JP2009126793A - New di(pyridylphenyl) derivative, electron transport material comprising the same and organic electroluminescent element containing the same - Google Patents

New di(pyridylphenyl) derivative, electron transport material comprising the same and organic electroluminescent element containing the same Download PDF

Info

Publication number
JP2009126793A
JP2009126793A JP2007300549A JP2007300549A JP2009126793A JP 2009126793 A JP2009126793 A JP 2009126793A JP 2007300549 A JP2007300549 A JP 2007300549A JP 2007300549 A JP2007300549 A JP 2007300549A JP 2009126793 A JP2009126793 A JP 2009126793A
Authority
JP
Japan
Prior art keywords
organic
layer
electron transport
transport layer
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007300549A
Other languages
Japanese (ja)
Other versions
JP5201956B2 (en
Inventor
Junji Kido
淳二 城戸
Hisahiro Sasabe
久宏 笹部
Yoshinori Omae
吉則 大前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP2007300549A priority Critical patent/JP5201956B2/en
Publication of JP2009126793A publication Critical patent/JP2009126793A/en
Application granted granted Critical
Publication of JP5201956B2 publication Critical patent/JP5201956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new di(pyridylphenyl)derivative, an electron transport material comprising the same and an organic electroluminescent element containing the same. <P>SOLUTION: This di(pyridylphenyl)derivative expressed by general formula (1), the electron transport material comprising the same and the organic electroluminescent element containing the same are provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、新規なジ(ピリジルフェニル)誘導体、それよりなる電子輸送材料およびそれを含む有機エレクトロルミネッセンス素子(有機EL素子)に関する。   The present invention relates to a novel di (pyridylphenyl) derivative, an electron transport material comprising the same, and an organic electroluminescence device (organic EL device) containing the same.

有機エレクトロルミネッセンス素子は、電極から注入されたホールと電極の再結合によって精製した励起エネルギーが発光過程を経て基底状態に緩和されることにより自発光する。しかしながら、ホールと電子の再結合によって生成する励起状態には一重項励起状態と三重項励起状態の2種類がそれぞれ1対3の割合で存在する。これまでの多くは一重項励起状態からの発光を利用した蛍光材料が発光材料に利用されていたため、内部量子効率が最大で25%であるので、この時取り出し効率を20%とすると、最大外部量子効率は5%が限界であった。   The organic electroluminescence element emits light by itself, when excitation energy purified by recombination of holes injected from the electrode and the electrode is relaxed to a ground state through a light emission process. However, there are two types of excited states generated by recombination of holes and electrons, a singlet excited state and a triplet excited state, in a ratio of 1: 3. In many cases, a fluorescent material utilizing light emission from a singlet excited state has been used as a light emitting material, and therefore, the internal quantum efficiency is 25% at the maximum. The quantum efficiency was limited to 5%.

近年、イリジウムやプラチナなどの重原子効果を利用した錯体化合物を用い、三重項励起状態からの発光、すなわちリン光発光を用いることにより発光効率の向上が報告されるようになった(例えば、非特許文献1)。一重項励起状態に加え、三重項励起状態からの発光を利用することで最大内部量子効率は理論上100%に到達することが可能で、リン光材料は発光材料として注目を浴びている(非特許文献3)。   In recent years, improvement in luminous efficiency has been reported by using light emission from a triplet excited state, that is, phosphorescence emission, using a complex compound utilizing a heavy atom effect such as iridium or platinum (for example, non-light emission). Patent Document 1). The maximum internal quantum efficiency can theoretically reach 100% by utilizing light emission from the triplet excited state in addition to the singlet excited state, and phosphorescent materials are attracting attention as light emitting materials (non Patent Document 3).

例えば緑色材料として、下記式

Figure 2009126793
に示すトリス(2−フェニルピリジナト)イリジウム(III)[Ir(ppy)]が広く利用されている。 For example, as a green material, the following formula
Figure 2009126793
Tris (2-phenylpyridinato) iridium (III) [Ir (ppy) 3 ] shown in FIG.

また安達らによる非特許文献2などにより青色発光材料である下記式

Figure 2009126793
で示すビス[2−(4,6−ジフルオロフェニル)ピリジネート−N,C2′]イリジウム(III)ピコリネート(FIrpic)が注目を浴びるようになり、それ以降FIrpicを用いた有機EL素子の高効率化検討および新規青色リン光錯体探索研究が盛んに行われるようになった。 In addition, the following formula, which is a blue light-emitting material according to Non-Patent Document 2 by Adachi et al.
Figure 2009126793
Bis [2- (4,6-difluorophenyl) pyridinate-N, C2 ′] iridium (III) picolinate (FIrpic) shown in FIG. 1 has attracted attention, and since then, higher efficiency of organic EL devices using FIrpic Studies and exploration studies for new blue phosphorescent complexes have been actively conducted.

その結果最近ではS.R.Forrestらによる非特許文献1では下記式

Figure 2009126793
で示すトリス{1−[4−(トリフルオロメチル)フェニル]−1H−ピラゾラート−N,C2′}イリジウム(III)(Irtfmppz)やM.E.Thompsonらによる非特許文献4では下記式
Figure 2009126793
で示すビス[2−(4′,6′−ジフルオロフェニル)ピリジナト−N,C2′]テトラキス(1−ピラゾリル)ボレート(Fir6)が開発された。 As a result, S. R. Non-patent document 1 by Forrest et al.
Figure 2009126793
Tris {1- [4- (trifluoromethyl) phenyl] -1H-pyrazolate-N, C2 ′} iridium (III) (Irtfmpppz 3 ) and M. E. Non-Patent Document 4 by Thompson et al.
Figure 2009126793
Bis [2- (4 ′, 6′-difluorophenyl) pyridinato-N, C2 ′] tetrakis (1-pyrazolyl) borate (Fir6) has been developed.

これら発光材料を効率よく発光させるにはホールと電子の注入バランスを整えて、発光層の中で十分にこれらのキャリアーの結合が行えるようホール輸送剤や電子輸送剤などを選択しなければならない。
特に青色リン光材料については、エネルギーギャップが大きいためワイドギャップ化されたホール輸送剤や電子輸送材料が必要になってくる。現在これらリン光材料については、電子輸送材料に従来から使用されているAlq[トリス(8−ヒドロキシキノリノラト)アルミニウム]やBAlq[ビス(2−メチル−8−ヒドロキシキノリノラト)(4−フェニルフェノキシ)アルミニウム]等が使用されているが、リン光材料に使用するには十分なエネルギーギャップを持ち合わせていないため新規なワイドギャップな電子輸送材料の開発が必要である。
M.A.Baldo,S.Lamansky,P.E.Burrows,M.E.Thompson,S.R.Forrest Appl.Phys.Lett 1999 75(1) 4−7 Appl.Phys.Lett.,79,2082(2001) J.Appl.Phys.90 5048(2001) Polyhedron 23(2004) 419−428
In order for these light emitting materials to emit light efficiently, a hole transport agent, an electron transport agent, and the like must be selected so that the injection balance of holes and electrons is adjusted and these carriers can be sufficiently combined in the light emitting layer.
In particular, for blue phosphorescent materials, since the energy gap is large, a hole transport agent or an electron transport material having a wide gap is required. For these phosphorescent materials, Alq 3 [tris (8-hydroxyquinolinolato) aluminum] and BAlq 2 [bis (2-methyl-8-hydroxyquinolinolato) (which are conventionally used for electron transport materials) ( 4-phenylphenoxy) aluminum] and the like are used, but since it does not have a sufficient energy gap for use in phosphorescent materials, it is necessary to develop a new wide gap electron transport material.
M.M. A. Baldo, S .; Lamansky, P.M. E. Burrows, M .; E. Thompson, S.M. R. Forrest Appl. Phys. Lett 1999 75 (1) 4-7 Appl. Phys. Lett. 79, 2082 (2001) J. et al. Appl. Phys. 90 5048 (2001) Polyhedron 23 (2004) 419-428

本発明の目的は、新規なジ(ピリジルフェニル)誘導体、それよりなる電子輸送材料およびそれを含む有機エレクトロルミネッセンス素子を提供する点にある。   An object of the present invention is to provide a novel di (pyridylphenyl) derivative, an electron transport material comprising the same, and an organic electroluminescence device including the same.

本発明の第1は、下記一般式(1)

Figure 2009126793
(式中、Qは
Figure 2009126793
よりなる群から選ばれた基であり、R〜RおよびR10〜R11は水素、炭素数1〜6の直鎖または分岐のアルキル基、炭素数1〜6の直鎖または分岐のアルコキシ基および炭素数1〜6の直鎖または分岐のモノ−またはジ−アルキルアミノ基よりなる群からそれぞれ独立して選ばれた基である)
で示されるジ(ピリジルフェニル)誘導体に関する。
本発明の第2は、請求項1記載のジ(ピリジルフェニル)誘導体よりなる電子輸送材料に関する。
本発明の第3は、請求項1記載のジ(ピリジルフェニル)誘導体を含む有機エレクトロルミネッセンス素子に関する。
なお、前記Qとしては、(a)で表される基が最も好ましい。 The first of the present invention is the following general formula (1)
Figure 2009126793
(Where Q is
Figure 2009126793
R 1 to R 6 and R 10 to R 11 are groups selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, and a linear or branched group having 1 to 6 carbon atoms. Each independently selected from the group consisting of an alkoxy group and a linear or branched mono- or di-alkylamino group having 1 to 6 carbon atoms)
The di (pyridylphenyl) derivative shown by these.
The second of the present invention relates to an electron transport material comprising the di (pyridylphenyl) derivative according to claim 1.
3rd of this invention is related with the organic electroluminescent element containing the di (pyridylphenyl) derivative of Claim 1.
In addition, as said Q, group represented by (a) is the most preferable.

本発明におけるR〜RおよびR10〜R11における炭素数1〜6の直鎖または分岐のアルキル基としては、メチル、エチル、プロピル、イソプロピル、n−ブチル、イソブチル、t−ブチル、ヘプチル、イソヘプチル、n−ヘキシル等を挙げることができる。 Examples of the linear or branched alkyl group having 1 to 6 carbon atoms in R 1 to R 6 and R 10 to R 11 in the present invention include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, heptyl , Isoheptyl, n-hexyl and the like.

本発明におけるR〜RおよびR10〜R11における炭素数1〜6の直鎖または分岐のアルコキシ基としては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、n−ブトキシ、イソブトキシ、t−ブトキシ、ヘプトキシ、イソヘプトキシ、n−ヘキシルオキシ等を挙げることができる。 Examples of the linear or branched alkoxy group having 1 to 6 carbon atoms in R 1 to R 6 and R 10 to R 11 in the present invention include methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, t-butoxy, Examples include heptoxy, isoheptoxy, n-hexyloxy and the like.

本発明におけるR〜RおよびR10〜R11における炭素数1〜6の直鎖または分岐のモノ−またはジ−アルキルアミノ基は、−NHの水素の一部または全部が前記アルキル基で置換されたものである。 In the present invention, a linear or branched mono- or di-alkylamino group having 1 to 6 carbon atoms in R 1 to R 6 and R 10 to R 11 is a part or all of hydrogen of —NH 2 is the alkyl group. Is replaced with.

本発明の化合物は、下記の反応により製造することができる。

Figure 2009126793
なお前記式中、Qは
Figure 2009126793
よりなる群から選ばれた基であり、R〜RおよびR10〜R11は水素、炭素数1〜6の直鎖または分岐のアルキル基、炭素数1〜6の直鎖または分岐のアルコキシ基および炭素数1〜6の直鎖または分岐のモノ−またはジ−アルキルアミノ基よりなる群からそれぞれ独立して選ばれた基であり、Xはハロゲンである。 The compound of the present invention can be produced by the following reaction.
Figure 2009126793
In the above formula, Q is
Figure 2009126793
R 1 to R 6 and R 10 to R 11 are groups selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, and a linear or branched group having 1 to 6 carbon atoms. X is a group independently selected from the group consisting of an alkoxy group and a linear or branched mono- or di-alkylamino group having 1 to 6 carbon atoms.

本発明化合物の具体例を以下に例示する。   Specific examples of the compound of the present invention are illustrated below.

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

Figure 2009126793
Figure 2009126793

本発明のジ(ピリジルフェニル)誘導体は高い電子輸送性能を有する。従って、電子注入材料および電子輸送材料として使用することができる。   The di (pyridylphenyl) derivative of the present invention has high electron transport performance. Therefore, it can be used as an electron injection material and an electron transport material.

本発明のジ(ピリジルフェニル)誘導体を有機エレクトロルミネッセンス素子に使用する場合、適当な発光材料(ドーパント)と組み合わせて使用することもできる。   When using the di (pyridylphenyl) derivative of this invention for an organic electroluminescent element, it can also be used in combination with a suitable luminescent material (dopant).

本発明のジ(ピリジルフェニル)誘導体を電子輸送層に用いる場合、本発明の化合物は電子注入材料や電子輸送材料として使用できる。また他の電子輸送材料と組み合わせて使用することもできる。   When the di (pyridylphenyl) derivative of the present invention is used for an electron transport layer, the compound of the present invention can be used as an electron injection material or an electron transport material. It can also be used in combination with other electron transport materials.

次に本発明の有機エレクトロルミネッセンス素子について説明する。本発明の有機エレクトロルミネッセンス素子は、陽極と陰極間に一層もしくは多層の有機化合物を積層した素子であり、該有機化合物層の少なくとも一層が本発明のジ(ピリジルフェニル)誘導体を含有する。有機エレクトロルミネッセンス素子が一層の場合、陽極と陰極間に発光層を設けている。発光層は、発光材料を含有しそれに加えて陽極から注入した正孔もしくは陰極から注入した電子を発光材料まで輸送するのが目的で、正孔注入材料もしくは電子注入材料を含有していても良い。多層型の有機エレクトロルミネッセンス素子の構成例としては、例えばITO/ホール輸送層/発光層/電子輸送層/陰極、ITO/ホール注入層/ホール輸送層/発光層/電子輸送層/陰極、ITO/ホール輸送層/発光層/電子輸送層/電子注入層/陰極、ITO/ホール輸送層/発光層/ホールブロック層/電子輸送層/陰極、ITO/ホール注入層/ホール輸送層/発光層/ホールブロック層/電子輸送層/陰極、ITO/ホール輸送層/発光層/ホールブロック層/電子輸送層/電子注入層/陰極、ITO/ホール注入層/ホール輸送層/発光層/ホールブロック層/電子輸送層/電子注入層/陰極等の多層構成で積層されたものがあげられる。また、必要に応じて陰極上に封止層を有していても良い。   Next, the organic electroluminescence element of the present invention will be described. The organic electroluminescence device of the present invention is a device in which a single layer or a multilayer organic compound is laminated between an anode and a cathode, and at least one layer of the organic compound layer contains the di (pyridylphenyl) derivative of the present invention. When the organic electroluminescence element is a single layer, a light emitting layer is provided between the anode and the cathode. The light emitting layer contains a light emitting material and may contain a hole injecting material or an electron injecting material for the purpose of transporting holes injected from the anode or electrons injected from the cathode to the light emitting material. . Examples of the configuration of the multi-layer organic electroluminescence element include, for example, ITO / hole transport layer / light-emitting layer / electron transport layer / cathode, ITO / hole injection layer / hole transport layer / light-emitting layer / electron transport layer / cathode, ITO / Hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode, ITO / hole transport layer / light emitting layer / hole block layer / electron transport layer / cathode, ITO / hole injection layer / hole transport layer / light emitting layer / hole Block layer / electron transport layer / cathode, ITO / hole transport layer / light emitting layer / hole block layer / electron transport layer / electron injection layer / cathode, ITO / hole injection layer / hole transport layer / light emitting layer / hole block layer / electron Examples thereof include those laminated in a multilayer structure such as a transport layer / electron injection layer / cathode. Moreover, you may have a sealing layer on a cathode as needed.

正孔輸送層、電子輸送層、および発光層のそれぞれの層は、一層構造であっても、多層構造であっても良い。また正孔輸送層、電子輸送層はそれぞれの層で注入機能を受け持つ層(正孔注入層及び電子注入層)と輸送機能を受け持つ層(正孔輸送層および電子輸送層)を別々に設けることもできる。   Each of the hole transport layer, the electron transport layer, and the light emitting layer may have a single layer structure or a multilayer structure. In addition, the hole transport layer and the electron transport layer should be provided separately with a layer responsible for the injection function (hole injection layer and electron injection layer) and a layer responsible for the transport function (hole transport layer and electron transport layer). You can also.

本発明の有機エレクトロルミネッセンス素子は、上記構成例に限らず、種々の構成とすることができる。必要に応じて、正孔輸送層成分と発光層成分、あるいは電子輸送層成分と発光層成分を混合した層を設けても良い。   The organic electroluminescence element of the present invention is not limited to the above configuration example, and can have various configurations. If necessary, a layer in which a hole transport layer component and a light emitting layer component or an electron transport layer component and a light emitting layer component are mixed may be provided.

以下本発明の有機エレクトロルミネッセンス素子の構成要素に関して、陽極/正孔輸送層/発光層/電子輸送層/陰極からなる素子構成を例として取り上げて詳細に説明する。本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。   Hereinafter, the constituent elements of the organic electroluminescence element of the present invention will be described in detail by taking as an example an element structure comprising an anode / hole transport layer / light emitting layer / electron transport layer / cathode. The organic electroluminescence device of the present invention is preferably supported on a substrate.

基板の素材については特に制限はなく、従来の有機エレクトロルミネッセンス素子に慣用されているものであれば良く、例えばガラス、石英ガラス、透明プラスチックなどからなるものを用いることができる。   There is no restriction | limiting in particular about the raw material of a board | substrate, What is necessary is just used for the conventional organic electroluminescent element, For example, what consists of glass, quartz glass, a transparent plastic etc. can be used.

本発明の有機エレクトロルミネッセンス素子の陽極としては、仕事関数の大きな金属単体(4eV以上)、仕事関数の大きな金属同士の合金(4eV以上)または導電性物質およびこれらの混合物を電極材料とすることが好ましい。このような電極材料の具体例としては、金、銀、銅等の金属、ITO(インジウム−スズオキサイド)、酸化スズ(SnO)、酸化亜鉛(ZnO)などの導電性透明材料、ポリピロール、ポリチオフェン等の導電性高分子材料が挙げられる。陽極はこれらの電極材料を、例えば蒸着、スパッタリング、塗布などの方法により基板上に形成することができる。陽極のシート電気抵抗は数百Ω/cm以下が好ましい。陽極の膜厚は材料にもよるが、一般に5〜1,000nm程度、好ましくは10〜500nmである。 As an anode of the organic electroluminescence device of the present invention, an electrode material may be a single metal having a high work function (4 eV or more), an alloy of metals having a high work function (4 eV or more), a conductive substance, or a mixture thereof. preferable. Specific examples of such electrode materials include metals such as gold, silver, and copper, conductive transparent materials such as ITO (indium-tin oxide), tin oxide (SnO 2 ), and zinc oxide (ZnO), polypyrrole, and polythiophene. Examples thereof include conductive polymer materials such as For the anode, these electrode materials can be formed on the substrate by a method such as vapor deposition, sputtering, or coating. The sheet electrical resistance of the anode is preferably several hundred Ω / cm 2 or less. The thickness of the anode depends on the material, but is generally about 5 to 1,000 nm, preferably 10 to 500 nm.

陰極としては、仕事関数の小さな金属単体(4eV以下)、仕事関数の小さな金属同士の合金(4eV以下)または導電性物質およびこれらの混合物を電極材料とすることが好ましい。このような電極材料の具体例としては、リチウム、リチウム−インジウム合金、ナトリウム、ナトリウム−カリウム合金、マグネシウム、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム、アルミニウム−リチウム合金、アルミニウム−マグネシウム合金などが挙げられる。陰極はこれらの電極材料を、例えば蒸着、スパッタリングなどの方法により、薄膜を形成させることにより作製することができる。陰極のシ−ト電気抵抗は数百Ω/cm以下が好ましい。陰極の膜厚は材料にもよるが、一般に5〜1,000nm程度、好ましくは10〜500nmである。本発明の有機エレクトロルミネッセンス素子の発光を効率良く取り出すために、陽極または陰極の少なくとも一方の電極は、透明もしくは半透明であることが好ましい。 As the cathode, an electrode material is preferably a single metal having a small work function (4 eV or less), an alloy of metals having a small work function (4 eV or less), a conductive substance, or a mixture thereof. Specific examples of such electrode materials include lithium, lithium-indium alloy, sodium, sodium-potassium alloy, magnesium, magnesium-silver alloy, magnesium-indium alloy, aluminum, aluminum-lithium alloy, and aluminum-magnesium alloy. Can be mentioned. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet electrical resistance of the cathode is preferably several hundred Ω / cm 2 or less. The thickness of the cathode depends on the material, but is generally about 5 to 1,000 nm, preferably 10 to 500 nm. In order to efficiently extract light emitted from the organic electroluminescence device of the present invention, at least one of the anode and the cathode is preferably transparent or translucent.

本発明の有機エレクトロルミネッセンス素子の正孔輸送層は、正孔伝達化合物からなるもので、陽極より注入された正孔を発光層に伝達する機能を有している。電界が与えた2つの電極間に正孔伝達化合物が配置されて陽極から正孔が注入された場合、少なくとも10−6cm/V・秒以上の正孔移動度を有する正孔伝達物質が好ましい。本発明の有機エレクトロルミネッセンス素子の正孔輸送層に使用する正孔伝達物質は、前記の好ましい性質を有するものであれば特に制限はない。従来から光導電材料において正孔の電荷注入輸送材料として慣用されているものや有機エレクトロルミネッセンス素子の正孔輸送層に使用されている公知の材料の中から任意のものを選択して用いることができる。 The hole transport layer of the organic electroluminescence device of the present invention is made of a hole transfer compound and has a function of transferring holes injected from the anode to the light emitting layer. When a hole transport compound is disposed between two electrodes to which an electric field is applied and holes are injected from the anode, a hole transport material having a hole mobility of at least 10 −6 cm 2 / V · second or more is obtained. preferable. The hole transport material used for the hole transport layer of the organic electroluminescence device of the present invention is not particularly limited as long as it has the above-mentioned preferable properties. It is possible to select and use any of the materials conventionally used as hole charge injection / transport materials in photoconductive materials and known materials used for the hole transport layer of organic electroluminescent devices. it can.

前記の正孔伝達物質としては、例えば銅フタロシアニンなどのフタロシアニン誘導体、N,N,N′,N′−テトラフェニル−1,4−フェニレンジアミン、N,N′−ジ(m−トリル)−N,N′−ジフェニル−4,4′−ジアミノビフェニル(TPD)、N,N′−ジ(1−ナフチル)−N,N′−ジフェニル−4,4′−ジアミノビフェニル(α−NPD)、等のトリアリールアミン誘導体、ポリフェニレンジアミン誘導体、ポリチオフェン誘導体、および水溶性のPEDOT−PSS(ポリエチレンジオキサチオフェン−ポリスチレンスルホン酸)が挙げられる。正孔輸送層は、これらの他の正孔伝達化合物一種または二種以上からなる一層で構成されたもので良く、前記の正孔伝達物質とは別の化合物からなる正孔輸送層を積層したものでもよい。
正孔注入材料としては、下記化学式に示すPEDOT−PSS(ポリマー混合物)やDNTPDを挙げることができる。

Figure 2009126793
正孔輸送材料としては、下記化学式に示すTPD、DTASI、m−DTATPBなどを挙げることができる。
Figure 2009126793
Examples of the hole transfer material include phthalocyanine derivatives such as copper phthalocyanine, N, N, N ′, N′-tetraphenyl-1,4-phenylenediamine, and N, N′-di (m-tolyl) -N. , N′-diphenyl-4,4′-diaminobiphenyl (TPD), N, N′-di (1-naphthyl) -N, N′-diphenyl-4,4′-diaminobiphenyl (α-NPD), etc. And triarylamine derivatives, polyphenylenediamine derivatives, polythiophene derivatives, and water-soluble PEDOT-PSS (polyethylenedioxathiophene-polystyrenesulfonic acid). The hole transport layer may be composed of one or more of these other hole transport compounds, and a hole transport layer composed of a compound different from the hole transport material is laminated. Things may be used.
Examples of the hole injection material include PEDOT-PSS (polymer mixture) and DNTPD represented by the following chemical formula.
Figure 2009126793
Examples of the hole transport material include TPD, DTASI, and m-DTATPB represented by the following chemical formula.
Figure 2009126793

本発明の有機エレクトロルミネッセンス素子の発光層の発光物質については特に制限されることはなく、従来の公知の化合物の中から任意のものを選択して用いることができる。   The light emitting material of the light emitting layer of the organic electroluminescence device of the present invention is not particularly limited, and any one of conventionally known compounds can be selected and used.

発光材料としては、ペリレン誘導体、ナフタセン誘導体、キナクリドン誘導体、クマリン誘導体(例えばクマリン1、クマリン540、クマリン545など)、ピラン誘導体(例えばDCM−1、DCM−2、DCJTBなど)、有機金属錯体{トリス(8−ヒドロキシキノリノラト)アルミニウム(Alq)、トリス(4−メチル−8−ヒドロキシキノリノラト)アルミニウム(Almq)等の蛍光材料やビス[2−(4,6−ジフルオロフェニル)ピリジネート−N,C2′]イリジウム(III)ピコリネート(FIrpic)、トリス{1−〔4−(トリフルオロメチル)フェニル〕−1H−ピラゾラート−N,C2′}イリジウム(III)(Irtfmppz)、ビス[2−(4′,6′−ジフルオロフェニル)ピリジナト−N,C2′]テトラキス(1−ピラゾリル)ボレート(Fir6)、トリス(2−フェニルピリジナト)イリジウム(III)[Ir(ppy)]などのリン光材料}などを挙げることができる。 Examples of the light-emitting material include perylene derivatives, naphthacene derivatives, quinacridone derivatives, coumarin derivatives (eg, coumarin 1, coumarin 540, coumarin 545, etc.), pyran derivatives (eg, DCM-1, DCM-2, DCJTB, etc.), organometallic complexes {Tris Fluorescent materials such as (8-hydroxyquinolinolato) aluminum (Alq 3 ) and tris (4-methyl-8-hydroxyquinolinolato) aluminum (Almq 3 ) and bis [2- (4,6-difluorophenyl) pyridinate -N, C2 '] iridium (III) picolinate (FIrpic), tris {1- [4- (trifluoromethyl) phenyl] -1H-pyrazolate-N, C2'} iridium (III) (Irtfmpppz 3 ), bis [ 2- (4 ', 6'-difluorophenyl) pyridinato- , C2 '] tetrakis (1-pyrazolyl) borate (FIr6), tris (2-phenylpyridinato-), and the like iridium (III) [phosphorescent materials such as Ir (ppy) 3]}.

発光層は、ホスト材料とゲスト材料(ドーパント)から形成することもできる[Appl.Phys.Lett.,65 3610(1989)]。特にリン光材料を発光層に使用する場合、ホスト材料の使用が必要でありこの時使用されるホスト材料としては4,4′−ジ(N−カルバゾリル)−1,1′−ビフェニル(CBP)、1,4−ジ(N−カルバゾリル)ベンゼン、2,2′−ジ〔4″−(N−カルバゾリル)フェニル〕−1,1′−ビフェニル(4CzPBP)等があげられる。   The light-emitting layer can also be formed of a host material and a guest material (dopant) [Appl. Phys. Lett. 65 3610 (1989)]. In particular, when a phosphorescent material is used for the light emitting layer, it is necessary to use a host material, and the host material used at this time is 4,4'-di (N-carbazolyl) -1,1'-biphenyl (CBP). 1,2-di (N-carbazolyl) benzene, 2,2′-di [4 ″-(N-carbazolyl) phenyl] -1,1′-biphenyl (4CzPBP) and the like.

ゲスト材料は、ホスト材料に対して、好ましくは0.01〜40重量%であり、より好ましくは0.1〜20重量%である。ゲスト材料としては、従来公知のFIrpic(化4)、Ir(ppy)(化3)、Fir6(化6)などを挙げることができる。 The guest material is preferably 0.01 to 40% by weight, more preferably 0.1 to 20% by weight, based on the host material. Examples of guest materials include conventionally known FIrpic (Chemical Formula 4), Ir (ppy) 3 (Chemical Formula 3), and Fir6 (Chemical Formula 6).

本発明の有機エレクトロルミネッセンス素子の電子輸送層の材料としては、本発明のジ(ピリジルフェニル)誘導体が好ましい。このものは単独で使用できるが他の電子輸送材料と併用しても構わない。   As a material for the electron transport layer of the organic electroluminescence device of the present invention, the di (pyridylphenyl) derivative of the present invention is preferable. Although this thing can be used independently, you may use together with another electron transport material.

本発明の有機エレクトロルミネッセンス素子は、電子注入性をさらに向上させる目的で、陰極と有機層の間に絶縁体で構成される電子注入層をさらに設けても良い。ここで使用される導電体としては、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物から選択される少なくとも一つの金属化合物を使用することが好ましい。アルカリ金属ハロゲン化物としては、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、塩化リチウム等が挙げられる。アルカリ土類金属ハロゲン化物としては、フッ化マグネシウム、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウム等が挙げられる。   The organic electroluminescent device of the present invention may further include an electron injection layer composed of an insulator between the cathode and the organic layer for the purpose of further improving the electron injection property. As the conductor used here, it is preferable to use at least one metal compound selected from alkali metal halides and alkaline earth metal halides. Examples of the alkali metal halide include lithium fluoride, sodium fluoride, potassium fluoride, cesium fluoride, and lithium chloride. Examples of the alkaline earth metal halide include magnesium fluoride, calcium fluoride, barium fluoride, and strontium fluoride.

正孔輸送層、発光層の形成方法については特に限定されるものではない。例えば乾式成膜法(例えば真空蒸着法、イオン化蒸着法など)、湿式成膜法〔溶液塗布法(例えば、スピンコート法、キャスト法、インクジェット法など)〕を使用することができる。本発明のジ(ピリジルフェニル)誘導体の電子輸送層の形成方法については、乾式成膜法(例えば真空蒸着法、イオン化蒸着法)が好ましい。また素子の作製については上記の成膜方法を併用しても構わない。   The method for forming the hole transport layer and the light emitting layer is not particularly limited. For example, a dry film forming method (for example, a vacuum deposition method, an ionization vapor deposition method, etc.) or a wet film forming method [a solution coating method (for example, a spin coating method, a casting method, an ink jet method, etc.)] can be used. As a method for forming the electron transport layer of the di (pyridylphenyl) derivative of the present invention, a dry film forming method (for example, a vacuum evaporation method or an ionization evaporation method) is preferable. In addition, the above-described film formation method may be used in combination for manufacturing the element.

真空蒸着法により正孔輸送層、発光層、電子輸送層等の各層を形成する場合、真空蒸着条件は、特に限定されるものではない。通常10−4Pa程度以下の真空下で50〜500℃程度のボート温度(蒸着源温度)、−50〜300℃程度の基板温度で、0.01〜50nm/sec.程度蒸着することが好ましい。正孔輸送層、発光層、電子輸送層の各層を複数の化合物を使用して形成する場合、化合物を入れた各ボートをそれぞれ温度制御しながら共蒸着することが好ましい。 When forming each layer such as a hole transport layer, a light emitting layer, and an electron transport layer by a vacuum deposition method, the vacuum deposition conditions are not particularly limited. Usually, a boat temperature (deposition source temperature) of about 50 to 500 ° C. under a vacuum of about 10 −4 Pa or less, a substrate temperature of about −50 to 300 ° C., and 0.01 to 50 nm / sec. Vapor deposition is preferred. When forming each layer of a positive hole transport layer, a light emitting layer, and an electron carrying layer using a some compound, it is preferable to co-evaporate each boat which put the compound, temperature-controlling each.

正孔輸送層、発光層を溶媒塗布法で形成する場合、各層を構成する成分を溶媒に溶解または分散させて塗布液とする。溶媒としては、炭化水素系溶媒(例えば、ヘプタン、トルエン、キシレン、シクロヘキサン等)、ケトン系溶媒(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等)、ハロゲン系溶媒(例えばジクロロメタン、クロロホルム、クロロベンゼン、ジクロロベンゼン等)、エステル系溶媒(例えば酢酸エチル、酢酸ブチル等)、アルコール系溶媒(例えばメタノール、エタノール、ブタノール、メチルセロソルブ、エチルセロソルブ等)、エーテル系溶媒(例えばジブチルエーテル、テトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン等)、非プロトン性溶媒(例えばN,N′−ジメチルアセトアミド、ジメチルスルホキシド等)、水等が挙げられる。溶媒は単独で使用しても良く、複数の溶媒を併用しても良い。   When forming the hole transport layer and the light emitting layer by a solvent coating method, the components constituting each layer are dissolved or dispersed in a solvent to obtain a coating solution. Solvents include hydrocarbon solvents (eg, heptane, toluene, xylene, cyclohexane, etc.), ketone solvents (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), halogen solvents (eg, dichloromethane, chloroform, chlorobenzene, dichlorobenzene, etc.) ), Ester solvents (eg, ethyl acetate, butyl acetate, etc.), alcohol solvents (eg, methanol, ethanol, butanol, methyl cellosolve, ethyl cellosolve, etc.), ether solvents (eg, dibutyl ether, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane and the like), aprotic solvents (for example, N, N'-dimethylacetamide, dimethyl sulfoxide and the like), water and the like. The solvent may be used alone, or a plurality of solvents may be used in combination.

正孔輸送層、発光層、電子輸送層等の各層の膜厚は、特に限定されるものではないが、通常5〜5,000nmになるようにする。   The thickness of each layer such as the hole transport layer, the light emitting layer, and the electron transport layer is not particularly limited, but is usually 5 to 5,000 nm.

本発明の有機エレクトロルミネッセンス素子は、酸素や水分等との接触を遮断する目的で保護層(封止層)を設けたり、不活性物質中に素子を封入して保護することができる。不活性物質としては、パラフィン、シリコンオイル、フルオロカーボン等が挙げられる。保護層に使用する材料としては、フッ素樹脂、エポキシ樹脂、シリコーン樹脂、ポリエステル、ポリカーボネート、光硬化性樹脂等が挙げられる。   The organic electroluminescence device of the present invention can be protected by providing a protective layer (sealing layer) for the purpose of blocking contact with oxygen, moisture, or the like, or by encapsulating the device in an inert substance. Examples of the inert substance include paraffin, silicon oil, and fluorocarbon. Examples of the material used for the protective layer include fluorine resin, epoxy resin, silicone resin, polyester, polycarbonate, and photocurable resin.

本発明の有機エレクトロルミネッセンス素子は、通常直流駆動の素子として使用できる。直流電圧を印加する場合、陽極をプラス、陰極をマイナスの極性として電圧を通常1.5〜20V程度印加すると発光が観測される。また、本発明の有機エレクトロルミネッセンス素子は交流駆動の素子としても使用できる。交流電圧を印加する場合には、陽極がプラス、陰極がマイナスの状態になった時に発光する。本発明の有機エレクトロルミネッセンス素子は、例えば電子写真感光体、フラットパネルディスプレイなどの平面発光体、複写機、プリンター、液晶ディスプレイのバックライト、計器等の光源、各種発光素子、各種表示素子、各種標識、各種センサー、各種アクセサリーなどに使用することができる。   The organic electroluminescence device of the present invention can be used as a normal DC drive device. When a DC voltage is applied, light emission is observed when a voltage of about 1.5 to 20 V is applied with the positive polarity of the anode and the negative polarity of the cathode. Moreover, the organic electroluminescent element of this invention can be used also as an element of an alternating current drive. When an AC voltage is applied, light is emitted when the anode is in a positive state and the cathode is in a negative state. The organic electroluminescent device of the present invention is, for example, a flat light emitter such as an electrophotographic photosensitive member or a flat panel display, a copying machine, a printer, a backlight of a liquid crystal display, a light source such as an instrument, various light emitting devices, various display devices, various signs. It can be used for various sensors and various accessories.

図1〜14に、本発明の有機エレクトロルミネッセンス素子の好ましい例を示す。   The preferable example of the organic electroluminescent element of this invention is shown in FIGS.

図1は、本発明の有機エレクトロルミネッセンス素子の一例を示す断面図である。図1は、基板1上に陽極2、発光層3および陰極4を順次設けた構成のものである。ここで使用する発光素子は、それ自体が正孔輸送性、電子輸送性及び発光性の機能を単一で有している場合や、それぞれの機能を有する化合物を混合して使用する場合に有用である。   FIG. 1 is a cross-sectional view showing an example of the organic electroluminescence element of the present invention. FIG. 1 shows a structure in which an anode 2, a light emitting layer 3 and a cathode 4 are sequentially provided on a substrate 1. The light-emitting element used here is useful when it has a single hole-transporting property, electron-transporting property, and light-emitting function, or a mixture of compounds having the respective functions. It is.

図2は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図2は、基板1上に、陽極2、正孔輸送層5、発光層3及び陰極4を順次設けた構成のものである。この場合、発光層は電子輸送性の機能を有している場合に有用である。   FIG. 2 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 2 shows a configuration in which an anode 2, a hole transport layer 5, a light emitting layer 3, and a cathode 4 are sequentially provided on a substrate 1. In this case, the light emitting layer is useful when it has an electron transporting function.

図3は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図3は、基板1上に、陽極2、発光層3、電子輸送層6及び陰極4を順次設けた構成のものである。この場合、発光層は正孔輸送性の機能を有している場合に有用である。   FIG. 3 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 3 shows a configuration in which an anode 2, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. In this case, the light emitting layer is useful when it has a hole transporting function.

図4は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図4は、基板1上に、陽極2、正孔輸送層5、発光層3、電子輸送層6及び陰極4を順次設けた構成のものである。これは、キャリア輸送と発光の機能を分離したものであり、材料選択の自由度が増すために、発光の高効率化や発光色の自由度が増すことになる。   FIG. 4 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 4 shows a structure in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. This separates the functions of carrier transport and light emission, and the degree of freedom in material selection increases, so that the efficiency of light emission and the degree of freedom in light emission color increase.

図5は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図5は、基板1上に、陽極2、正孔注入層7、正孔輸送層5、発光層3、電子輸送層6及び陰極4を順次設けた構成のものである。この場合、正孔注入層7を設けることにより、陽極2と正孔輸送層5の密着性を高めたり、陽極から正孔の注入を良くし、発光素子の低電圧駆動に効果がある。   FIG. 5 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 5 shows a structure in which an anode 2, a hole injection layer 7, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. In this case, the provision of the hole injection layer 7 improves the adhesion between the anode 2 and the hole transport layer 5, improves the injection of holes from the anode, and is effective in driving the light emitting element at a low voltage.

図6は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図6は、基板1上に、陽極2、正孔輸送層5、発光層3、電子輸送層6、電子注入層8及び陰極4を順次設けた構成のものである。この場合、陰極4から電子の注入を良くし、発光素子の低電圧駆動に効果がある。   FIG. 6 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 6 shows a structure in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6, an electron injection layer 8 and a cathode 4 are sequentially provided on a substrate 1. In this case, injection of electrons from the cathode 4 is improved, which is effective for driving the light emitting element at a low voltage.

図7は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図7は、基板1上に、陽極2、正孔注入層7、正孔輸送層5、発光層3、電子輸送層6、電子注入層8及び陰極4を順次設けた構成のものである。この場合、陽極2から正孔の注入を良くし、陰極4からは電子の注入を良くし、最も低電圧駆動に効果がある構成である。   FIG. 7 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 7 shows a structure in which an anode 2, a hole injection layer 7, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6, an electron injection layer 8 and a cathode 4 are sequentially provided on a substrate 1. In this case, injection of holes from the anode 2 is improved and injection of electrons from the cathode 4 is improved, which is the most effective for low voltage driving.

図8〜14は、素子の中に正孔ブロック層を挿入したものの断面図である。正孔ブロック層は、陽極から注入された正孔、あるいは発光層3で再結合により生成した励起子が、陰極4に抜けることを防止する効果があり、有機エレクトロルミネッセンス素子の発光効率の向上に効果がある。正孔ブロック層9については、発光層3と陰極4の間もしくは発光層3と電子輸送層6の間あるいは発光層3と電子注入層8の間に挿入することができる。より好ましいものは発光層3と電子輸送層6の間である。   8 to 14 are sectional views of a device in which a hole blocking layer is inserted. The hole blocking layer has an effect of preventing holes injected from the anode or excitons generated by recombination in the light emitting layer 3 from escaping to the cathode 4, thereby improving the light emission efficiency of the organic electroluminescence device. effective. The hole blocking layer 9 can be inserted between the light emitting layer 3 and the cathode 4, between the light emitting layer 3 and the electron transport layer 6, or between the light emitting layer 3 and the electron injection layer 8. More preferred is between the light emitting layer 3 and the electron transport layer 6.

図8〜14で、正孔輸送層5、正孔注入層7、電子輸送層6、電子注入層8、発光層3、正孔ブロック層9のそれぞれの層は、一層構造であっても、多層構造であってもよい。   8 to 14, each of the hole transport layer 5, the hole injection layer 7, the electron transport layer 6, the electron injection layer 8, the light emitting layer 3, and the hole blocking layer 9 has a single layer structure, A multilayer structure may be used.

図1〜14は、あくまで基本的な素子構成であり、本発明の化合物を用いた有機エレクトロルミネッセンス素子の構成は、これに限定されるものではない。   1-14 is a fundamental element structure to the last, and the structure of the organic electroluminescent element using the compound of this invention is not limited to this.

前記電子注入層に用いる電子注入材料としては、本出願人の特願2006−292032号にかかる化合物、例えば下記化合物群を例示することができる。

Figure 2009126793
Examples of the electron injecting material used for the electron injecting layer include the compounds according to Japanese Patent Application No. 2006-292032 of the present applicant, for example, the following compound group.
Figure 2009126793

本発明のジ(ピリジルフェニル)誘導体は、Alqなどの従来の電子輸送剤に較べ電子輸送能が非常に大きい。また移動度も大きく素子中でのホールとのキャリアーバランスにも優れている。ハンドギャップは広く青色リン光材料にも適しているので、本発明のジ(ピリジルフェニル)誘導体は、工業的に極めて重要なものである。
The di (pyridylphenyl) derivative of the present invention has a very large electron transporting ability as compared with conventional electron transporting agents such as Alq 3 . In addition, the mobility is large and the carrier balance with the holes in the element is excellent. Since the hand gap is wide and suitable for blue phosphorescent materials, the di (pyridylphenyl) derivative of the present invention is extremely important industrially.

以下に実施例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

実施例1
(1)2−フェニル−4,6−ビス(3,5−ジクロロフェニル)ピリミジン〔4,6−Bis−(3、5−dichloro−phenyl)−2−phenyl−pyrimidine〕(略号DCPPPM)の合成

Figure 2009126793
500ml四つ口フラスコに、4,6−ジクロロ−2−フェニル−ピリミジン2.70g(12.0mmol)、3,5−ジクロロフェニルボロン酸5.03g(26.4mmol)、1M炭酸ナトリウム水溶液(1モル/リットル濃度の水溶液を指す)60ml、アセトニトリル190mlを加え、1時間窒素バブリングをした。PdCl(PPh0.42g(0.6mmol)を加え、9時間還流した。反応混合物を室温に戻した後、白色固体を濾別し、水、メタノールで順次洗浄した。得られた有機層は水、飽和食塩水で順次洗浄、有機層を無水硫酸マグネシウムで乾燥、減圧下溶媒を留去した。得られた固体を先に得られた固体と併せ、トルエン450mlに還流下で溶解させた。これを50ccのシリカゲルを通じて濾過することにより透明溶液を得た。得られた溶液を濃縮した後、析出した白色固体を濾別した。白色固体をヘキサンで洗浄することにより目的物を得た。目的物の確認は、H−NMR、薄層クロマトグラフ〔Thin Layer Chromatograph,TLC〕、MSにより行った(収量3.75g、収率70%)。
(2)2−フェニル−4,6−ビス〔3,5−ジ(ピリジン−3−イル)フェニル〕ピリミジン(略号B3PyPPM)の合成
Figure 2009126793
500ml四つ口フラスコに、2−フェニル−4,6−ビス(3,5−ジクロロフェニル)ピリジン(DCPPPM)1.78g(4.0mmol)、3−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ピリジン(3PyDOB)3.61g(17.6mmol)、1.35Mリン酸カリウム水溶液20ml、ジオキサン50mlを加え、1時間窒素バブリングをした。トリスジベンジリデンアセントンジパラジウム〔tris(dibenzylideneacetone)diparadium,Pd(dba)〕0.15g(0.16mmol)、PCy0.11g(0.38mmol)を加え48時間還流した。ここで、反応の進行をTLCで確認したところ、多量の原料が見られたので室温まで冷却し、3PyDOB3.61g(17.6mmol)、Pd(dba)0.15g(0.16mmol)、トリシクロヘキシルホスフィン〔tricyclohexylphosphine,PCy〕0.11g(0.38mmol)を加え、更に22時間還流した。反応混合物を室温に戻した後、有機層をクロロホルムで抽出、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濾別、濃縮した。シリカゲルカラム(展開溶媒:クロロホルム/メタノール=100/1.5→100/2.0→100/2.5→100/5)にて精製することにより黄白色固体を得た。目的物の確認は、TLC、H−NMR、MSにより行った(B3PyPPM:収量1.60g、収率65%、三置換体〔例えば化39や化40にみられるように分子中にピリジン環が3つあるが塩素が1つ残っている化合物を指す〕:収量0.30g、収率12%)。
この化合物の蒸着膜のUVスペクトルを図15に示す。 Example 1
(1) Synthesis of 2-phenyl-4,6-bis (3,5-dichlorophenyl) pyrimidine [4,6-Bis- (3,5-dichloro-phenyl) -2-phenyl-pyridine] (abbreviated DCPPPM)
Figure 2009126793
In a 500 ml four-necked flask, 2.70 g (12.0 mmol) of 4,6-dichloro-2-phenyl-pyrimidine, 5.03 g (26.4 mmol) of 3,5-dichlorophenylboronic acid, 1M aqueous sodium carbonate solution (1 mol) 60 ml and acetonitrile 190 ml were added and nitrogen bubbling was performed for 1 hour. 0.42 g (0.6 mmol) of PdCl 2 (PPh 3 ) 2 was added and refluxed for 9 hours. After returning the reaction mixture to room temperature, the white solid was filtered off and washed successively with water and methanol. The obtained organic layer was washed successively with water and saturated brine, the organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained solid was combined with the previously obtained solid and dissolved in 450 ml of toluene under reflux. This was filtered through 50 cc of silica gel to obtain a clear solution. After concentrating the resulting solution, the precipitated white solid was filtered off. The desired product was obtained by washing the white solid with hexane. The target product was confirmed by 1 H-NMR, thin layer chromatograph [Thin Layer Chromatography, TLC], and MS (yield 3.75 g, yield 70%).
(2) Synthesis of 2-phenyl-4,6-bis [3,5-di (pyridin-3-yl) phenyl] pyrimidine (abbreviation B3PyPPM)
Figure 2009126793
In a 500 ml four-necked flask, 1.78 g (4.0 mmol) of 2-phenyl-4,6-bis (3,5-dichlorophenyl) pyridine (DCPPPM), 3- (4,4,5,5-tetramethyl- 1,3,2-dioxaborolan-2-yl) pyridine (3PyDOB) 3.61 g (17.6 mmol), 1.35 M aqueous potassium phosphate solution 20 ml and dioxane 50 ml were added and nitrogen bubbling was performed for 1 hour. 0.15 g (0.16 mmol) of trisdibenzylidene acenetondipalladium [tris (dibenzylideneacetone) diparadium, Pd 2 (dba) 3 ] and 0.11 g (0.38 mmol) of PCy 3 were added and refluxed for 48 hours. Here, the progress of the reaction was confirmed by TLC. As a result, a large amount of raw material was found, so it was cooled to room temperature, 3PyDOB 3.61 g (17.6 mmol), Pd 2 (dba) 3 0.15 g (0.16 mmol), Tricyclohexylphosphine [tricycyclohexylphosphine, PCy 3 ] 0.11 g (0.38 mmol) was added, and the mixture was further refluxed for 22 hours. After returning the reaction mixture to room temperature, the organic layer was extracted with chloroform and washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated. Purification by a silica gel column (developing solvent: chloroform / methanol = 100 / 1.5 → 100 / 2.0 → 100 / 2.5 → 100/5) gave a yellowish white solid. The target product was confirmed by TLC, 1 H-NMR, and MS (B3PyPPM: Yield 1.60 g, Yield 65%, trisubstituted [for example, pyridine ring in the molecule as seen in Chemical Formula 39 and Chemical Formula 40] Refers to a compound having three chlorines but one chlorine remaining]: yield 0.30 g, yield 12%).
The UV spectrum of the deposited film of this compound is shown in FIG.

実施例2
2−フェニル−4,6−ビス〔3,5−ジ(ピリジン−4−イル)フェニル〕ピリミジン(略号B4PyPPM)の合成

Figure 2009126793
2−フェニル−4,6−ビス(3,5−ジクロロフェニル)ピリミジン(DCPPPM)1.78g(4.0mmol)、4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ピリジン(4PyDOB)9.80g(48.0mmol)、1.35Mリン酸カリウム水溶液20ml、ジオキサン50mlを加え、1時間窒素バブリングをした。Pd(dba)0.45g(0.48mmol)、PCy0.33g(1.14mmol)を加え36時間還流した。反応混合物を室温に戻した後、析出した固体を濾別し、水、メタノールで洗浄した。得られた固体をクロロホルム/メタノール混合溶媒(100/3v/v)に溶解させた後、シリカゲルカラムに充填した。そのままシリカゲルカラム〔500cc、展開溶媒:クロロホルム/メタノール=100/3(2.0L)→100/4(1.5L)→100/10(1.0L)〕にて精製することにより白色固体を得た。目的物の確認は、H−NMR、MSにより行った(B4PyPPM:収量1.67g、収率68%、三置換体:収量0.20g、収率9%)。
なお、前記精製は触媒由来の黒色の不純物が混ざるため、二回行った。B4PyPPMの蒸着膜のUVスペクトルを図16に示す。 Example 2
Synthesis of 2-phenyl-4,6-bis [3,5-di (pyridin-4-yl) phenyl] pyrimidine (abbreviation B4PyPPM)
Figure 2009126793
2-phenyl-4,6-bis (3,5-dichlorophenyl) pyrimidine (DCPPPM) 1.78 g (4.0 mmol), 4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane 2-yl) pyridine (4PyDOB) 9.80 g (48.0 mmol), 1.35 M aqueous potassium phosphate solution 20 ml and dioxane 50 ml were added and nitrogen bubbling was performed for 1 hour. 0.45 g (0.48 mmol) of Pd 2 (dba) 3 and 0.33 g (1.14 mmol) of PCy 3 were added and refluxed for 36 hours. After returning the reaction mixture to room temperature, the precipitated solid was filtered off and washed with water and methanol. The obtained solid was dissolved in a chloroform / methanol mixed solvent (100/3 v / v) and then packed in a silica gel column. The white solid was obtained by purifying with a silica gel column [500 cc, developing solvent: chloroform / methanol = 100/3 (2.0 L) → 100/4 (1.5 L) → 100/10 (1.0 L)]. It was. The target product was confirmed by 1 H-NMR and MS (B4PyPPM: yield 1.67 g, yield 68%, trisubstituted: yield 0.20 g, yield 9%).
The purification was performed twice because black impurities derived from the catalyst were mixed. The UV spectrum of the deposited film of B4PyPPM is shown in FIG.

熱重量分析装置(TGA)および示差走査熱量計(DSC)を用いて新規電子輸送材料の熱特性評価を行った。その結果、実施例30で得られた2−フェニル−4,6−ビス〔3,5−ジ(ピリジン−3−イル)フェニル〕ピリミジン(B3PyPPM)は、Tg=n.d.、Tm=318℃、Td=451℃であった。
実施例2で得られた2−フェニル−4,6−ビス〔3,5−ジ(ピリジン−4−イル)フェニル〕ピリミジン(B4PyPPM)は、Tg=n.d.、Tm=356℃、Td=467℃であることがわかった。
また、これらの化合物のイオン化ポテンシャル(Ip)、電子親和力(Ea)およびエネルギーギャップ(Eg)についても測定した。その結果は下記表に示すとおりである。

Figure 2009126793
Td:分解温度、Tg:二次転移温度、Tm:融点、Ip:イオン化ポテンシャル、Eg:エネルギーギャップ、Ea:エレクトロアフィニティ(電子親和力)、n.d.:検出されず。
Tg(二次転移温度)については、DSC(Diffirential Scanning Calorimeter 示差熱量計)中にサンプルを加え、溶融させたものを急冷し、2〜3回繰り返すとガラス転移を表すカーブがチャート上に現れるので、そのカーブを接線で結び、その交点の温度をTgとして採用する。
Tm(融点)は、同じくDSCにサンプルを加え、昇温していくと吸熱カーブが現れるのでその極大のところとの温度を読んで、その温度をTmとする。
Td(分解温度)は、DTA(Differential thermal analyzer 示差熱分析装置)にサンプルを加え、加熱していくとサンプルが熱によって分解し、重量が減少しだす。その減少が開始しだしたところの温度を読んで、その温度をTdとする。
エネルギーギャップ(Eg)については、蒸着機で作成した薄膜を紫外−可視吸光度計で薄膜の吸収曲線を測定する。その薄膜の短波長側の立ち上がりの所に接線を引き、求まった交点の波長W(nm)を次の式に代入し目的の値を求める。それによって得た値がEgになる。
Eg=1240÷W
例えば接線を引いて求めた値W(nm)が470nmだったとしたらこの時のEgの値は
Eg=1240÷470=2.63(eV)
と言うことになる。
Ip(イオン化ポテンシャル)は、イオン化ポテンシャル測定装置(例えば理研計器AC−1)を使用して測定し、測定するサンプルがイオン化を開始しだしたところの電圧(eV)の値を読む。
Ea(電子親和力)は、IpからEgを引いた値である。
本明細書における波長に対する強度(intensity a.u.)の測定は、浜松ホトニクス社製ストリークカメラを用いて、クライオスタット中で4.2Kにおいて測定した。
ついで、UVおよびAC−3測定を行い、電気化学特性を評価した。250nmの励起波長におけるPLスペクトルの測定を試みたが、B3PyPPM、B4PyPPMともに発光は観測されなかった。 Thermal characteristics of the novel electron transport material were evaluated using a thermogravimetric analyzer (TGA) and a differential scanning calorimeter (DSC). As a result, 2-phenyl-4,6-bis [3,5-di (pyridin-3-yl) phenyl] pyrimidine (B3PyPPM) obtained in Example 30 was found to have a Tg = n. d. Tm = 318 ° C. and Td = 451 ° C.
2-Phenyl-4,6-bis [3,5-di (pyridin-4-yl) phenyl] pyrimidine (B4PyPPM) obtained in Example 2 has a Tg = n. d. Tm = 356 ° C. and Td = 467 ° C.
The ionization potential (Ip), electron affinity (Ea) and energy gap (Eg) of these compounds were also measured. The results are as shown in the table below.
Figure 2009126793
Td: decomposition temperature, Tg: secondary transition temperature, Tm: melting point, Ip: ionization potential, Eg: energy gap, Ea: electroaffinity (electron affinity), n. d. : Not detected.
As for Tg (secondary transition temperature), a sample is added to DSC (Differential Scanning Calorimeter), the melted sample is rapidly cooled, and a curve representing the glass transition appears on the chart when repeated 2-3 times. The curves are connected by tangent lines, and the temperature at the intersection is adopted as Tg.
As for Tm (melting point), an endothermic curve appears when a sample is added to the DSC and the temperature is raised, so the temperature at the maximum is read and the temperature is defined as Tm.
As for Td (decomposition temperature), when a sample is added to DTA (Differential Thermal Analyzer) and heated, the sample is decomposed by heat and the weight starts to decrease. The temperature at which the decrease starts is read and the temperature is defined as Td.
Regarding the energy gap (Eg), an absorption curve of the thin film prepared with a vapor deposition machine is measured with an ultraviolet-visible absorptiometer. A tangent line is drawn at the rising edge of the thin film on the short wavelength side, and the wavelength W (nm) at the obtained intersection is substituted into the following equation to obtain the target value. The value obtained thereby becomes Eg.
Eg = 1240 ÷ W
For example, if the value W (nm) obtained by drawing a tangent is 470 nm, the value of Eg at this time is Eg = 1240 ÷ 470 = 2.63 (eV)
It will be said.
Ip (ionization potential) is measured using an ionization potential measuring apparatus (for example, Riken Keiki AC-1), and the value of the voltage (eV) at which the sample to be measured starts ionization is read.
Ea (electron affinity) is a value obtained by subtracting Eg from Ip.
Intensity au in this specification was measured at 4.2K in a cryostat using a streak camera manufactured by Hamamatsu Photonics.
Subsequently, UV and AC-3 measurements were performed to evaluate the electrochemical properties. Attempts were made to measure the PL spectrum at an excitation wavelength of 250 nm, but no emission was observed for either B3PyPPM or B4PyPPM.

参考例1
(1)2−メチル−4,6−ビス−(3,5−ジクロロフェニル)ピリミジン(略号BCPMPM)の合成

Figure 2009126793
500ml四つ口フラスコに3,5−ジクロロフェニルボロン酸(8.1g 42.3mmol)、4,6−ジクロロ−2−メチルピリミジン(3.1g 19.2mmol)、炭酸ナトリウム(12.2g 115.2mmol)の700ml水溶液、アセトニトリル300mlを投入し、撹拌しながら40分間窒素フローした。この溶液を60℃に加熱し、ビストリフェニルホスフィンパラジウムジクロリド(668mg 0.95mmol)を投入して、12時間反応させた。その後反応液を30℃まで冷却し、クロロホルムで抽出したのち、クロロホルム層を水で3回洗浄した。有機層を硫酸マグネシウムで乾燥後、ろ過して濃縮し、淡黄色固体を得た。これをシリカゲルカラムにより精製(展開溶媒:クロロホルム/ヘキサン=2/1のものを使用)し、BCPMPMの白色結晶6.0gを得た(収率81.4% 理論収量7.4g)。
(2)2−メチル−4,6−ビス〔3,5−ジ(ピリジン−3−イル)フェニル〕ピリミジン(略号D3PyPMPM)の合成
Figure 2009126793
500ml四つ口フラスコにBCPMPM(2.0g 5.2mmol)、3−ピリジン DOB(4.7g 22.9mmol)、ジオキサン250ml、リン酸カリウム(13.3g 62.5mmol)の70ml水溶液を投入し、撹拌しながら40分間窒素フローした。この溶液を85℃に加熱し、Pd(dba)(191mg 0.21mmol)、トリシクロヘキシルホスフィン(140mg 0.50mmol)を投入し、12時間反応させた。反応終了後液を30℃まで冷却し、析出物をろ過した。この固体を水で分散洗浄し、次にアセトン分散洗浄し、灰色の組成物を得た。これを加熱したクロロホルム/メタノール(50/1)に溶解させ、シリカゲルカラムで精製(展開溶媒:クロロホルム/メタノール=50/1→40/1→30/1の比率で順次使用)した。得られた固体をアセトンで分散洗浄してD3PyPMPMの白色結晶2.2gを得た(収率76.7% 理論収量2.9g)。 Reference example 1
(1) Synthesis of 2-methyl-4,6-bis- (3,5-dichlorophenyl) pyrimidine (abbreviation BCPMPM)
Figure 2009126793
In a 500 ml four-necked flask, 3,5-dichlorophenylboronic acid (8.1 g 42.3 mmol), 4,6-dichloro-2-methylpyrimidine (3.1 g 19.2 mmol), sodium carbonate (12.2 g 115.2 mmol) ) And 300 ml of acetonitrile were added and nitrogen flowed for 40 minutes with stirring. This solution was heated to 60 ° C., bistriphenylphosphine palladium dichloride (668 mg 0.95 mmol) was added, and the mixture was reacted for 12 hours. Thereafter, the reaction solution was cooled to 30 ° C. and extracted with chloroform, and then the chloroform layer was washed with water three times. The organic layer was dried over magnesium sulfate, filtered and concentrated to give a pale yellow solid. This was purified with a silica gel column (developing solvent: chloroform / hexane = 2/1) to obtain 6.0 g of BCPMPM white crystals (yield 81.4%, theoretical yield 7.4 g).
(2) Synthesis of 2-methyl-4,6-bis [3,5-di (pyridin-3-yl) phenyl] pyrimidine (abbreviation D3PyPMPM)
Figure 2009126793
A 500 ml four-necked flask was charged with 70 ml aqueous solution of BCPMPM (2.0 g 5.2 mmol), 3-pyridine DOB (4.7 g 22.9 mmol), dioxane 250 ml, potassium phosphate (13.3 g 62.5 mmol), Nitrogen flow for 40 minutes with stirring. This solution was heated to 85 ° C., Pd 2 (dba) 3 (191 mg 0.21 mmol) and tricyclohexylphosphine (140 mg 0.50 mmol) were added, and reacted for 12 hours. After completion of the reaction, the liquid was cooled to 30 ° C., and the precipitate was filtered. This solid was dispersed and washed with water and then dispersed and washed with acetone to obtain a gray composition. This was dissolved in heated chloroform / methanol (50/1) and purified with a silica gel column (developing solvent: chloroform / methanol = 50/1 → 40/1 → 30/1 in order). The obtained solid was dispersed and washed with acetone to obtain 2.2 g of white crystals of D3PyPMPM (yield 76.7%, theoretical yield 2.9 g).

参考例2
2−メチル−4,6−ビス〔3,5−ジ(ピリジン−4−イル)フェニル〕ピリミジン(略号D4PyPMPM)の合成

Figure 2009126793
原料を3−ピリジンDOBから4−ピリジンDOBに変更した以外は仕込み量、反応条件、精製条件は全て参考例1のD3PyPMPMの場合と同様に行いD4PyPMPMの白色結晶1.92g(収率:66.7% 理論収量2.9g)を得た。 Reference example 2
Synthesis of 2-methyl-4,6-bis [3,5-di (pyridin-4-yl) phenyl] pyrimidine (abbreviation D4PyPMPM)
Figure 2009126793
Except for changing the raw material from 3-pyridine DOB to 4-pyridine DOB, the charged amount, reaction conditions, and purification conditions were all the same as in the case of D3PyPMPM of Reference Example 1, and 1.92 g of white crystals of D4PyPMPM (yield: 66. 7% theoretical yield 2.9 g) was obtained.

参考例3
(1)3,5−ジ(ピリジン−3−イル)−1−ブロモベンゼン(略号BPyBBr)の合成

Figure 2009126793
3−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ピリジン(3PyDOB)15.00g(73.1mmol)、トリブロモベンゼン11.30g(35.9mmol)、2M炭酸ナトリウム水溶液(2モル/リットル濃度の水溶液のこと、以下同様の表現方法である)30ml、トルエン150ml、エタノール100mlを加え、1時間窒素バブリングをした。テトラキス(トリフェニルホスフィン)パラジウム〔Pd(PPh〕0.78g(0.67mmol)を加え、19時間還流した。反応混合物を室温に戻し、クロロホルムで希釈した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濾別、濃縮後、シリカゲルカラムクロマトグラフィ−(展開溶媒:クロロホルム/酢酸エチル=1/2のものを使用し、ついでクロロホルム/酢酸エチル/メタノール=10/20/1のものを使用)にて精製することにより白色固体を得た。この目的物の確認は、H−NMR,MSにより行った(収量5.50g、収率49%)。
(2)3,3″,5,5″−テトラ(ピリジン−3−イル)−1:1′,3′:1″−タ−フェニル(略号BmPyBB)の合成
Figure 2009126793
BPyBBr2.48g(8.0mmol)、1,3−ジ(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゼン(mBDOBB)1.16g(3.5mmol)、2M炭酸カリウム水溶液6ml、トルエン50ml、エタノール25mlを加え、1時間窒素バブリングをした。Pd(PPh0.40g(0.35mmol)を加え、26時間還流した。反応混合物を室温に戻し、トルエンで希釈した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濾別、濃縮後、シリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/酢酸エチル/メタノール=10/20/1のものを使用し、ついでクロロホルム/メタノール=100/7のものを使用)にて精製することによりBmPyBBの白色固体を得た。この目的物の確認は、H−NMR,MSにより行った(収量1.59g、収率84%)。
参考例1〜3は、特願2006−313385の実施例9、10および実施例1に対応しているので、前記出願明細書を参照。 Reference example 3
(1) Synthesis of 3,5-di (pyridin-3-yl) -1-bromobenzene (abbreviation BPyBBr)
Figure 2009126793
3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pyridine (3PyDOB) 15.00 g (73.1 mmol), tribromobenzene 11.30 g (35.9 mmol) 30 ml of 2M sodium carbonate aqueous solution (2 mol / liter concentration aqueous solution, hereinafter the same expression method), 150 ml of toluene and 100 ml of ethanol were added, and nitrogen bubbling was performed for 1 hour. Tetrakis (triphenylphosphine) palladium [Pd (PPh 3 ) 4 ] (0.78 g, 0.67 mmol) was added, and the mixture was refluxed for 19 hours. The reaction mixture was returned to room temperature, diluted with chloroform, and washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated, followed by silica gel column chromatography (developing solvent: chloroform / ethyl acetate = 1/2, then chloroform / ethyl acetate / methanol = 10/20 / 1 was used) to obtain a white solid. This target product was confirmed by 1 H-NMR and MS (yield 5.50 g, yield 49%).
(2) Synthesis of 3,3 ″, 5,5 ″ -tetra (pyridin-3-yl) -1: 1 ′, 3 ′: 1 ″ -terphenyl (abbreviation BmPyBB)
Figure 2009126793
2.48 g (8.0 mmol) of BPyBBr, 1.16 g (3.5 mmol) of 1,3-di (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzene (mBDOBB) 6 ml of 2M potassium carbonate aqueous solution, 50 ml of toluene and 25 ml of ethanol were added and nitrogen bubbling was performed for 1 hour. 0.40 g (0.35 mmol) of Pd (PPh 3 ) 4 was added and refluxed for 26 hours. The reaction mixture was returned to room temperature, diluted with toluene, and washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated, followed by silica gel column chromatography (developing solvent: chloroform / ethyl acetate / methanol = 10/20/1, then chloroform / methanol = 100/7). The white solid of BmPyBB was obtained. This target product was confirmed by 1 H-NMR and MS (yield 1.59 g, yield 84%).
Since Reference Examples 1 to 3 correspond to Examples 9 and 10 and Example 1 of Japanese Patent Application No. 2006-313385, refer to the specification of the application.

前記実施例1で得られた電子輸送材料としての2−フェニル−4,6−ビス〔3,5−ジ(ピリジン−3−イル)フェニル〕ピリミジン(B3PyPPM)の低温リン光スペクトル測定を行ったところ、リン光スペクトルの立ち上がりは440nm(T=2.81eV)であり、その低温リン光スペクトル(T=4.2K)は図17に示す。 Low temperature phosphorescence spectrum measurement of 2-phenyl-4,6-bis [3,5-di (pyridin-3-yl) phenyl] pyrimidine (B3PyPPM) as the electron transport material obtained in Example 1 was performed. However, the rise of the phosphorescence spectrum is 440 nm (T 1 = 2.81 eV), and the low-temperature phosphorescence spectrum (T = 4.2 K) is shown in FIG.

実施例3、参考例4、5
実施例1で得られた2−フェニル−4,6−ビス〔3,5−ジ(ピリジン−3−イル)フェニル〕ピリミジン(B3PyPPM)、参考例1で得られた化合物D3PyPMPM、参考例3で得られた化合物BmPyBBをそれぞれ電子輸送材料として用いた緑色リン光素子を作り、それぞれの素子の性能を評価した。

Figure 2009126793
これらの各素子のエネルギーダイアグラムを図18に示す。
また、各素子の構成は下記に示す。
実施例3:[ITO/TPDPES(〔化46〕参照):10wt%TBPAH(〔化46〕参照)(20nm)/TAPC(〔化46〕参照)(30nm)/CBP(〔化46〕参照):8wt%Ir(ppy)(〔化3〕参照)(10nm)/B3PyPPM(50nm)/LiF(0.5nm)/Al(100nm)]
参考例4:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(30nm)/CBP:8wt%Ir(ppy)(10nm)/D3PyPMPM(50nm)/LiF(0.5nm)/Al(100nm)]
参考例5:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(30nm)/CBP:8wt%Ir(ppy)(10nm)/BmPyBB(〔化46〕参照)(50nm)/LiF(0.5nm)/Al(100nm)]
前記各素子の
電流密度 −電圧特性は図19に、
輝度 −電圧特性は図20に、
視感効率 −電圧特性は図21に、
電流効率 −電圧特性は図22に、
量子効率 −輝度特性は図23に、
ELスペクトル は図24に、
それぞれ示す。
また、前記緑色リン光素子の特性とその電子輸送層の効果を下記表に示す。
Figure 2009126793
Example 3, Reference Examples 4, 5
2-phenyl-4,6-bis [3,5-di (pyridin-3-yl) phenyl] pyrimidine (B3PyPPM) obtained in Example 1, compound D3PyPMPM obtained in Reference Example 1, and Reference Example 3 Green phosphorescent devices each using the obtained compound BmPyBB as an electron transport material were prepared, and the performance of each device was evaluated.
Figure 2009126793
An energy diagram of each of these elements is shown in FIG.
The configuration of each element is shown below.
Example 3: [ITO / TPDPES (refer to [Chemical 46]): 10 wt% TBPAH (refer to [Chemical 46]) (20 nm) / TAPC (refer to [Chemical 46]) (30 nm) / CBP (refer to [Chemical 46]) : 8 wt% Ir (ppy) 3 (see [Chemical Formula 3]) (10 nm) / B3PyPPM (50 nm) / LiF (0.5 nm) / Al (100 nm)]
Reference Example 4: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (30 nm) / CBP: 8 wt% Ir (ppy) 3 (10 nm) / D3PyPMPM (50 nm) / LiF (0.5 nm) / Al (100 nm) ]
Reference Example 5: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (30 nm) / CBP: 8 wt% Ir (ppy) 3 (10 nm) / BmPyBB (see [Chemical Formula 46]) (50 nm) / LiF (0. 5 nm) / Al (100 nm)]
The current density-voltage characteristics of each element are shown in FIG.
The luminance-voltage characteristics are shown in FIG.
The luminous efficiency vs. voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The quantum efficiency vs. luminance characteristics are shown in FIG.
The EL spectrum is shown in FIG.
Each is shown.
The characteristics of the green phosphor element and the effect of the electron transport layer are shown in the following table.
Figure 2009126793

実施例4、参考例6
実施例2で得られた化合物である2−フェニル−4,6−ビス〔3,5−ジ(ピリジン−4−イル)フェニル〕ピリミジン(B4PyPPM)および参考例2で得られた化合物である2−メチル−4,6−ビス〔3,5−ジ(ピリジン−4−イル)フェニル〕ピリミジン(D4PyPMPM)を電子輸送層に用いた緑色リン光素子を作成した。

Figure 2009126793
本実施例の素子構成を下記に示す。
実施例4:[ITO/TPDPES(〔化46〕参照):10wt%TBPAH(〔化46〕参照)(20nm)/TAPC(〔化46〕参照)(30nm)/CBP(〔化46〕参照):8wt%Ir(ppy)(10nm)/B4PyPPM(50nm)/LiF(0.5nm)/Al(100nm)]
参考例6:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(30nm)/CBP:8wt%Ir(ppy)(10nm)/D4PyPMPM(50nm)/LiF(0.5nm)/Al(100nm)]
100cd/m時の視感効率はB4PyPPM(127.0 lm/W)>D4PyPMPM(117.9 lm/W)の方がフェニル基で置換した化合物D4PyPMPMに比べて高効率となった。
これらの各素子のエネルギーダイアグラムを図25に示す。
実施例4と参考例6の緑色リン光素子の特性と電子輸送層の効果は下記表に示すとおりである。
Figure 2009126793
前記各素子の
電流密度 −電圧特性は図26に、
輝度 −電圧特性は図27に、
視感効率 −電圧特性は図28に、
電流効率 −電圧特性は図29に、
量子効率 −輝度特性は図30に、
ELスペクトル は図31に、
それぞれ示す。 Example 4, Reference Example 6
2-phenyl-4,6-bis [3,5-di (pyridin-4-yl) phenyl] pyrimidine (B4PyPPM), which is the compound obtained in Example 2, and 2 which is the compound obtained in Reference Example 2. A green phosphorescent device using -methyl-4,6-bis [3,5-di (pyridin-4-yl) phenyl] pyrimidine (D4PyPMPM) as an electron transport layer was prepared.
Figure 2009126793
The element configuration of this example is shown below.
Example 4: [ITO / TPDPES (refer to [Chemical 46]): 10 wt% TBPAH (refer to [Chemical 46]) (20 nm) / TAPC (refer to [Chemical 46]) (30 nm) / CBP (refer to [Chemical 46]) : 8 wt% Ir (ppy) 3 (10 nm) / B4PyPPM (50 nm) / LiF (0.5 nm) / Al (100 nm)]
Reference Example 6: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (30 nm) / CBP: 8 wt% Ir (ppy) 3 (10 nm) / D4PyPMPM (50 nm) / LiF (0.5 nm) / Al (100 nm) ]
The luminous efficiency at 100 cd / m 2 was higher when B4PyPPM (127.0 lm / W)> D4PyPMPM (117.9 lm / W) than the compound D4PyPMPM substituted with a phenyl group.
An energy diagram of each of these elements is shown in FIG.
The characteristics of the green phosphor elements of Example 4 and Reference Example 6 and the effect of the electron transport layer are as shown in the following table.
Figure 2009126793
The current density-voltage characteristic of each element is shown in FIG.
The luminance-voltage characteristics are shown in FIG.
The luminous efficiency vs. voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The quantum efficiency-luminance characteristics are shown in FIG.
The EL spectrum is shown in FIG.
Each is shown.

実施例5〜7
実施例1および2の化合物であるBPyPPM類を電子輸送層に用いた橙色リン光素子の評価を行った。ホール輸送層にはTAPCあるいは3DTAPBP(〔化46〕参照)を用いた。その結果、100cd/m時の視感効率はB4PyPPM(実施例2)/TAPC(50.5 lm/W)>B4PyPPM/3DTAPBP(48.4 lm/W)>B3PyPPM(実施例1)/TAPC(45.9 lm/W)の順となった。
本実施例の素子構成を下記に示す。
実施例5:[ITO/TPDPES(〔化46〕参照):10wt%TBPAH(〔化46〕参照)(20nm)/3DTAPBP(〔化46〕参照)(35nm)/CBP(〔化46〕参照):4wt%PQIr(dpm)(10nm)/B4PyPPM(65nm)/LiF(0.5nm)/Al(100nm)]
実施例6:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(35nm)/CBP:4wt%PQIr(dpm)(10nm)/B3PyPPM(65nm)/LiF(0.5nm)/Al(100nm)]
実施例7:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(〔化46〕参照)(35nm)/CBP:4wt%PQIr(dpm)(10nm)/B4PyPPM(65nm)/LiF(0.5nm)/Al(100nm)]
これらの各素子のエネルギーダイアグラムを図32に示す。
前記各素子の
電流密度 −電圧特性は図33に、
輝度 −電圧特性は図34に、
視感効率 −電圧特性は図35に、
電流効率 −電圧特性は図36に、
量子効率 −輝度特性は図37に、
ELスペクトル は図38に、
それぞれ示す。
前記緑色リン光素子の特性とその電子輸送層の効果は下記表に示す。

Figure 2009126793
Examples 5-7
An orange phosphorescent element using BPyPPMs which are the compounds of Examples 1 and 2 in the electron transport layer was evaluated. TAPC or 3DTAPBP (see [Chemical Formula 46]) was used for the hole transport layer. As a result, the luminous efficiency at 100 cd / m 2 was B4PyPPM (Example 2) / TAPC (50.5 lm / W)> B4PyPPM / 3DTAPBP (48.4 lm / W)> B3PyPPM (Example 1) / TAPC. (45.9 lm / W).
The element configuration of this example is shown below.
Example 5: [ITO / TPDPES (refer to [Chemical Formula 46]): 10 wt% TBPAH (refer to [Chemical Formula 46]) (20 nm) / 3DTAPBP (refer to [Chemical Formula 46]) (35 nm) / CBP (refer to [Chemical Formula 46]) : 4 wt% PQ 2 Ir (dpm) (10 nm) / B4PyPPM (65 nm) / LiF (0.5 nm) / Al (100 nm)]
Example 6: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (35 nm) / CBP: 4 wt% PQ 2 Ir (dpm) (10 nm) / B3PyPPM (65 nm) / LiF (0.5 nm) / Al (100 nm ]]
Example 7: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (see [Chemical Formula 46]) (35 nm) / CBP: 4 wt% PQ 2 Ir (dpm) (10 nm) / B4PyPPM (65 nm) / LiF (0 .5 nm) / Al (100 nm)]
An energy diagram of each of these elements is shown in FIG.
The current density-voltage characteristics of each element are shown in FIG.
The luminance-voltage characteristics are shown in FIG.
Luminous efficiency vs. voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The quantum efficiency vs. luminance characteristics are shown in FIG.
The EL spectrum is shown in FIG.
Each is shown.
The characteristics of the green phosphor element and the effect of the electron transport layer are shown in the following table.
Figure 2009126793

実施例8、9
実施例2で得られた化合物である2−フェニル−4,6−ビス〔3,5−ジ(ピリジン−4−イル)フェニル〕ピリミジン(B4PyPPM)を電子輸送層に用いた橙色リン光素子の評価を行った。ホール輸送層にはTAPCを用い、ドープ濃度を変えた素子を作製した。その結果、100cd/m時の視感効率は4wt%(50.5 lm/W)>6wt%(39.1 lm/W)の順となった。
素子の構成
実施例8:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(35nm)/CBP:4wt%PQIr(dpm)(10nm)/B4PyPPM(65nm)/LiF(0.5nm)/Al(100nm)]
実施例9:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(35nm)/CBP:6wt%PQIr(dpm)(10nm)/B4PyPPM(65nm)/LiF(0.5nm)/Al(100nm)]
前記各素子の
電流密度 −電圧特性は図39に、
輝度 −電圧特性は図40に、
視感効率 −電圧特性は図41に、
電流効率 −電圧特性は図42に、
量子効率 −輝度特性は図43に、
ELスペクトル は図44に、
それぞれ示す。
BPyPPM類を電子輸送材料に用いた橙色燐光素子特性とドープ濃度の効果を下記表に示す。

Figure 2009126793
Examples 8 and 9
An orange phosphor using the compound 2-phenyl-4,6-bis [3,5-di (pyridin-4-yl) phenyl] pyrimidine (B4PyPPM) obtained in Example 2 as an electron transport layer Evaluation was performed. TAPC was used for the hole transport layer, and devices with different dope concentrations were produced. As a result, the luminous efficiency at 100 cd / m 2 was in the order of 4 wt% (50.5 lm / W)> 6 wt% (39.1 lm / W).
Element Configuration Example 8: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (35 nm) / CBP: 4 wt% PQ 2 Ir (dpm) (10 nm) / B4PyPPM (65 nm) / LiF (0.5 nm) / Al (100 nm)]
Example 9: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (35 nm) / CBP: 6 wt% PQ 2 Ir (dpm) (10 nm) / B4PyPPM (65 nm) / LiF (0.5 nm) / Al (100 nm ]]
The current density-voltage characteristics of each element are shown in FIG.
The luminance-voltage characteristics are shown in FIG.
The luminous efficiency vs. voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The quantum efficiency vs. luminance characteristics are shown in FIG.
The EL spectrum is shown in FIG.
Each is shown.
The following table shows the effects of the orange phosphor element using BPyPPM as an electron transport material and the effect of the doping concentration.
Figure 2009126793

実施例10〜11、参考例7
実施例1で得られた2−フェニル−4,6−ビス〔3,5−ジ(ピリジン−3−イル)フェニル〕ピリミジン(B3PyPPM)、実施例2で得られた化合物2−フェニル−4,6−ビス〔3,5−ジ(ピリジン−4−イル)フェニル〕ピリミジン(B4PyPPM)、参考例3で得られた3,3″,5,5″−テトラ(ピリジン−3−イル)−1:1′,3′:1″−タ−フェニル(BmPyBB)を電子輸送層に用いた赤色リン光素子の評価を行った。その結果、100cd/m時の視感効率はB3PyPPM(12.4 lm/W)>B4PyPPM(9.6 lm/W)>BmPyBB(7.9 lm/W)の順となった。
これらの実施例、参考例に用いた素子の構成を下記に示す。
なお、Ir(piq)は、下記式で示される化合物である。

Figure 2009126793
素子の構成
実施例10:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(35nm)/CBP:4wt%Ir(piq)(10nm)/B3PyPPM(65nm)/LiF(0.5nm)/Al(100nm)]
実施例11:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(35nm)/CBP:4wt%Ir(piq)(10nm)/B4PyPPM(65nm)/LiF(0.5nm)/Al(100nm)]
参考例7:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(35nm)/CBP:4wt%Ir(piq)(10nm)/BmPyBB(65nm)/LiF(0.5nm)/Al(100nm)]
これらの各素子のエネルギーダイアグラムを図45に示す。
前記各素子の
電流密度 −電圧特性は図46に、
輝度 −電圧特性は図47に、
視感効率 −電圧特性は図48に、
電流効率 −電圧特性は図49に、
量子効率 −輝度特性は図50に、
ELスペクトル は図51に、
それぞれ示す。
実施例1で得られたB3PyPPMを電子輸送層に用いた実施例10の赤色リン光素子の特性、実施例2で得られた化合物B4PyPPMを電子輸送層に用いた実施例11の赤色リン光素子の特性、および参考例3で得られたBmPyBBを電子輸送層に用いた参考例7の赤色リン光素子の特性をそれぞれ下記表に示す。
Figure 2009126793
Examples 10-11, Reference Example 7
2-phenyl-4,6-bis [3,5-di (pyridin-3-yl) phenyl] pyrimidine (B3PyPPM) obtained in Example 1 and the compound 2-phenyl-4, obtained in Example 2. 6-bis [3,5-di (pyridin-4-yl) phenyl] pyrimidine (B4PyPPM), 3,3 ″, 5,5 ″ -tetra (pyridin-3-yl) -1 obtained in Reference Example 3 1 ′, 3 ′: 1 ″ -tert-phenyl (BmPyBB) was evaluated for a red phosphorescent device. As a result, the luminous efficiency at 100 cd / m 2 was B3PyPPM (12. 4 lm / W)> B4PyPPM (9.6 lm / W)> BmPyBB (7.9 lm / W).
The structures of the elements used in these examples and reference examples are shown below.
Ir (piq) is a compound represented by the following formula.
Figure 2009126793
Element Configuration Example 10: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (35 nm) / CBP: 4 wt% Ir (piq) (10 nm) / B3PyPPM (65 nm) / LiF (0.5 nm) / Al ( 100 nm)]
Example 11: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (35 nm) / CBP: 4 wt% Ir (piq) (10 nm) / B4PyPPM (65 nm) / LiF (0.5 nm) / Al (100 nm)]
Reference Example 7: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (35 nm) / CBP: 4 wt% Ir (piq) (10 nm) / BmPyBB (65 nm) / LiF (0.5 nm) / Al (100 nm)]
An energy diagram of each of these elements is shown in FIG.
The current density-voltage characteristics of each element are shown in FIG.
The luminance-voltage characteristics are shown in FIG.
The luminous efficiency vs. voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The quantum efficiency vs. luminance characteristics are shown in FIG.
The EL spectrum is shown in FIG.
Each is shown.
Characteristics of the red phosphorescent device of Example 10 using B3PyPPM obtained in Example 1 for the electron transport layer, and the red phosphorescent device of Example 11 using compound B4PyPPM obtained in Example 2 for the electron transport layer And the characteristics of the red phosphor element of Reference Example 7 using BmPyBB obtained in Reference Example 3 for the electron transport layer are shown in the following tables, respectively.
Figure 2009126793

実施例12、参考例8
実施例12においては、電子輸送層に実施例1で得られた化合物B3PyPPMを用い、ホール輸送層にはTAPCを用いて赤色リン光素子を作り、参考例8においては、電子輸送層に参考例3で得られた化合物BmPyBBを用い、ホール輸送層にはα−NPDを用いて赤色リン光素子を作成した。その結果、100cd/m時の視感効率はTAPC(12.4 lm/W)>α−NPD%(8.4 lm/W)の順となった。
なお、素子の構成は下記のとおりである。
実施例12:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(35nm)/CBP:4wt%Ir(piq)(10nm)/B3PyPPM(実施例1の化合物)(65nm)/LiF(0.5nm)/Al(100nm)]
参考例8:[ITO/TPDPES:10wt%TBPAH(20nm)/α−NPD:(35nm)/CBP:4wt%Ir(piq)(10nm)/BmPyBB(参考例3の化合物)(65nm)/LiF(0.5nm)/Al(100nm)]
これらの各素子のエネルギーダイアグラムを図52に示す。
前記各素子の
電流密度 −電圧特性は図53に、
輝度 −電圧特性は図54に、
視感効率 −電圧特性は図55に、
電流効率 −電圧特性は図56に、
量子効率 −輝度特性は図57に、
ELスペクトル は図58に、
それぞれ示す。
前記2つの赤色リン光素子の特性を下記表に示す。

Figure 2009126793
Example 12, Reference Example 8
In Example 12, the compound B3PyPPM obtained in Example 1 was used for the electron transport layer, and a red phosphorescent device was made using TAPC for the hole transport layer. In Reference Example 8, a reference example was used for the electron transport layer. Using the compound BmPyBB obtained in 3, a red phosphorescent device was prepared using α-NPD for the hole transport layer. As a result, the luminous efficiency at 100 cd / m 2 was in the order of TAPC (12.4 lm / W)> α-NPD% (8.4 lm / W).
In addition, the structure of an element is as follows.
Example 12: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (35 nm) / CBP: 4 wt% Ir (piq) (10 nm) / B3PyPPM (compound of Example 1) (65 nm) / LiF (0.5 nm ) / Al (100 nm)]
Reference Example 8: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / α-NPD: (35 nm) / CBP: 4 wt% Ir (piq) (10 nm) / BmPyBB (compound of Reference Example 3) (65 nm) / LiF ( 0.5 nm) / Al (100 nm)]
An energy diagram of each of these elements is shown in FIG.
The current density-voltage characteristics of each element are shown in FIG.
The luminance-voltage characteristics are shown in FIG.
The luminous efficiency vs. voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The quantum efficiency vs. luminance characteristics are shown in FIG.
The EL spectrum is shown in FIG.
Each is shown.
The characteristics of the two red phosphor elements are shown in the following table.
Figure 2009126793

実施例13、14
実施例1で得られたB3PyPPMを電子輸送層に、CBPをホストに用いた赤色リン光素子のドープ濃度の効果を検討した。その結果、100cd/m時の視感効率は4wt%(12.4 lm/W)>6wt%(11.8 lm/W)の順となった。
素子の構成
実施例13:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(35nm)/CBP:4wt%Ir(piq)(10nm)/B3PyPPM(65nm)/LiF(0.5nm)/Al(100nm)]
実施例14:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(35nm)/CBP:6wt%Ir(piq)(10nm)/B3PyPPM(65nm)/LiF(0.5nm)/Al(100nm)]
これらの各素子のエネルギーダイアグラム(エネルギーダイアグラムは濃度とは無関係)を図59に示す。
前記各素子の
電流密度 −電圧特性は図60に、
輝度 −電圧特性は図61に、
視感効率 −電圧特性は図62に、
電流効率 −電圧特性は図63に、
量子効率 −輝度特性は図64に、
ELスペクトル は図65に、
それぞれ示す。
上記2つのCBPをホストに用いた赤色リン光素子のドープ濃度の効果を下記表に示す。

Figure 2009126793
Examples 13 and 14
The effect of the doping concentration of the red phosphor using the B3PyPPM obtained in Example 1 as the electron transport layer and CBP as the host was examined. As a result, the luminous efficiency at 100 cd / m 2 was in the order of 4 wt% (12.4 lm / W)> 6 wt% (11.8 lm / W).
Element Configuration Example 13: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (35 nm) / CBP: 4 wt% Ir (piq) (10 nm) / B3PyPPM (65 nm) / LiF (0.5 nm) / Al ( 100 nm)]
Example 14: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (35 nm) / CBP: 6 wt% Ir (piq) (10 nm) / B3PyPPM (65 nm) / LiF (0.5 nm) / Al (100 nm)]
An energy diagram of each of these elements (the energy diagram is independent of concentration) is shown in FIG.
The current density-voltage characteristics of each element are shown in FIG.
The luminance-voltage characteristics are shown in FIG.
The luminous efficiency vs. voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The quantum efficiency-luminance characteristics are shown in FIG.
The EL spectrum is shown in FIG.
Each is shown.
The effect of the doping concentration of the red phosphor element using the above two CBPs as hosts is shown in the following table.
Figure 2009126793

実施例15〜17
実施例1で得られたB3PyPPMを電子輸送層に用い、ホストにBAlqを用いた赤色リン光素子のドープ濃度の効果を検討した。その結果、100cd/m時の視感効率は4wt%(12.3 lm/W)>6wt%(12.2 lm/W)>8wt%(11.1 lm/W)の順となった。

Figure 2009126793
素子の構成
実施例15:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(35nm)/BAlq:4wt%Ir(piq)(10nm)/B3PyPPM(65nm)/LiF(0.5nm)/Al(100nm)]
実施例16:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(35nm)/BAlq:6wt%Ir(piq)(10nm)/B3PyPPM(65nm)/LiF(0.5nm)/Al(100nm)]
実施例17:[ITO/TPDPES:10wt%TBPAH(20nm)/TAPC(35nm)/BAlq:8wt%Ir(piq)(10nm)/B3PyPPM(65nm)/LiF(0.5nm)/Al(100nm)]
これらの各素子のエネルギーダイアグラムを図66に示す。
前記各素子の
電流密度 −電圧特性は図67に、
輝度 −電圧特性は図68に、
視感効率 −電圧特性は図69に、
電流効率 −電圧特性は図70に、
量子効率 −輝度特性は図71に、
ELスペクトル は図72に、
それぞれ示す。
上記2つのBAlqをホストに用いた赤色リン光素子のドープ濃度の効果を下記表に示す。
Figure 2009126793
Examples 15-17
The effect of the doping concentration of the red phosphor element using B3PyPPM obtained in Example 1 as the electron transport layer and BAlq as the host was examined. As a result, the luminous efficiency at 100 cd / m 2 was in the order of 4 wt% (12.3 lm / W)> 6 wt% (12.2 lm / W)> 8 wt% (11.1 lm / W). .
Figure 2009126793
Element Structure Example 15: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (35 nm) / BAlq: 4 wt% Ir (piq) (10 nm) / B3PyPPM (65 nm) / LiF (0.5 nm) / Al ( 100 nm)]
Example 16: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (35 nm) / BAlq: 6 wt% Ir (piq) (10 nm) / B3PyPPM (65 nm) / LiF (0.5 nm) / Al (100 nm)]
Example 17: [ITO / TPDPES: 10 wt% TBPAH (20 nm) / TAPC (35 nm) / BAlq: 8 wt% Ir (piq) (10 nm) / B3PyPPM (65 nm) / LiF (0.5 nm) / Al (100 nm)]
An energy diagram of each of these elements is shown in FIG.
The current density-voltage characteristics of each element are shown in FIG.
The luminance-voltage characteristics are shown in FIG.
The luminous efficiency vs. voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The quantum efficiency-luminance characteristics are shown in FIG.
The EL spectrum is shown in FIG.
Each is shown.
The effect of the doping concentration of the red phosphor element using the two BAlq as a host is shown in the following table.
Figure 2009126793

本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 実施例1で得られた2−フェニル−4,6−ビス〔3,5−ジ(ピリジン−3−イル)フェニル〕ピリミジン(B3PyPPM)の蒸着膜のUVスペクトルを示す。2 shows a UV spectrum of a deposited film of 2-phenyl-4,6-bis [3,5-di (pyridin-3-yl) phenyl] pyrimidine (B3PyPPM) obtained in Example 1. 実施例2で得られた2−フェニル−4,6−ビス〔3,5−ジ(ピリジン−4−イル)フェニル〕ピリミジン(B4PyPPM)の蒸着膜のUVスペクトルを示す。The UV spectrum of the vapor deposition film of 2-phenyl-4,6-bis [3,5-di (pyridin-4-yl) phenyl] pyrimidine (B4PyPPM) obtained in Example 2 is shown. 実施例1で得られた2−フェニル−4,6−ビス〔3,5−ジ(ピリジン−3−イル)フェニル〕ピリミジン(B3PyPPM)の低温リン光スペクトル(T=4.2K)に示す。The low temperature phosphorescence spectrum (T = 4.2K) of 2-phenyl-4,6-bis [3,5-di (pyridin-3-yl) phenyl] pyrimidine (B3PyPPM) obtained in Example 1 is shown. 実施例3、参考例4〜5の有機EL素子のもつエネルギ−ダイアグラムを示す。The energy diagram which the organic EL element of Example 3 and Reference Examples 4-5 has is shown. 実施例3、参考例4〜5の有機EL素子のもつ電流密度−電圧特性を示す。The current density-voltage characteristic which the organic EL element of Example 3 and Reference Examples 4-5 has is shown. 実施例3、参考例4〜5の有機EL素子のもつ輝度−電圧特性を示す。The luminance-voltage characteristics of the organic EL elements of Example 3 and Reference Examples 4 to 5 are shown. 実施例3、参考例4〜5の有機EL素子のもつ視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic which the organic EL element of Example 3 and Reference Examples 4-5 has is shown. 実施例3、参考例4〜5の有機EL素子のもつ電流効率−電圧特性を示す。The current efficiency-voltage characteristic which the organic EL element of Example 3 and Reference Examples 4-5 has is shown. 実施例3、参考例4〜5の有機EL素子のもつ量子効率−輝度特性を示す。The quantum efficiency-luminance characteristic which the organic EL element of Example 3 and Reference Examples 4-5 has is shown. 実施例3、参考例4〜5の有機EL素子のもつELスペクトルを示す。The EL spectrum which the organic EL element of Example 3 and Reference Examples 4-5 has is shown. 実施例4、参考例6の有機EL素子のもつエネルギーダイアグラムを示す。The energy diagram which the organic EL element of Example 4 and Reference Example 6 has is shown. 実施例4、参考例6の有機EL素子のもつ電流密度−電圧特性を示す。The current density-voltage characteristic which the organic EL element of Example 4 and Reference Example 6 has is shown. 実施例4、参考例6の有機EL素子のもつ輝度−電圧特性を示す。The luminance-voltage characteristic which the organic EL element of Example 4 and Reference Example 6 has is shown. 実施例4、参考例6の有機EL素子のもつ視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic which the organic EL element of Example 4 and Reference Example 6 has is shown. 実施例4、参考例6の有機EL素子のもつ電流効率−電圧特性を示す。The current efficiency-voltage characteristic which the organic EL element of Example 4 and Reference Example 6 has is shown. 実施例4、参考例6の有機EL素子のもつ量子効率−輝度特性を示す。The quantum efficiency-luminance characteristic which the organic EL element of Example 4 and Reference Example 6 has is shown. 実施例4、参考例6の有機EL素子のもつELスペクトルを示す。The EL spectrum which the organic EL element of Example 4 and Reference Example 6 has is shown. 実施例5〜7の有機EL素子のもつエネルギーダイアグラムを示す。The energy diagram which the organic EL element of Examples 5-7 has is shown. 実施例5〜7の有機EL素子のもつ電流密度−電圧特性を示す。The current density-voltage characteristic which the organic EL element of Examples 5-7 has is shown. 実施例5〜7の有機EL素子のもつ輝度−電圧特性を示す。The luminance-voltage characteristic which the organic EL element of Examples 5-7 has is shown. 実施例5〜7の有機EL素子のもつ視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic which the organic EL element of Examples 5-7 has is shown. 実施例5〜7の有機EL素子のもつ電流効率−電圧特性を示す。The current efficiency-voltage characteristic which the organic EL element of Examples 5-7 has is shown. 実施例5〜7の有機EL素子のもつ量子効率−輝度特性を示す。The quantum efficiency-luminance characteristic which the organic EL element of Examples 5-7 has is shown. 実施例5〜7の有機EL素子のもつELスペクトルを示す。The EL spectrum which the organic EL element of Examples 5-7 has is shown. 実施例8、9の有機EL素子のもつ電流密度−電圧特性を示す。The current density-voltage characteristic which the organic EL element of Examples 8 and 9 has is shown. 実施例8、9の有機EL素子のもつ輝度−電圧特性を示す。The luminance-voltage characteristics of the organic EL elements of Examples 8 and 9 are shown. 実施例8、9の有機EL素子のもつ視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic which the organic EL element of Example 8, 9 has is shown. 実施例8、9の有機EL素子のもつ電流効率−電圧特性を示す。The current efficiency-voltage characteristic which the organic EL element of Example 8 and 9 has is shown. 実施例8、9の有機EL素子のもつ量子効率−輝度特性を示す。The quantum efficiency-luminance characteristic which the organic EL element of Example 8 and 9 has is shown. 実施例8、9の有機EL素子のもつELスペクトルを示す。The EL spectrum which the organic EL element of Examples 8 and 9 has is shown. 実施例10〜11、参考例7の有機EL素子のもつエネルギーダイアグラムを示す。The energy diagram which the organic EL element of Examples 10-11 and the reference example 7 has is shown. 実施例10〜11、参考例7の有機EL素子のもつ電流密度−電圧特性を示す。The current density-voltage characteristic which the organic EL element of Examples 10-11 and Reference Example 7 has is shown. 実施例10〜11、参考例7の有機EL素子のもつ輝度−電圧特性を示す。The luminance-voltage characteristics of the organic EL elements of Examples 10 to 11 and Reference Example 7 are shown. 実施例10〜11、参考例7の有機EL素子のもつ視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic which the organic EL element of Examples 10-11 and Reference Example 7 has is shown. 実施例10〜11、参考例7の有機EL素子のもつ電流効率−電圧特性を示す。The current efficiency-voltage characteristic which the organic EL element of Examples 10-11 and Reference Example 7 has is shown. 実施例10〜11、参考例7の有機EL素子のもつ量子効率−輝度特性を示す。The quantum efficiency-luminance characteristic which the organic EL elements of Examples 10 to 11 and Reference Example 7 have is shown. 実施例10〜11、参考例7の有機EL素子のもつELスペクトルを示す。The EL spectrum which the organic EL element of Examples 10-11 and the reference example 7 has is shown. 実施例12、参考例8の有機EL素子のもつエネルギーダイアグラムを示す。The energy diagram which the organic EL element of Example 12 and Reference Example 8 has is shown. 実施例12、参考例8の有機EL素子のもつ電流密度−電圧特性を示す。The current density-voltage characteristic which the organic EL element of Example 12 and Reference Example 8 has is shown. 実施例12、参考例8の有機EL素子のもつ輝度−電圧特性を示す。The luminance-voltage characteristic which the organic EL element of Example 12 and Reference Example 8 has is shown. 実施例12、参考例8の有機EL素子のもつ視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic which the organic EL element of Example 12 and Reference Example 8 has is shown. 実施例12、参考例8の有機EL素子のもつ電流効率−電圧特性を示す。The current efficiency-voltage characteristic which the organic EL element of Example 12 and Reference Example 8 has is shown. 実施例12、参考例8の有機EL素子のもつ量子効率−輝度特性を示す。The quantum efficiency-luminance characteristic which the organic EL element of Example 12 and Reference Example 8 has is shown. 実施例12、参考例8の有機EL素子のもつELスペクトルを示す。The EL spectrum which the organic EL element of Example 12 and Reference Example 8 has is shown. 実施例13、14の有機EL素子のもつエネルギーダイアグラムを示す。The energy diagram which the organic EL element of Example 13 and 14 has is shown. 実施例13、14の有機EL素子のもつ電流密度−電圧特性を示す。The current density-voltage characteristic which the organic EL element of Examples 13 and 14 has is shown. 実施例13、14の有機EL素子のもつ輝度−電圧特性を示す。The luminance-voltage characteristic which the organic EL element of Example 13 and 14 has is shown. 実施例13、14の有機EL素子のもつ視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic which the organic EL element of Examples 13 and 14 has is shown. 実施例13、14の有機EL素子のもつ電流効率−電圧特性を示す。The current efficiency-voltage characteristic which the organic EL element of Example 13 and 14 has is shown. 実施例13、14の有機EL素子のもつ量子効率−輝度特性を示す。The quantum efficiency-luminance characteristic which the organic EL element of Example 13 and 14 has is shown. 実施例13、14の有機EL素子のもつELスペクトルを示す。The EL spectrum which the organic EL element of Examples 13 and 14 has is shown. 実施例15〜17の有機EL素子のもつエネルギ−ダイアグラムを示す。The energy diagram which the organic EL element of Examples 15-17 has is shown. 実施例15〜17の有機EL素子のもつ電流密度−電圧特性を示す。The current density-voltage characteristic which the organic EL element of Examples 15-17 has is shown. 実施例15〜17の有機EL素子のもつ輝度−電圧特性を示す。The luminance-voltage characteristic which the organic EL element of Examples 15-17 has is shown. 実施例15〜17の有機EL素子のもつ視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic which the organic EL element of Examples 15-17 has is shown. 実施例15〜17の有機EL素子のもつ電流効率−電圧特性を示す。The current efficiency-voltage characteristic which the organic EL element of Examples 15-17 has is shown. 実施例15〜17の有機EL素子のもつ量子効率−輝度特性を示す。The quantum efficiency-luminance characteristic which the organic EL element of Examples 15-17 has is shown. 実施例15〜17の有機EL素子のもつELスペクトルを示す。The EL spectrum which the organic EL element of Examples 15-17 has is shown.

符号の説明Explanation of symbols

1 基板
2 陽極(ITO)
3 発光層
4 陰極
5 正孔輸送層(ホール輸送層)
6 電子輸送層
7 正孔注入層(ホール注入層)
8 電子注入層
9 正孔ブロック層(ホールブロック層)
1 Substrate 2 Anode (ITO)
3 Light emitting layer 4 Cathode 5 Hole transport layer (hole transport layer)
6 Electron transport layer 7 Hole injection layer (hole injection layer)
8 Electron injection layer 9 Hole blocking layer (hole blocking layer)

Claims (3)

下記一般式(1)
Figure 2009126793
(式中、Qは
Figure 2009126793
よりなる群から選ばれた基であり、R〜RおよびR10〜R11は水素、炭素数1〜6の直鎖または分岐のアルキル基、炭素数1〜6の直鎖または分岐のアルコキシ基および炭素数1〜6の直鎖または分岐のモノ−またはジ−アルキルアミノ基よりなる群からそれぞれ独立して選ばれた基である)
で示されるジ(ピリジルフェニル)誘導体。
The following general formula (1)
Figure 2009126793
(Where Q is
Figure 2009126793
R 1 to R 6 and R 10 to R 11 are groups selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, and a linear or branched group having 1 to 6 carbon atoms. Each independently selected from the group consisting of an alkoxy group and a linear or branched mono- or di-alkylamino group having 1 to 6 carbon atoms)
A di (pyridylphenyl) derivative represented by:
請求項1記載のジ(ピリジルフェニル)誘導体よりなる電子輸送材料。   An electron transport material comprising the di (pyridylphenyl) derivative according to claim 1. 請求項1記載のジ(ピリジルフェニル)誘導体を含む有機エレクトロルミネッセンス素子。   An organic electroluminescence device comprising the di (pyridylphenyl) derivative according to claim 1.
JP2007300549A 2007-11-20 2007-11-20 Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same Active JP5201956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007300549A JP5201956B2 (en) 2007-11-20 2007-11-20 Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007300549A JP5201956B2 (en) 2007-11-20 2007-11-20 Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same

Publications (2)

Publication Number Publication Date
JP2009126793A true JP2009126793A (en) 2009-06-11
JP5201956B2 JP5201956B2 (en) 2013-06-05

Family

ID=40818075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007300549A Active JP5201956B2 (en) 2007-11-20 2007-11-20 Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same

Country Status (1)

Country Link
JP (1) JP5201956B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110309344A1 (en) * 2010-06-18 2011-12-22 Basf Se Organic electronic devices comprising a layer of a pyridine compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex
JP2012149059A (en) * 2010-12-27 2012-08-09 Tosoh Corp 1,3,5-triazine compound, method for preparing the same, and organic electroluminescent element including the compound as constituent componnt
JP2013538436A (en) * 2010-06-18 2013-10-10 ビーエーエスエフ ソシエタス・ヨーロピア Organic electronic device comprising a layer of a pyridine compound and an 8-hydroxyquinolinolato alkaline earth metal or alkali metal complex
WO2015072520A1 (en) 2013-11-13 2015-05-21 出光興産株式会社 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
US9093652B2 (en) 2009-12-16 2015-07-28 Cheil Industries, Inc. Compound for an organic photoelectric device, organic photoelectric device including the same, and display device including the organic photoelectric device
JP2015160844A (en) * 2014-02-28 2015-09-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Triazine derivative and organic light-emitting element using the same
WO2015190400A1 (en) * 2014-06-11 2015-12-17 保土谷化学工業株式会社 Pyrimidine derivative and organic electroluminescent element
CN113880063A (en) * 2021-09-28 2022-01-04 广东光华科技股份有限公司 Aluminum removing method for ferrophosphorus slag after lithium extraction of waste lithium iron phosphate and preparation method of battery-grade ferric phosphate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106678A (en) * 1999-10-04 2001-04-17 Chemiprokasei Kaisha Ltd New heterocyclic ring-containing arylamine compound and organic electroluminescent element using the same
JP2007137829A (en) * 2005-11-18 2007-06-07 Chemiprokasei Kaisha Ltd New triazine derivative and organic electroluminescence element using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106678A (en) * 1999-10-04 2001-04-17 Chemiprokasei Kaisha Ltd New heterocyclic ring-containing arylamine compound and organic electroluminescent element using the same
JP2007137829A (en) * 2005-11-18 2007-06-07 Chemiprokasei Kaisha Ltd New triazine derivative and organic electroluminescence element using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013005261; Polyhedron vol.23, 2004, p.419-428 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093652B2 (en) 2009-12-16 2015-07-28 Cheil Industries, Inc. Compound for an organic photoelectric device, organic photoelectric device including the same, and display device including the organic photoelectric device
JP2013538436A (en) * 2010-06-18 2013-10-10 ビーエーエスエフ ソシエタス・ヨーロピア Organic electronic device comprising a layer of a pyridine compound and an 8-hydroxyquinolinolato alkaline earth metal or alkali metal complex
US20110309344A1 (en) * 2010-06-18 2011-12-22 Basf Se Organic electronic devices comprising a layer of a pyridine compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex
US10950798B2 (en) 2010-06-18 2021-03-16 Udc Ireland Limited Organic electronic devices comprising a layer of a pyridine compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex
JP2012149059A (en) * 2010-12-27 2012-08-09 Tosoh Corp 1,3,5-triazine compound, method for preparing the same, and organic electroluminescent element including the compound as constituent componnt
US10217954B2 (en) 2013-11-13 2019-02-26 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
WO2015072520A1 (en) 2013-11-13 2015-05-21 出光興産株式会社 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
KR20160075492A (en) 2013-11-13 2016-06-29 이데미쓰 고산 가부시키가이샤 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
JP2015160844A (en) * 2014-02-28 2015-09-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Triazine derivative and organic light-emitting element using the same
WO2015190400A1 (en) * 2014-06-11 2015-12-17 保土谷化学工業株式会社 Pyrimidine derivative and organic electroluminescent element
JPWO2015190400A1 (en) * 2014-06-11 2017-04-20 保土谷化学工業株式会社 Pyrimidine derivatives and organic electroluminescence devices
CN106573911A (en) * 2014-06-11 2017-04-19 保土谷化学工业株式会社 Pyrimidine derivative and organic electroluminescent element
CN113880063A (en) * 2021-09-28 2022-01-04 广东光华科技股份有限公司 Aluminum removing method for ferrophosphorus slag after lithium extraction of waste lithium iron phosphate and preparation method of battery-grade ferric phosphate

Also Published As

Publication number Publication date
JP5201956B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5063992B2 (en) Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP4878819B2 (en) Novel triazine derivative and organic electroluminescence device containing the same
JP5207760B2 (en) Novel pyrimidine-based or triazine-based derivative, electron transport material comprising the same, and organic electroluminescence device including the same
TWI429650B (en) Organic electroluminescent elements
JP5325402B2 (en) Novel bicarbazole derivative, host material and organic electroluminescence device using the same
KR101663527B1 (en) New organic electroluminescent compounds and organic electroluminescent device comprising the same
JP2008120696A (en) Novel tripyridylphenyl derivative, electron-transporting material comprising the same and organoelectroluminescent element comprising the same
TWI475022B (en) Organic electroluminescent elements
JP5201956B2 (en) Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP4960045B2 (en) Heteroaryl compound having novel biphenyl central skeleton and organic electroluminescence device comprising the same
JP2007070282A (en) Novel triarylboron derivative and organic electroluminescent device containing the same
JP2008106015A (en) New phenanthroline derivative, its lithium complex, electron transport material using the same, electron injection material and organic el element
JP5495578B2 (en) Novel triarylphosphine oxide derivative, host material comprising the same, and organic electroluminescence device containing the same
JP5783749B2 (en) 1,8-aryl substituted naphthalene derivative having excimer characteristics and organic EL device using the same
JP5086608B2 (en) Novel di (phenanthroline) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP5220429B2 (en) NOVEL DIPYLENE DERIVATIVE, ELECTRON TRANSPORT MATERIAL, LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE CONTAINING THE SAME
JP4648922B2 (en) Novel pyrimidinyl group-containing iridium complex, light emitting material comprising the same, and organic EL device using the same
JP5476034B2 (en) Novel triarylamine compound, hole transport material comprising the same, and organic electroluminescence device using the same
JP5349889B2 (en) Novel terphenyl derivative, electron transport material comprising the same, and organic electroluminescence device including the same
TWI608008B (en) Material for organic electroluminescent element and organic electroluminescent element using the same
JP2010090084A (en) Novel bis(carbazolylphenyl) derivative, host material, and organic electroluminescent element each employing the same
JP5674266B2 (en) Novel carbazole derivative, host material comprising the same, and organic electroluminescence device including the same
JP4223768B2 (en) Light emitting element
JP5371312B2 (en) Novel dicarbazolylphenyl derivative, host material using the same, and organic electroluminescence device
JP5492424B2 (en) Organic radical compounds and organic devices using them

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R150 Certificate of patent or registration of utility model

Ref document number: 5201956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250