JP2009129633A - Porous electrode base material, its manufacturing method, membrane-electrode assembly, and polymer electrolyte fuel cell - Google Patents

Porous electrode base material, its manufacturing method, membrane-electrode assembly, and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2009129633A
JP2009129633A JP2007301656A JP2007301656A JP2009129633A JP 2009129633 A JP2009129633 A JP 2009129633A JP 2007301656 A JP2007301656 A JP 2007301656A JP 2007301656 A JP2007301656 A JP 2007301656A JP 2009129633 A JP2009129633 A JP 2009129633A
Authority
JP
Japan
Prior art keywords
porous electrode
base material
fibers
precursor sheet
fibrillar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007301656A
Other languages
Japanese (ja)
Other versions
JP5433146B2 (en
Inventor
Kazuhiro Sumioka
和宏 隅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2007301656A priority Critical patent/JP5433146B2/en
Publication of JP2009129633A publication Critical patent/JP2009129633A/en
Application granted granted Critical
Publication of JP5433146B2 publication Critical patent/JP5433146B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous electrode base material having high mechanical strength, high thickness accuracy, high surface smoothness, sufficient gas permeability, and high conductivity in spite of low price, and to provide the method of manufacturing the same. <P>SOLUTION: The porous electrode base material in which carbon short fibers dispersed inside a two-dimensional plane are bonded with fibril-like carbon is manufactured in: a step of manufacturing a precursor sheet by dispersing carbon short fibers and carbonizable fibril-like fibers inside the two-dimensional plane; and a step of carbonizing the precursor sheet at ≥1000°C without performing oxidation treatment at 200-300°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液体燃料を用いた固体高分子型燃料電池に用いられる多孔質電極基材およびその製造方法、ならびにその多孔質電極基材を用いた膜−電極接合体および固体高分子型燃料電池に関するものである。   The present invention relates to a porous electrode substrate used for a polymer electrolyte fuel cell using a liquid fuel, a method for producing the same, and a membrane-electrode assembly and a polymer electrolyte fuel cell using the porous electrode substrate. It is about.

固体高分子型燃料電池はプロトン伝導性の高分子電解質膜を用いることを特徴としており、水素等の燃料ガスと酸素等の酸化ガスを電気化学的に反応させることにより起電力を得る装置である。固体高分子型燃料電池は、自家発電装置や、自動車等の移動体用の発電装置として利用可能である。   A polymer electrolyte fuel cell is characterized by using a proton-conducting polymer electrolyte membrane, and is an apparatus for obtaining an electromotive force by electrochemically reacting a fuel gas such as hydrogen and an oxidizing gas such as oxygen. . The polymer electrolyte fuel cell can be used as a self-power generation device or a power generation device for a moving body such as an automobile.

このような固体高分子型燃料電池は、水素イオン(プロトン)を選択的に伝導する高分子電解質膜を有する。また、貴金属系触媒を担持したカーボン粉末を主成分とする触媒層とガス拡散電極基材とを有するガス拡散電極が、触媒層側を内側にして、高分子電解質膜の両面に接合された構造となっている。   Such a polymer electrolyte fuel cell has a polymer electrolyte membrane that selectively conducts hydrogen ions (protons). Also, a structure in which a gas diffusion electrode having a catalyst layer mainly composed of carbon powder supporting a noble metal catalyst and a gas diffusion electrode base material is bonded to both surfaces of the polymer electrolyte membrane with the catalyst layer side inside It has become.

このような高分子電解質膜と2枚のガス拡散電極からなる接合体は膜−電極接合体(MEA: Membrane Electrode Assembly)と呼ばれている。またMEAの両外側には燃料ガスまたは酸化ガスを供給し、かつ生成ガスおよび過剰ガスを排出することを目的としたガス流路を形成したセパレーターが設置されている。   Such a joined body composed of a polymer electrolyte membrane and two gas diffusion electrodes is called a membrane-electrode assembly (MEA: Membrane Electrode Assembly). In addition, separators are provided on both outer sides of the MEA so as to supply a fuel gas or an oxidizing gas and to form a gas flow path for the purpose of discharging generated gas and excess gas.

多孔質電極基材は電気的な接触抵抗を低減し、かつ、セパレーターより供給される燃料ガスまたは酸化ガスがセル外へ漏出することを抑制することを目的として、セパレーターによって数MPaの荷重で締結されるため、機械的強度が必要となる。   The porous electrode substrate is fastened by a separator with a load of several MPa for the purpose of reducing electrical contact resistance and suppressing leakage of fuel gas or oxidizing gas supplied from the separator to the outside of the cell. Therefore, mechanical strength is required.

さらに、多孔質電極基材は主に次の3つの機能を持つ必要がある。第1に多孔質電極基材の外側に配置されたセパレーターに形成されたガス流路より触媒層中の貴金属系触媒に均一に燃料ガスまたは酸化ガスを供給する機能である。第2に触媒層で反応により生成した水を排出する機能である。第3に触媒層での反応に必要な電子または生成される電子をセパレーターへ導電する機能である。これらの機能を付与するため、多孔質電極基材は一般的に炭素質材料を用いることが有効とされている。   Furthermore, the porous electrode substrate mainly needs to have the following three functions. The first function is to supply the fuel gas or the oxidizing gas uniformly to the noble metal catalyst in the catalyst layer from the gas flow path formed in the separator disposed outside the porous electrode substrate. The second function is to discharge water generated by the reaction in the catalyst layer. The third function is to conduct electrons necessary for the reaction in the catalyst layer or generated electrons to the separator. In order to impart these functions, it is generally effective to use a carbonaceous material for the porous electrode substrate.

従来は、機械強度を強くするために、炭素短繊維を抄造後有機高分子で結着させ、高温で焼成し有機高分子を炭素化させたペーパー状の炭素/炭素複合体か成る多孔質電極基材を得ていたが、製造プロセスが複雑であり、高コストであるという問題があった。また、低コスト化を目的として、酸化短繊維を抄造後有機高分子で結着させずに、高温で焼成し酸化短繊維を炭素化させた多孔質電極基材が提案されているが、焼成時の酸化短繊維の収縮により寸法安定性、表面精度に問題があった。さらに低コスト化を目的として、炭素化可能なアクリルパルプを炭素短繊維と混合後、硬化、炭素化する多孔質電極基材が提案されているが、高温で硬化が必要であり、低コスト化への障害となってしまうという問題があった。   Conventionally, in order to increase the mechanical strength, a porous electrode composed of a paper-like carbon / carbon composite in which short carbon fibers are made with paper, bound with an organic polymer, and baked at a high temperature to carbonize the organic polymer. Although the base material was obtained, there existed a problem that a manufacturing process was complicated and it was expensive. For the purpose of cost reduction, porous electrode base materials have been proposed in which oxidized short fibers are baked at high temperature and carbonized oxidized short fibers without binding with organic polymer after paper making. There was a problem in dimensional stability and surface accuracy due to shrinkage of oxidized short fibers. For the purpose of lowering the cost, a porous electrode substrate has been proposed in which a carbonizable acrylic pulp is mixed with short carbon fibers and then cured and carbonized. There was a problem of becoming an obstacle.

