JP2009132967A - Acid degreasing agent used for pretreatment of electrolytic copper plating to surface of copper or copper alloy, and electrolytic copper plating method to surface of copper or copper alloy pretreated using the acid degreasing agent - Google Patents

Acid degreasing agent used for pretreatment of electrolytic copper plating to surface of copper or copper alloy, and electrolytic copper plating method to surface of copper or copper alloy pretreated using the acid degreasing agent Download PDF

Info

Publication number
JP2009132967A
JP2009132967A JP2007309830A JP2007309830A JP2009132967A JP 2009132967 A JP2009132967 A JP 2009132967A JP 2007309830 A JP2007309830 A JP 2007309830A JP 2007309830 A JP2007309830 A JP 2007309830A JP 2009132967 A JP2009132967 A JP 2009132967A
Authority
JP
Japan
Prior art keywords
copper
degreasing agent
copper alloy
plating
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007309830A
Other languages
Japanese (ja)
Other versions
JP5281788B2 (en
Inventor
Kazutaka Kikuchi
和能 菊地
Satoshi Haneda
智 羽田
Atsushi Kondo
厚 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meltex Inc
Original Assignee
Meltex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meltex Inc filed Critical Meltex Inc
Priority to JP2007309830A priority Critical patent/JP5281788B2/en
Publication of JP2009132967A publication Critical patent/JP2009132967A/en
Application granted granted Critical
Publication of JP5281788B2 publication Critical patent/JP5281788B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acid degreasing agent which can remove fat and oil components remaining by a trace amount on the surface of copper or a copper alloy, and with which white irregularity, white specking or the like are not caused even when electrolytic copper plating is applied after direct plating treatment, and to provide an electrolytic copper plating method to the surface of copper or a copper alloy using the acid degreasing agent. <P>SOLUTION: The acid degreasing agent comprising the respective components of ferric sulfate, a cationic surfactant, and a nonionic surfactant is used for pretreatment of electrolytic copper plating to the surface of the copper or the copper alloy. Further, when the acid degreasing agent is used under the condition where concentration of halogen ions is ≤0.1 g/L in addition to the incorporation of the respective components, more preferable results can be obtained. In the degreasing treatment, the liquid temperature of the acid degreasing agent is controlled to 20 to 75°, this is brought into contact with the surface of copper or a copper alloy for ≥1 min, and the portion of the thickness of ≥0.01 μm on the surface of the copper or copper alloy is etched away. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本件発明は、銅又は銅合金表面への電気銅めっきの前処理に用いる酸性脱脂剤及びその酸性脱脂剤を用いて前処理した銅又は銅合金への電気銅めっき方法に関する。   The present invention relates to an acidic degreasing agent used for pretreatment of electrolytic copper plating on the surface of copper or a copper alloy, and an electrolytic copper plating method for copper or copper alloy pretreated using the acidic degreasing agent.

プリント配線板(Printed Wiring Board:以下、「PWB」と称する。)の主たる製造方法であるパネルめっき法やパターンめっき法では、銅張積層板(Copper Clad Laminate:以下、「CCL」と称する。)表面の銅箔に電気銅めっきを施して、導体として必要な銅の厚さを確保している。この電気銅めっきは、両面プリント配線板や多層プリント配線板では、層間の導通を取るためのビア(スルー)ホール内へのめっきも目的として施されることが多い。そして、最近の電子機器類、特にモバイル機器では、軽薄短小化を達成する手段の1つとして、フレキシブルプリント配線板(Flexible Printed Wiring Board:以下、「FPWB」と称する。)を採用する例が増えている。また、FPWBを製造するための素材であるフレキシブル銅張積層板(Flexible Copper Clad Laminate:以下、「FCCL」と称する。)には、表面が平滑であり、屈曲性が良好なことから、圧延銅箔が多く用いられている。   In a panel plating method and a pattern plating method, which are the main manufacturing methods of a printed wiring board (hereinafter referred to as “PWB”), a copper clad laminate (hereinafter referred to as “CCL”). The copper foil on the surface is plated with copper to ensure the necessary copper thickness as a conductor. In the case of double-sided printed wiring boards and multilayer printed wiring boards, this electrolytic copper plating is often applied for the purpose of plating in via (through) holes for establishing conduction between layers. In recent electronic devices, particularly mobile devices, an example of adopting a flexible printed wiring board (hereinafter referred to as “FPWB”) as one of means for achieving lightness, thinness and miniaturization is increasing. ing. In addition, a flexible copper clad laminate (hereinafter referred to as “FCCL”), which is a material for manufacturing FPWB, has a smooth surface and good bendability. A lot of foil is used.

ところが、前述のFCCLには、絶縁樹脂基材としてポリイミド樹脂フィルムを用いることが多い。このポリイミド樹脂は、強アルカリに接触すると膨潤する性質がある。また、高温でアルカリに接触すると分解するおそれがある。そのため、ポリイミド樹脂に対しては、アルカリ処理は避けることが好ましいとされている。従って、FPWB業界では、スルーホール等の内壁に導電性を与える前処理として、一般的に強アルカリを用いる無電解銅めっきに対する代替技術が模索されてきた。そこで、FPWBの製造工程では、パラジウムやグラファイトを導電膜として用いるダイレクトプレーティング処理を採用する例が増えている。   However, the above-mentioned FCCL often uses a polyimide resin film as an insulating resin base material. This polyimide resin has a property of swelling when contacted with a strong alkali. Moreover, it may be decomposed when it comes into contact with alkali at high temperature. Therefore, it is considered preferable to avoid alkali treatment for polyimide resin. Therefore, in the FPWB industry, an alternative technique for electroless copper plating that generally uses strong alkali has been sought as a pretreatment for imparting conductivity to inner walls such as through holes. Therefore, in the manufacturing process of FPWB, an example in which direct plating processing using palladium or graphite as a conductive film is increasing.

そして、前記特許文献1には、銅表面及び銅合金表面の前処理用技術として、ソルダーレジスト等との密着性に優れた深い凹凸を有する表面形状に粗面化することが出来、更に、はんだ付け性に適した表面状態にすることが出来るマイクロエッチング剤を提供することを目的として、銅の酸化剤を含有する水溶液からなる銅及び銅合金のマイクロエッチング剤に、ポリアミン鎖及び(又は)カチオン性基を有する高分子化合物を含有させたマイクロエッチング剤が開示されている。   And in the said patent document 1, it can roughen to the surface shape which has the deep unevenness | corrugation excellent in adhesiveness with a soldering resist etc. as a technique for pre-processing of the copper surface and a copper alloy surface, and also solder. In order to provide a microetching agent that can be brought into a surface state suitable for attachment, copper and copper alloy microetching agents comprising an aqueous solution containing a copper oxidizing agent, polyamine chains and / or cations A microetching agent containing a polymer compound having a functional group is disclosed.

特開平9−41162号公報Japanese Patent Laid-Open No. 9-41162

前述のような、銅めっき工程を備える一般的なPWBの製造工程では、CCLやPWB等の表面に前処理を施し、その後電気銅めっきを施している。しかし、形成された電気銅めっき皮膜の表面に、外観不良が見られることが多い。そして、この外観不良は、一般的には電気銅めっきに用いるめっき液の組成変動や、めっき条件の変動に起因して発生するが、電気銅めっきの下地の影響を受けて発生する場合もある。特に、前記圧延銅箔を電気銅めっきの下地とした場合には、電解銅箔を電気銅めっきの下地とした場合に比べ、電気銅めっき皮膜の外観不良が発生しやすい傾向にある。その理由として、表面処理圧延銅箔の製造工程では、電解脱脂、アルカリ脱脂処理、酸洗処理等を施しても、製品の表面には、まだ微量の圧延油や銅の酸化物が存在していることが挙げられる。同様の現象は、FCCLにダイレクトプレーティング処理を施した面にも現れるため、ダイレクトプレーティング処理を施したFCCLに電気銅めっきを施す場合にも、前処理として酸性溶液で脱脂処理を施している。   In the general PWB manufacturing process including the copper plating process as described above, the surface of CCL, PWB or the like is subjected to pretreatment and then subjected to electrolytic copper plating. However, an appearance defect is often observed on the surface of the formed electrolytic copper plating film. And this appearance defect generally occurs due to variations in the composition of the plating solution used for electrolytic copper plating and variations in plating conditions, but it may also occur due to the influence of the base of the electrolytic copper plating. . In particular, when the rolled copper foil is used as a base for electrolytic copper plating, the appearance of the electrolytic copper-plated film tends to occur more easily than when the electrolytic copper foil is used as a base for electrolytic copper plating. The reason for this is that in the manufacturing process of surface-treated rolled copper foil, even if electrolytic degreasing, alkaline degreasing, pickling, etc. are performed, a small amount of rolling oil or copper oxide still exists on the surface of the product. It is mentioned. A similar phenomenon also appears on the surface of the FCCL that has been subjected to direct plating treatment. Therefore, when electrolytic copper plating is applied to the FCCL that has been subjected to direct plating treatment, degreasing treatment is performed with an acidic solution as a pretreatment. .

ところで、特許文献1に開示されているマイクロエッチング剤は、酸性溶液であって、PWBの製造工程において、銅及び銅合金下地上に、エッチングレジストやソルダーレジストの形成を良好に行なったり、該銅及び銅合金下地と基材樹脂との密着性を良好にすることを目的として、該下地表面をマイクロエッチング処理してミクロ的な凹凸を形成する際に用いる溶液である。   By the way, the microetching agent disclosed in Patent Document 1 is an acidic solution, and in the PWB manufacturing process, an etching resist or a solder resist can be satisfactorily formed on the copper and copper alloy base, or the copper etching agent can be used. In addition, for the purpose of improving the adhesion between the copper alloy substrate and the base resin, the solution is used when forming microscopic irregularities by microetching the surface of the substrate.

また、特許文献1に開示のマイクロエッチング剤は、電気銅めっきの下地処理用の脱脂剤ではないが、このマイクロエッチング剤を用いてダイレクトプレーティング処理を施した銅箔表面を処理すれば、表面に付着している酸化物が溶解除去され、油脂成分などの表面汚染物もエッチングで溶解する金属成分と一緒に除去されるなどにより、脱脂効果が得られる可能性がある。そこで、特許文献1に記載の浴組成を参考にしてマイクロエッチング剤を調製し、CCLへの電気銅めっきの下地処理用の脱脂剤として用いてみた。その結果、後の比較例に明らかなように、電気銅めっき後に良好な表面状態を得ることは困難であることが判明した。   Moreover, although the microetching agent disclosed in Patent Document 1 is not a degreasing agent for ground treatment of electrolytic copper plating, if the surface of the copper foil subjected to direct plating treatment is processed using this microetching agent, There is a possibility that a degreasing effect can be obtained by dissolving and removing oxides adhering to the surface and removing surface contaminants such as oil and fat components together with metal components dissolved by etching. Therefore, a microetching agent was prepared with reference to the bath composition described in Patent Document 1 and used as a degreasing agent for the surface treatment of electrolytic copper plating on CCL. As a result, it became clear that it was difficult to obtain a good surface state after electrolytic copper plating, as is apparent from the later comparative examples.

以上のことから、酸性でありながら銅又は銅合金の表面に微量残留する油脂成分の除去が可能で、ダイレクトプレーティング処理後の銅又は銅合金表面に電気銅めっきを施しても、白むらや白斑等の発生しない銅又は銅合金表面への電気銅めっきの前処理に用いる酸性脱脂剤と、その酸性脱脂剤を用いて前処理した銅又は銅合金表面への電気銅めっき方法が要求されていた。   From the above, it is possible to remove a small amount of oil and fat components remaining on the surface of copper or copper alloy while being acidic, and even if electro copper plating is applied to the copper or copper alloy surface after direct plating treatment, There is a need for an acidic degreasing agent used for pretreatment of copper electroplating on copper or copper alloy surfaces where no white spots or the like occur, and a method for electroplating copper or copper alloy surfaces pretreated with the acidic degreasing agent. It was.

そこで、鋭意研究の結果、本件発明者等は、以下の銅又は銅合金表面への電気銅めっきの前処理に用いる酸性脱脂剤と、その酸性脱脂剤を用いて前処理した銅又は銅合金表面への電気銅めっき方法に想到した。   Therefore, as a result of earnest research, the inventors of the present invention have found that the following is an acidic degreasing agent used for pretreatment of electrolytic copper plating on the copper or copper alloy surface, and the copper or copper alloy surface pretreated with the acidic degreasing agent. I came up with an electro copper plating method.

本件発明に係る酸性脱脂剤: 本件発明に係る酸性脱脂剤は、銅又は銅合金表面への電気銅めっきの前処理に用いる酸性脱脂剤であって、硫酸第二鉄、カチオン界面活性剤、ノニオン界面活性剤の各成分を含むことを特徴としている。 Acidic degreasing agent according to the present invention: The acidic degreasing agent according to the present invention is an acidic degreasing agent used for pretreatment of electrolytic copper plating on the surface of copper or a copper alloy, and is ferric sulfate, a cationic surfactant, and a nonion. It is characterized by containing each component of a surfactant.

本件発明に係る酸性脱脂剤においては、該酸性脱脂剤が含むハロゲンイオンは、その濃度が0.1g/L以下であることも好ましい。   In the acidic degreasing agent according to the present invention, the halogen ion contained in the acidic degreasing agent preferably has a concentration of 0.1 g / L or less.

本件発明に係る酸性脱脂剤においては、該酸性脱脂剤が含む前記硫酸第二鉄は、その濃度が2g/L〜500g/Lであることも好ましい。   In the acidic degreasing agent according to the present invention, the ferric sulfate contained in the acidic degreasing agent preferably has a concentration of 2 g / L to 500 g / L.

本件発明に係る酸性脱脂剤においては、該酸性脱脂剤が含む前記カチオン界面活性剤は、その濃度が0.01g/L〜10g/Lであることも好ましい。   In the acidic degreasing agent according to the present invention, the cationic surfactant contained in the acidic degreasing agent preferably has a concentration of 0.01 g / L to 10 g / L.

本件発明に係る酸性脱脂剤においては、該酸性脱脂剤が含む前記ノニオン界面活性剤は、その濃度が0.05g/L〜50g/Lであることも好ましい。   In the acidic degreasing agent according to the present invention, the concentration of the nonionic surfactant contained in the acidic degreasing agent is preferably 0.05 g / L to 50 g / L.

本件発明に係る銅又は銅合金表面への電気銅めっき方法: 本件発明に係る銅又は銅合金表面への電気銅めっき方法は、前記酸性脱脂剤を用いて前処理した銅又は銅合金表面への電気銅めっき方法であって、以下の工程A〜工程Cを含むことを特徴としている。 Electro-copper plating method on the copper or copper alloy surface according to the present invention: The electro-copper plating method on the copper or copper alloy surface according to the present invention is applied to the copper or copper alloy surface pretreated with the acidic degreasing agent. An electrolytic copper plating method comprising the following steps A to C:

工程A: 銅又は銅合金の表面を該酸性脱脂剤と接触させて処理する酸性脱脂工程。
工程B: 工程Aで得られた銅又は銅合金表面を活性化する活性化工程。
工程C: 工程Bで得られた銅又は銅合金の表面に電解法で銅めっきを施す電気銅めっき工程。
Step A: An acidic degreasing step in which the surface of copper or copper alloy is treated by contacting with the acidic degreasing agent.
Step B: An activation step for activating the copper or copper alloy surface obtained in Step A.
Step C: An electrolytic copper plating step in which the surface of the copper or copper alloy obtained in Step B is subjected to copper plating by an electrolytic method.

本件発明に係る銅又は銅合金表面への電気銅めっき方法においては、前記工程Aは、前記酸性脱脂剤の液温を20℃〜75℃とし、これと前記銅又は銅合金の表面とを1分間以上接触させ、該銅又は銅合金の表面の0.01μm以上の厚さ分をエッチング除去する酸性脱脂工程であることも好ましい。   In the method of electrolytic copper plating on the copper or copper alloy surface according to the present invention, the step A is performed by setting the liquid temperature of the acidic degreasing agent to 20 ° C. to 75 ° C., and this and the surface of the copper or copper alloy. It is also preferable to be an acidic degreasing step in which contact is made for at least minutes and the surface of the copper or copper alloy is removed by etching to a thickness of 0.01 μm or more.

本件発明に係る酸性脱脂剤は、硫酸第二鉄、カチオン界面活性剤、ノニオン界面活性剤の各成分を含む、銅又は銅合金表面への電気銅めっきの前処理に用いる酸性脱脂剤であり、意図的に添加したハロゲン成分は含んでいない。従って、該酸性脱脂剤を、電気銅めっきを施す銅又は銅合金表面の前処理に用いれば、銅又は銅合金の表面には、色むらの無い良好な表面を備える電気銅めっき皮膜を形成出来る。また、銅又は銅合金表面にダイレクトプレーティング処理を施した電気銅めっきの下地の前処理に用いても、白むらや白斑等の発生が無い電気銅めっき皮膜が得られる。   The acidic degreasing agent according to the present invention is an acidic degreasing agent used for pretreatment of electrolytic copper plating on the surface of copper or a copper alloy containing each component of ferric sulfate, a cationic surfactant, and a nonionic surfactant. Does not contain intentionally added halogen components. Therefore, if this acidic degreasing agent is used for the pretreatment of the copper or copper alloy surface to be subjected to electrolytic copper plating, an electrolytic copper plating film having a good surface without color unevenness can be formed on the surface of copper or copper alloy. . Moreover, even if it uses for the pre-processing of the base of the electro copper plating which performed the direct plating process on the copper or copper alloy surface, the electro copper plating film | membrane without generation | occurrence | production of a white nonuniformity, a white spot, etc. is obtained.

本件発明に係る酸性脱脂剤の形態: 本件発明に係る酸性脱脂剤は、銅又は銅合金表面への電気銅めっきの前処理に用いる酸性脱脂剤であって、硫酸第二鉄、カチオン界面活性剤、ノニオン界面活性剤の各成分を含む。該酸性脱脂剤を用いれば、被めっき物である銅又は銅合金表面の油脂成分や金属酸化物等を除去し、表面のミクロ形状を大きく変化させること無く、均一な銅又は銅合金表面を得ることが出来る。以下、本件発明に係る酸性脱脂剤が含む各成分について説明する。 Form of acidic degreasing agent according to the present invention: The acidic degreasing agent according to the present invention is an acidic degreasing agent used for a pretreatment of electrolytic copper plating on the surface of copper or a copper alloy, and is ferric sulfate, a cationic surfactant. And each component of a nonionic surfactant. If this acidic degreasing agent is used, the oil or fat component or metal oxide on the surface of copper or copper alloy, which is the object to be plated, is removed, and a uniform copper or copper alloy surface is obtained without greatly changing the micro shape of the surface. I can do it. Hereinafter, each component contained in the acidic degreasing agent according to the present invention will be described.

本件発明に係る酸性脱脂剤においては、該酸性脱脂剤が含むハロゲンイオンは、その濃度が0.1g/L以下である。しかし、銅や銅合金などの表面処理に用いる前処理液やめっき液などの水溶液には、意図してハロゲンイオンを含ませるのが一般的である。例えば、前記特許文献1に開示の実施例で用いているマイクロエッチング剤は、ハロゲンイオンを0.5%〜1.4%含んでいる。このように、ハロゲンイオンを含む水溶液に銅や銅合金を浸漬すると、ハロゲンイオンは、主に金属組織が備える結晶粒界に吸着する。そして、表面処理やめっきの均一性を向上させる効果を発揮する。従って、特許文献1の実施例では、塩素を含むマイクロエッチング剤を用い、スプレー処理により銅又は銅合金表面の酸化反応を促進して、銅又は銅合金表面に均一なマイクロエッチング処理を施している。即ち、特許文献1の実施例では、小さな結晶粒を備える電解銅箔をマイクロエッチング処理の対象とし、ハロゲンイオンが吸着した結晶粒界を優先的にエッチング除去して結晶粒を剥離脱落させることで、良好な凹凸を備えるマイクロエッチング処理表面を形成している。   In the acidic degreasing agent according to the present invention, the halogen ion contained in the acidic degreasing agent has a concentration of 0.1 g / L or less. However, it is general to intentionally include halogen ions in an aqueous solution such as a pretreatment liquid or a plating liquid used for surface treatment of copper or copper alloy. For example, the microetching agent used in the examples disclosed in Patent Document 1 contains 0.5% to 1.4% of halogen ions. Thus, when copper or a copper alloy is immersed in an aqueous solution containing halogen ions, the halogen ions are mainly adsorbed on the crystal grain boundaries provided in the metal structure. And the effect which improves the uniformity of surface treatment and plating is exhibited. Therefore, in the Example of patent document 1, the micro-etching agent containing chlorine is used, the oxidation reaction of the copper or copper alloy surface is accelerated by spray treatment, and the uniform micro-etching treatment is performed on the copper or copper alloy surface. . That is, in the example of Patent Document 1, an electrolytic copper foil having small crystal grains is subjected to a microetching process, and the crystal grain boundaries on which halogen ions are adsorbed are preferentially removed by etching to remove the crystal grains. A microetched surface with good irregularities is formed.

ところが、本件発明では、処理の対象とする被めっき物として、FCCLが備える圧延銅箔も想定している。FCCLに用いる圧延銅箔は、FCCLの製造工程における熱履歴によって結晶粒が再結晶化して肥大化しており、電解銅箔と比較すると結晶粒界は少ないが、結晶粒の粒径が大きくばらつく傾向がでる場合がある。従って、再結晶組織を備える圧延銅箔の場合には、ハロゲンイオンの濃度が高い前処理液を用いると、結晶粒のサイズに応じて剥離脱落する状況が異なり、めっき下地に光沢むらや色むらが発生しやすい。   However, in this invention, the rolled copper foil with which FCCL is provided is also assumed as the to-be-plated object made into the process target. The rolled copper foil used for FCCL is enlarged due to recrystallization of crystal grains due to the thermal history in the manufacturing process of FCCL, and there are few crystal grain boundaries compared with electrolytic copper foil, but the grain size of crystal grains tends to vary greatly May occur. Therefore, in the case of a rolled copper foil having a recrystallized structure, if a pretreatment liquid having a high halogen ion concentration is used, the situation of peeling and dropping differs depending on the size of the crystal grains, and uneven gloss and uneven color on the plating base. Is likely to occur.

そこで、本件発明に係る酸性脱脂剤のハロゲンイオンの濃度は、できるだけ低く、0.1g/L以下に維持する。該酸性脱脂剤のハロゲンイオンの濃度を0.1g/L以下とすれば、銅や銅合金の表面では、ハロゲンイオンが吸着した結晶粒界は少なく、結晶粒のサイズの違いによる結晶剥離の差が小さくなるからである。そして、該酸性脱脂剤は、後述するカチオン界面活性剤の効果と相まって、結晶粒界と結晶粒内とを同レベルでエッチング可能とする効果を発揮する。しかし、該酸性脱脂剤のハロゲンイオンの濃度を、0.1g/L以下のレベルに維持するためには、酸性脱脂剤の調製に市水を用いることが出来ない。従って、本件発明ではイオン交換水や純水等のハロゲンイオンを含まない水の使用を基本としている。そして、本件出願では、ハロゲンイオンを意図的には含ませていない水を総称して、「イオン交換水」と称している。   Therefore, the concentration of the halogen ion in the acidic degreasing agent according to the present invention is kept as low as possible and maintained at 0.1 g / L or less. If the concentration of halogen ions in the acidic degreasing agent is 0.1 g / L or less, there are few crystal grain boundaries where halogen ions are adsorbed on the surface of copper or copper alloy, and the difference in crystal peeling due to the difference in crystal grain size. This is because becomes smaller. And this acid degreasing agent exhibits the effect which enables a crystal grain boundary and the inside of a crystal grain to be etched on the same level combined with the effect of the cationic surfactant mentioned later. However, in order to maintain the halogen ion concentration of the acidic degreasing agent at a level of 0.1 g / L or less, city water cannot be used for the preparation of the acidic degreasing agent. Therefore, the present invention is based on the use of water that does not contain halogen ions such as ion-exchanged water and pure water. In the present application, water that does not intentionally contain halogen ions is collectively referred to as “ion-exchanged water”.

本件発明に係る酸性脱脂剤においては、該酸性脱脂剤が含む前記硫酸第二鉄は、その濃度が2g/L〜500g/Lである。酸性脱脂剤を用いる実際の操業においては、市場で調達した硫酸第二鉄の7水塩や9水塩等の原料薬品を、イオン交換水に溶解して、該酸性脱脂剤を調製する。従って、ここで言っている該硫酸第二鉄の濃度とは、それら原料薬品が含む硫酸第二鉄成分のみの濃度として表示している。そして、この酸性脱脂剤が含む第二鉄イオンは、銅又は銅合金の表面を酸化して酸化銅とする機能を果たし、酸化銅は酸性脱脂剤に溶解する。しかし、該硫酸第二鉄の濃度が2g/Lを下回ると、銅又は銅合金表面を酸化して溶解する能力が弱く、表面層を均一にエッチングして除去することが困難になり、脱脂効果を確実には発揮出来ない。一方、該硫酸第二鉄の濃度が500g/Lを超えると、ノニオン界面活性剤の該酸性脱脂剤への溶解が困難になり、所期の効果が得られなくなるため好ましくない。上記観点から、電気めっきを施す銅又は銅合金の表面を最適な脱脂表面に調整するには、酸性脱脂剤が含む該硫酸第二鉄の濃度を10g/L〜100g/Lとすることがより好ましい。   In the acidic degreasing agent according to the present invention, the ferric sulfate contained in the acidic degreasing agent has a concentration of 2 g / L to 500 g / L. In actual operation using an acidic degreasing agent, raw acid chemicals such as ferric sulfate heptahydrate and 9 hydrate procured on the market are dissolved in ion-exchanged water to prepare the acidic degreasing agent. Accordingly, the concentration of ferric sulfate referred to here is indicated as the concentration of only the ferric sulfate component contained in these raw chemicals. And the ferric ion which this acidic degreasing agent contains performs the function which oxidizes the surface of copper or a copper alloy, and makes it a copper oxide, and copper oxide melt | dissolves in an acidic degreasing agent. However, when the concentration of the ferric sulfate is less than 2 g / L, the ability to oxidize and dissolve the copper or copper alloy surface is weak, and it becomes difficult to remove the surface layer by etching uniformly. Cannot be demonstrated reliably. On the other hand, when the concentration of the ferric sulfate exceeds 500 g / L, it is difficult to dissolve the nonionic surfactant in the acidic degreasing agent, and the desired effect cannot be obtained. From the above viewpoint, in order to adjust the surface of copper or copper alloy to be electroplated to an optimum degreasing surface, the concentration of the ferric sulfate contained in the acidic degreasing agent is more preferably 10 g / L to 100 g / L. preferable.

本件発明に係る酸性脱脂剤においては、該酸性脱脂剤が含む前記カチオン界面活性剤は、その濃度が0.01g/L〜10g/Lである。該酸性脱脂剤において、該カチオン界面活性剤は、電気銅めっきの下地の銅又は銅合金表面の金属成分に吸着する。その結果、圧延銅箔が電気銅めっきの下地であっても均一な酸性脱脂処理を可能にする。カチオン界面活性剤を大別するとアルキルアミン塩型と第4級アンモニウム塩型とがあり、一般的な市販品からいずれかを選択して用いればよい。そして、ポリエチレンアミン系のカチオン界面活性剤やポリアリルアミン系のカチオン界面活性剤を用いると、酸性脱脂処理の均一化の効果が安定して得られるためより好ましい。   In the acidic degreasing agent according to the present invention, the concentration of the cationic surfactant contained in the acidic degreasing agent is 0.01 g / L to 10 g / L. In the acidic degreasing agent, the cationic surfactant is adsorbed on a metal component on the surface of the copper or copper alloy surface of the electrolytic copper plating. As a result, even if the rolled copper foil is a base for electrolytic copper plating, a uniform acidic degreasing treatment is possible. Cationic surfactants can be broadly classified into alkylamine salt types and quaternary ammonium salt types, and any one selected from general commercial products may be used. Use of a polyethyleneamine cationic surfactant or a polyallylamine cationic surfactant is more preferable because the effect of uniforming the acid degreasing treatment can be stably obtained.

しかし、前記カチオン界面活性剤の濃度が0.01g/Lを下回ると、銅又は銅合金表面の電気銅めっきの下地全面への該カチオン界面活性剤の吸着が困難になる。すると、酸性脱脂処理の均一化の効果が得られにくくなるばかりか、銅又は銅合金表面に光沢むらや色むらが発生するため好ましくない。一方、該カチオン界面活性剤の濃度を10g/Lを超えるものとしても、酸性脱脂処理の均一化の効果は飽和に達し、資源の無駄遣いになる。また、銅又は銅合金の表面に、カチオン界面活性剤が多層構造で吸着する現象が起こり、銅又は銅合金表面に光沢むらや色むらが発生するため好ましくない。従って、より好ましい濃度は、用いるカチオン界面活性剤の種類によっても異なるが、下限近傍になる傾向がある。例えば、ポリエチレンポリアミンを主剤としたカチオン界面活性剤を、濃度0.1g/L程度で用いれば、その他の要因の変動があっても安定した脱脂処理の効果が得られる。   However, when the concentration of the cationic surfactant is less than 0.01 g / L, it becomes difficult to adsorb the cationic surfactant on the entire surface of the copper or copper alloy surface of the electrolytic copper plating. Then, not only is it difficult to obtain the effect of uniforming the acid degreasing treatment, but uneven gloss and color unevenness occur on the surface of copper or copper alloy, which is not preferable. On the other hand, even if the concentration of the cationic surfactant exceeds 10 g / L, the effect of uniforming the acidic degreasing treatment reaches saturation, resulting in wasted resources. Further, a phenomenon in which the cationic surfactant is adsorbed in a multilayer structure occurs on the surface of copper or copper alloy, and uneven gloss or color occurs on the surface of copper or copper alloy, which is not preferable. Therefore, a more preferable concentration varies depending on the type of the cationic surfactant used, but tends to be near the lower limit. For example, when a cationic surfactant mainly composed of polyethylene polyamine is used at a concentration of about 0.1 g / L, a stable degreasing treatment effect can be obtained even if other factors fluctuate.

本件発明に係る酸性脱脂剤においては、該酸性脱脂剤が含む前記ノニオン界面活性剤は、その濃度が0.05g/L〜50g/Lである。該ノニオン界面活性剤は、被めっき物である銅又は銅合金の表面に付着した油脂成分を膨潤脱離させる。ノニオン界面活性剤にはエステル系、エーテル系、ポリオキシエチレンアルキルエーテル系、ポリオキシエチレンフェニルエーテル系、ポリオキシエチレンプロピレングリコール系等があり、一般的な市販品からいずれかを選択して用いればよい。そして、ポリオキシエチレンアルキルエーテル系のノニオン界面活性剤やポリオキシエチレンポリオキシプロピレングリコール系のノニオン界面活性剤を用いると、脱脂処理の効果が安定して得られるためより好ましい。   In the acidic degreasing agent according to the present invention, the nonionic surfactant contained in the acidic degreasing agent has a concentration of 0.05 g / L to 50 g / L. The nonionic surfactant swells and desorbs oil and fat components adhering to the surface of copper or copper alloy as the object to be plated. Nonionic surfactants include ester type, ether type, polyoxyethylene alkyl ether type, polyoxyethylene phenyl ether type, polyoxyethylene propylene glycol type, etc. Good. It is more preferable to use a polyoxyethylene alkyl ether-based nonionic surfactant or a polyoxyethylene polyoxypropylene glycol-based nonionic surfactant because the effect of the degreasing treatment can be stably obtained.

しかし、該ノニオン界面活性剤の濃度が0.05g/Lを下回ると、銅又は銅合金表面から油脂成分を膨潤脱離させる機能が発揮出来なくなるため好ましくない。一方、該ノニオン界面活性剤の濃度が50g/Lを超えると、該ノニオン界面活性剤の銅又は銅合金表面への吸着量が増加する傾向が現れる。その結果、銅又は銅合金表面に色むらが発生するため好ましくない。更に、銅又は銅合金表面から油脂成分を膨潤脱離させ、銅又は銅合金表面への吸着等の悪影響を排除する観点からは、該ノニオン界面活性剤の濃度は0.5g/L〜5g/Lとすることがより好ましい。   However, if the concentration of the nonionic surfactant is less than 0.05 g / L, it is not preferable because the function of swelling and desorbing the fat component from the copper or copper alloy surface cannot be exhibited. On the other hand, when the concentration of the nonionic surfactant exceeds 50 g / L, the amount of the nonionic surfactant adsorbed on the copper or copper alloy surface tends to increase. As a result, color unevenness occurs on the copper or copper alloy surface, which is not preferable. Furthermore, from the viewpoint of swelling and desorbing the fat and oil component from the surface of copper or copper alloy and eliminating adverse effects such as adsorption on the surface of copper or copper alloy, the concentration of the nonionic surfactant is 0.5 g / L to 5 g / L is more preferable.

本件発明に係る銅又は銅合金表面への電気銅めっき方法の形態: 本件発明に係る銅又は銅合金表面への電気銅めっき方法は、前記酸性脱脂剤を用いて前処理した銅又は銅合金表面への電気銅めっき方法であって、以下の工程A〜工程Cを含む。該電気銅めっき方法を用いれば、銅又は銅合金表面に、光沢むらや色むらなどが無い、厚さも均一で良好な電気銅めっき皮膜を形成出来る。以下、各工程毎に説明を加える。 Form of electrolytic copper plating method on copper or copper alloy surface according to the present invention: The electrolytic copper plating method on the copper or copper alloy surface according to the present invention is a copper or copper alloy surface pretreated with the acidic degreasing agent. It is an electro copper plating method, and includes the following steps A to C. If this electrolytic copper plating method is used, it is possible to form a favorable electrolytic copper plating film with uniform thickness and no uneven brightness or color unevenness on the surface of copper or copper alloy. Hereinafter, explanation is added for each process.

工程Aは、銅又は銅合金の表面を、前記酸性脱脂剤と接触させて処理する、酸性脱脂工程である。この工程では、該酸性脱脂剤の液温を20℃〜75℃とし、これと被めっき物である銅又は銅合金の表面とを1分間以上接触させ、該銅又は銅合金表面の0.01μm以上の厚さ分をエッチング除去する。このとき、用いる該酸性脱脂剤の液温が20℃を下回ると、硫酸第二鉄の銅及び銅合金を酸化する能力に低下が見られるようになる。そして、カチオン界面活性剤やノニオン界面活性剤は、銅又は銅合金表面へ吸着しやすくなる。更に、ノニオン界面活性剤が備える、油脂成分を膨潤脱離させる効果が低下する傾向が現れるため好ましくない。一方、該酸性脱脂剤の液温が75℃を超えると、ノニオン界面活性剤が曇点を迎え、ノニオン界面活性剤が備える油脂成分を膨潤脱離させる能力が低下するため好ましくない。   Process A is an acidic degreasing process in which the surface of copper or copper alloy is treated by contacting with the acidic degreasing agent. In this step, the liquid temperature of the acidic degreasing agent is set to 20 ° C. to 75 ° C., and this is brought into contact with the surface of the copper or copper alloy to be plated for 1 minute or more, and 0.01 μm on the surface of the copper or copper alloy. The above thickness is removed by etching. At this time, when the liquid temperature of the acidic degreasing agent to be used is lower than 20 ° C., a decrease in the ability to oxidize ferric sulfate copper and copper alloy is observed. And a cationic surfactant and a nonionic surfactant become easy to adsorb | suck to the copper or copper alloy surface. Furthermore, the nonionic surfactant is not preferable because the effect of swelling and desorbing the oil and fat component appears. On the other hand, when the liquid temperature of the acidic degreasing agent exceeds 75 ° C., the nonionic surfactant reaches a cloud point, and the ability to swell and desorb the oil and fat component provided in the nonionic surfactant is not preferable.

そして、酸性脱脂工程では、該酸性脱脂剤と銅又は銅合金の表面とを1分間以上接触させる。特許文献1に開示のマイクロエッチング剤を用いる方法では、銅又は銅合金表面の金属も酸化しつつエッチングし、且つ、結晶粒界を優先的にエッチング除去して結晶粒を脱落させる。そのため、実施例ではマイクロエッチング剤の液温を40℃として、60秒間のスプレー処理を採用している。しかし、本件発明に係る酸性脱脂剤は、意図的に添加したハロゲンイオンと酸成分とを含んでいない。その結果、銅又は銅合金表面の金属をエッチングする速度が遅く、長時間をかけた酸性脱脂処理を施しても、銅又は銅合金表面のエッチング量は少ない。このように、銅又は銅合金表面と酸性脱脂剤とを長時間接触させれば、ノニオン界面活性剤が油脂成分を膨潤脱離させることが出来る。従って、該接触時間が1分間よりも短いと、油脂成分の膨潤が不十分で、十分な脱脂効果が得られない場合がある。   And in an acidic degreasing process, this acidic degreasing agent and the surface of copper or a copper alloy are made to contact for 1 minute or more. In the method using the microetching agent disclosed in Patent Document 1, the metal on the copper or copper alloy surface is etched while being oxidized, and the crystal grain boundaries are preferentially etched away to drop the crystal grains. Therefore, in the embodiment, the liquid temperature of the microetching agent is set to 40 ° C., and the spray process for 60 seconds is employed. However, the acidic degreasing agent according to the present invention does not contain intentionally added halogen ions and acid components. As a result, the etching rate of the metal on the copper or copper alloy surface is slow, and the amount of etching on the copper or copper alloy surface is small even when acidic degreasing treatment is performed for a long time. Thus, if a copper or copper alloy surface and an acidic degreasing agent are contacted for a long time, a nonionic surfactant can swell and desorb an oil and fat component. Therefore, when the contact time is shorter than 1 minute, the fat and oil component does not swell sufficiently and a sufficient degreasing effect may not be obtained.

この、該酸性脱脂剤と銅又は銅合金表面とを接触させる工程では、銅又は銅合金を、該酸性脱脂剤に浸漬する方法、該酸性脱脂剤を銅又は銅合金に吹き付ける方法などから最適な方法を選択して実施すればよい。しかし、銅又は銅合金表面に、むらの無い良好な外観を安定して得るためには浸漬方式が好ましい。また、浸漬方式を採用した場合に短時間で効果を得るためには、銅又は銅合金を浸漬した酸性脱脂剤の攪拌が有効である。穴あけ後ダイレクトプレーティング処理を施したFCCLに電気銅めっきを施す工程であれば、ロール ツー ロールの処理が可能であり、各種処理槽に浸漬しつつ蛇行走行する方式を採用出来る。このときの攪拌は、処理層への酸性脱脂剤の液循環と、FCCLの走行速度で得られるが、エアバブリングなどを補助的に用いることも出来る。銅又は銅合金表面に、酸性脱脂剤をスプレーする方式は、銅又は銅合金表面への液圧バラツキ等に起因して、銅又は銅合金表面に光沢むらや色むらが発生する場合があるので注意が必要である。このとき脱離した油脂成分は、酸性脱脂剤に溶解しないため、前記液循環経路にフィルターを設けるなどして、油脂成分を分離除去してやる。   In the step of bringing the acidic degreasing agent into contact with the copper or copper alloy surface, the most suitable method is a method of immersing copper or a copper alloy in the acidic degreasing agent, a method of spraying the acidic degreasing agent on the copper or copper alloy, or the like. What is necessary is just to select and implement a method. However, in order to stably obtain a good appearance without unevenness on the copper or copper alloy surface, an immersion method is preferable. Moreover, in order to acquire an effect in a short time when an immersion system is employ | adopted, the stirring of the acidic degreasing agent which immersed copper or the copper alloy is effective. A roll-to-roll process is possible as long as it is a process in which copper plating is applied to FCCL that has been subjected to direct plating after drilling, and a method of meandering while being immersed in various processing tanks can be adopted. Agitation at this time is obtained by circulating the acidic degreasing agent to the treatment layer and the running speed of the FCCL, but air bubbling or the like can also be used as an auxiliary. The method of spraying an acidic degreasing agent on the surface of copper or copper alloy may cause uneven gloss or uneven color on the surface of copper or copper alloy due to hydraulic pressure variation on the surface of copper or copper alloy. Caution must be taken. Since the oil and fat component released at this time is not dissolved in the acidic degreasing agent, the oil and fat component is separated and removed by providing a filter in the liquid circulation path.

前記酸性脱脂工程では、上述のようにして、該銅又は銅合金表面の表面の0.01μm以上の厚さ分をエッチング除去する。ここで言っているエッチング除去厚さとは、一定面積の銅又は銅合金表面を酸性脱脂処理した前後の重量差から計算上得られる厚さである。即ち、局部的なエッチング除去厚さには、一定のバラツキがあることを認識しておく必要がある。そして、このエッチング除去厚さは、銅又は銅合金表面に対する脱脂効果の確実性と、表面の粗化が抑制されていることの指標となる。従って、エッチング除去厚さが0.01μmよりも少ないと、目視上は均一に見えても、油脂成分などの除去が不十分な部分が局在し、電気銅めっきを施すと光沢むら、色むら、厚さむらになる場合があるため好ましくない。しかし、エッチング除去厚さの上限には、特段の限定は無く、銅又は銅合金表面を、均一に、光沢むらや色むらが無くめっきを施すことが出来る表面状態に調整出来ればよい。しかし、エッチング除去厚さを過剰にした場合、銅又は銅合金の表面状態にもよるが、局部的に粗化が進行することがある。このような表面に電気銅めっきを施すと、粗化部分が強調され、光沢むらや色むらのある銅めっき皮膜が得られてしまう。また、銅又は銅合金の表面にダイレクトプレーティング処理を施している場合には、エッチング除去厚さが過剰になると、ダイレクトプレーティング処理で形成した導体膜と銅とが一緒に下地から脱落する傾向が現れる。従って、上記観点からは、エッチング除去厚さは、0.15μm〜0.3μmに設定することがより好ましい。   In the acidic degreasing step, the thickness of 0.01 μm or more of the surface of the copper or copper alloy surface is removed by etching as described above. The etching removal thickness referred to here is a thickness obtained by calculation from the weight difference before and after the acid or degreasing treatment of the copper or copper alloy surface of a certain area. That is, it is necessary to recognize that there is a certain variation in the local etching removal thickness. And this etching removal thickness becomes the parameter | index of the certainty of the degreasing effect with respect to the copper or copper alloy surface, and the suppression of the roughening of the surface. Therefore, if the etching removal thickness is less than 0.01 μm, even if it looks visually uniform, a portion where removal of fats and oils and the like is insufficient is localized. This is not preferable because the thickness may become uneven. However, the upper limit of the etching removal thickness is not particularly limited as long as the surface of the copper or copper alloy can be uniformly adjusted to a surface state that can be plated without uneven gloss or uneven color. However, when the etching removal thickness is excessive, roughening may proceed locally depending on the surface state of copper or copper alloy. When electrolytic copper plating is applied to such a surface, the roughened portion is emphasized, and a copper plating film having uneven gloss and uneven color is obtained. Also, when direct plating treatment is applied to the surface of copper or copper alloy, if the etching removal thickness becomes excessive, the conductor film and copper formed by direct plating treatment tend to fall off from the base together Appears. Therefore, from the above viewpoint, the etching removal thickness is more preferably set to 0.15 μm to 0.3 μm.

工程Bは、工程Aで得られた銅又は銅合金表面を活性化する活性化工程である。工程Aで酸洗脱脂処理を施した銅又は銅合金表面は、水洗しても銅又は銅合金の表面には界面活性剤が吸着した状態にあり、銅又は銅合金表面に吸着した界面活性剤は、防錆効果も発揮する。従って、銅又は銅合金表面に、界面活性剤の吸着量にむらがある状態でその上に電気銅めっきを施すと、光沢むらや色むらを伴う電気銅めっき皮膜となる。そこで、電気銅めっきを施す直前に酸洗し、界面活性剤の吸着状態を電気銅めっきに影響を与えない程度に調整し、銅又は銅合金の表面を活性化する。この操作は表面洗浄であり、1分程度の浸漬処理で十分な活性化の効果を得ることが出来る。ここで用いる酸には特段の限定は必要なく、硫酸、塩酸、硝酸などの強酸を希釈して用いることが出来る。しかし、銅又は銅合金表面を酸化することなく活性化するためには、活性化剤として10%程度の希硫酸を用いることが好ましい。希硫酸を用いれば、表面に吸着したカチオン界面活性剤の吸着状態がより均一になり、電気銅めっきにおける均一析出の改善に寄与出来る。この工程も、銅又は銅合金を調整した活性化剤に浸漬する方法、活性化剤を銅又は銅合金に吹き付ける方法などから最適な方法を選択して実施すればよい。   Step B is an activation step for activating the copper or copper alloy surface obtained in step A. The surface of the copper or copper alloy that has been pickled and degreased in step A is in a state where the surfactant is adsorbed on the surface of the copper or copper alloy even after being washed with water, and the surfactant adsorbed on the surface of the copper or copper alloy. Also exhibits a rust-proofing effect. Therefore, when the copper or copper alloy surface is subjected to electrolytic copper plating in a state where the amount of adsorption of the surfactant is uneven, an electrolytic copper plating film with uneven brightness and uneven color is obtained. Therefore, pickling is performed immediately before the electrolytic copper plating is performed, and the adsorption state of the surfactant is adjusted so as not to affect the electrolytic copper plating, and the surface of the copper or copper alloy is activated. This operation is surface cleaning, and a sufficient activation effect can be obtained by immersion treatment for about 1 minute. The acid used here is not particularly limited, and a strong acid such as sulfuric acid, hydrochloric acid or nitric acid can be diluted. However, in order to activate the copper or copper alloy surface without oxidation, it is preferable to use about 10% dilute sulfuric acid as an activator. If dilute sulfuric acid is used, the adsorption state of the cationic surfactant adsorbed on the surface becomes more uniform, which can contribute to the improvement of uniform precipitation in electrolytic copper plating. This step may be performed by selecting an optimum method from a method of immersing copper or copper alloy in an adjusted activator, a method of spraying the activator on copper or copper alloy, or the like.

工程Cは、工程Bで得られた銅又は銅合金の表面に電解法で銅めっきを施す電気銅めっき工程である。ここで用いる電気銅めっき液には特段の限定は必要なく、形成する銅皮膜の特性を勘案し、市販の電気銅めっき液用の添加剤を用いた推奨浴組成で調製しても、自身で調製しても構わない。市販の電気銅めっき液用の添加剤を用いる方法では、後述する実施例でも用いた、ローム・アンド・ハース電子材料株式会社製のカパーグリームST−901やカパーグリームCLX等を好ましく用いることが出来る。自身で調製する方法であれば、硫酸酸性電気銅めっき液を、銅濃度を45g/L〜60g/L程度、硫酸濃度を50g/L〜100g/L程度とした基本浴に、必要に応じてジスルフィド、ポリエチレングリコール,ヤーヌスグリーンと塩素などから選択した添加剤を加えて調製することが出来る。そして、これらの電気銅めっき液の液温を25℃〜45℃とし、陽極には含リン銅チップ又は寸法安定性陽極を用い、銅又は銅合金を陰極にして、陰極電流密度0.5A/dm〜5A/dmで電解すれば電気銅めっき皮膜を形成出来る。この工程では、独立した形状の銅又は銅合金であればラック架けして電気めっきを施す方式、帯状の銅又は銅合金であればロール ツー ロール方式など、電気銅めっきを施す銅又は銅合金の形状に最適な方法を選択して実施すればよい。 Process C is an electrolytic copper plating process in which the surface of the copper or copper alloy obtained in process B is subjected to copper plating by an electrolytic method. The electrolytic copper plating solution used here is not particularly limited. Even if it is prepared with a recommended bath composition using additives for a commercially available electrolytic copper plating solution in consideration of the characteristics of the copper film to be formed, It may be prepared. In the method using a commercially available additive for an electrolytic copper plating solution, Capper Gream ST-901, Capper Gream CLX, etc. manufactured by Rohm and Haas Electronic Materials Co., Ltd., which are also used in Examples described later, can be preferably used. . If it is a method prepared by itself, the sulfuric acid acidic copper plating solution is applied to a basic bath with a copper concentration of about 45 g / L to 60 g / L and a sulfuric acid concentration of about 50 g / L to 100 g / L as necessary. It can be prepared by adding an additive selected from disulfide, polyethylene glycol, Janus green and chlorine. And the liquid temperature of these electro-copper plating liquid shall be 25 to 45 degreeC, a phosphorus containing copper chip | tip or a dimension stability anode is used for an anode, copper or a copper alloy is made into a cathode, Cathode current density 0.5A / If electrolysis is performed at dm 2 to 5 A / dm 2 , an electrolytic copper plating film can be formed. In this process, if the copper or copper alloy has an independent shape, the rack is electroplated, and the strip copper or copper alloy is roll-to-roll. What is necessary is just to select and implement the method most suitable for the shape.

尚、本願明細書で用いている銅又は銅合金の概念には、銅又は銅合金皮膜を備えるもの全般、即ち、樹脂製品や銅を含まない金属の表面に銅又は銅合金皮膜を形成した形態をも含むことを断っておく。   In addition, in the concept of copper or copper alloy used in the specification of the present application, in general, those having a copper or copper alloy film, that is, a form in which a copper or copper alloy film is formed on the surface of a resin product or a metal not containing copper. Refrain from including.

酸性脱脂剤の調製: 実施例1では、硫酸第二鉄には試薬1級の硫酸第二鉄9水塩を用いた。そして、カチオン界面活性剤には、市販のポリエチレンポリアミンを主剤としたものを用いた(表中では、単に「ポリエチレンポリアミン」と表示している。)。また、ノニオン界面活性剤には、市販のポリオキシエチレンアルキルエーテルを主剤としたものを用いた(表中では、単に「ポリオキシエチレンアルキルエーテル」と表示している。)。これらの薬剤を用いて、酸性脱脂剤を調製した。具体的には、先ず、容量1.0Lのビーカーに入れた約0.7Lのイオン交換水を攪拌しながら、硫酸第二鉄、カチオン界面活性剤、ノニオン界面活性剤の規定量を順次投入して溶解した。その後、該溶解液にイオン交換水を追加して総液量を1.0Lに調整し、Fe(SO:20g/L、ポリエチレンポリアミン:0.1g/L、ポリオキシエチレンアルキルエーテル:1.0g/L、Cl:0.01g/Lの酸性脱脂剤を得た。この浴組成を、比較例1〜比較例4で用いた従来脱脂剤、及び比較例5と比較例6で用いたマイクロエッチング剤の浴組成と併せて、以下の表1に示す。 Preparation of acidic degreasing agent: In Example 1, ferric sulfate 9 hydrate of reagent grade 1 was used as ferric sulfate. And what used the commercially available polyethylene polyamine as the main ingredient was used for the cationic surfactant (in the table | surface, it is only displayed as "polyethylene polyamine"). The nonionic surfactant used was a commercially available polyoxyethylene alkyl ether as a main ingredient (in the table, simply indicated as “polyoxyethylene alkyl ether”). An acidic degreasing agent was prepared using these agents. Specifically, first, the prescribed amounts of ferric sulfate, cationic surfactant, and nonionic surfactant were sequentially added while stirring about 0.7 L of ion-exchanged water in a 1.0 L beaker. And dissolved. Thereafter, ion exchange water is added to the solution to adjust the total liquid volume to 1.0 L, Fe 2 (SO 4 ) 3 : 20 g / L, polyethylene polyamine: 0.1 g / L, polyoxyethylene alkyl ether : 1.0 g / L, Cl : 0.01 g / L acidic degreasing agent was obtained. This bath composition is shown in Table 1 below together with the conventional degreasing agent used in Comparative Examples 1 to 4 and the bath composition of the microetching agent used in Comparative Examples 5 and 6.

Figure 2009132967
Figure 2009132967

被めっき材の作成: ダイレクトプレーティング処理及び電気銅めっきなどを施す被めっき材として、18μm厚さの圧延銅箔を、25μmのポリイミドフィルムの両面に、20μmの接着剤層を介して張り合わせ、厚さ約0.1mmで250mm×300mmサイズのFCCLを作成した。 Preparation of material to be plated: As a material to be plated for direct plating and electrolytic copper plating, 18 μm-thick rolled copper foil is laminated on both sides of a 25 μm polyimide film via a 20 μm adhesive layer. FCCL having a size of about 0.1 mm and a size of 250 mm × 300 mm was prepared.

ダイレクトプレーティング処理: 前記FCCLへのダイレクトプレーティング処理は、ブラックホール処理を社外に委託して施し、ブラックホール処理導体膜を備えるFCCLを得た。実施例1〜実施例5と比較例1〜比較例6で実施した、ダイレクトプレーティング処理以降電気銅めっきまでの工程の流れを、以下の表2に示す。そして、実施例1の試験条件を、実施例2〜実施例5、比較例1〜比較例6の試験条件と併せて、以下の表3に示す。 Direct plating process: The direct plating process for the FCCL was performed by outsourcing the black hole process to an FCCL having a black hole processed conductor film. Table 2 below shows the flow of the steps from direct plating treatment to electrolytic copper plating performed in Examples 1 to 5 and Comparative Examples 1 to 6. The test conditions of Example 1 are shown in Table 3 below together with the test conditions of Examples 2 to 5 and Comparative Examples 1 to 6.

Figure 2009132967
Figure 2009132967

Figure 2009132967
Figure 2009132967

酸性脱脂: 酸性脱脂工程では、前記ブラックホール処理導体膜を備えるFCCLを125mm×50mmのサイズに切断し、試験片として用いた。この試験片を、容量1.0Lのトールビーカー内の、液温を40℃とした前記酸性脱脂剤1.0L中に3分間浸漬静置して酸性脱脂処理を施し、その後、流水で60秒間水洗した。酸性脱脂処理を施す前後の該CCLの質量差から銅のエッチング除去厚さを求めたところ、0.3μmであった。 Acid degreasing: In the acid degreasing step, FCCL including the black hole-treated conductor film was cut into a size of 125 mm × 50 mm and used as a test piece. This test piece was immersed in 1.0 L of the acidic degreasing agent in a 1.0 L tall beaker at a liquid temperature of 40 ° C. for 3 minutes and subjected to acidic degreasing treatment, and then subjected to running water for 60 seconds. Washed with water. The copper etching removal thickness was determined from the mass difference of the CCL before and after the acidic degreasing treatment and found to be 0.3 μm.

電気銅めっき: 電気銅めっき工程では、イオン交換水を用い、CuSO・5HOを75g/L、HSOを190g/L、塩素イオンを0.05g/L含む硫酸酸性電気銅めっき浴を調製し、実施例と比較例とで共通に用いる基本浴とした。実施例1では、この基本浴に、ローム・アンド・ハース電子材料株式会社製カパーグリームST−901、C剤を5mL/L添加して電気銅めっき液を調製した。電気銅めっき工程の前には、活性化工程として、前記酸性脱脂処理を施したFCCLを、10%硫酸に室温で1分間浸漬して酸活性処理を施した。そして、電気銅めっきでは、調製した電気銅めっき液1.5Lを容量1.5Lのハーリングセル用水槽に入れ、空気を吹き込んで攪拌しつつ、室温で電解した。具体的には、陽極に含リン銅を用い、前記酸活性処理を施したFCCLを陰極として、陰極電流密度(DK)2A/dmで25分間電解した。そして、電気銅めっきを施したFCCLは、水洗後風乾し、電気銅めっきFCCLを作成した。 Copper electroplating: In the copper electroplating process, sulfuric acid electrolytic copper plating using ion-exchanged water and containing 75 g / L of CuSO 4 .5H 2 O, 190 g / L of H 2 SO 4 and 0.05 g / L of chlorine ions. A bath was prepared and used as a basic bath commonly used in Examples and Comparative Examples. In Example 1, an electrolytic copper plating solution was prepared by adding 5 mL / L of Capper Gream ST-901 manufactured by Rohm and Haas Electronic Materials Co., Ltd. to the basic bath. Before the electrolytic copper plating step, as an activation step, the acid degreased FCCL was immersed in 10% sulfuric acid at room temperature for 1 minute for an acid activation treatment. In the electrolytic copper plating, 1.5 L of the prepared electrolytic copper plating solution was put into a water tank for a Haring cell having a capacity of 1.5 L, and electrolyzed at room temperature while blowing air and stirring. Specifically, phosphorous copper was used for the anode, and FCCL subjected to the acid activation treatment was used as a cathode, and electrolysis was performed at a cathode current density (DK) of 2 A / dm 2 for 25 minutes. And FCCL which gave electrolytic copper plating was air-dried after washing, and produced electrolytic copper plating FCCL.

外観評価: 電気銅めっきFCCLの外観は、目視外観と光沢度[GS(20°)]とで評価した。ここで言う光沢度[GS(20°)]は、被検体の表面に入射角20°で測定光を照射し、反射角20°で跳ね返った光の強度を測定したものであり、具体的には、JIS Z 8741−1997に基づき、村上色彩技術研究所製GM−26Dを用いて測定した。目視外観は、白斑が散見される程度で良好であり、光沢度[GS(20°)]は626.3であった。上記評価結果を、実施例2〜実施例5,比較例1〜比較例6の評価結果と併せて、後の表4に示す。 Appearance Evaluation: The appearance of the electrolytic copper plating FCCL was evaluated by visual appearance and gloss [GS (20 °)]. The glossiness [GS (20 °)] mentioned here is obtained by measuring the intensity of light bounced at a reflection angle of 20 ° by irradiating the surface of the subject with measurement light at an incident angle of 20 °. Was measured using GM-26D manufactured by Murakami Color Research Laboratory based on JIS Z 8741-1997. The visual appearance was good to the extent that white spots were scattered, and the glossiness [GS (20 °)] was 626.3. The evaluation results are shown in Table 4 later together with the evaluation results of Examples 2 to 5, and Comparative Examples 1 to 6.

実施例2では、実施例1で用いた電気銅めっき液に換えて、基本浴に、ローム・アンド・ハース電子材料株式会社製カパーグリームCLX、A剤及びC剤を各5mL/L添加した電気銅めっき液を用いた以外は実施例1と同様にして、電気銅めっきFCCLを作成した。この実施例2の酸性脱脂処理における銅のエッチング除去厚さは0.3μmであった。   In Example 2, in place of the electrolytic copper plating solution used in Example 1, an electric power obtained by adding 5 mL / L each of Capper Gream CLX, A agent and C agent manufactured by Rohm and Haas Electronic Materials Co., Ltd. to the basic bath An electrolytic copper plating FCCL was prepared in the same manner as in Example 1 except that the copper plating solution was used. The etching removal thickness of copper in the acid degreasing treatment of Example 2 was 0.3 μm.

外観評価: 実施例1と同様にして、電気銅めっきFCCLの外観を、目視外観と光沢度[GS(20°)]とで評価した。目視外観は、白斑が散見される程度で良好であり、光沢度[GS(20°)]は399.2であった。上記評価結果を、実施例1、実施例3〜5、比較例1〜比較例6の結果と併せて、後の表4に示す。 Appearance Evaluation: In the same manner as in Example 1, the appearance of the electrolytic copper plating FCCL was evaluated by visual appearance and glossiness [GS (20 °)]. The visual appearance was good to the extent that white spots were scattered, and the glossiness [GS (20 °)] was 399.2. The evaluation results are shown in Table 4 later together with the results of Example 1, Examples 3 to 5, and Comparative Examples 1 to 6.

実施例3では、ダイレクトプレーティング処理に実施例1で用いたブラックホール処理に換えて、クリムソン処理を社外に委託して施した以外は実施例1と同様にして、電気銅めっきFCCLを作成した。この実施例3の酸性脱脂処理における銅のエッチング除去厚さは0.3μmであった。   In Example 3, in place of the black hole process used in Example 1 for the direct plating process, an electrolytic copper plating FCCL was prepared in the same manner as in Example 1 except that the Crimson process was outsourced. . The etching removal thickness of copper in the acid degreasing treatment of Example 3 was 0.3 μm.

外観評価: 実施例1と同様にして、電気銅めっきFCCLの外観を、目視外観と光沢度[GS(20°)]とで評価した。目視外観は、白斑が散見される程度で良好であり、光沢度[GS(20°)]は610.6であった。上記評価結果を、実施例1、実施例2、実施例4、実施例5、比較例1〜比較例6の評価結果と併せて、後の表4に示す。 Appearance Evaluation: In the same manner as in Example 1, the appearance of the electrolytic copper plating FCCL was evaluated by visual appearance and glossiness [GS (20 °)]. The visual appearance was good to the extent that white spots were scattered, and the glossiness [GS (20 °)] was 610.6. The evaluation results are shown in the following Table 4 together with the evaluation results of Example 1, Example 2, Example 4, Example 5, and Comparative Examples 1 to 6.

実施例4では、実施例3と同様にして酸性脱脂処理を施したFCCLに、実施例3で用いた電気銅めっき液に換えて、基本浴に、ローム・アンド・ハース電子材料株式会社製カパーグリームCLX、A剤及びC剤を各5mL/L添加した電気銅めっき液を用いた以外は実施例3と同様にして、電気銅めっきFCCLを作成した。この実施例4の酸性脱脂処理における銅のエッチング除去厚さは0.3μmであった。   In Example 4, instead of the electrolytic copper plating solution used in Example 3 in the FCCL subjected to the acid degreasing treatment in the same manner as in Example 3, the basic bath was replaced with copper manufactured by Rohm & Haas Electronic Materials Co., Ltd. An electrolytic copper plating FCCL was prepared in the same manner as in Example 3 except that the electrolytic copper plating solution added with 5 mL / L of Gream CLX, agent A and agent C was used. The etching removal thickness of copper in the acid degreasing treatment of this Example 4 was 0.3 μm.

外観評価: 実施例1と同様にして、電気銅めっきFCCLの外観を、目視外観と光沢度[GS(20°)]とで評価した。目視外観は、白斑が散見される程度で良好であり、光沢度[GS(20°)]は632.8であった。上記評価結果を、実施例1〜実施例3、実施例5、比較例1〜比較例6の評価結果と併せて、後の表4に示す。 Appearance Evaluation: In the same manner as in Example 1, the appearance of the electrolytic copper plating FCCL was evaluated by visual appearance and glossiness [GS (20 °)]. The visual appearance was good to the extent that white spots were scattered, and the glossiness [GS (20 °)] was 632.8. The evaluation results are shown in Table 4 later together with the evaluation results of Examples 1 to 3, Example 5, and Comparative Examples 1 to 6.

実施例5では、酸性脱脂処理における銅のエッチング除去厚さを1.5μmに設定したほかは実施例3と同様の条件で電気銅めっきFCCLを作成し、目視外観と光沢度[GS(20°)]とで評価した。従って、表1に示す工程において、脱脂工程の処理時間のみ15分間に変更し、電気銅めっきFCCLを作成した。目視外観は、白斑が散見される程度で良好であり、光沢度[GS(20°)]は576.7であった。評価結果を、実施例1〜実施例4、比較例1〜比較例6の結果と併せて、後の表4に示す。   In Example 5, an electrolytic copper plating FCCL was prepared under the same conditions as in Example 3 except that the copper etching removal thickness in the acid degreasing treatment was set to 1.5 μm, and the visual appearance and glossiness [GS (20 ° ]] And evaluated. Therefore, in the process shown in Table 1, only the processing time of the degreasing process was changed to 15 minutes, and the electrolytic copper plating FCCL was created. The visual appearance was good to the extent that white spots were scattered, and the glossiness [GS (20 °)] was 576.7. The evaluation results are shown in Table 4 later together with the results of Examples 1 to 4 and Comparative Examples 1 to 6.

比較例Comparative example

比較例では、ノニオン界面活性剤を含み油脂類を膨潤脱離させる酸性の従来脱脂剤と、塩素イオンを含み銅をエッチングして付着している油脂類を脱離させるマイクロエッチング剤とを調製し、表2の脱脂工程で用いた。   In the comparative example, an acidic conventional degreasing agent that contains a nonionic surfactant and swells and desorbs fats and oils, and a microetching agent that contains chlorine ions and desorbs adhering fats and oils by etching copper are prepared. , Used in the degreasing step of Table 2.

比較例1: 比較例1では、HSO:25mL/Lとポリオキシエチレンアルキルエーテル:1g/Lとを含む硫酸酸性の脱脂剤を、従来脱脂剤として調製した。この従来脱脂剤が含むClは0.01g/Lであった。該従来脱脂剤が含む成分を、実施例1〜実施例5で用いた酸性脱脂剤の浴組成及び比較例5と比較例6で用いたマイクロエッチング剤の浴組成と併せて、表1に示す。そして、表2の脱脂工程で、実施例1で用いた酸性脱脂剤に換えて従来脱脂剤を用いた以外は実施例1と同様にして、電気銅めっきFCCLを作成した。比較例1の脱脂処理における銅のエッチング除去厚さは0.005μmであった。 Comparative Example 1 In Comparative Example 1, a sulfuric acid degreasing agent containing H 2 SO 4 : 25 mL / L and polyoxyethylene alkyl ether: 1 g / L was prepared as a conventional degreasing agent. The Cl contained in this conventional degreasing agent was 0.01 g / L. The components included in the conventional degreasing agent are shown in Table 1 together with the bath composition of the acidic degreasing agent used in Examples 1 to 5 and the bath composition of the microetching agent used in Comparative Examples 5 and 6. . And the electrolytic copper plating FCCL was created like Example 1 except having replaced with the acidic degreasing agent used in Example 1, and having used the conventional degreasing agent in the degreasing process of Table 2. The etching removal thickness of copper in the degreasing treatment of Comparative Example 1 was 0.005 μm.

また、電気銅めっきFCCLの外観を、実施例1と同様にして、目視外観と光沢度[GS(20°)]とで評価した。目視外観では、白斑が多数観察され、光沢度[GS(20°)]は212.7であった。上記評価結果を、実施例1〜実施例5及び比較例2〜比較例6の評価結果と併せて、後の表4に示す。   Moreover, the external appearance of the electrolytic copper plating FCCL was evaluated in the same manner as in Example 1 in terms of visual appearance and gloss [GS (20 °)]. In the visual appearance, many white spots were observed, and the glossiness [GS (20 °)] was 212.7. The evaluation results are shown in Table 4 later together with the evaluation results of Examples 1 to 5 and Comparative Examples 2 to 6.

比較例2: 比較例2では、表2の脱脂工程で、実施例2で用いた酸性脱脂剤に換えて従来脱脂剤を用いた以外は、実施例2と同様にして電気銅めっきFCCLを作成した。比較例2の脱脂処理における銅のエッチング除去厚さは0.005μmであった。 Comparative Example 2: In Comparative Example 2, an electrolytic copper plating FCCL was prepared in the same manner as in Example 2, except that the conventional degreasing agent was used in place of the acidic degreasing agent used in Example 2 in the degreasing step of Table 2. did. The etching removal thickness of copper in the degreasing treatment of Comparative Example 2 was 0.005 μm.

また、電気銅めっきFCCLの外観を、実施例1と同様にして、目視外観と光沢度[GS(20°)]とで評価した。目視外観では、白斑が多数観察され、光沢度[GS(20°)]は85.4であった。上記評価結果を、実施例1〜実施例5及び比較例1、比較例3〜比較例6の評価結果と併せて、後の表4に示す。   Moreover, the external appearance of the electrolytic copper plating FCCL was evaluated in the same manner as in Example 1 in terms of visual appearance and gloss [GS (20 °)]. In the visual appearance, many white spots were observed, and the glossiness [GS (20 °)] was 85.4. The above evaluation results are shown in the following Table 4 together with the evaluation results of Examples 1 to 5 and Comparative Example 1 and Comparative Examples 3 to 6.

比較例3: 比較例3では、表2の脱脂工程で、実施例3で用いた酸性脱脂剤に換えて従来脱脂剤を用いた以外は、実施例3と同様にして電気銅めっきFCCLを作成した。比較例3の脱脂処理における銅のエッチング除去厚さは0.005μmであった。 Comparative Example 3: In Comparative Example 3, an electrolytic copper plating FCCL was prepared in the same manner as in Example 3, except that the conventional degreasing agent was used in place of the acidic degreasing agent used in Example 3 in the degreasing step of Table 2. did. The thickness of copper removed by etching in the degreasing treatment of Comparative Example 3 was 0.005 μm.

また、電気銅めっきFCCLの外観を、実施例1と同様にして、目視外観と光沢度[GS(20°)]とで評価した。目視外観では、白斑が全面に観察され、光沢度[GS(20°)]は191.5であった。上記評価結果を、実施例1〜実施例5、比較例1、比較例2及び比較例4〜比較例6の評価結果と併せて、後の表4に示す。   Moreover, the external appearance of the electrolytic copper plating FCCL was evaluated in the same manner as in Example 1 in terms of visual appearance and gloss [GS (20 °)]. In the visual appearance, white spots were observed on the entire surface, and the glossiness [GS (20 °)] was 191.5. The evaluation results are shown in Table 4 below together with the evaluation results of Examples 1 to 5, Comparative Example 1, Comparative Example 2, and Comparative Examples 4 to 6.

比較例4: 比較例4では、表2の脱脂工程で、実施例4で用いた酸性脱脂剤に換えて従来脱脂剤を用いた以外は、実施例4と同様にして電気銅めっきFCCLを作成した。比較例4の脱脂処理における銅のエッチング除去厚さは0.005μmであった。 Comparative Example 4: In Comparative Example 4, an electrolytic copper plating FCCL was prepared in the same manner as in Example 4 except that the conventional degreasing agent was used in place of the acidic degreasing agent used in Example 4 in the degreasing step of Table 2. did. The etching removal thickness of copper in the degreasing treatment of Comparative Example 4 was 0.005 μm.

また、電気銅めっきFCCLの外観を、実施例1と同様にして、目視外観と光沢度[GS(20°)]とで評価した。目視外観では、白斑が多数観察され、光沢度[GS(20°)]は254.8であった。評価結果を、実施例1〜実施例5及び比較例1〜比較例3、比較例5及び比較例6の評価結果と併せて、後の表4に示す。   Moreover, the external appearance of the electrolytic copper plating FCCL was evaluated in the same manner as in Example 1 in terms of visual appearance and gloss [GS (20 °)]. In the visual appearance, many white spots were observed, and the glossiness [GS (20 °)] was 254.8. The evaluation results are shown in Table 4 later together with the evaluation results of Examples 1 to 5 and Comparative Examples 1 to 3, Comparative Example 5 and Comparative Example 6.

比較例5: 比較例5では、浴組成が、FeCl・2HO:1%(Clでは5.06g/L)、蟻酸:5%、エポミンSP−200:0.0002%のマイクロエッチング剤(特許文献1の実施例2に記載のマイクロエッチング剤)を調製した。該マイクロエッチング剤が含む成分を、実施例1〜実施例5で用いた酸性脱脂剤の浴組成及び比較例1〜比較例4で用いた従来脱脂剤の浴組成と併せて、表1に示す。そして、表2の脱脂工程で、実施例3で用いた酸性脱脂剤に換えてマイクロエッチング剤を用いた以外は実施例3と同様にして、電気銅めっきFCCLを作成した。この電気銅めっきFCCLの目視外観では、白斑が全面に観察され、光沢度[GS(20°)]は、42.6であった。評価結果を、実施例1〜実施例5及び比較例1〜比較例4及び比較例6の結果と併せて、後の表4に示す。 Comparative Example 5: In Comparative Example 5, microetching with a bath composition of FeCl 3 .2H 2 O: 1% (5.06 g / L for Cl ), formic acid: 5%, and epomin SP-200: 0.0002% An agent (microetching agent described in Example 2 of Patent Document 1) was prepared. The components contained in the microetching agent are shown in Table 1, together with the bath composition of the acidic degreasing agent used in Examples 1 to 5 and the bath composition of the conventional degreasing agent used in Comparative Examples 1 to 4. . And in the degreasing process of Table 2, it replaced with the acidic degreasing agent used in Example 3, and produced the electrolytic copper plating FCCL like Example 3 except having used the microetching agent. In the visual appearance of this electrolytic copper plating FCCL, white spots were observed on the entire surface, and the glossiness [GS (20 °)] was 42.6. The evaluation results are shown in Table 4 later together with the results of Examples 1 to 5 and Comparative Examples 1 to 4 and Comparative Example 6.

比較例6: 比較例6では、表2の脱脂工程で、脱脂工程における銅のエッチング除去厚さが1.5μmになるように、脱脂処理を15分間実施した以外は比較例5と同様にして電気銅めっきFCCLを作成した。この電気銅めっきFCCLの目視外観では、白斑が多数観察され、光沢度[GS(20°)]は、160.8であった。評価結果を、実施例1〜実施例5及び比較例1〜比較例5の結果と併せて、以下の表4に示す。 Comparative Example 6: In Comparative Example 6, the same degreasing process as in Comparative Example 5 except that the degreasing process of Table 2 was performed for 15 minutes so that the copper etching removal thickness in the degreasing process was 1.5 μm. An electrolytic copper plating FCCL was prepared. In the visual appearance of this electrolytic copper plating FCCL, many white spots were observed, and the glossiness [GS (20 °)] was 160.8. The evaluation results are shown in Table 4 below together with the results of Examples 1 to 5 and Comparative Examples 1 to 5.

Figure 2009132967
Figure 2009132967

実施例と比較例との対比: 対比に先立ち、外観を評価した各電気銅めっきFCCLは、それぞれ厚さ約10μmの光沢電気銅めっき皮膜を備えていることを確認しておく。しかし、上記のように、前処理で用いた脱脂剤の種類と銅のエッチング除去厚さの違いに起因する電気銅めっき後の表面状態の違いが、光沢度[GS(20°)]の違いと、目視外観の違いとして明確に現れている。 Comparison between Examples and Comparative Examples: Prior to the comparison, it is confirmed that each electrolytic copper plating FCCL whose appearance was evaluated has a bright electrolytic copper plating film having a thickness of about 10 μm. However, as described above, the difference in surface condition after electrolytic copper plating caused by the difference in the type of degreasing agent used in the pretreatment and the etching removal thickness of copper is the difference in glossiness [GS (20 °)]. It clearly appears as a difference in visual appearance.

酸性脱脂剤と従来脱脂剤との対比: 酸性脱脂剤を用いた実施例1〜実施例4の光沢度[GS(20°)]は、平均値が545.4、標準偏差が103.6(変動係数20.0%)である。これに対し、従来脱脂剤を用いた比較例1〜比較例4の光沢度[GS(20°)]は平均値が186.1で標準偏差が62.4(変動係数33.5%)である。従って、共にハロゲンイオンを含んでいない酸性の脱脂剤であるにもかかわらず、本件発明に係る酸性脱脂剤を用いた場合には、従来脱脂剤を用いた場合よりも光沢が強く、且つ、バラツキも小さい表面状態の電気銅めっき皮膜が得られている。 Comparison between Acid Degreasing Agent and Conventional Degreasing Agent: The glossiness [GS (20 °)] of Examples 1 to 4 using an acid degreasing agent has an average value of 545.4 and a standard deviation of 103.6 ( The coefficient of variation is 20.0%). On the other hand, the glossiness [GS (20 °)] of Comparative Examples 1 to 4 using a conventional degreasing agent has an average value of 186.1 and a standard deviation of 62.4 (variation coefficient 33.5%). is there. Therefore, even when both are acidic degreasing agents that do not contain halogen ions, when the acidic degreasing agent according to the present invention is used, the gloss is stronger and more uneven than when the conventional degreasing agent is used. An electro copper plating film having a small surface state is obtained.

また、目視外観においても、酸性脱脂剤で前処理した電気銅めっきFCCLには、散見される程度の白斑しか観察されていないのに対し、従来脱脂剤で前処理した電気銅めっきFCCLには、多数〜全面に亘る白斑が観察されている。従って、実施例と比較例との光沢度[GS(20°)]の違いには、白斑の有無も影響している。   In addition, in the visual appearance, the copper electroplating FCCL pretreated with the acidic degreasing agent has only observed white spots to the extent that it is scattered, whereas the copper electroplating FCCL pretreated with the conventional degreasing agent has Vitiligo covering many to the entire surface is observed. Therefore, the difference in glossiness [GS (20 °)] between the example and the comparative example is also affected by the presence or absence of vitiligo.

ダイレクトプレーティング処理で形成した導体膜を備えるFCCLを脱脂処理する場合の銅のエッチング除去厚さは、前記実施例の酸性脱脂剤を用いた脱脂処理では0.3μmに設定している。脱脂処理で該酸性脱脂剤を用いれば、金属銅の表面にカチオン界面活性剤が吸着する。そのため、第二鉄イオンが金属銅表面を酸化してもむらが発生しにくく、結晶粒界と金属露出面とがほぼ一律に0.3μmエッチングされている。また、脱脂処理後に希硫酸を用いて酸活性処理を施した金属銅表面は、カチオン活性剤が吸着していても均一である。その結果、酸性脱脂剤を用いて脱脂処理を施したFCCLの表面に電気銅めっきを施した電気銅めっきFCCLは、良好な外観と光沢を備えている。   The etching removal thickness of copper in the case of degreasing the FCCL including the conductor film formed by the direct plating process is set to 0.3 μm in the degreasing process using the acidic degreasing agent of the above example. If the acidic degreasing agent is used in the degreasing treatment, the cationic surfactant is adsorbed on the surface of the metallic copper. Therefore, even when ferric ions oxidize the surface of the metal copper, unevenness is unlikely to occur, and the crystal grain boundaries and the exposed metal surface are etched almost uniformly by 0.3 μm. Moreover, even if the cation activator adsorb | sucks, the metal copper surface which performed the acid activation process using the dilute sulfuric acid after a degreasing process is uniform. As a result, the electrolytic copper plating FCCL in which electrolytic copper plating is performed on the surface of the FCCL that has been degreased using an acidic degreasing agent has a good appearance and gloss.

これに対し、従来脱脂剤を用いた場合には、酸性脱脂剤を用いた場合の液温と処理時間とを同一にして処理しているにもかかわらず、銅のエッチング除去厚さは0.005μmと非常に少ない。即ち、従来脱脂剤を用いた脱脂処理では、表面の酸化銅の溶解と結晶粒界でのエッチングが進行したものの、金属銅を溶解する能力が低いことに起因して銅のエッチング除去厚さが少なかったと考えられる。しかし、結晶粒界のみがエッチングされて表面が荒れたため、従来脱脂剤を用いて脱脂処理を施した面に光沢電気銅めっきを施しても、電気銅めっきFCCLの光沢度[GS(20°)]は、酸性脱脂剤を用いた場合の電気銅めっきFCCLの光沢度[GS(20°)]レベルには至っていない。   On the other hand, when a conventional degreasing agent is used, the copper etching removal thickness is 0. 0 even though the treatment is performed with the same liquid temperature and treatment time when an acidic degreasing agent is used. 005 μm and very few. That is, in the conventional degreasing process using a degreasing agent, although the dissolution of copper oxide on the surface and the etching at the grain boundaries proceeded, the thickness of the copper removed by etching is low due to the low ability to dissolve metallic copper. It seems that there were few. However, since only the grain boundaries were etched and the surface was roughened, the gloss of the copper electroplating FCCL [GS (20 °) even if the surface subjected to the degreasing treatment with a conventional degreasing agent was subjected to the bright electrolytic copper plating. ] Does not reach the glossiness [GS (20 °)] level of electrolytic copper plating FCCL when an acidic degreasing agent is used.

上記から、本件発明に係る酸性脱脂剤と従来脱脂剤との違いは、銅のエッチング除去量の違い、特に金属銅をエッチングする能力の違いにあると考えられる。このことから、電気銅めっきの前処理として実施する脱脂処理で用いる脱脂剤には、金属銅のエッチング能力が必須であると推測出来る。   From the above, it is considered that the difference between the acidic degreasing agent according to the present invention and the conventional degreasing agent is the difference in the amount of copper removed by etching, particularly the ability to etch metallic copper. From this, it can be presumed that the etching performance of metallic copper is essential for the degreasing agent used in the degreasing treatment carried out as a pretreatment for the electro copper plating.

酸性脱脂剤とマイクロエッチング剤との対比: 酸性脱脂剤を用いて銅のエッチング除去厚さを0.3μmと1.5μmとに違えて得られた電気銅めっきFCCLの光沢度[GS(20°)]を、実施例3と実施例5とで比較すると、実施例3の電気銅めっきFCCLの光沢度[GS(20°)]632.8に対し、実施例5の電気銅めっきFCCLの光沢度[GS(20°)]は576.7であり、9%程度低下している。これに対し、マイクロエッチング剤を用い、銅のエッチング除去厚さを0.3μmと1.5μmとに違えて得られた電気銅めっきFCCLの光沢度[GS(20°)]を、比較例5と比較例6とで比較すると、比較例5で得られた電気銅めっきFCCLの光沢度[GS(20°)]は42.6であり、ほぼ無光沢状態を示している。しかし、比較例6では、電気銅めっきFCCLの光沢度[GS(20°)]が160.8まで回復している。 Contrast of acid degreasing agent and microetching agent: Glossiness [GS (20 °) of electrolytic copper plating FCCL obtained by using acid degreasing agent to change copper etching removal thickness to 0.3 μm and 1.5 μm )] Is compared between Example 3 and Example 5, the glossiness of the electrolytic copper plating FCCL of Example 5 is compared to the glossiness [GS (20 °)] 632.8 of the electrolytic copper plating FCCL of Example 3. The degree [GS (20 °)] is 576.7, which is about 9% lower. On the other hand, the glossiness [GS (20 °)] of the electro-copper plating FCCL obtained by using a micro-etching agent and changing the etching removal thickness of copper to 0.3 μm and 1.5 μm is shown in Comparative Example 5. When compared with Comparative Example 6, the glossiness [GS (20 °)] of the electrolytic copper plating FCCL obtained in Comparative Example 5 is 42.6, indicating a substantially matte state. However, in Comparative Example 6, the glossiness [GS (20 °)] of the electrolytic copper plating FCCL has recovered to 160.8.

上記現象から、比較例5の脱脂工程では、塩素イオンが吸着した結晶粒界での銅のエッチングが顕著に進行し、従来脱脂剤と比べても電気銅めっきFCCLの表面光沢が失われた表面形状になったと考えられる。しかし、比較例6の脱脂工程では、銅のエッチング除去厚さを5倍にしたため、結晶粒の脱落や金属銅の溶解等が進行して表面が均質化し、光沢電気銅めっきを施した後では、電気銅めっきFCCLの光沢度[GS(20°)]が上昇したと考えられる。しかし、この電気銅めっきFCCLの光沢度[GS(20°)]の絶対レベルは、比較例1〜比較例4と同レベル又はそれ以下であるため、電気銅めっきの前処理にマイクロエッチング剤を用いれば銅のエッチングは進行するが、電気銅めっきに好適な表面状態が得られるとは言い難い。   From the above phenomenon, in the degreasing process of Comparative Example 5, the etching of copper at the crystal grain boundaries where chlorine ions were adsorbed remarkably progressed, and the surface gloss of the surface of the copper electroplating FCCL was lost as compared with the conventional degreasing agent. It is thought that it became a shape. However, in the degreasing process of Comparative Example 6, since the etching removal thickness of copper was increased 5 times, the removal of crystal grains and the dissolution of metallic copper proceeded and the surface was homogenized. The glossiness [GS (20 °)] of the electrolytic copper plating FCCL is considered to have increased. However, since the absolute level of the glossiness [GS (20 °)] of the electrolytic copper plating FCCL is the same level or lower than those of Comparative Examples 1 to 4, a microetching agent is used for the pretreatment of the electrolytic copper plating. If used, etching of copper proceeds, but it is difficult to say that a surface state suitable for electrolytic copper plating is obtained.

上記対比結果から明らかなように、本件発明に係る酸性脱脂剤は、銅又は銅合金表面を均一に、且つ、平滑に、ゆっくりエッチングする能力を備えている。従って、脱脂処理を施す際に銅又は銅合金表面のエッチング除去厚さが変動しても、表面形状には大きな影響を与えない。また、均質な表面状態を得るために、マイクロエッチング剤のように銅又は銅合金表面をμmオーダーでエッチングする必要も無い。即ち、本件発明に係る酸性脱脂剤を用いれば、銅又は銅合金表面の状態に対応して脱脂条件の設定を変更することが可能になり、たとえ長時間脱脂処理を施した銅又は銅合金表面に電気銅めっきを施しても、白むらや白斑等が発生しにくい。   As is clear from the above comparison results, the acidic degreasing agent according to the present invention has the ability to etch the copper or copper alloy surface uniformly, smoothly and slowly. Therefore, even if the etching removal thickness of the copper or copper alloy surface varies during the degreasing process, the surface shape is not greatly affected. In addition, in order to obtain a uniform surface state, it is not necessary to etch the copper or copper alloy surface on the order of μm unlike a microetching agent. That is, if the acidic degreasing agent according to the present invention is used, it becomes possible to change the setting of the degreasing conditions corresponding to the state of the copper or copper alloy surface, even if the copper or copper alloy surface subjected to the degreasing treatment for a long time. Even if the copper electroplating is applied, white unevenness and white spots are hardly generated.

本件発明に係る酸性脱脂剤は、硫酸第二鉄、カチオン界面活性剤、ノニオン界面活性剤の各成分を含む銅又は銅合金表面への電気銅めっきの前処理に用いる酸性脱脂剤であり、ハロゲンなどの成分を含んでいない。この該酸性脱脂剤を、銅又は銅合金表面に電気銅めっきを施す際の脱脂処理に用いれば、光沢むらや色むらの無い良好な電気銅めっき皮膜が得られる。そして、ダイレクトプレーティング処理で形成した導体膜を備える銅又は銅合金表面にも白むらや白斑等の発生が無い電気銅めっきを施すことが出来る。従って、圧延銅箔を用いたフレキシブルプリント配線板などにおいて、スルーホールなどの導通を得るためにダイレクトプレーティング処理を採用した場合であっても、その後に施す電気銅めっきに白むらや白斑等が発生せず、高品質のフレキシブルプリント配線板を得ることが出来る。また、同様の外観要求がある装飾めっきの分野にも適用可能である。   The acidic degreasing agent according to the present invention is an acidic degreasing agent used for pretreatment of electrolytic copper plating on the surface of copper or copper alloy containing each component of ferric sulfate, cationic surfactant, and nonionic surfactant. Does not contain such ingredients. If this acidic degreasing agent is used for a degreasing treatment in performing electrolytic copper plating on the surface of copper or a copper alloy, a good electrolytic copper plating film free from uneven brightness and uneven color can be obtained. And the copper or copper alloy surface provided with the conductor film formed by the direct plating process can be subjected to electrolytic copper plating without generation of white unevenness or white spots. Therefore, even in the case of using a direct plating process to obtain continuity such as a through hole in a flexible printed wiring board using a rolled copper foil, white unevenness, white spots, etc. are present in the subsequent electrolytic copper plating. It does not occur, and a high-quality flexible printed wiring board can be obtained. Moreover, it is applicable also to the field | area of the decorative plating with the same external appearance request | requirement.

Claims (7)

銅又は銅合金表面への電気銅めっきの前処理に用いる酸性脱脂剤であって、
硫酸第二鉄、カチオン界面活性剤、ノニオン界面活性剤の各成分を含むことを特徴とする酸性脱脂剤。
An acidic degreasing agent used for pretreatment of electrolytic copper plating on the surface of copper or copper alloy,
An acidic degreasing agent comprising each component of ferric sulfate, a cationic surfactant, and a nonionic surfactant.
前記酸性脱脂剤が含むハロゲンイオンは、その濃度が0.1g/L以下である請求項1に記載の酸性脱脂剤。 The acidic degreasing agent according to claim 1, wherein the halogen ion contained in the acidic degreasing agent has a concentration of 0.1 g / L or less. 前記酸性脱脂剤が含む硫酸第二鉄は、その濃度が2g/L〜500g/Lである請求項1又は請求項2に記載の酸性脱脂剤。 The acidic degreasing agent according to claim 1 or 2, wherein the ferric sulfate contained in the acidic degreasing agent has a concentration of 2 g / L to 500 g / L. 前記酸性脱脂剤が含むカチオン界面活性剤は、その濃度が0.01g/L〜10g/Lである請求項1〜請求項3のいずれかに記載の酸性脱脂剤。 The acidic degreasing agent according to any one of claims 1 to 3, wherein the concentration of the cationic surfactant contained in the acidic degreasing agent is 0.01 g / L to 10 g / L. 前記酸性脱脂剤が含むノニオン界面活性剤は、その濃度が0.05g/L〜50g/Lである請求項1〜請求項4のいずれかに記載の酸性脱脂剤。 The acidic degreasing agent according to any one of claims 1 to 4, wherein the nonionic surfactant contained in the acidic degreasing agent has a concentration of 0.05 g / L to 50 g / L. 請求項1〜請求項5のいずれかに記載の酸性脱脂剤を用いる銅又は銅合金表面への電気銅めっき方法であって、
以下の工程A〜工程Cを含むことを特徴とする銅又は銅合金表面への電気銅めっき方法。
工程A: 銅又は銅合金の表面を該酸性脱脂剤と接触させて処理する酸性脱脂工程。
工程B: 工程Aで得られた銅又は銅合金表面を活性化する活性化工程。
工程C: 工程Bで得られた銅又は銅合金の表面に電解法で銅めっきを施す電気銅めっき工程。
A method for electrolytic copper plating on a copper or copper alloy surface using the acidic degreasing agent according to claim 1,
A method of electrolytic copper plating on a copper or copper alloy surface, comprising the following steps A to C.
Step A: An acidic degreasing step in which the surface of copper or copper alloy is treated by contacting with the acidic degreasing agent.
Step B: An activation step for activating the copper or copper alloy surface obtained in Step A.
Step C: An electrolytic copper plating step in which the surface of the copper or copper alloy obtained in Step B is subjected to copper plating by an electrolytic method.
前記工程Aは、前記酸性脱脂剤の液温を20℃〜75℃とし、これと前記銅又は銅合金の表面とを1分間以上接触させ、該銅又は銅合金の表面の0.01μm以上の厚さ分をエッチング除去する酸性脱脂工程である請求項6に記載の銅又は銅合金表面への電気銅めっき方法。 In the step A, the liquid temperature of the acidic degreasing agent is set to 20 ° C. to 75 ° C., and this is brought into contact with the surface of the copper or copper alloy for 1 minute or more, and 0.01 μm or more of the surface of the copper or copper alloy. The method for electroplating copper or copper alloy on the surface of copper or copper alloy according to claim 6, which is an acid degreasing step in which the thickness is removed by etching.
JP2007309830A 2007-11-30 2007-11-30 Acidic degreasing agent used for pretreatment of electrolytic copper plating on copper or copper alloy surface and method of electrocopper plating on copper or copper alloy surface pretreated with the acidic degreasing agent Expired - Fee Related JP5281788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007309830A JP5281788B2 (en) 2007-11-30 2007-11-30 Acidic degreasing agent used for pretreatment of electrolytic copper plating on copper or copper alloy surface and method of electrocopper plating on copper or copper alloy surface pretreated with the acidic degreasing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007309830A JP5281788B2 (en) 2007-11-30 2007-11-30 Acidic degreasing agent used for pretreatment of electrolytic copper plating on copper or copper alloy surface and method of electrocopper plating on copper or copper alloy surface pretreated with the acidic degreasing agent

Publications (2)

Publication Number Publication Date
JP2009132967A true JP2009132967A (en) 2009-06-18
JP5281788B2 JP5281788B2 (en) 2013-09-04

Family

ID=40865117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309830A Expired - Fee Related JP5281788B2 (en) 2007-11-30 2007-11-30 Acidic degreasing agent used for pretreatment of electrolytic copper plating on copper or copper alloy surface and method of electrocopper plating on copper or copper alloy surface pretreated with the acidic degreasing agent

Country Status (1)

Country Link
JP (1) JP5281788B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179085A (en) * 2010-03-02 2011-09-15 C Uyemura & Co Ltd Pretreatment agent and pretreatment method for electroplating and electroplating method
WO2011136061A1 (en) * 2010-04-30 2011-11-03 Jx日鉱日石金属株式会社 Laminate for flexible wiring
CN112981422A (en) * 2021-02-08 2021-06-18 珠海市板明科技有限公司 Copper surface cleaning agent and use method thereof
KR102280173B1 (en) * 2020-12-29 2021-07-20 한국세라믹기술원 Method of formation copper plating with improved emissivity

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515345B1 (en) * 1970-10-16 1976-02-19
JPS5348934A (en) * 1976-10-16 1978-05-02 Masami Kobayashi Detergent for derusting copper and copper alloy
JPH0273983A (en) * 1988-09-07 1990-03-13 Nippon Parkerizing Co Ltd Acidic washing solution for aluminum
US4956035A (en) * 1989-08-01 1990-09-11 Rd Chemical Company Composition and process for promoting adhesion on metal surfaces
JPH04322496A (en) * 1990-11-29 1992-11-12 Macdermid Inc Manufacture of printed circuit and composition used therefor
JPH07173655A (en) * 1993-11-05 1995-07-11 Nippon Paint Co Ltd Aqueous acidic cleaning solution of aluminum based metal and cleaning thereof
JP2005330572A (en) * 2003-07-25 2005-12-02 Mec Kk Etchant, replenishment solution and method for producing copper wiring using the same
JP2008144228A (en) * 2006-12-08 2008-06-26 Sanshin Chem Ind Co Ltd Chemical dissolution control agent for metal, chemically dissolving solution for metal, and chemically dissolving method for metal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515345B1 (en) * 1970-10-16 1976-02-19
JPS5348934A (en) * 1976-10-16 1978-05-02 Masami Kobayashi Detergent for derusting copper and copper alloy
JPH0273983A (en) * 1988-09-07 1990-03-13 Nippon Parkerizing Co Ltd Acidic washing solution for aluminum
US4956035A (en) * 1989-08-01 1990-09-11 Rd Chemical Company Composition and process for promoting adhesion on metal surfaces
JPH04322496A (en) * 1990-11-29 1992-11-12 Macdermid Inc Manufacture of printed circuit and composition used therefor
JPH07173655A (en) * 1993-11-05 1995-07-11 Nippon Paint Co Ltd Aqueous acidic cleaning solution of aluminum based metal and cleaning thereof
JP2005330572A (en) * 2003-07-25 2005-12-02 Mec Kk Etchant, replenishment solution and method for producing copper wiring using the same
JP2008144228A (en) * 2006-12-08 2008-06-26 Sanshin Chem Ind Co Ltd Chemical dissolution control agent for metal, chemically dissolving solution for metal, and chemically dissolving method for metal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179085A (en) * 2010-03-02 2011-09-15 C Uyemura & Co Ltd Pretreatment agent and pretreatment method for electroplating and electroplating method
WO2011136061A1 (en) * 2010-04-30 2011-11-03 Jx日鉱日石金属株式会社 Laminate for flexible wiring
JPWO2011136061A1 (en) * 2010-04-30 2013-07-18 Jx日鉱日石金属株式会社 Laminate for flexible wiring
KR102280173B1 (en) * 2020-12-29 2021-07-20 한국세라믹기술원 Method of formation copper plating with improved emissivity
CN112981422A (en) * 2021-02-08 2021-06-18 珠海市板明科技有限公司 Copper surface cleaning agent and use method thereof

Also Published As

Publication number Publication date
JP5281788B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
US6746621B2 (en) Micro-etching composition for copper or copper alloy, micro-etching method, and method for manufacturing printed circuit board
TWI630176B (en) Pretreatment agent for electroless plating, pretreatment method using electroplating substrate using the above pretreatment method for electroless plating, and manufacturing method thereof
JP4278705B1 (en) Etching solution
JP5652818B2 (en) Aluminum surface roughening agent and surface roughening method using the same
KR102472714B1 (en) copper etchant
JP5281788B2 (en) Acidic degreasing agent used for pretreatment of electrolytic copper plating on copper or copper alloy surface and method of electrocopper plating on copper or copper alloy surface pretreated with the acidic degreasing agent
JP4955104B2 (en) Method for forming an electronic circuit
TWI658135B (en) Method of selectively treating copper in the presence of further metal
US7591956B2 (en) Method and composition for selectively stripping nickel from a substrate
US8486281B2 (en) Nickel-chromium alloy stripper for flexible wiring boards
JP2014156629A (en) Etchant for copper or copper alloy, and method for etching copper or copper alloy using the same
JP2001348684A (en) Surface-roughening agent for aluminum of aluminum alloy and surface-roughening method using the agent
JP5117796B2 (en) Chemical abrasive and metal plating method using copper or copper alloy pre-plated using the chemical abrasive
JP4593331B2 (en) Multilayer circuit board and manufacturing method thereof
JP4918342B2 (en) Copper foil roughening treatment method
JP2010111748A (en) Adhesive layer forming liquid and adhesive layer forming process
JP5317099B2 (en) Adhesive layer forming solution
JP5443157B2 (en) High frequency copper foil, copper clad laminate using the same, and method for producing the same
WO2012132572A1 (en) Copper foil with copper carrier, method for producing said copper foil, copper foil for electronic circuit, method for producing said copper foil, and method for forming electronic circuit
TWI355219B (en) Micro-etching process of pcb without causing galva
JP2010080702A (en) Multilayer printed wiring board
JP3737268B2 (en) Electrolytic copper plating solution and electrolytic copper plating method using the same
CN104919087A (en) Copper etching solution
JP2005353920A (en) Surface-roughening treatment method of copper foil for printed-wiring board
JP2012235062A (en) Laminate and printed wiring board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5281788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees