フィラーの配合割合は、特に制限されないが、接着性を確保しながら、かつ良好な外観で、面内の均一な接着性を得るには、前記範囲の下限値とするのが好ましい。
なお、偏光板用接着剤には、各種粘着付与剤、紫外線吸収剤、酸化防止剤、耐熱安定剤、可塑剤、レベリング剤、発泡抑制剤、帯電防止割、耐加水分解安定剤等の安定剤などの安定剤等を配合することもできる。また、本願における、金属化合物コロイド、金属化合物フィラーは非導電性の材料であるが、導電性物質の微粒子を含有することもできる。その他、添加剤の例としては、カルボニル化合物などで代表される電子線による硬化速度や感度を上がる増感剤、シランカップリング剤、チタンカップリング剤等のカップリング剤、エチレンオキシドで代表される接着促進剤、透明保護フィルムとの濡れ性を向上させる添加剤、アクリロキシ基化合物や炭化水素系(天然、合成樹脂)などがあげられる。
以下に、本発明の偏光板の製造方法を、複屈折層がポリイミド層の場合を代表させて説明する。本発明の偏光板の製造方法は、透明保護フィルムの表面にポリイミド溶液または分散液を塗工し乾燥させて、透明保護フィルム上にポリイミド層を有する積層フィルムを得る工程と;ポリイミド層が偏光子に対向するようにして、積層フィルムと偏光子とを接着剤を介して貼り合わせる工程とを含む。好ましくは、本発明の製造方法は、ポリイミド溶液の塗工・乾燥工程の後(得られた積層フィルムと偏光子との貼り合わせ工程の前)に、ポリイミド層の表面を改質処理する工程を含む。表面改質処理を行うことにより、ポリイミド層に対する接着剤のぬれ性を向上させ、上記ポリイミド層と接着剤層との接着性が改善される。以下、本発明の偏光板の製造方法の好ましい一例について、図面を参照して概要を説明し、その後で各工程の詳細を説明する。
図2は、ポリイミド溶液の塗工工程および表面改質処理工程の概要を説明する模式図である。図2は、表面改質処理が、コロナ処理やオゾン処理のような乾式処理を採用する場合を例示する。透明保護フィルムが繰り出し部310から供給され、コータ部320においてポリイミド溶液が透明保護フィルムの表面に塗工される。ポリイミド溶液が塗工された透明保護フィルムは乾燥手段330に送られ、溶媒を蒸発させてポリイミド層と透明保護フィルムとを有する積層フィルムを形成する。次いで、積層フィルムを表面改質処理部340に送り、ポリイミド層表面を改質処理する。この積層フィルムは、巻取り部350に巻き取られて、貼り合わせ工程へと供される。ポリイミド層の表面改質を行わない場合または後述の湿式処理を行う場合には、表面改質処理部340で行われる表面改質処理工程は省略され得る。あるいは、上記乾式処理を行った後、後述の湿式処理をさらに行ってもよい。乾式処理と湿式処理を組み合わせることにより、偏光子と積層フィルムのポリイミド層との接着性をさらに向上させることができる。
図3は、上記表面改質処理が、アルカリ処理のような湿式処理を採用する場合を例示する。上記図2の工程(ただし、表面改質処理は省略されていてもよい)を経て得られた積層フィルムが、繰り出し部410から供給され、処理液浴420を通過させられる。次いで、積層フィルムは乾燥手段430に送られ、処理液が除去される。最後に、積層フィルムは、巻取り部440に巻き取られて、貼り合わせ工程へと供される。なお、ポリイミド溶液の塗工工程と湿式表面改質処理工程とを連続的に行ってもよいことは言うまでもない。
図4は、積層フィルムと偏光子との貼り合わせ工程の概要を説明する模式図である。積層フィルムが第1の繰り出し部511から供給され、コータ部520において接着剤がポリイミド層の表面に塗工される。一方、第2の繰り出し部512から偏光子が供給される。接着剤が付与された積層フィルムと偏光子とは、貼り合わせローラー530で貼り合わされ、乾燥手段540に送られて接着剤が乾燥され、接着剤層が形成される。このようにして、偏光板が作製される。得られた偏光板は、巻き取り部550で巻き取られる。
以下、本発明の製造方法の各工程を詳細に説明する。
(ポリイミド溶液の塗工方法)
本発明の製造方法に用いられるポリイミド溶液としては、本発明の効果が得られる限りにおいて任意の適切な溶液が採用され得る。当該溶液は、ポリイミドの粉末またはペレットを溶剤に溶解させたものでもよく、ポリイミド合成過程で得られる反応溶液をそのまま用いてもよい。本発明においては、ポリイミド粉末を溶剤に溶解させたものが好ましく用いられる。欠点や輝点などの光学的欠陥の少ないポリイミド層が得られるからである。
上記ポリイミド溶液の全固形分濃度は、使用されるポリイミドの種類、溶解性、塗工粘度、ぬれ性、目的とする厚みなどによって変化し得る。全固形分濃度は、溶剤100重量部に対して好ましくは2〜100重量部であり、さらに好ましくは10〜50重量部であり、最も好ましくは10〜40重量部である。上記の範囲であれば、非常に薄く、かつ、表面均一性、光学均一性に優れたポリイミド層を形成することができる。
上記溶剤としては、上記ポリイミドを均一に溶解して溶液を形成し得る任意の適切な液体物質が採用され得る。上記溶剤は、ベンゼンやヘキサンなどの非極性溶媒であってもよく、水やアルコールなどの極性溶媒であってもよい。また、上記溶剤は、水などの無機溶剤であってもよく、アルコール類、ケトン類、エーテル類、エステル類、脂肪族および芳香族炭化水素類、ハロゲン化炭化水素類、アミド類、セロソルブ類などの有機溶剤であってもよい。
上記溶剤の具体例としては、アルコール類には、n−ブタノール、2−ブタノール、シクロヘキサノール、イソプロピルアルコール、t−ブチルアルコール、グリセリン、エチレングリコール、2−メチル−2,4−ペンタジオール、フェノール、パラクロロフェノール等が挙げられる。ケトン類には、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2−ペンタノン、2−ヘキサノン、2−ヘプタノン等が挙げられる。エーテル類には、ジエチルエーテル、テトラヒドロフラン、ジオキサン、アニソール等が挙げられる。エステル類には、酢酸エチル、酢酸ブチル、乳酸メチル等が挙げられる。脂肪族および芳香族炭化水素類には、n−ヘキサン、ベンゼン、トルエン、キシレン等が挙げられる。ハロゲン化炭化水素類には、クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン、トリクロロエタン、トリクロロエチレン、テトラクロロエチレン、クロロベンゼン等が挙げられる。アミド類には、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。セロソルブ類には、メチルセロソルブ、エチルセロソルブ、酢酸メチルセロソルブ等が挙げられる。これらの溶剤は、単独で、または任意に選ばれる2種類以上の溶剤を混合して用いられる。なお、上記の溶剤は単なる例示であり、本発明に用いられる溶剤はこれらに限定されない。
特に好ましい溶剤としては、シクロペンタノン、シクロヘキサノン、メチルイソブチルケトン、メチルエチルケトン、トルエン、酢酸エチル、テトラヒドロフラン等が挙げられる。これらの溶剤は、透明保護フィルムに対して実用上悪影響を及ぼすような侵食をせず、かつ、上記ポリイミドを十分に溶解することができる。
上記溶剤の沸点は、好ましくは55〜230℃であり、さらに好ましくは70〜150℃である。上記の範囲の沸点を有する溶剤を選択することによって、乾燥工程でポリイミド溶液中の溶剤が急激に蒸発することを防ぎ、表面均一性の高いポリイミド層を得ることができる。上記の範囲の沸点を有する溶剤としては、シクロペンタノン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶剤が挙げられる。
上記ポリイミド溶液の粘度としては、目的に応じて任意の適切な粘度が採用され得る。当該粘度は、23℃におけるせん断速度1000(1/s)で測定した値が、好ましくは50〜600(mPa・s)であり、さらに好ましくは100〜300(mPa・s)であり、最も好ましくは120〜200(mPa・s)である。上記の範囲であれば、非常に薄く、かつ、表面均一性、光学均一性に優れたポリイミド層を形成することができる。
上記ポリイミド溶液を塗工する方法としては、特に制限はなく、任意の適切なコータを用いた塗工方式を用いることができる。上記コータの具体例としては、リバースロールコータ、正回転ロールコータ、グラビアコータ、ナイフコータ、ロッドコータ、スロットオリフィスコータ、カーテンコータ、ファウンテンコータ、エアドクタコータ、キスコータ、ディップコータ、ビードコータ、ブレードコータ、キャストコータ、スプレイコータ、スピンコータ、押出コータ、ホットメルトコータ等が挙げられる。これらのなかでも、本発明にはリバースロールコータ、正回転ロールコータ、グラビアコータ、ロッドコータ、スロットオリフィスコータ、カーテンコータ、ファウンテンコータが好ましく用いられる。上記のコータを用いた塗工方式であれば、非常に薄く、かつ、表面均一性、光学均一性に優れたポリイミド層を形成することができる。
上記ポリイミド溶液の塗工厚みは、当該ポリイミド溶液の全固形分濃度や塗工粘度、コータの種類によって適宜調整され得る。塗工厚みは、好ましくは2〜30μmであり、さらに好ましくは5〜25μmであり、最も好ましくは8〜22μmである。このような厚みで塗工することにより、乾燥後に所望の厚み(結果として、偏光子との優れた密着性および接着耐久性)を有するポリイミド層が得られる。さらに、上記の範囲であれば、非常に薄く、かつ、表面均一性、光学均一性に優れたポリイミド層を形成することができる。
上記ポリイミド溶液の乾燥方法としては、任意の適切な乾燥方法が採用され得る。乾燥方法の具体例としては、熱風または冷風が循環する空気循環式恒温オーブン、マイクロ波もしくは遠赤外線などを利用したヒーター、温度調節用に加熱されたロール、ヒートパイプロールまたは金属ベルトなどを用いた加熱方法や温度制御方法を挙げることができる。
上記ポリイミド溶液の乾燥温度は、好ましくは50〜250℃であり、さらに好ましくは80〜150℃である。乾燥は一定温度で行ってもよく、段階的または連続的に温度を上昇または下降させながら行ってもよい。段階的な乾燥処理を行うことによって、より一層表面均一性に優れたポリイミド層を形成することができる。段階的な乾燥の具体例としては、例えば40〜140℃(好ましくは40〜120℃)の温度で1次乾燥を行った後、150〜250℃(好ましくは150〜180℃)の温度で2次乾燥を行う二段階の乾燥処理が挙げられる。
上記ポリイミド溶液の乾燥時間としては、任意の適切な乾燥時間が採用され得る。表面均一性に優れたポリイミド層を得るためには、乾燥時間は、好ましくは1〜20分であり、さらに好ましくは1〜15分であり、最も好ましくは2〜10分である。
(表面改質処理)
上記表面改質処理としては、任意の適切な方法が採用され得る。例えば、表面改質処理は、乾式処理でもよく、湿式処理でもよい。乾式処理の具体例としては、コロナ処理やグロー放電処理などの放電処理、火炎処理、オゾン処理、UVオゾン処理、紫外線処理や電子線処理などの電離活性線処理等が挙げられる。なかでも、本発明においては、UVオゾン処理、コロナ処理および/またはプラズマ処理が好ましく用いられる。連続生産が可能で、経済性および作業性に優れるからである。
本明細書において、「UVオゾン処理」とは、オゾンを含む空気を吹き付けながら、紫外線を照射することにより、フィルム表面を処理するものをいう。また、「コロナ処理」とは、接地された誘電体ロールと絶縁された電極との間に高周波、高電圧を印加することにより、電極間の空気が絶縁破壊してイオン化し発生するコロナ放電内へフィルムを通過させることによってフィルム表面を処理するものをいう。「プラズマ処理」とは、低圧の不活性ガスや酸素、ハロゲンガスなど無機気体中でグロー放電を起こすと、気体分子の一部がイオン化して発生する低温プラズマ内へフィルムを通過させることによって、フィルム表面を処理するものをいう。
上記表面改質処理を行う雰囲気は、特に制限はないが、空気雰囲気、窒素雰囲気、アルゴン雰囲気等が挙げられる。また、処理中の雰囲気の温度は、好ましくは23〜80℃であり、さらに好ましくは23〜60℃であり、最も好ましくは23〜50℃である。
上記表面改質処理を行う時間は、特に制限はないが、好ましくは5秒〜10分であり、さらに好ましくは10秒〜5分であり、最も好ましくは20秒〜3分である。また、本発明においては、上記表面改質処理は、ポリイミド層表面の水の接触角が好ましくは10〜70°、さらに好ましくは15〜60°、最も好ましくは20〜50°となるように行われる。
上記湿式処理の代表例としては、アルカリ処理が挙げられる。「アルカリ処理」は、塩基性物質を水または有機溶剤に溶解したアルカリ処理液に、積層フィルムを浸漬し、表面を処理するものをいう。上記図3の説明で記載したように、乾式処理と湿式処理(アルカリ処理)を組み合わせることにより、偏光子と積層フィルムのポリイミド層との接着性がさらに改善され得る。この理由の詳細は不明であるが、アルカリ処理工程中では、ポリイミド層の極表層をけん化することによって官能基を有するポリアミック酸に変性させること、表面に凹凸を付けることにより表面自由エネルギーが増大させること、等が起こっていると推察される。
上記塩基性物質としては、任意の適切な物質が採用され得る。具体例としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、水酸化銅、水酸化アルミニウム、水酸化鉄、水酸化アンモニウム、炭酸水素ナトリウム等が挙げられる。
アルカリ処理液のpHは、好ましくは8〜13であり、さらに好ましくは9〜13である。上記pHは、JISZ8802−1986に準じた方法で求めることができる。
上記アルカリ処理は、水溶液中や有機溶媒中の液相で行うことが好ましい。経済性、安定性等の観点より、水溶液中で行うことが好ましい。上記アルカリ処理中の液相の温度は、好ましくは23〜80℃であり、さらに好ましくは23〜60℃であり、最も好ましくは23〜50℃である。
上記アルカリ処理を行う時間は、特に制限はないが、好ましくは5秒〜10分であり、さらに好ましくは10秒〜5分であり、最も好ましくは20秒〜3分である。
上記アルカリ処理を行った後の乾燥方法としては、任意の適切な方法が採用され得る。例えば、熱風または冷風が循環する空気循環式恒温オーブン、マイクロ波もしくは遠赤外線などを利用したヒーター、温度調節用に加熱されたロール、ヒートパイプロールまたは金属ベルトなどを用いた加熱方法や温度制御方法を挙げることができる。
上記アルカリ処理を行った後の乾燥温度としては、特に制限はないが、好ましくは30〜180℃であり、さらに好ましくは40〜150℃であり、特に好ましくは50〜130℃である。上記の範囲であれば、積層フィルムの表面に付着した水分を十分に除去することができる。
上記積層フィルムと偏光子との貼り合わせは、任意の適切な方法を用いて達成され得る。例えば、上記図4に例示した形態によれば、上記接着剤を所定割合で含有する塗工液を上記積層フィルムのポリイミド層の表面に塗工し、当該接着剤が湿った状態で接着剤と偏光子とを接触させ、当該接着剤を乾燥させることにより、貼り合わせが達成され得る。上記接着剤を含有する塗工液を塗工する方法としては、特に制限はなく、前述した塗工方式を用いることができる。また、特開平11−179871号公報の図2や図5に記載の塗工方法も用いることができる。
上記積層フィルムと偏光子とを貼り合せる方法は、上記図示例に限定されず、任意の適切な方法が採用され得る。具体例としては、ホットメルトラミネーション、ノンソルベントラミネーション、ウェットラミネーション、ドライラミネーション等が挙げられる。本発明においては、図4に示すように、水溶性接着剤に適したウェットラミネーションが好ましく用いられる。
前記偏光板は、偏光子の片面に第一の積層フィルム(複屈折層:ポリイミド層側)を、他の片面には、例えば、第二の積層フィルムまたは任意の適切な第二の透明保護フィルムを接着剤層を介して貼り合せることにより得られるが、接着剤層と、第一もしくは第二の積層フィルムまたは第二の透明保護フィルムとの間には下塗り層や易接着処理層等を設けても良い。易接着処理としては、プラズマ処理、コロナ処理等のドライ処理、アルカリ処理(ケン化処理)等の化学処理、易接着剤層を形成するコーティング処理等があげられる。これらのなかでも、易接着剤層を形成するコーティング処理やアルカリ処理が好適である。易接着剤層の形成には、ポリオール樹脂、ポリカルボン酸樹脂、ポリエステル樹脂、シリコーン樹脂等の各種の易接着材料を使用することができる。なお、易接着剤層の厚みは、通常、0.001〜10μm程度、さらには0.001〜5μm程度、特に0.001〜1μm程度とするのが好ましい。
前記接着剤層が水系接着剤等により形成される場合には、当該接着剤層の厚みは10〜300nm程度である。接着剤層の厚みは、均一な面内厚みを得ることと、十分な接着力を得る点から、さらに好ましくは、10〜200nm、さらに好ましくは20〜150nmである。また、前述の通り、接着剤層の厚みは、偏光板用接着剤に含有されている金属化合物コロイドの平均粒子径よりも大きくなるように設計することが好ましい。
接着剤層の厚みを調整する方法としては、特に制限されるものではないないが、例えば、接着剤溶液の固形分濃度や接着剤の塗布装置を調整する方法があげられる。このような接着剤層厚みの測定方法としては、特に制限されるものではないが、SEM(Scanning Electron Microscopy)や、TEM(Transmission Electron Microscopy)による断面観察測定が好ましく用いられる。接着剤の塗布操作は特に制限されず、ロール法、噴霧法、浸漬法等の各種手段を採用できる。
水系接着剤を塗布した後は、偏光子と第一の積層フィルム(複屈折層:ポリイミド層側)を、他の片面では、例えば、第二の積層フィルムまたは任意の適切な第二の透明保護フィルムをロールラミネーター等により貼り合わせる。前記接着剤の塗布は、第一の積層フィルム(複屈折層:ポリイミド層側)を、他の片面では、例えば、第二の積層フィルムまたは任意の適切な第二の透明保護フィルム、偏光子のいずれに行ってもよく、両者に行ってもよい。貼り合わせ後には、乾燥工程を施し、塗布乾燥層からなる接着剤層を形成する。乾燥温度は、5〜150℃程度、好ましくは30〜120℃で、120秒間以上、さらには300秒間以上である。
一方、前記接着剤層が硬化型接着剤(電子線硬化型接着剤)により形成される場合には、前記接着層の厚みは、好ましくは0.1〜20μm、より好ましくは、0.2〜10μm、さらに好ましくは0.3〜8μmである。厚みが薄い場合は、接着力自体の凝集力が得られず、接着強度が得られないおそれがある。接着剤層の厚みが20μmを超えると、コストアップと接着剤自体の硬化収縮の影響が出て、偏光板の光学特性へ悪影響が発生するおそれがある。
偏光子と第一の積層フィルム(複屈折層:ポリイミド層側)を、他の片面では、例えば、第二の積層フィルムまたは任意の適切な第二の透明保護フィルムを貼り合わせた後に、電子線等を照射して、接着剤を硬化させる。電子線の照射方向は、任意の適切な方向から照射することができる。好ましくは、第一の積層フィルム(複屈折層:ポリイミド層側)を、他の片面では、例えば、第二の積層フィルムまたは任意の適切な第二の透明保護フィルム側から照射する。偏光子側から照射すると、偏光子が電子線によって劣化するおそれがある。
電子線の照射条件は、前記接着剤を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV〜300kVであり、さらに好ましくは10kV〜250kVである。加速電圧が5kV未満の場合、電子線が接着剤まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて電子線が跳ね返り、透明保護フィルムや偏光子にダメージを与えるおそれがある。照射線量としては、5〜100kGy、さらに好ましくは10〜75kGyである。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、透明保護フィルムや偏光子にダメージを与え、機械的強度の低下や黄変を生じ、所定の光学特性を得ることができない。
電子線照射は、通常、不活性ガス中で照射を行うが、必要であれば大気中や酸素を少し導入した条件で行ってもよい。透明保護フィルムの材料によるが、酸素を適宜導入することによって、最初に電子線があたる透明保護フィルム面にあえて酸素阻害を生じさせ、透明保護フィルムへのダメージを防ぐことができ、接着剤にのみ効率的に電子線を照射させることができる。
前記製造方法を連続ラインで行う場合、ライン速度は、接着剤の硬化時間によるが、好ましくは1〜500m/min、より好ましくは5〜300m/min、さらに好ましくは10〜100m/minである。ライン速度が小さすぎる場合は、生産性が乏しい、または透明保護フィルムへのダメージが大きすぎ、耐久性試験などに耐えうる偏光板が作製できない。ライン速度が大きすぎる場合は、接着剤の硬化が不十分となり、目的とする接着性が得られない場合がある。
図5は、本発明の好ましい実施形態による液晶パネルの概略断面図である。この液晶パネル100は、液晶セル20と、液晶セル20の両側に配置された位相差板30、30’と、それぞれの位相差板の外側に配置された偏光板10、10’とを備える。位相差板30、30’としては、目的および液晶セルの配向モードに応じて任意の適切な位相差板が採用され得る。また、目的および液晶セルの配向モードによっては、位相差板30、30’の一方または両方が省略され得る。上記偏光板10、10’の少なくとも1つは、上記で説明した本発明の偏光板である。偏光板10、10’は、代表的には、その吸収軸が直交するようにして配置されている。液晶セル20は、一対のガラス基板21、21’と、該基板間に配された表示媒体としての液晶層22とを有する。一方の基板(アクティブマトリクス基板)21には、液晶の電気光学特性を制御するスイッチング素子(代表的にはTFT)と、このアクティブ素子にゲート信号を与える走査線およびソース信号を与える信号線とが設けられている(いずれも図示せず)。他方のガラス基板(カラーフィルター基板)21’には、カラーフィルター(図示せず)が設けられる。なお、カラーフィルターは、アクティブマトリクス基板21に設けてもよい。基板21、21’の間隔(セルギャップ)は、スペーサー(図示せず)によって制御されている。基板21、21’の液晶層22と接する側には、例えばポリイミドからなる配向膜(図示せず)が設けられている。
図6は、本発明の液晶パネルにおける本発明の偏光板の代表的な配置を説明する概略斜視図である。簡単のため、液晶セルの下側(バックライト側)のみを図示して説明するが、本発明の偏光板は液晶セルの上側(視認側)のみに配置されてもよく、液晶セルの両側に配置されてもよいことは言うまでもない。また、図6においては、位相差板が省略されていることにも留意されたい。図6(a)〜(f)に示すように、本発明の偏光板10を用いる場合には、液晶セル20と偏光子11との間に第一の積層フィルム13が位置するようにして配置される。第一の積層フィルム13の第一の透明保護フィルム131、第一の複屈折層132および第一のアンカーコート層(図6では図示せず)の光学特性は、上述の通り、液晶表示装置の表示特性に影響を及ぼさないよう最適化されている。偏光子11の外側には、第二の積層フィルム13´が配置されてもよく、任意の適切な第二の透明保護フィルム14が配置されてもよい。また、第一の複屈折層132は実質的に複屈折性を呈するので遅相軸が存在するが、偏光子11の吸収軸と第一の複屈折層132の遅相軸とは、好ましくは平行、直交または45°の角度をなすようにして配置される。図6(a)および(b)の実施形態によれば、位相差板を用いなくても、特にVAモードの液晶セルを好適に光学補償することができる。図6(e)および(f)の実施形態によれば、位相差板を用いなくても、特にOCBモードの液晶セルを好適に光学補償することができる。
本発明の偏光板および液晶パネルが用いられる用途としては、パーソナルコンピューター、液晶テレビ、携帯電話、携帯情報端末(PDA)等の液晶表示装置や、有機エレクトロルミネッセンスディスプレイ(有機EL)、プロジェクター、プロジェクションテレビ、プラズマテレビ等の画像表示装置があげられる。なかでも、本発明の偏光板および液晶パネルは、液晶表示装置に好適に用いられ、液晶テレビに特に好適に用いられる。
上記液晶表示装置の種類には特に制限はなく、透過型、反射型、反射半透過型いずれの形でも使用することができる。上記液晶表示装置に用いられる液晶セルとしては、例えばツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モードや、水平配向(ECB)モード、垂直配向(VA)モード、インプレーンスイッチング(IPS)モード、ベンドネマチック(OCB)モード、強誘電性液晶(SSFLC)モード、反強誘電液晶(AFLC)モードの液晶セルなど種々の液晶セルが挙げられる。このうち、本発明の位相差フィルム及び偏光板は、特にTNモード、VAモード、IPSモード、OCBモードの液晶表示装置に用いることが好ましい。最も好ましくは、VAモードおよびOCBモードの液晶表示装置である。
上記ツイステッドネマチック(TN)モードの液晶セルとは、1対の基板の間に正の誘電異方性のネマチック液晶をはさんだものであり、ガラス基材の表面配向処理によって液晶分子配向を90度ねじらせてあるものをいう。具体的には、培風館株式会社「液晶辞典」158ページ(1989年)に記載の液晶セルや、特開昭63−279229公報に記載の液晶セルが挙げられる。
上記垂直配向(VA)モードの液晶セルとは、電圧制御複屈折(ECB:ElectricallyControlled Birefringnence)効果を利用し、透明電極間に誘電率異方性が負のネマチック液晶が、電圧無印加時において、垂直配列した液晶セルのことをいう。具体的には、特開昭62−210423公報や、特開平4−153621公報に記載の液晶セルが挙げられる。また、上記VAモードの液晶セルは、特開平11−258605公報に記載されているように、視野角拡大のために、画素内にスリットを設けたものや、表面に突起を形成した基材を用いることによって、マルチドメイン化したMVAモードの液晶セルであってもよい。さらに、特開平10−123576公報に記載されているように、液晶中にカイラル剤を添加し、ネマチック液晶を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるVATNモードの液晶セルであってもよい。
上記インプレーンスイッチング(IPS)モードの液晶セルとは、電圧制御複屈折(ECB:ElectricallyControlled Birefringnence)効果を利用し、2枚の平行な基板の間に液晶を封入したいわゆるサンドイッチセルにおいて、電界が存在しない状態でホモジニアス配向させたネマチック液晶を基板に平行な電界(横電界ともいう)で応答させるものをいう。具体的には、テクノタイムズ社出版「月刊ディスプレイ7月号」p.83〜p.88(1997年版)や、日本液晶学会出版「液晶vol.2No.4」p.303〜p.316(1998年版)に記載されているように、液晶分子の長軸と入射側偏光板の偏光軸と一致させて、上下の偏光板を直交配置させると、電界のない状態で完全に黒表示になり、電界があるときは、液晶分子は基板に平行を保ちながら回転動作することによって、回転角に応じた透過率を得ることができるものをいう。
上記ベンドネマチック(OCB:Optically Compensated Bend or Optically Compensated Birefringnence)モードの液晶セルとは、電圧制御複屈折(ECB:Electrically Controlled Birefringnence)効果を利用し、透明電極間に誘電率異方性が正のネマチック液晶が、電圧無印加時において、中央部にねじれ配向が存在するベンド配向した液晶セルのことをいう。上記OCBモードの液晶セルは、「πセル」とも言われる。具体的には、共立出版株式会社「次世代液晶ディスプレイ」(2000年)11ページ〜27ページに記載のものや、特開平7−084254公報に記載のものが挙げられる。
このような種々の液晶セルに、本発明の偏光板を用いることにより、コントラスト、色相および/または視野角特性を改善することができ、しかもその機能を長期間維持することができる。
以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、各例中、部および%は特記ない限り重量基準である。
(位相差の測定)
透明保護フィルムの波長590nmにおける屈折率nx、ny、nzを、平行ニコル回転法を原理とする自動複屈折測定装置(王子計測機器株式会社製,自動複屈折計KOBRA21ADH)により計測し、面内位相差Re、厚み方向位相差Rthを算出した。
(透湿度)
JIS Z0208の透湿度試験(カップ法)に準じて、温度40℃、湿度92%RHの雰囲気中、面積1m2の試料を24時間に通過する水蒸気のg数を測定した値である。
(接着剤水溶液の粘度)
調製した接着剤水溶液(常温:23℃)を、レオメーター(RSI‐HS,HAAKE社製)により測定した。
(コロイドの平均粒子径)
アルミナコロイド水溶液を粒度分布計(日機装社製,ナノトラックUPA150)により、動的光散乱法(光相関法)で測定した。
(ポリイミドの試薬)
2,2′−ビス(3,4−ジカルボキシフェニル)−ヘキサフルオロプロパン二無水物はクラリアントジャパン株式会社製のものを用い、2,2−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルは和歌山精化工業株式会社製のものを用いた。それ以外の化学薬品はすべて和光純薬工業株式会社から購入したものをそのまま用いた。
(イミド化率の測定方法)
1H−NMR装置[日本電子株式会社製 製品名「LA400」]を用い、11ppm付近のポリアミック酸NH由来のピーク積分強度をX、7.0〜8.5ppmのポリアミック酸およびポリイミドの芳香環由来のピーク積分強度をYとし、式:A(%)=((Y−6X)/Y)×100により求めた。
(ポリイミドの分子量の測定方法)
ゲル・パーミエーション・クロマトグラフ(GPC)法よりポリエチレンオキサイドを標準試料として算出した。具体的には、以下の装置、器具および測定条件により測定した。
・サンプル:試料を溶離液に溶解して0.1重量%の溶液を調整した。
・前処理:8時間静置し、0.45μmのメンブレンフィルターでろ過した。
・分析装置:東ソー製「HLC−8020GPC」
・カラム:東ソー製 GMHXL+GMHXL+G2500HXL
・カラムサイズ:各7.8mmφ×30cm(計90cm)
・溶離液:ジメチルホルムアミド(10mMの臭化リチウムと10mMのリン酸を加えメスアップして1Lのジメチルホルムアミド溶液としたもの)
・流量:0.8ml/min.
・検出器:RI(示差屈折計)
・カラム温度: 40℃
・注入量:100μl
(偏光子・偏光板の水分率の測定方法)
カールフィッシャー水分計[京都電子工業(株)製 製品名「MKA−610」]を用いて、150±1℃の加熱炉にサイズ10mm×30mmに切り出した偏光板を入れ、窒素ガス(200ml/分)を滴定セル溶液中にバブリングさせて測定した。
(厚み測定方法)
厚みが10μm未満の場合、薄膜用分光光度計[大塚電子(株)製 製品名「瞬間マルチ測光システム MCPD−2000」]を用いて測定した。厚みが10μm以上の場合、アンリツ製デジタルマイクロメーター「K−351C型」を使用して測定した。
(水の接触角の測定方法)
接触角計[協和界面科学(株)製 製品名「CA−X」]を用いて液滴法にて測定した。
<偏光子の作製>
厚み75μmのポリビニルアルコールを主成分とする高分子フィルム[クラレ(株)製商品名「9P75R」](平均重合度2400、けん化度99.9モル%)を30±3℃に保持したヨウ素とヨウ化カリウム配合の染色浴にて、ロール延伸機を用いて、染色しながら2.5倍に一軸延伸した。次いで、60±3℃に保持したホウ酸とヨウ化カリウム配合の水溶液浴中で、架橋反応を行いながら、ポリビニルアルコールフィルムの元長の6倍となるように一軸延伸した。得られたフィルムを50±1℃の空気循環式恒温オーブン内で30分間乾燥させて、水分率26%、厚み28μmの偏光子を得た。
<透明保護フィルム>
以下に示すものを用いた。
透明保護フィルム1:MS樹脂(MS−200;メタクリル酸メチル/スチレン(モル比)=80/20の共重合体,新日鐵化学(株)製)をモノメチルアミンでイミド化(イミド化率:90%)した。得られたイミド化されたMS樹脂は、一般式(1)で表されるグルタルイミド単位(式中、R1およびR3はメチル基、R2は水素原子である)、一般式(2)で表される(メタ)アクリル酸エステル単位(R4は水素原子、R5およびR6はメチル基である)、および一般式(3)で表される芳香族ビニル単位(R7は水素原子、R8はフェニル基である)、を有する。なお、前記イミド化には、口径15mmの噛合い型同方向回転式二軸押出機を用いた。押出機の各温調ゾーンの設定温度を230℃、スクリュー回転数150rpm、MS樹脂を2.0kg/hrで供給し、モノメチルアミンの供給量はMS樹脂に対して40重量部とした。ホッパーからMS樹脂を投入し、ニーディングブロックによって樹脂を溶融、充満させた後、ノズルからモノメチルアミンを注入した。反応ゾーンの末端にはシールリングを入れて樹脂を充満させた。反応後の副生成物および過剰のメチルアミンをベント口の圧力を−0.08MPaに減圧して脱揮した。押出機出口に設けられたダイスからストランドとして出てきた樹脂は、水槽で冷却した後、ペレタイザでペレット化した。前記イミド化されたMS樹脂を溶融押出製膜し、次いで、縦2倍、横2倍に二軸延伸した透明保護フィルム(厚さ40μm,Re=2nm,Rth=2nm)を用いた。
得られたイミド化されたMS樹脂中の一般式(1)の割合(イミド化率)は、生成物のペレットをそのまま用いて、SensIRTecnologies社製TravelIRを用いて、室温にてIRスペクトルを測定した。得られたスペクトルより、1720cm-1のエステルカルボニル基に帰属される吸収強度(Absester)と、1660cm-1のイミドカルボニル基に帰属される吸収強度(Absimide)の比からイミド化率(Im%(IR))を求めた。ここで、イミド化率とは全カルボニル基中のイミドカルボニル基の占める割合をいう。
透明保護フィルム2:厚さ40μmのトリアセチルセルロースフィルム(富士フィルム(株)製,Re=1nm,Rth=50nm)を用いた。
なお、上記透明保護フィルムは、その表面にポリウレタンとポリエステルを共重合させた変性ポリエステルを主成分とする熱可塑性樹脂の有機溶剤系分散液(固形分濃度30重量%)[東洋紡(株)製商品名「バイロンUR1700」]をロッドコータにより一方向に塗工し、130±1℃の空気循環式恒温オーブンで5分間乾燥させて、上記透明保護フィルムの一方の面に厚み0.8μmのアンカーコート層を形成したものを用いた。
<ポリイミドの合成>
機械式攪拌装置、ディーンスターク装置、窒素導入管、温度計および冷却管を取り付けた反応容器(500mL)内に2,2′−ビス(3,4−ジカルボキシフェニル)−ヘキサフルオロプロパン二無水物17.77g(40mmol)および2,2−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル12.81g(40mmol)を加えた。続いて、イソキノリン2.58g(20mmol)をm−クレゾール275.21gに溶解させた溶液を加え、23℃で1時間攪拌して(600rpm)均一な溶液を得た。次に、反応容器を、オイルバスを用いて反応容器内の温度が180±3℃になるように加温し、温度を保ちながら5時間攪拌して黄色溶液を得た。さらに3時間攪拌を行ったのち、加熱および攪拌を停止し、放冷して室温に戻すと、ポリマーがゲル状物となって析出した。
上記反応容器内の黄色溶液にアセトンを加えて上記ゲル状物を完全に溶解させ、希釈溶液(7重量%)を作製した。この希釈溶液を、2Lのイソプロピルアルコール中に攪拌を続けながら少しずつ加えると、白色粉末が析出した。この粉末を濾取し、1.5Lのイソプロピルアルコール中に投入して洗浄した。さらにもう一度同様の操作を繰り返して洗浄した後、上記粉末を再び濾取した。これを60℃の空気循環式恒温オーブンで48時間乾燥した後、150℃で7時間乾燥して、白色粉末としてポリイミドを得た(収率85%)。上記ポリイミドの重合平均分子量(Mw)は124,000、イミド化率は99.9%であった。
<接着剤の調製>
アセトアセチル基を含有するポリビニルアルコール系樹脂(平均重合度:1200,ケン化度:98.5モル%,アセトアセチル化度:5モル%)100部に対し、メチロールメラミン50部を、30℃の温度条件下に、純水に溶解し、固形分濃度3.7%に調整した水溶液を調製した。前記水溶液100部に対し、アルミナコロイド水溶液(平均粒子径15nm,固形分濃度10%,正電荷)18部を加えて接着剤水溶液を調製した。接着剤水溶液の粘度は9.6mPa・sであった。接着剤水溶液のpHは、4−4.5の範囲であった。これを接着剤1とする。また、前記接着剤1において、アルミナコロイド水溶液を加えなかった接着剤水溶液を調製した。接着剤水溶液の粘度は7.0mPa・sであった。接着剤水溶液のpHは、4−4.5の範囲であった。これを接着剤2とする。
実施例1
<積層フィルムの作成>
上記で得られたポリイミド(白色粉末)17.7重量部をメチルイソブチルケトン(沸点116℃)100重量部に溶解し、15重量%のポリイミド溶液を調整した。このポリイミド溶液を、上記透明保護フィルム1のアンカーコート層の表面にロッドコータにより一方向に塗工した。次に、135±1℃の空気循環式恒温オーブン内で5分間乾燥して溶剤を蒸発させ、透明保護フィルム上に厚み3.0μmのポリイミド層を形成して積層フィルムAを作製した。延伸前のポリイミド層はネガティブCプレートとしても機能した。なお、上記積層フィルムAを150±1℃の空気循環式恒温オーブン内で加熱しながら、テンター延伸機を用いてフィルムの長手方向を固定して幅方向に1.19倍で一軸延伸した後、幅方向に0.97倍で緩和処理を施した場合には、延伸後のポリイミド層は二軸性位相差フィルムとしても機能した。
<表面改質処理>
次に、上記積層フィルムのポリイミド層の表面を、メタルハライドランプ(波長365nmの光強度が200mJ/cmであるもの)を光源とする平行光型UVオゾン処理装置[アイグラフィックス(株)製]を用いて23℃の空気雰囲気下で10分間表面改質処理を施した。続いて、上記積層フィルムを水酸化ナトリウム水溶液中(40℃、pH13)に30秒間浸漬してアルカリ処理を施した。積層フィルムAのポリイミド層についての水の接触角は、表面改質処理前後で80°から30°へ変化した。
<偏光板の作成>
上記接着剤2を、ロッドコータにて、上記偏光子の両面に、乾燥後の厚みが0.05μmになるように塗工した。その一方の面には、上記積層フィルムを、ポリイミド層の表面が偏光子と対向するように積層した。また、他方の面には、透明保護フィルム2を積層した。その後、上記偏光板を110±1℃の空気循環式恒温オーブン内で5分間乾燥して、偏光板を作製した。
実施例2〜3、比較例1〜3
実施例1において、積層フィルムの作成、偏光板の作成にあたり、透明保護フィルムの種類、接着剤の種類を表1に示すように変えたこと、また、偏光板の作成にあたり偏光子に対する積層フィルムの積層方向を表1に示すように変えたこと以外は実施例1と同様にして作成した。
(評価)
得られた偏光板について下記評価を行った。結果を表1に示す。
(偏光板の表示ムラの検査)
VAモードの液晶セルを含む市販の液晶表示装置[パナソニック(株)製 32V型TH−32LX10]から液晶パネルを取り出し、上記液晶セルの上下に配置されていた偏光板を取り除いて、そのガラス面(表裏)を洗浄した。続いて、上記液晶セルのバックライト側に各例の偏光板を、偏光子の吸収軸が液晶パネルの短辺と平行になるように、且つ、偏光子の吸収軸と積層フィルムの遅相軸が互いに直交になるようにアクリル系粘着剤を用いて貼り合せた。次に、液晶セルの視認側には市販の偏光板[日東電工(株)製商品名「NPF−SEG1224DU」]を、偏光子の吸収軸が液晶パネルの長辺と平行になるように、且つ、視認側の偏光子の吸収軸と直交するように、アクリル系粘着剤を用いて貼り合せた。上記のように作製した液晶パネルを再び元の液晶表示装置に戻し、バックライトを点灯させて10分後の表示特性を測定した。
表示特性の測定は、23℃の暗室で行った。液晶表示装置に白画像および黒画像を表示させ、コニカミノルタ社製の商品名CA‐1500にて、表示画面の輝度ムラを測定した。輝度の面内はらつきσを算出した。σは小さい方がムラが少ない。
(密着性)
偏光板の端部において、偏光子と透明保護フィルムとの間にカッターの刃先を挿入した。当該挿入部において、偏光子と透明保護フィルムとを掴み、それぞれ反対方向に引っ張った。このとき、偏光子および/または透明保護フィルムが破断して剥離できなかった場合は、密着性が良好:「○」と判断した。一方、偏光子と透明保護フィルムとの間で一部または全部が剥離した場合は、密着性に乏しい:「×」と判断した。
(剥がれ量)
偏光板を、偏光子の吸収軸方向に50mm、吸収軸に直交する方向に25mmになるように切り出してサンプルを調製した。当該サンプルを、60℃の温水に浸漬し、時間経過とともにサンプルの端部の剥がれ量(mm)を測定した。剥がれ量(mm)の測定は、ノギスにより行なった。5時間経過後の剥がれ量(mm)を表1に示す。
(外観評価:クニック欠陥)
偏光板を1000mm×1000mmになるように切り出してサンプルを調製した。サンプルの偏光板を、蛍光灯下に置いた。サンプルの偏光板の光源側に別の偏光板を、それぞれの吸収軸が直行するように設置し、この状態で、光抜けする箇所(クニック欠陥)の個数をカウントした。また、偏光板の間にある異物(基板内異物)の個数、表面のキズの本数をカウントした。
本発明の代表的な実施形態による偏光板を説明するための概略断面図である。 本発明の製造方法におけるポリイミド溶液の塗工工程および表面改質処理工程の概要を説明する模式図である。 本発明の製造方法における表面改質処理工程が湿式処理を採用する場合を例示する模式図である。 本発明の製造方法における積層フィルムと偏光子との貼り合わせ工程の概要を説明する模式図である。 本発明の好ましい実施形態による液晶パネルの概略断面図である。 本発明の液晶パネルにおける偏光板の代表的な配置を説明する概略斜視図である。
符号の説明
10、10’ 偏光板
11 偏光子
12、12’ 接着剤層
13 積層フィルム
131、131’ 透明保護フィルム
132、132’ 複屈折層
20 液晶セル
21、21’ 基板
22 液晶層
30、30’ 位相差板
100 液晶パネル

Claims (10)

  1. 偏光子の少なくとも片面に、接着剤層、複屈折層および透明保護フィルムをこの順で有する偏光板であって、
    前記複屈折層は、nx≧ny>nz(但し、面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、厚さ方向をZ軸とし、それぞれの軸方向の屈折率をnx、ny、nzとする)の関係を満足し、かつ、
    前記透明保護フィルムはグルタルイミド単位および(メタ)アクリル酸エステル単位を有する(メタ)アクリル系樹脂を含有してなり、かつ、面内位相差が40nm未満、厚み方向位相差が80nm未満であることを特徴とする偏光板。
  2. 前記(メタ)アクリル系樹脂は、さらに芳香族ビニル単位を有することを特徴とする請求項1記載の偏光板。
  3. 前記(メタ)アクリル系樹脂は、さらにスチレン系樹脂を含有することを特徴とする請求項1または2記載の偏光板。
  4. 前記接着剤層は、ポリビニルアルコール系樹脂、架橋剤および平均粒子径が1〜100nmの金属化合物コロイドを含有してなる樹脂溶液であって、かつ、
    金属化合物コロイドは、ポリビニルアルコール系樹脂100重量部に対して、200重量部以下の割合で配合されている偏光板用接着剤から形成されたものであることを特徴とする請求項1〜3のいずれかに記載の偏光板。
  5. 金属化合物コロイドが、アルミナコロイド、シリカコロイド、ジルコニアコロイド、チタニアコロイドおよび酸化スズコロイドから選ばれるいずれか少なくとも1種であることを特徴とする請求項4記載の偏光板。
  6. 金属化合物コロイドが、正電荷を有することを特徴とする請求項4または5記載の偏光板。
  7. 金属化合物コロイドが、アルミナコロイドであることを特徴とする請求項6記載の偏光板。
  8. 前記複屈折層が、ポリイミド層であることを特徴とする請求項1〜7のいずれかに記載の偏光板。
  9. 請求項1〜8のいずれかに記載の偏光板が、少なくとも1枚積層されていることを特徴とする光学フィルム。
  10. 請求項1〜8のいずれかに記載の偏光板または請求項9記載の光学フィルムが用いられていることを特徴とする画像表示装置。
JP2007310944A 2007-11-30 2007-11-30 偏光板、光学フィルムおよび画像表示装置 Pending JP2009134136A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007310944A JP2009134136A (ja) 2007-11-30 2007-11-30 偏光板、光学フィルムおよび画像表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007310944A JP2009134136A (ja) 2007-11-30 2007-11-30 偏光板、光学フィルムおよび画像表示装置

Publications (1)

Publication Number Publication Date
JP2009134136A true JP2009134136A (ja) 2009-06-18

Family

ID=40866045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007310944A Pending JP2009134136A (ja) 2007-11-30 2007-11-30 偏光板、光学フィルムおよび画像表示装置

Country Status (1)

Country Link
JP (1) JP2009134136A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150693A1 (ja) * 2009-06-25 2010-12-29 チッソ株式会社 光配向した液晶性ポリイミドによる位相差膜及び光学素子
JP2012137723A (ja) * 2010-09-30 2012-07-19 Sumitomo Chemical Co Ltd 液晶表示装置
JP5360212B2 (ja) * 2009-07-17 2013-12-04 Jnc株式会社 光反応性基を有する液晶性ポリイミドよりなる位相差膜を有する液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150693A1 (ja) * 2009-06-25 2010-12-29 チッソ株式会社 光配向した液晶性ポリイミドによる位相差膜及び光学素子
JP5565411B2 (ja) * 2009-06-25 2014-08-06 Jnc株式会社 光配向した液晶性ポリイミドによる位相差膜及び光学素子
JP5360212B2 (ja) * 2009-07-17 2013-12-04 Jnc株式会社 光反応性基を有する液晶性ポリイミドよりなる位相差膜を有する液晶表示装置
TWI501010B (zh) * 2009-07-17 2015-09-21 Jnc Corp 具有由含有光反應性基的液晶性聚醯亞胺構成的相位差膜的液晶顯示裝置
JP2012137723A (ja) * 2010-09-30 2012-07-19 Sumitomo Chemical Co Ltd 液晶表示装置

Similar Documents

Publication Publication Date Title
JP4938632B2 (ja) 液晶パネル及び液晶表示装置
JP4784972B2 (ja) 光学フィルム、液晶パネル、および液晶表示装置
JP2006119203A (ja) 偏光板および偏光板の製造方法、ならびに、このような偏光板を用いた液晶パネル、液晶テレビおよび液晶表示装置
JP4943696B2 (ja) 液晶パネルおよびそれを用いた画像表示装置
JP4056552B2 (ja) 液晶パネルおよび液晶表示装置
KR100752095B1 (ko) 액정 패널 및 액정 디스플레이 장치
TWI434062B (zh) 光學薄膜之製造方法、光學薄膜及影像顯示裝置
JP2007004123A (ja) 光学フィルム、液晶パネル、および液晶表示装置
EP1876491A1 (en) Liquid crystal panel and liquid crystal display
JP2009145496A (ja) 積層偏光板、積層フィルムの製造方法、および画像表示装置
JP5204629B2 (ja) 偏光板、光学フィルムおよび画像表示装置
JP2009134121A (ja) 偏光板、光学フィルムおよび画像表示装置
JP5534684B2 (ja) 光学フィルムの製造方法
JP5167059B2 (ja) 偏光板、光学フィルムおよび画像表示装置
JP5204608B2 (ja) 偏光板、光学フィルムおよび画像表示装置
JP5204616B2 (ja) 偏光板、光学フィルムおよび画像表示装置
JP4177077B2 (ja) 光学補償板、それを用いた光学補償層付偏光板、前記光学補償板の製造方法、および、それらを用いた液晶表示装置
JP4874219B2 (ja) 偏光板、光学フィルムおよび画像表示装置
JP2009139712A (ja) 偏光板、光学フィルムおよび画像表示装置
JP2009145497A (ja) 積層フィルム、積層偏光板、及び積層フィルムの製造方法
JP2009134136A (ja) 偏光板、光学フィルムおよび画像表示装置
JP2009139585A (ja) 偏光板、光学フィルムおよび画像表示装置
JP2008282020A (ja) 光学補償板、それを用いた光学補償層付偏光板、前記光学補償板の製造方法、および、それらを用いた液晶表示装置
JP2009139741A (ja) 偏光板、光学フィルムおよび画像表示装置
JP5463020B2 (ja) 液晶パネル及び液晶表示装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091228