特許文献1には、厚みが0.05〜0.5mmで嵩密度が0.3〜0.8g/cmであり、かつ、歪み速度10mm/min、支点間距離2cmおよび試験片幅1cmの条件での3点曲げ試験において曲げ強度が10MPa以上でかつ曲げの際のたわみが1.5mm以上であることを特徴とする燃料電池用多孔質炭素電極基材が記載されている。しかし、この多孔質電極基材は、機械的強度、表面平滑性が高く、十分なガス透気度、導電性は有しているもの、高コストであるという問題があった。   In Patent Document 1, the thickness is 0.05 to 0.5 mm, the bulk density is 0.3 to 0.8 g / cm, the strain rate is 10 mm / min, the distance between fulcrums is 2 cm, and the specimen width is 1 cm. Describes a porous carbon electrode substrate for a fuel cell, characterized in that the bending strength is 10 MPa or more and the bending deflection is 1.5 mm or more. However, this porous electrode base material has a problem of high mechanical strength and surface smoothness, sufficient gas permeability and conductivity, and high cost.

特許文献2には、厚さ0.15〜1.0mm、嵩密度0.15〜0.45g/cm、炭素繊維含有率95質量%以上、圧縮変形率10〜35%、電気抵抗値6mΩ以下、風合度5〜70gの炭素繊維シートが記載されている。この多孔質電極基材は、低コスト化は可能であるものの、焼成時の収縮が大きく厚みムラが大きいことや表面精度が低いといった問題があった。   In Patent Document 2, the thickness is 0.15 to 1.0 mm, the bulk density is 0.15 to 0.45 g / cm, the carbon fiber content is 95% by mass or more, the compression deformation rate is 10 to 35%, and the electric resistance is 6 mΩ or less. A carbon fiber sheet having a texture of 5 to 70 g is described. Although this porous electrode substrate can be reduced in cost, there are problems such as large shrinkage during firing and large thickness unevenness and low surface accuracy.

特許文献3には、複数の炭素繊維を含んで成るマット;及び該炭素繊維マットに組み込まれた複数のアクリルパルプ繊維を含んでなり、該アクリルパルプ繊維は、炭素繊維マットに組み込まれた後に硬化され炭化される燃料電池用ガス拡散層が記載されている。この多孔質電極基材は250℃までの温度で1〜2分間硬化させる必要があり、十分な低コスト化が困難であるという問題があった。
国際公開第2002/042534号パンフレット 国際公開第2001/056103号パンフレット 特開2007−273466号公報
Patent Document 3 includes a mat comprising a plurality of carbon fibers; and a plurality of acrylic pulp fibers incorporated into the carbon fiber mat, the acrylic pulp fibers being cured after being incorporated into the carbon fiber mat. And carbonized gas diffusion layers for fuel cells are described. This porous electrode base material needs to be cured at a temperature of up to 250 ° C. for 1 to 2 minutes, and there is a problem that it is difficult to sufficiently reduce the cost.
International Publication No. 2002/042534 Pamphlet International Publication No. 2001/056103 Pamphlet JP 2007-273466 A

本発明は、上記のような問題点を克服し、安価でありながら、機械的強度、厚み精度、表面平滑性が高く、かつ十分なガス透気度、導電性を持った多孔質電極基材およびその製造方法を提供することを目的とする。   The present invention overcomes the problems as described above, and is a porous electrode substrate that is inexpensive but has high mechanical strength, thickness accuracy, and surface smoothness, and has sufficient gas permeability and conductivity. And it aims at providing the manufacturing method.

本発明は以下のとおりである。
(1)炭素短繊維と、炭素化可能なフィブリル状繊維とを二次元平面内において分散させて、前駆体シートを作製する工程;および前記前駆体シートを、200℃以上300℃未満の温度での酸化処理をせずに、1000℃以上の温度で炭素化処理する工程;を有する多孔質電極基材の製造方法。
(2)炭素短繊維と、炭素化可能なフィブリル状繊維とを二次元平面内において分散させて、前駆体シートを作製する工程;前記前駆体シートを200℃未満の温度で加熱加圧成型する工程;および加熱加圧成型した前記前駆体シートを、200℃以上300℃未満の温度での酸化処理をせずに、1000℃以上の温度で炭素化処理する工程;を有する多孔質電極基材の製造方法。
(3)(1)または(2)に記載の多孔質電極基材の製造方法で製造される多孔質電極基材。
(4)2次元平面内において分散した炭素短繊維同士が、フィブリル状炭素によって接合されている(3)に記載の多孔質電極基材。
(5)2次元平面内において分散した炭素短繊維同士が、フィブリル状炭素によって接合されている多孔質電極基材。
(6)(3)〜(5)のいずれかに記載の多孔質電極基材を用いた膜−電極接合体。
(7)(6)に記載の膜−電極接合体を用いた固体高分子型燃料電池。
The present invention is as follows.
(1) A step of producing a precursor sheet by dispersing short carbon fibers and carbonizable fibrillar fibers in a two-dimensional plane; and the precursor sheet at a temperature of 200 ° C. or higher and lower than 300 ° C. A method for producing a porous electrode base material, comprising a step of carbonizing at a temperature of 1000 ° C. or higher without subjecting to oxidation.
(2) A step of producing a precursor sheet by dispersing short carbon fibers and carbonizable fibrillar fibers in a two-dimensional plane; the precursor sheet is heated and pressed at a temperature of less than 200 ° C. And a step of carbonizing the precursor sheet formed by heating and pressurizing at a temperature of 1000 ° C. or higher without oxidizing at a temperature of 200 ° C. or higher and lower than 300 ° C. Manufacturing method.
(3) A porous electrode substrate produced by the method for producing a porous electrode substrate according to (1) or (2).
(4) The porous electrode substrate according to (3), in which short carbon fibers dispersed in a two-dimensional plane are joined by fibrillar carbon.
(5) A porous electrode base material in which short carbon fibers dispersed in a two-dimensional plane are joined by fibrillar carbon.
(6) A membrane-electrode assembly using the porous electrode substrate according to any one of (3) to (5).
(7) A polymer electrolyte fuel cell using the membrane-electrode assembly according to (6).

本発明によれば、安価でありながら、機械的強度、厚み精度、表面平滑性が高く、かつ十分なガス透気度、導電性を持った多孔質電極基材を得ることができる。また、本発明の多孔質電極基材の製造方法によれば、前記多孔質電極基材を低コストで生産することができる。   According to the present invention, it is possible to obtain a porous electrode substrate that is inexpensive but has high mechanical strength, thickness accuracy, and surface smoothness, and has sufficient gas permeability and conductivity. Moreover, according to the manufacturing method of the porous electrode base material of this invention, the said porous electrode base material can be produced at low cost.

<炭素短繊維>
本発明で用いる炭素短繊維の原料である炭素繊維は、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などいずれであっても良いが、ポリアクリロニトリル系炭素繊維が好ましい。特に、多孔質炭素電極基材の機械的強度を比較的高くすることができることから、用いる炭素繊維がポリアクリロニトリル(PAN)系炭素繊維のみからなることが好ましい。
<Short carbon fiber>
The carbon fiber that is a raw material of the short carbon fiber used in the present invention may be any of polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, etc., but polyacrylonitrile-based carbon fiber is preferable. In particular, since the mechanical strength of the porous carbon electrode base material can be made relatively high, it is preferable that the carbon fiber to be used consists only of polyacrylonitrile (PAN) based carbon fiber.

炭素短繊維の直径は、炭素短繊維の生産コスト、分散性の面から、3〜9μmであることが好ましい。最終的に得られる多孔質電極基材の平滑性の面から、4μm以上、8μm以下であることがさらに好ましい。   The diameter of the short carbon fiber is preferably 3 to 9 μm from the viewpoint of production cost and dispersibility of the short carbon fiber. From the aspect of smoothness of the finally obtained porous electrode substrate, it is more preferably 4 μm or more and 8 μm or less.

炭素短繊維の繊維長は、分散性の点から、2〜12mmが好ましい。   The fiber length of the short carbon fiber is preferably 2 to 12 mm from the viewpoint of dispersibility.

<フィブリル状炭素>
本発明では、多孔質電極基材中の炭素短繊維同士は、直接接合しておらず、フィブリル状炭素によって接合している。フィブリル状炭素とは、フィブリル状繊維を炭素化してできた、炭素短繊維同士を接合する物質である。このフィブリル状繊維としては、ポリアクリロニトリル(PAN)系フィブリル状繊維、セルロース系フィブリル状繊維などいずれであっても良いが、低温から高温にかけて炭素短繊維同士を接合させることができ、炭素化した際の残存質量が大きいポリアクリロニトリル(PAN)系フィブリル状繊維がより好ましい。ポリアクリロニトリル(PAN)系フィブリル状繊維、セルロース系フィブリル状繊維などのフィブリル状繊維は、その種類や炭素短繊維との混合比、200℃以上300℃未満の温度での酸化処理の有無によって、最終的に得られる多孔質電極基材中にフィブリル状炭素として残る割合が異なる。
<Fibrous carbon>
In the present invention, the short carbon fibers in the porous electrode base material are not directly joined but joined by fibrillar carbon. Fibril-like carbon is a substance that joins short carbon fibers that are made by carbonizing fibril-like fibers. This fibrillar fiber may be any of polyacrylonitrile (PAN) fibrillar fiber, cellulose fibrillar fiber, etc., but carbon short fibers can be joined from low to high temperature, and when carbonized A polyacrylonitrile (PAN) fibrillar fiber having a large residual mass is more preferred. Fibril fibers such as polyacrylonitrile (PAN) fibril-like fibers and cellulosic fibril-like fibers, the final ratio depends on the type and mixing ratio with short carbon fibers, and whether or not oxidation treatment is performed at a temperature of 200 ° C. or more and less than 300 ° C. The remaining ratio of fibrillar carbon in the porous electrode base material obtained in a different manner is different.

多孔質電極基材を100質量%としたときに、その中に含まれるフィブリル状炭素の量は、10〜90質量%であることが好ましい。多孔質電極基材の機械的強度を十分なものに保つため、20質量%以上、60質量%以下がさらに好ましい。   When the porous electrode substrate is 100% by mass, the amount of fibrillar carbon contained therein is preferably 10 to 90% by mass. In order to keep the mechanical strength of the porous electrode base material sufficient, it is more preferably 20% by mass or more and 60% by mass or less.

<分散>
本発明において、「二次元平面内において分散」とは、炭素短繊維がおおむね一つの面を形成するように横たわっているという意味である。これにより炭素短繊維による短絡や炭素短繊維の折損を防止することができる。二次元平面内での炭素短繊維の配向方向は実質的にランダムであっても、特定方向への配向性が高くなっていても良い。
<Dispersion>
In the present invention, “dispersion in a two-dimensional plane” means that the carbon short fibers lie so as to form a single plane. Thereby, the short circuit by carbon short fiber and the breakage of carbon short fiber can be prevented. The orientation direction of the short carbon fibers in the two-dimensional plane may be substantially random, or the orientation in a specific direction may be high.

<製造方法>
本発明の多孔質電極基材の製造方法は、以下に示す方法である。上記の多孔質電極基材は、例えば以下の方法により好適に製造することができる。
(1)炭素短繊維と、炭素化可能なフィブリル状繊維とを二次元平面内において分散させて、前駆体シートを作製し、その前駆体シートを酸化処理せずに1000℃以上の温度で炭素化処理する。
(2)炭素短繊維と、炭素化可能なフィブリル状繊維とを二次元平面内において分散させて、前駆体シートを作製し、その前駆体シートを200℃未満の温度で加熱加圧成型し、加熱加圧成型した前駆体シートを酸化処理せずに1000℃以上の温度で炭素化処理する。
<Manufacturing method>
The manufacturing method of the porous electrode base material of this invention is the method shown below. Said porous electrode base material can be suitably manufactured, for example with the following method.
(1) A short carbon fiber and a carbonizable fibrillar fiber are dispersed in a two-dimensional plane to produce a precursor sheet, and the precursor sheet is carbonized at a temperature of 1000 ° C. or higher without oxidation treatment. Process.
(2) A short carbon fiber and a carbonizable fibrillar fiber are dispersed in a two-dimensional plane to produce a precursor sheet, and the precursor sheet is heated and pressed at a temperature of less than 200 ° C., The precursor sheet formed by heating and pressing is carbonized at a temperature of 1000 ° C. or higher without being oxidized.

<フィブリル状繊維>
本発明の製造方法では、炭素化可能なフィブリル状繊維を用いることが必要である。フィブリル状繊維とは、繊維状の幹より直径が数μm以下(例えば0.1〜3μm)のフィブリルが多数分岐した構造を有する。このフィブリル状繊維を用いることにより、前駆体シート中で炭素短繊維とフィブリル状繊維が良く絡み合い、機械的強度の優れた前駆体シートを得ることが容易となる。フィブリル状繊維の濾水度は特に限定されないが、一般的に濾水度が高いフィブリル状繊維を用いると機械的強度が向上するが、多孔質電極基材のガス透気度が低下する。
<Fibrous fiber>
In the production method of the present invention, it is necessary to use carbonizable fibrillar fibers. A fibrillar fiber has a structure in which a large number of fibrils having a diameter of several μm or less (for example, 0.1 to 3 μm) are branched from a fibrous trunk. By using this fibrillar fiber, the short carbon fiber and the fibrillar fiber are entangled well in the precursor sheet, and it becomes easy to obtain a precursor sheet having excellent mechanical strength. The freeness of the fibrillar fibers is not particularly limited, but generally, when fibrillar fibers having a high freeness are used, the mechanical strength is improved, but the gas permeability of the porous electrode substrate is lowered.

<有機高分子化合物>
有機高分子化合物は、炭素短繊維と、炭素化可能なフィブリル状繊維とを含む前駆体シート中で各成分をつなぎとめるバインダー(糊剤)として使用される。有機高分子化合物としては、ポリビニルアルコール(PVA)、ポリ酢酸ビニルなどを用いることができる。特にポリビニルアルコールは前駆体シートの作製工程での結着力に優れるため、炭素短繊維の脱落が少なくバインダーとして好ましい。本発明では、有機高分子化合物を繊維状として用いることも可能である。
<Organic polymer compound>
The organic polymer compound is used as a binder (glue agent) that holds each component in a precursor sheet containing short carbon fibers and carbonizable fibrillar fibers. As the organic polymer compound, polyvinyl alcohol (PVA), polyvinyl acetate, or the like can be used. In particular, polyvinyl alcohol is preferable as a binder because it has excellent binding power in the precursor sheet production process, and the short carbon fibers are not dropped off. In the present invention, it is also possible to use an organic polymer compound as a fiber.

炭素短繊維と、炭素化可能なフィブリル状繊維とを含む前駆体シートでは、フィブリル状繊維が、炭素短繊維またはフィブリル状繊維同士と絡み合うことによって、前駆体シート中の各成分をつなぎとめるバインダーとしても機能するため、一般的な炭素繊維前駆体シートで用いられるバインダーとしての有機高分子化合物を使用の有無は特に限定されないが、低コスト化の観点からは、有機高分子化合物を使用しないことが好ましい。   In the precursor sheet containing carbon short fibers and carbonizable fibrillar fibers, the fibrillar fibers can be used as a binder to connect the components in the precursor sheet by tangling the carbon short fibers or the fibrillar fibers with each other. In order to function, whether or not to use an organic polymer compound as a binder used in a general carbon fiber precursor sheet is not particularly limited, but from the viewpoint of cost reduction, it is preferable not to use an organic polymer compound .

<前駆体シートを作製する工程>
炭素短繊維と、炭素化可能なフィブリル状繊維とを二次元平面内において分散させて、前駆体シートを作製する方法としては、液体の媒体中に炭素短繊維およびフィブリル状繊維を分散させて抄造する湿式法や、空気中に炭素短繊維およびフィブリル状繊維を分散させて降り積もらせる乾式法などの抄紙方法が適用できるが、中でも湿式法が好ましい。炭素短繊維が単繊維に分散するのを助け、分散した単繊維が再び収束を防止するのを防ぐためにも、適切な量のフィブリル状繊維を、必要に応じてバインダーとして適切な量の有機高分子化合物と共に、湿式抄紙することが好ましい。
<Process for producing precursor sheet>
A method for producing a precursor sheet by dispersing short carbon fibers and carbonizable fibrillar fibers in a two-dimensional plane is to make paper by dispersing short carbon fibers and fibrillar fibers in a liquid medium. A paper making method such as a wet method or a dry method in which short carbon fibers and fibrillar fibers are dispersed in the air to be deposited can be applied. Among these, a wet method is preferable. To help the short carbon fibers disperse into the single fibers and to prevent the dispersed single fibers from rebounding again, an appropriate amount of fibrillar fibers can be used as a binder with an appropriate amount of organic high as needed. It is preferable to perform wet papermaking together with the molecular compound.

炭素短繊維と、フィブリル状繊維と、必要に応じて有機高分子化合物とを混合する方法としては、水中で攪拌分散させる方法と、直接混ぜ込む方法があるが、均一に分散させるためには水中で攪拌分散させる方法が好ましい。炭素短繊維と、フィブリル状繊維と、必要に応じて有機高分子化合物とを同時に抄紙して前駆体シートを作製することにより、前駆体シートの強度が向上し、その製造途中で前駆体シートから炭素短繊維が剥離したり、炭素短繊維の配向が変化したりするのを防止することができる。   As a method of mixing the short carbon fiber, the fibrillar fiber, and the organic polymer compound as necessary, there are a method of stirring and dispersing in water and a method of directly mixing, but in order to uniformly disperse, The method of stirring and dispersing with is preferable. By making a precursor sheet by simultaneously making short carbon fibers, fibrillar fibers, and if necessary, an organic polymer compound, the strength of the precursor sheet is improved. It is possible to prevent the short carbon fibers from peeling off or the orientation of the short carbon fibers from changing.

また、前駆体シートの作製は連続で行う方法やバッチ式で行う方法があるが、本発明では特に限定されない。生産性および機械的強度の観点からは連続で行うことが好ましい。   Moreover, although the preparation of the precursor sheet includes a continuous method and a batch method, it is not particularly limited in the present invention. From the viewpoint of productivity and mechanical strength, it is preferable to carry out continuously.

前駆体シートの目付けは、10〜200g/mとすることが好ましい。   The basis weight of the precursor sheet is preferably 10 to 200 g / m.

<炭素化処理>
炭素短繊維と、炭素化可能なフィブリル状繊維を含む前駆体シートは、酸化処理(200℃以上300℃未満の温度での処理)をせずに、そのまま炭素化処理することができる。酸化処理をしないことにより、その工程にかかるコストを低減できるほか、細いフィブリル状繊維により多孔質電極基材が微細な空間を有するのでガス透気度が向上する。その他、前駆体シートを加熱加圧成型後に酸化処理をせずに、炭素化処理することが可能である。前駆体シートの炭素化処理は、炭素短繊維をフィブリル状繊維で融着させ、かつフィブリル状繊維を炭素化することより、多孔質電極基材の機械的強度と導電性を発現させることを目的に行う。
<Carbonization treatment>
The precursor sheet containing carbon short fibers and carbonizable fibrillar fibers can be carbonized as it is without oxidation treatment (treatment at a temperature of 200 ° C. or more and less than 300 ° C.). By not performing the oxidation treatment, the cost required for the process can be reduced, and the gas permeability is improved because the porous electrode substrate has a fine space due to the fine fibrillar fibers. In addition, it is possible to carbonize the precursor sheet without subjecting it to oxidation after the heat and pressure molding. The carbonization treatment of the precursor sheet aims to develop the mechanical strength and conductivity of the porous electrode substrate by fusing short carbon fibers with fibrillar fibers and carbonizing the fibrillar fibers. To do.

炭素化処理は、多孔質電極基材の導電性を高めるために、不活性ガス中で行うことが好ましい。炭素化処理は、1000℃以上の温度で行う。1000〜3000℃の温度範囲で炭素化処理することが好ましく、1000〜2200℃の温度範囲がより好ましい。1000℃未満の温度で炭素化処理して得られた多孔質電極基材は、導電性が十分ではない。炭素化処理の前に300℃〜800℃程度の不活性雰囲気での焼成による前処理を行っても良い。   The carbonization treatment is preferably performed in an inert gas in order to increase the conductivity of the porous electrode substrate. The carbonization treatment is performed at a temperature of 1000 ° C. or higher. Carbonization treatment is preferably performed in a temperature range of 1000 to 3000 ° C, and a temperature range of 1000 to 2200 ° C is more preferable. A porous electrode substrate obtained by carbonization treatment at a temperature of less than 1000 ° C. does not have sufficient conductivity. A pretreatment by firing in an inert atmosphere at about 300 ° C. to 800 ° C. may be performed before the carbonization treatment.

炭素化処理の時間は、例えば10分〜1時間とすることができる。   The time for the carbonization treatment can be, for example, 10 minutes to 1 hour.

連続的に作製された前駆体シートを炭素化処理する場合は、前駆体シートの全長にわたって連続で炭素化処理を行うことが、低コスト化という観点で好ましい。多孔質電極基材が長尺であれば、多孔質電極基材の生産性が高くなるだけでなく、その後のMEA製造も連続で行うことができ、燃料電池のコスト低減に大きく寄与することができる。また、本発明の多孔質電極基材は、連続的に巻き取ることも可能で、多孔質電極基材や燃料電池の生産性、コストの観点から好ましい。   When carbonizing the continuously produced precursor sheet, it is preferable to perform the carbonizing process continuously over the entire length of the precursor sheet from the viewpoint of cost reduction. If the porous electrode substrate is long, not only the productivity of the porous electrode substrate is increased, but also the subsequent MEA production can be performed continuously, which can greatly contribute to the cost reduction of the fuel cell. it can. Moreover, the porous electrode base material of the present invention can be continuously wound, and is preferable from the viewpoint of productivity and cost of the porous electrode base material and the fuel cell.

<加熱加圧成型>
炭素短繊維と、炭素化可能なフィブリル状繊維を含む前駆体シートは、炭素化処理の前に、200℃未満の温度で加熱加圧成型することが、炭素短繊維をフィブリル状繊維で融着させ、かつ、多孔質電極基材の厚みムラを低減できるという点で好ましい。加熱加圧成型は、前駆体シートを均等に加熱加圧成型できる技術であれば、いかなる技術も適用できる。その例としては、上下両面から平滑な剛板にて熱プレスする方法や連続ベルトプレス装置を用いて行う方法がある。
<Heat and pressure molding>
Precursor sheets containing carbon short fibers and carbonizable fibrillar fibers can be heat-press molded at a temperature of less than 200 ° C. before carbonization, so that carbon short fibers are fused with fibrillar fibers. And the thickness unevenness of the porous electrode substrate can be reduced. Any technique can be applied to the heat and pressure molding as long as the technique can uniformly heat and mold the precursor sheet. As an example, there are a method of performing hot pressing with smooth rigid plates from both upper and lower surfaces, and a method of performing using a continuous belt press apparatus.

連続的に作製された前駆体シートを加熱加圧成型する場合は、連続ベルトプレス装置を用いて行う方法が、長尺の多孔質電極基材ができるという点で好ましい。多孔質電極基材が長尺であれば、多孔質電極基材の生産性が高くなるだけでなく、その後のMEA製造も連続で行うことができ、燃料電池のコスト低減化に大きく寄与することができる。また、本発明の多孔質電極基材は、連続的に巻き取ることも可能で、多孔質電極基材や燃料電池の生産性、コストの観点から好ましい。連続ベルト装置におけるプレス方法としては、ロールプレスによりベルトに線圧で圧力を加える方法と液圧ヘッドプレスにより面圧でプレスする方法があるが、後者の方がより平滑な多孔質電極基材が得られるという点で好ましい。   In the case of heating and press-molding a continuously produced precursor sheet, a method of using a continuous belt press apparatus is preferable in that a long porous electrode substrate can be formed. If the porous electrode substrate is long, not only the productivity of the porous electrode substrate is increased, but also the subsequent MEA production can be performed continuously, which greatly contributes to the cost reduction of the fuel cell. Can do. Moreover, the porous electrode base material of the present invention can be continuously wound, and is preferable from the viewpoint of productivity and cost of the porous electrode base material and the fuel cell. As a pressing method in the continuous belt device, there are a method of applying pressure to the belt by a roll press by a linear pressure and a method of pressing by a surface pressure by a hydraulic head press, but the latter is a smoother porous electrode substrate. It is preferable in that it is obtained.

加熱温度は、効果的に表面を平滑にするために、200℃未満が好ましく、120〜190℃がより好ましい。   In order to effectively smooth the surface, the heating temperature is preferably less than 200 ° C, more preferably 120 to 190 ° C.

成型圧力は特に限定されないが、フィブリル状繊維の比率が多い場合は、成型圧力が低くても前駆体シートの表面を平滑にすることが容易である。このとき必要以上にプレス圧を高くすることは、成型時に炭素短繊維を破壊する、多孔質電極基材としたときその組織が緻密になりすぎるなどの問題が生じる場合がある。例えば20kPa〜10MPaの圧力で加圧することができる。   The molding pressure is not particularly limited, but when the ratio of fibrillar fibers is large, it is easy to smooth the surface of the precursor sheet even if the molding pressure is low. If the press pressure is increased more than necessary at this time, problems such as destruction of short carbon fibers during molding and excessively dense structure when used as a porous electrode substrate may occur. For example, pressurization can be performed at a pressure of 20 kPa to 10 MPa.

加熱加圧成型の時間は、例えば30秒〜10分とすることができる。   The time for heat and pressure molding can be, for example, 30 seconds to 10 minutes.

剛板に挟んで、又連続ベルト装置で前駆体シートの加熱加圧成型を行う時は、剛板やベルトにフィブリル状繊維などが付着しないようにあらかじめ剥離剤を塗っておくか、前駆体シートと剛板やベルトとの間に離型紙を挟んで行うことが好ましい。   When the precursor sheet is sandwiched between rigid plates and is heated and pressed with a continuous belt device, a release agent is applied beforehand to prevent the fibrillar fibers from adhering to the rigid plate or belt, or the precursor sheet. It is preferable that the release paper is sandwiched between the belt and the rigid plate or belt.

<多孔質電極基材>
本発明の多孔質電極基材の厚みは、50〜300μmであることが好ましい。
<Porous electrode substrate>
The thickness of the porous electrode substrate of the present invention is preferably 50 to 300 μm.

<膜−電極接合体(MEA)、固体高分子型燃料電池>
以上のような本発明の多孔質電極基材は、膜−電極接合体に好適に用いることができる。そして、本発明の多孔質電極基材を用いた膜−電極接合体は、固体高分子型燃料電池に好適に用いることができる。
<Membrane-electrode assembly (MEA), polymer electrolyte fuel cell>
The porous electrode substrate of the present invention as described above can be suitably used for a membrane-electrode assembly. The membrane-electrode assembly using the porous electrode substrate of the present invention can be suitably used for a polymer electrolyte fuel cell.

以下、本発明を実施例により、さらに具体的に説明する。実施例中の各物性値等は以下の方法で測定した。   Hereinafter, the present invention will be described more specifically with reference to examples. Each physical property value in the examples was measured by the following method.

(1)ガス透気度
JIS規格P−8117に準拠し、ガーレーデンソメーターを使用して200mLの空気が透過するのにかかった時間を測定し、ガス透気度を算出した。
(1) Gas air permeability Based on JIS standard P-8117, the time required for 200 mL of air to permeate was measured using a Gurley densometer, and the gas air permeability was calculated.

(2)厚み
多孔質電極基材の厚みは、厚み測定装置ダイヤルシックネスゲージ7321(商品名、ミツトヨ製)を使用して測定した。測定子の大きさは直径10mmで、測定圧力は1.5kPaとした。
(2) Thickness The thickness of the porous electrode substrate was measured using a thickness measuring device dial thickness gauge 7321 (trade name, manufactured by Mitutoyo Corporation). The size of the probe was 10 mm in diameter, and the measurement pressure was 1.5 kPa.

(3)貫通方向抵抗
多孔質電極基材の厚さ方向の電気抵抗(貫通方向抵抗)は、試料を金メッキした銅板に挟み、金メッキした銅板の上下から1MPaで加圧し、10mA/cm2の電流密度で電流を流したときの抵抗値を測定し、次式より求めた。
(3) Through-direction resistance The thickness-direction electrical resistance (through-direction resistance) of the porous electrode substrate is 10 mA / cm 2 when a sample is sandwiched between gold-plated copper plates and pressed from above and below the gold-plated copper plate at 1 MPa. The resistance value when a current was passed at a density was measured and obtained from the following equation.

貫通抵抗(mΩ・cm2)=測定抵抗値(Ω)×試料面積(cm2
(4)フィブリル状炭素の質量比
フィブリル状炭素の質量比は、得られた多孔質電極基材の目付と、使用した炭素短繊維の目付とから、次式より算出した。
Penetration resistance (mΩ · cm 2 ) = Measurement resistance value (Ω) × Sample area (cm 2 )
(4) Mass ratio of fibrillar carbon The mass ratio of fibrillar carbon was calculated from the following formula using the basis weight of the obtained porous electrode substrate and the basis weight of the carbon short fibers used.

フィブリル状炭素の質量比(質量%)=[多孔質電極基材目付(g/m)−炭素短繊維目付(g/m)]÷多孔質電極基材目付(g/m)×100
(実施例1)
炭素短繊維として、平均繊維径が7μm、平均繊維長が3mmのポリアクリロニトリル(PAN)系炭素繊維を用意した。また、炭素化可能なフィブリル状繊維として、噴射凝固によって作製したポリアクリロニトリル系パルプを用意した。
Fibrous carbon mass ratio (% by mass) = [Porous electrode substrate basis weight (g / m) −carbon short fiber basis weight (g / m)] ÷ Porous electrode substrate basis weight (g / m) × 100
Example 1
As short carbon fibers, polyacrylonitrile (PAN) carbon fibers having an average fiber diameter of 7 μm and an average fiber length of 3 mm were prepared. Moreover, the polyacrylonitrile-type pulp produced by the injection coagulation was prepared as a carbonizable fibrillar fiber.

炭素短繊維100質量部を水中に均一に分散して単繊維に解繊し、十分に分散したところに、ポリアクリロニトリル系パルプ100質量部を均一に分散し、標準角型シートマシン(熊谷理機工業(株)製、商品名:No.2555 標準角型シートマシン)を用いてJIS P−8209法に準拠して手動で抄紙を行い、乾燥させて、目付けが30g/mの前駆体シートを得た。炭素短繊維およびポリアクリロニトリル系パルプの分散状態は良好であった。   100 parts by mass of short carbon fibers are uniformly dispersed in water, fibrillated into single fibers, and 100 parts by mass of polyacrylonitrile-based pulp is uniformly dispersed in a sufficiently dispersed state. A paper sheet is manually made according to JIS P-8209 method using a trade name: No. 2555 standard square sheet machine manufactured by Kogyo Co., Ltd., and dried to obtain a precursor sheet having a basis weight of 30 g / m. Obtained. The dispersion state of the short carbon fiber and the polyacrylonitrile pulp was good.

次に、この前駆体シートを2枚重ね合わせ、その両面をシリコーン系離型剤をコートした紙で挟んだ後、バッチプレス装置にて180℃、3MPaの条件下で3分間加熱加圧成型した。さらに、この加熱加圧成型した前駆体シートをバッチ炭素化炉にて、窒素ガス雰囲気中、2000℃の条件下で1時間炭素化処理することで、多孔質電極基材を得た。   Next, two sheets of this precursor sheet were overlapped, and both surfaces thereof were sandwiched between papers coated with a silicone-based release agent, and then heated and pressed for 3 minutes under conditions of 180 ° C. and 3 MPa in a batch press apparatus. . Furthermore, the porous electrode base material was obtained by carbonizing the precursor sheet | seat which carried out this heat press molding in 2000 degreeC conditions in nitrogen gas atmosphere in a batch carbonization furnace for 1 hour.

得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ガス透気度、厚み、貫通方向抵抗がそれぞれ良好な結果であった。また、フィブリル状炭素の質量比は31質量%であった。結果を表1に示した。なお、多孔質電極基材の表面SEM写真を図1に示す。2次元平面内に分散した炭素短繊維同士が、フィブリル状炭素によって接合されていることが確認できた。   The obtained porous electrode base material had almost no in-plane shrinkage during the carbonization treatment, and the gas permeability, thickness, and penetration direction resistance were favorable. Moreover, the mass ratio of fibrillar carbon was 31 mass%. The results are shown in Table 1. In addition, the surface SEM photograph of a porous electrode base material is shown in FIG. It was confirmed that the short carbon fibers dispersed in the two-dimensional plane were joined by the fibrillar carbon.

(実施例2)
ポリアクリロニトリル系パルプの使用量を270質量部とし、得られる前駆体シートの目付けが56g/mとなるようにした以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ガス透気度、厚み、貫通方向抵抗がそれぞれ良好な結果であった。また、フィブリル状炭素の質量比は50質量%であった。結果を表1に示した。
(Example 2)
A porous electrode substrate was obtained in the same manner as in Example 1 except that the amount of polyacrylonitrile-based pulp used was 270 parts by mass, and the basis weight of the resulting precursor sheet was 56 g / m. The obtained porous electrode base material had almost no in-plane shrinkage during the carbonization treatment, and the gas permeability, thickness, and penetration direction resistance were favorable. Moreover, the mass ratio of fibrillar carbon was 50 mass%. The results are shown in Table 1.

(実施例3)
ポリアクリロニトリル系パルプの使用量を20質量部とし、得られる前駆体シートの目付けが18g/mとなるようにした以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、実施例2で得られた多孔質電極基材と比較して機械的強度がやや劣るものの、ハンドリングには問題がなく、炭素化処理時における面内の収縮もほとんどなく、ガス透気度、厚み、貫通方向抵抗がそれぞれ良好な結果であった。また、フィブリル状炭素の質量比は10質量%であった。結果を表1に示した。
(Example 3)
A porous electrode substrate was obtained in the same manner as in Example 1 except that the amount of polyacrylonitrile-based pulp was 20 parts by mass and the basis weight of the resulting precursor sheet was 18 g / m. Although the obtained porous electrode base material is slightly inferior in mechanical strength to the porous electrode base material obtained in Example 2, there is no problem in handling, and in-plane shrinkage during carbonization treatment The gas permeability, thickness, and penetration direction resistance were good results. The mass ratio of fibrillar carbon was 10% by mass. The results are shown in Table 1.

(実施例4)
ポリアクリロニトリル系パルプの使用量を630質量部とし、得られる前駆体シートの目付けが87g/mとなるようにした以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、実施例2で得られた多孔質電極基材と比較して機械的強度がやや劣るもののハンドリングには問題がなく、炭素化処理時における面内の収縮もほとんどなく、ガス透気度、厚み、貫通方向抵抗がそれぞれ良好な結果であった。また、フィブリル状炭素の質量比は68質量%であった。結果を表1に示した。
Example 4
A porous electrode substrate was obtained in the same manner as in Example 1 except that the amount of polyacrylonitrile-based pulp was 630 parts by mass and the basis weight of the resulting precursor sheet was 87 g / m. Although the obtained porous electrode base material is slightly inferior in mechanical strength to the porous electrode base material obtained in Example 2, there is no problem in handling, and in-plane shrinkage at the time of carbonization treatment is also possible. Almost no gas permeability, thickness and penetration direction resistance were obtained. The mass ratio of fibrillar carbon was 68% by mass. The results are shown in Table 1.

(実施例5)
炭素化処理時の温度を1000℃とした以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ガス透気度、厚み、貫通方向抵抗がそれぞれ良好な結果であった。また、フィブリル状炭素の質量比は27質量%であった。結果を表1に示した。
(Example 5)
A porous electrode substrate was obtained in the same manner as in Example 1 except that the temperature during carbonization was 1000 ° C. The obtained porous electrode base material had almost no in-plane shrinkage during the carbonization treatment, and the gas permeability, thickness, and penetration direction resistance were favorable. The mass ratio of fibrillar carbon was 27% by mass. The results are shown in Table 1.

(実施例6)
炭素化処理時の温度を1200℃とした以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ガス透気度、厚み、貫通方向抵抗がそれぞれ良好な結果であった。また、フィブリル状炭素の質量比は26質量%であった。結果を表1に示した。
(Example 6)
A porous electrode substrate was obtained in the same manner as in Example 1 except that the temperature during carbonization was 1200 ° C. The obtained porous electrode base material had almost no in-plane shrinkage during the carbonization treatment, and the gas permeability, thickness, and penetration direction resistance were favorable. The mass ratio of fibrillar carbon was 26% by mass. The results are shown in Table 1.

(実施例7)
炭素化処理時の温度を1400℃とした以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ガス透気度、厚み、貫通方向抵抗がそれぞれ良好な結果であった。また、フィブリル状炭素の質量比は24質量%であった。結果を表1に示した。
(Example 7)
A porous electrode substrate was obtained in the same manner as in Example 1 except that the temperature during carbonization was 1400 ° C. The obtained porous electrode base material had almost no in-plane shrinkage during the carbonization treatment, and the gas permeability, thickness, and penetration direction resistance were favorable. The mass ratio of fibrillar carbon was 24% by mass. The results are shown in Table 1.

(実施例8)
(1)MEAの作製
実施例1で得られた多孔質炭素電極基材をカソード用、アノード用に2組用意した。両面に触媒担持カーボン(触媒:Pt、触媒担持量:50質量%)からなる触媒層(触媒層面積:25cm2、Pt付着量:0.3mg/cm2)を形成したパーフルオロスルホン酸系の高分子電解質膜(膜厚:30μm)を、カソード用、アノード用の多孔質炭素電極基材で挟持し、これらを接合してMEAを得た。
(Example 8)
(1) Production of MEA Two sets of the porous carbon electrode base material obtained in Example 1 were prepared for the cathode and the anode. Perfluorosulfonic acid based catalyst in which a catalyst layer (catalyst layer area: 25 cm 2 , Pt adhesion amount: 0.3 mg / cm 2 ) made of catalyst-supported carbon (catalyst: Pt, catalyst support amount: 50% by mass) is formed on both surfaces. A polymer electrolyte membrane (film thickness: 30 μm) was sandwiched between porous carbon electrode substrates for cathode and anode, and these were joined to obtain MEA.

(2)MEAの燃料電池特性評価
前記(1)で作製したMEAを、蛇腹状のガス流路を有する2枚のカーボンセパレーターによって挟み、固体高分子型燃料電池(単セル)を形成した。
(2) Evaluation of MEA Fuel Cell Characteristics The MEA produced in (1) was sandwiched between two carbon separators having bellows-like gas flow paths to form a polymer electrolyte fuel cell (single cell).

この単セルの電流密度−電圧特性を測定することによって、燃料電池特性評価を行った。燃料ガスとしては水素ガスを用い、酸化ガスとしては空気を用いた。セル温度を80℃、燃料ガス利用率を60%、酸化ガス利用率を40%とした。また、ガス加湿は80℃のバブラーにそれぞれ燃料ガスと酸化ガスを通すことによって行った。その結果、電流密度が0.8A/cm2のときの燃料電池セルのセル電圧が0.618V、セルの内部抵抗が3.5mΩであり、良好な特性を示した。 The fuel cell characteristics were evaluated by measuring the current density-voltage characteristics of this single cell. Hydrogen gas was used as the fuel gas, and air was used as the oxidizing gas. The cell temperature was 80 ° C., the fuel gas utilization rate was 60%, and the oxidizing gas utilization rate was 40%. Gas humidification was performed by passing fuel gas and oxidizing gas through a bubbler at 80 ° C., respectively. As a result, when the current density was 0.8 A / cm 2 , the cell voltage of the fuel cell was 0.618 V, and the internal resistance of the cell was 3.5 mΩ, which showed good characteristics.

(比較例1)
ポリアクリロニトリル系パルプの代わりに、有機高分子化合物としてポリビニルアルコール(PVA)(商品名:VBP105−1、クラレ株式会社製)35質量部を用い、得られる前駆体シートの目付けが27g/mとなるようにした以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、PVAがほとんど炭素化しないため炭素短繊維同士が接合されておらず、シート状の多孔質電極基材として構造を維持することができなかった。
(Comparative Example 1)
Instead of polyacrylonitrile-based pulp, 35 parts by mass of polyvinyl alcohol (PVA) (trade name: VBP105-1, manufactured by Kuraray Co., Ltd.) is used as the organic polymer compound, and the basis weight of the resulting precursor sheet is 27 g / m. A porous electrode substrate was obtained in the same manner as in Example 1 except for the above. The obtained porous electrode base material was not carbonized because PVA hardly carbonized, and the structure could not be maintained as a sheet-like porous electrode base material.

(比較例2)
炭素短繊維を用いず、ポリアクリロニトリル系パルプのみを用いて、得られる前駆体シートの目付けが40g/mとなるようにした以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、ポリアクリロニトリル系パルプが炭素化する際の収縮により、シート状の多孔質電極基材として構造を維持することができなかった。
(Comparative Example 2)
A porous electrode substrate was obtained in the same manner as in Example 1 except that only the polyacrylonitrile pulp was used and the basis weight of the obtained precursor sheet was 40 g / m without using carbon short fibers. . The resulting porous electrode base material could not maintain its structure as a sheet-like porous electrode base material due to shrinkage when the polyacrylonitrile pulp was carbonized.

(比較例3)
炭素化処理時の温度を800℃とした以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮はほとんどなく、またフィブリル状炭素の質量比は32質量%であったが、貫通方向抵抗が実施例1で得られた多孔質電極基材と比較して非常に大きい結果となった。結果を表1に示した。
(Comparative Example 3)
A porous electrode substrate was obtained in the same manner as in Example 1 except that the temperature during carbonization was 800 ° C. The obtained porous electrode substrate had almost no in-plane shrinkage during the carbonization treatment, and the mass ratio of fibrillar carbon was 32% by mass, but the penetration direction resistance was obtained in Example 1. The result was very large compared to the porous electrode substrate. The results are shown in Table 1.

(比較例4)
比較例1で得られた前駆体シートに、フェノール樹脂(商品名:フェノライトJ−325、大日本インキ化学株式会社製)のメタノール溶液を含浸させ、室温でメタノールを十分に乾燥させ、炭素短繊維100質量部に対しフェノール樹脂の不揮発分を100質量部付着させたフェノール樹脂含浸前駆体シートを得た。
(Comparative Example 4)
The precursor sheet obtained in Comparative Example 1 was impregnated with a methanol solution of a phenol resin (trade name: Phenolite J-325, manufactured by Dainippon Ink & Chemicals, Inc.), and the methanol was sufficiently dried at room temperature. A phenol resin-impregnated precursor sheet in which 100 parts by mass of the nonvolatile content of the phenol resin was adhered to 100 parts by mass of the fiber was obtained.

このフェノール樹脂含浸前駆体シートを2枚重ね合わせ、その両面をシリコーン系離型剤をコートした紙で挟み、バッチプレス装置にて180℃、3MPaの条件下で3分間加熱加圧成型してフェノール樹脂を硬化させた後、実施例1と同様の条件で炭素化処理することで多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ガス透気度、厚み、貫通方向抵抗がそれぞれ良好な結果であったが、製造プロセスが複雑であり高コストとなった。結果を表1に示した。   Two of these phenolic resin impregnated precursor sheets are overlapped, and both sides are sandwiched between papers coated with a silicone-based release agent, and heated and pressure-molded under conditions of 180 ° C. and 3 MPa for 3 minutes in a batch press apparatus. After curing the resin, a carbonization treatment was performed under the same conditions as in Example 1 to obtain a porous electrode substrate. The obtained porous electrode substrate had almost no in-plane shrinkage during the carbonization treatment, and the gas permeability, thickness, and penetration direction resistance were favorable, but the manufacturing process was complicated and high. It became cost. The results are shown in Table 1.

(比較例5)
加熱加圧成型した前駆体シートをバッチ熱風炉で、空気中、250℃の条件下で2分間酸化処理した以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ガス透気度、厚み、貫通方向抵抗がそれぞれ良好な結果であり、またフィブリル状炭素の質量比は36質量%であったが、酸化処理が必要となるため、実施例1で得られた多孔質電極基材と比較して高コストとなった。結果を表1に示した。
(Comparative Example 5)
A porous electrode base material was obtained in the same manner as in Example 1 except that the heat-pressed precursor sheet was oxidized in a batch hot air oven in air at 250 ° C. for 2 minutes. The obtained porous electrode substrate has almost no in-plane shrinkage during the carbonization treatment, and has good gas permeability, thickness, and penetration direction resistance, and the mass ratio of fibrillar carbon is 36. Although it was mass%, since an oxidation process was required, it became high cost compared with the porous electrode base material obtained in Example 1. The results are shown in Table 1.

多孔質電極基材の表面SEM像である。It is a surface SEM image of a porous electrode base material.

Claims (7)

炭素短繊維と、炭素化可能なフィブリル状繊維とを二次元平面内において分散させて、前駆体シートを作製する工程;および前記前駆体シートを、200℃以上300℃未満の温度での酸化処理をせずに、1000℃以上の温度で炭素化処理する工程;を有する多孔質電極基材の製造方法。   A step of producing a precursor sheet by dispersing short carbon fibers and carbonizable fibrillar fibers in a two-dimensional plane; and oxidizing the precursor sheet at a temperature of 200 ° C. or higher and lower than 300 ° C. A method for producing a porous electrode base material, comprising a step of carbonizing at a temperature of 1000 ° C. or higher without performing the above process. 炭素短繊維と、炭素化可能なフィブリル状繊維とを二次元平面内において分散させて、前駆体シートを作製する工程;前記前駆体シートを200℃未満の温度で加熱加圧成型する工程;および加熱加圧成型した前記前駆体シートを、200℃以上300℃未満の温度での酸化処理をせずに、1000℃以上の温度で炭素化処理する工程;を有する多孔質電極基材の製造方法。   A step of producing a precursor sheet by dispersing short carbon fibers and carbonizable fibrillar fibers in a two-dimensional plane; a step of heating and pressing the precursor sheet at a temperature of less than 200 ° C .; and A process for carbonizing the precursor sheet formed by heating and pressing at a temperature of 1000 ° C. or higher without subjecting the precursor sheet to an oxidation treatment at a temperature of 200 ° C. or higher and lower than 300 ° C. . 請求項1または2に記載の多孔質電極基材の製造方法で製造される多孔質電極基材。   The porous electrode base material manufactured with the manufacturing method of the porous electrode base material of Claim 1 or 2. 2次元平面内において分散した炭素短繊維同士が、フィブリル状炭素によって接合されている請求項3に記載の多孔質電極基材。   The porous electrode base material according to claim 3, wherein short carbon fibers dispersed in a two-dimensional plane are joined by fibrillar carbon. 2次元平面内において分散した炭素短繊維同士が、フィブリル状炭素によって接合されている多孔質電極基材。   A porous electrode substrate in which short carbon fibers dispersed in a two-dimensional plane are joined by fibrillar carbon. 請求項3〜5のいずれかに記載の多孔質電極基材を用いた膜−電極接合体。   The membrane-electrode assembly using the porous electrode base material in any one of Claims 3-5. 請求項6に記載の膜−電極接合体を用いた固体高分子型燃料電池。   A polymer electrolyte fuel cell using the membrane-electrode assembly according to claim 6.
JP2007301656A 2007-11-21 2007-11-21 Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell Expired - Fee Related JP5433146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301656A JP5433146B2 (en) 2007-11-21 2007-11-21 Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301656A JP5433146B2 (en) 2007-11-21 2007-11-21 Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2009129633A true JP2009129633A (en) 2009-06-11
JP5433146B2 JP5433146B2 (en) 2014-03-05

Family

ID=40820372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301656A Expired - Fee Related JP5433146B2 (en) 2007-11-21 2007-11-21 Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5433146B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477625A (en) * 1987-09-16 1989-03-23 Toray Industries Production of porous carbon fiber
JPH11263681A (en) * 1998-03-17 1999-09-28 Osaka Gas Co Ltd Production of carbonaceous porous body for fuel cell
WO2001056103A1 (en) * 2000-01-27 2001-08-02 Mitsubishi Rayon Co., Ltd. Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
JP2006040885A (en) * 2004-06-21 2006-02-09 Mitsubishi Rayon Co Ltd Porous electrode substrate and its manufacturing method
JP2006040886A (en) * 2004-06-21 2006-02-09 Mitsubishi Rayon Co Ltd Porous electrode substrate and its manufacturing method
JP2007273466A (en) * 2006-03-20 2007-10-18 Gm Global Technology Operations Inc Acrylic fiber bonding carbon fiber paper as gas diffusion medium for fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477625A (en) * 1987-09-16 1989-03-23 Toray Industries Production of porous carbon fiber
JPH11263681A (en) * 1998-03-17 1999-09-28 Osaka Gas Co Ltd Production of carbonaceous porous body for fuel cell
WO2001056103A1 (en) * 2000-01-27 2001-08-02 Mitsubishi Rayon Co., Ltd. Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
JP2006040885A (en) * 2004-06-21 2006-02-09 Mitsubishi Rayon Co Ltd Porous electrode substrate and its manufacturing method
JP2006040886A (en) * 2004-06-21 2006-02-09 Mitsubishi Rayon Co Ltd Porous electrode substrate and its manufacturing method
JP2007273466A (en) * 2006-03-20 2007-10-18 Gm Global Technology Operations Inc Acrylic fiber bonding carbon fiber paper as gas diffusion medium for fuel cell

Also Published As

Publication number Publication date
JP5433146B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5404609B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5433147B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP3612518B2 (en) Porous carbon electrode substrate, method for producing the same, and carbon fiber paper
JP5561171B2 (en) Porous electrode substrate, process for producing the same, precursor sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2011181511A (en) Porous electrode substrate for polymer electrolyte fuel cell
JPWO2017099181A1 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
JP4187683B2 (en) Porous carbon electrode substrate for fuel cells
JP5311538B2 (en) Method for producing porous carbon electrode substrate
JP5484777B2 (en) Porous electrode substrate and method for producing the same
JP5336804B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5336911B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and fuel cell
JP4559767B2 (en) Carbon electrode substrate manufacturing method
JP5260948B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5433146B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5322213B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP6183065B2 (en) Porous carbon electrode and manufacturing method thereof
JP5322212B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2011049179A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and gas diffusion electrode substrate
JP2008311181A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
JP5336912B2 (en) Porous electrode substrate manufacturing method, membrane-electrode assembly using the same, and fuel cell
JP2009117325A (en) Porous electrode substrate and fuel cell using same
JP2013119691A (en) Precursor sheet for porous electrode base material, method of manufacturing the same, porous electrode base material, membrane-electrode assembly and polymer electrolyte fuel cell
JP2017139219A (en) Carbon sheet, gas diffusion electrode base material, and fuel cell
JP2008226579A (en) Porous carbon sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R151 Written notification of patent or utility model registration

Ref document number: 5433146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees