JP2009125007A - Method for raising, method for production, and lighting apparatus - Google Patents

Method for raising, method for production, and lighting apparatus Download PDF

Info

Publication number
JP2009125007A
JP2009125007A JP2007303842A JP2007303842A JP2009125007A JP 2009125007 A JP2009125007 A JP 2009125007A JP 2007303842 A JP2007303842 A JP 2007303842A JP 2007303842 A JP2007303842 A JP 2007303842A JP 2009125007 A JP2009125007 A JP 2009125007A
Authority
JP
Japan
Prior art keywords
emitting element
light
led light
light emitting
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007303842A
Other languages
Japanese (ja)
Inventor
Seiichi Okazaki
聖一 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007303842A priority Critical patent/JP2009125007A/en
Priority to PCT/JP2008/071195 priority patent/WO2009066751A2/en
Publication of JP2009125007A publication Critical patent/JP2009125007A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method etc., for raising with a lighting apparatus capable of simply emitting light at wavelengths of sufficiently different intensities by using LEDs more promoting electric power-saving, and suitable even for special uses such as raising etc., of commercial plants. <P>SOLUTION: The method for raising with the lighting apparatus in which a light-emitting module 9 capable of irradiating cultivated plants 3 with light is arranged through a circuit substrate 16 attached to the bottom 15a of an aluminum housing 15 is provided. The light-emitting module 9 includes three surface-directed type LED light-emitting elements 11a, 11b, and 11c for emitting red light in a first wavelength region, and an LED light-emitting element 11d for emitting blue light in a second wavelength region. The surface-directed type LED light-emitting elements 11a, 11b, 11c, and 11d are mutually adjacently arranged, and mutually independently controlled. The plants are irradiated with the light serving as supplementary light at predetermined timings. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、育成方法、生産方法及び照明装置に関し、特に植物に光を照射することが可能な発光体モジュールが基板に配置された照明装置による育成方法等に関する。   The present invention relates to a growing method, a production method, and a lighting device, and more particularly to a growing method using a lighting device in which a light emitter module capable of irradiating light to a plant is arranged on a substrate.

特許文献1に記載のように植物の生育のために用いられる照明装置がある。特許文献1に具体的に記載されている照明装置では中心軸に対して放射状に2色以上の光を放射するように光源が配設された蛍光ランプのような発光装置が備えられ、発光装置は中心軸を回転軸として回転し、植物という被照射物へ照射する光の波長の選択を行えるものとしている。特許文献1では、蛍光ランプの代わりにLEDを用いることも示されている。   There exists an illuminating device used for plant growth as described in Patent Document 1. The illumination device specifically described in Patent Document 1 includes a light-emitting device such as a fluorescent lamp in which a light source is disposed so as to emit light of two or more colors radially with respect to the central axis. Rotates around the central axis, and the wavelength of the light to be irradiated on the irradiated object called a plant can be selected. Patent Document 1 also shows that LEDs are used instead of fluorescent lamps.

また、本願の発明者は、図15に示すような教育現場用或いは研究現場用の植物栽培LED照明器の他、図16に示すような教育現場用或いは研究現場用のLEDインキュベータを創出している。図15(B)及び図16(B)には、それぞれコントローラも示している。   In addition, the inventor of the present application creates an LED incubator for an education site or a research site as shown in FIG. 16 in addition to a plant cultivation LED illuminator for an education site or a research site as shown in FIG. Yes. FIG. 15B and FIG. 16B also show controllers.

なお、LEDを用いた照明装置としては、特許文献2に示すようなものもある。   In addition, as an illuminating device using LED, there exists a thing as shown in patent document 2. FIG.

特開2007−188799号公報JP 2007-188799 A 特開2007−41622号公報JP 2007-41622 A

しかしながら、特許文献1に記載の照明装置では、回転させて異なる波長の光を照射するとすれば回転機構が不可欠であり、構造上の制約があるばかりか、発光装置と被照射物との位置関係の制約も大きかった。   However, in the illumination device described in Patent Document 1, if it is rotated to irradiate light of different wavelengths, a rotation mechanism is indispensable, and not only there are structural restrictions, but also the positional relationship between the light emitting device and the irradiated object There were also large restrictions.

また、本願の発明者による植物栽培LED照明器とLEDインキュベータでは、教育用・研究用の装置なため商用や量産用のものではなかった。また商用や量産用という点からすれば、所謂砲弾型LEDを使用しており、まだ不十分な点もあった。すなわち、砲弾型LEDではチップからの少ない光をドームレンズで集光して指向性を持たせている。その結果、発光の強さが不十分なために指向性を狭くすれば高輝度化が可能な方向となるが、商用等のために装置を大型化して複数の砲弾型LEDを配置した場合には光のムラが顕在化してしまうという問題もあった。   Further, the plant cultivation LED illuminator and the LED incubator by the inventors of the present application are not for commercial or mass production because they are educational and research devices. In terms of commercial and mass production, so-called bullet-type LEDs were used, and there were still insufficient points. In other words, in the bullet-type LED, a small amount of light from the chip is collected by a dome lens to give directionality. As a result, if the directivity is narrowed because the intensity of light emission is insufficient, it will be possible to increase the brightness, but when the equipment is enlarged and multiple cannonball LEDs are arranged for commercial use etc. However, there was a problem that unevenness of light became obvious.

なお、特許文献2では、砲弾型LEDと表面実装型LEDの場合が示されているが、同一色のLEDが配置されて単に発光させるものであり、植物の育成等などの用途には不十分であった。   Patent Document 2 shows the case of a bullet-type LED and a surface-mount type LED, but the LED of the same color is simply arranged to emit light, and is insufficient for uses such as plant growth. Met.

ゆえに、本発明は、省電力をより進めたLEDによって、簡易に、強さが十分な異なる波長の光を発光でき、さらに商用の植物の育成等の特殊な用途にも適した照明装置を用いた育成方法等を提供することを目的とする。   Therefore, the present invention uses a lighting device that can easily emit light of different wavelengths with sufficient intensity, and that is also suitable for special uses such as growing commercial plants, by an LED that further promotes power saving. The purpose is to provide a training method and the like.

請求項1に係る発明は、植物に光を照射することが可能な発光体モジュールが基板に配置された照明装置による育成方法であって、前記発光体モジュールは、第1の波長域の光を発光する第1のLED発光素子と、第2の波長域の光を発光する第2のLED発光素子とを少なくとも有し、前記第1のLED発光素子と前記第2のLED発光素子とは隣接して配置されて互いに独立して制御され、予め定められたタイミングに、前記第1のLED発光素子が発光することによる光を前記植物に照射し、前記第2のLED発光素子が発光する光を前記植物に照射し、又は、前記第1のLED発光素子及び前記第2のLED発光素子が発光することによる光を前記植物に照射する。   The invention according to claim 1 is a growing method using a lighting device in which a light emitter module capable of irradiating light to a plant is disposed on a substrate, wherein the light emitter module emits light in a first wavelength range. The light emitting device includes at least a first LED light emitting element that emits light and a second LED light emitting element that emits light in a second wavelength range, and the first LED light emitting element and the second LED light emitting element are adjacent to each other. The light emitted from the first LED light emitting element is emitted to the plant at a predetermined timing, and the second LED light emitting element emits light. Or the plant is irradiated with light emitted by the first LED light emitting element and the second LED light emitting element.

請求項2に係る発明は、植物に光を照射することが可能な発光体モジュールが基板に配置された照明装置によって育成して天然果実を生産する生産方法であって、前記発光体モジュールは、第1の波長域の光を発光する第1のLED発光素子と、第2の波長域の光を発光する第2のLED発光素子とを少なくとも有し、前記第1のLED発光素子と前記第2のLED発光素子とは隣接して配置されて互いに独立して制御され、予め定められたタイミングに、前記第1のLED発光素子が発光することによる光を前記植物に照射し、前記第2のLED発光素子が発光する光を前記植物に照射し、又は、前記第1のLED発光素子及び前記第2のLED発光素子が発光することによる光を前記植物に照射し、前記植物の光合成に加えて光形態形成を促進させて天然果実を生産する。   The invention according to claim 2 is a production method in which a light emitting module capable of irradiating light on a plant is grown by a lighting device arranged on a substrate to produce a natural fruit, the light emitting module comprising: At least a first LED light emitting element that emits light in a first wavelength band and a second LED light emitting element that emits light in a second wavelength band, and the first LED light emitting element and the first LED light emitting element The two LED light emitting elements are disposed adjacent to each other and controlled independently from each other. At a predetermined timing, the plant emits light emitted from the first LED light emitting element, The light emitted from the LED light emitting element is irradiated on the plant, or the light emitted from the first LED light emitting element and the second LED light emitting element is irradiated on the plant for photosynthesis of the plant. In addition, it promotes photomorphogenesis and produces natural fruits.

請求項3に係る発明は、発光体モジュールが基板に配置された照明装置であって、前記発光体モジュールは、第1の波長域の光を発光する第1のLED発光素子と第2の波長域の光を発光する第2のLED発光素子とを少なくとも有し、前記第1のLED発光素子と前記第2のLED発光素子とは隣接して配置されていることを特徴とする。   The invention according to claim 3 is an illumination device in which a light emitter module is disposed on a substrate, the light emitter module including a first LED light emitting element that emits light in a first wavelength region and a second wavelength. At least a second LED light emitting element that emits light in the region, and the first LED light emitting element and the second LED light emitting element are disposed adjacent to each other.

請求項4に係る発明では、請求項3において、前記第1のLED発光素子は赤色の光を発光し、前記第2のLED発光素子は青色の光を発光し、前記発光体モジュール内に配置される前記第1のLED発光素子と前記第2のLED発光素子の数について発光面の面積比が3対1となるように調整されている。   According to a fourth aspect of the present invention, in the third aspect, the first LED light emitting element emits red light, and the second LED light emitting element emits blue light, and is disposed in the light emitter module. The area ratio of the light emitting surface is adjusted to 3: 1 with respect to the number of the first LED light emitting elements and the second LED light emitting elements.

請求項5に係る発明は、請求項3又は4において、前記第1のLED発光素子の発光と前記第2のLED発光素子の発光を独立して制御する制御手段を備える。   According to a fifth aspect of the present invention, in the third or fourth aspect of the invention, there is provided control means for independently controlling light emission of the first LED light emitting element and light emission of the second LED light emitting element.

請求項6に係る発明では、請求項3から5のいずれかにおいて、前記第1のLED発光素子及び前記第2のLED発光素子の発光の指向性は面指向性である。   According to a sixth aspect of the present invention, in any one of the third to fifth aspects, the directivity of light emission of the first LED light emitting element and the second LED light emitting element is a surface directivity.

請求項7に係る発明では、請求項3から6のいずれかにおいて、前記基板はその断面が所定のテーパ角を有する略コの字状をしており、前記発光体モジュールは当該基板の底部に配置される。   According to a seventh aspect of the present invention, in any one of the third to sixth aspects, the substrate has a substantially U-shaped cross section with a predetermined taper angle, and the light emitter module is disposed at the bottom of the substrate. Be placed.

請求項8に係る発明では、請求項3又は7において、前記基板は金属ベース基板である。   In an invention according to claim 8, in claim 3 or 7, the substrate is a metal base substrate.

請求項9に係る発明では、請求項3において、前記第1のLED発光素子が発光する光の波長域内に660nmが含まれ、前記第2のLED発光素子が発光する第2の波長域内に470nmが含まれる。なお、照明装置が植物の育成に用いられる場合において、光合成と光形態形成という観点からすれば、前記第1のLED発光素子が発光する波長域は625nm〜690nmの範囲内が好ましく、さらには640nm〜660nmの範囲内がより好ましく、前記第2のLED発光素子が発光する波長域は420nm〜490nmの範囲内が好ましく、さらには460nm〜470nmの範囲がより好ましい。これにより、光合成に対する効果が大きな赤色光を植物に照射でき、葉の正常な形態形成に対する効果が大きな青色光を植物に照射できる。   In the invention according to Claim 9, in Claim 3, 660 nm is included in a wavelength range of light emitted from the first LED light emitting element, and 470 nm is included in a second wavelength range emitted from the second LED light emitting element. Is included. In the case where the lighting device is used for plant growth, from the viewpoint of photosynthesis and photomorphogenesis, the wavelength region emitted by the first LED light emitting element is preferably in the range of 625 nm to 690 nm, and more preferably 640 nm. The wavelength range in which the second LED light emitting element emits light is preferably in the range of 420 nm to 490 nm, and more preferably in the range of 460 nm to 470 nm. As a result, the plant can be irradiated with red light having a great effect on photosynthesis, and the plant can be irradiated with blue light having a great effect on normal morphogenesis of leaves.

請求項1に係る発明によれば、発光体モジュールに、第1の波長域の光を発光する第1のLED発光素子と第2の波長域の光を発光する第2のLED発光素子とを少なくとも有させて第1のLED発光素子と第2のLED発光素子とを隣接して配置させ、互いに独立して制御し、予め定められたタイミングに、第1のLED発光素子が発光することによる光を植物に照射し、第2のLED発光素子が発光する光を植物に照射し、又は、第1のLED発光素子及び第2のLED発光素子が発光することによる光を植物に照射することにより、簡易に、強さの十分な異なる波長の光による商用の植物の育成といった特殊な用途における成果を得ることができる。   According to the first aspect of the present invention, the light emitting module includes the first LED light emitting element that emits light in the first wavelength range and the second LED light emitting element that emits light in the second wavelength range. At least the first LED light emitting element and the second LED light emitting element are disposed adjacent to each other, controlled independently of each other, and the first LED light emitting element emits light at a predetermined timing. Irradiating plants with light, irradiating plants with light emitted by the second LED light emitting element, or irradiating plants with light generated by the first LED light emitting element and the second LED light emitting element. Thus, it is possible to easily obtain a result in a special application such as growing a commercial plant by using light of different wavelengths with sufficient intensity.

請求項2に係る発明によれば、第1のLED発光素子と第2のLED発光素子が発光することによる光を植物に照射し、植物の光合成に加えて光形態形成を促進させて天然果実を生産でき、商用の植物育成における大きな効果を得ることができる。   According to the invention of claim 2, natural fruit is produced by irradiating a plant with light emitted by the first LED light-emitting element and the second LED light-emitting element and promoting photomorphogenesis in addition to plant photosynthesis. Can be produced, and a great effect in commercial plant cultivation can be obtained.

請求項3〜9に係る発明によれば、発光体モジュールに、第1の波長域の光を発光する第1のLED発光素子と第2の波長域の光を発光する第2のLED発光素子とを少なくとも有させて第1のLED発光素子と第2のLED発光素子とを隣接して配置させることにより、請求項1に係る発明による植物育成も可能になる。   According to the inventions according to claims 3 to 9, the first LED light emitting element that emits light in the first wavelength range and the second LED light emitting element that emits light in the second wavelength range are provided on the light emitter module. By arranging the first LED light emitting element and the second LED light emitting element adjacent to each other at least, plant growth according to the invention of claim 1 is also possible.

図1は、本発明の実施の形態に係る照明装置の利用例としての育成装置を説明するための図である。図2は、図1の一部を拡大した斜視図である。   FIG. 1 is a diagram for explaining a growing apparatus as an example of use of an illumination apparatus according to an embodiment of the present invention. FIG. 2 is an enlarged perspective view of a part of FIG.

この育成装置5は施設としてのビニールハウス1内に用いられている。ビニールハウス1には、奥行き方向に列をなして延びる栽培植物3があり、その栽培植物3の各列に対応してその上方に必要な数の育成装置5が配置される。その配置のために育成装置5は支持機構6によって支持される。支持機構6には高さ調節部7があり、後述する発光体モジュールから1.5m離れた位置において80Lux以上の明るさとなるように自然光とは別に補光される光の強さが調節される。   This breeding device 5 is used in a greenhouse 1 as a facility. The greenhouse 1 has cultivated plants 3 extending in rows in the depth direction, and a necessary number of cultivating devices 5 are arranged above the cultivated plants 3 corresponding to the rows of the cultivated plants 3. For this arrangement, the growing device 5 is supported by the support mechanism 6. The support mechanism 6 has a height adjusting unit 7 that adjusts the intensity of supplemented light separately from natural light so that the brightness is 80 Lux or more at a position 1.5 m away from a light emitter module described later. .

図3は図1及び図2の育成装置の発光体モジュールの部分を下方から拡大した図であり、図4は図3のIV-IVライン断面図である。   3 is an enlarged view of a portion of the light emitter module of the growing apparatus of FIGS. 1 and 2 from below, and FIG. 4 is a sectional view taken along line IV-IV in FIG.

図3に示すように発光体モジュール9には、4つの面指向型LED発光素子11a,11b,11c,11dが含まれている。この発光体モジュール9のサイズは約1cm四方である。面指向型LED発光素子11a〜11cは赤色の発光が可能であり、面指向型LED発光素子11dは青色の発光が可能である。赤色の光の波長は通常は660nmに調整されており、青色の波長は通常は470nmに調整されている。なお、図示を省略したコントローラにより互いに独立に制御される。そして、赤色の波長の波長域は625nm〜690nmの範囲内が好ましく、さらには640nm〜660nmの範囲内がより好ましいが、ここでは625nm〜660nmの範囲で調整可能としている。青色の波長の波長域は420nm〜490nmの範囲内が好ましく、さらには460nm〜470nmの範囲内がより好ましく、ここでは460nm〜470nmの範囲で調整可能としている。各面指向型LED発光素子11a〜11dには、図4に示すように、指向性を調整するためのガラスによるレンズ13a,13b(図4では13c,13dの図示を省略)が装着されている。   As shown in FIG. 3, the light emitter module 9 includes four surface-oriented LED light emitting elements 11a, 11b, 11c, and 11d. The size of the light emitter module 9 is about 1 cm square. The surface-oriented LED light emitting elements 11a to 11c can emit red light, and the surface-oriented LED light emitting element 11d can emit blue light. The wavelength of red light is normally adjusted to 660 nm, and the wavelength of blue light is normally adjusted to 470 nm. Note that they are controlled independently from each other by a controller (not shown). The wavelength range of the red wavelength is preferably in the range of 625 nm to 690 nm, more preferably in the range of 640 nm to 660 nm, but here it is adjustable in the range of 625 nm to 660 nm. The wavelength range of the blue wavelength is preferably in the range of 420 nm to 490 nm, more preferably in the range of 460 nm to 470 nm, and here it can be adjusted in the range of 460 nm to 470 nm. As shown in FIG. 4, lenses 13 a and 13 b made of glass for adjusting directivity (illustration of 13 c and 13 d is omitted in FIG. 4) are attached to the surface-directed LED light emitting elements 11 a to 11 d. .

ここで、発光体モジュール9の量子化率は30%〜40%なため放射機能をどのようにするかが重要である。そのため、金属ベース基板としての例えばアルミハウジング15が用いられればよく、発光体モジュール9は回路基板16を介してその底部15aに取り付けられている。このアルミハウジング15は各面指向型LED発光素子11a〜11dから発せられる熱を放熱するだけでなく、反射板としての役割も果たす。そのため、アルミハウジング15は、反射のための表面処理が施されるだけなく、αで示されるテーパ角が形成されるように側壁15bが傾斜している。このテーパ角は、面指向型LED発光素子11a〜11dから発光される光の強さと栽培植物3までの距離他、栽培植物3の葉のなどの広がり具合、栽培植物3の位置において必要な光の強さなどから定められる。   Here, since the quantization rate of the light emitter module 9 is 30% to 40%, it is important how to perform the radiation function. Therefore, for example, an aluminum housing 15 may be used as a metal base substrate, and the light emitter module 9 is attached to the bottom portion 15a via the circuit board 16. The aluminum housing 15 not only radiates heat generated from the surface-oriented LED light emitting elements 11a to 11d but also serves as a reflector. Therefore, the aluminum housing 15 is not only subjected to a surface treatment for reflection, but the side wall 15b is inclined so that a taper angle indicated by α is formed. This taper angle depends on the intensity of light emitted from the surface-directed LED light emitting elements 11a to 11d and the distance to the cultivated plant 3, as well as the extent of the leaf of the cultivated plant 3 and the light required at the position of the cultivated plant 3. It is determined from the strength of the.

なお、詳しい図示はしないが、面指向型LED発光素子にはヒートスラッグ部分があり、銅タングステン(CuW)、窒化アルミニウム(AlN)、ダイヤモンドなどが使われればよい。   Although not shown in detail, the surface-oriented LED light emitting element has a heat slug portion, and copper tungsten (CuW), aluminum nitride (AlN), diamond, or the like may be used.

また、面指向型LED発光素子(及びアルミ板のような反射板も含めて)の指向性にもよるが、指向幅が狭いものであれば、その下部に円柱のガラス棒を集光と反射用に用いる工夫が行われてもよい。   Also, depending on the directivity of the surface-oriented LED light-emitting element (and the reflector such as an aluminum plate), if the directivity width is narrow, a cylindrical glass rod is condensed and reflected below it. A device used for the purpose may be used.

さらに、上記では、赤色の面指向型LED発光素子の青色の面指向型LED発光素子の数を3:1としたが、数ではなく、発光面の面積比を3:1とするようにしたものであってもよい。そのため、赤色の面指向型LED発光素子を正三角形の頂点位置に配置し、その重心位置に青色面指向型LED発光素子を配置するようにしてもよい。   Furthermore, in the above, the number of blue surface-oriented LED light emitting elements of the red surface-oriented LED light emitting element is set to 3: 1, but instead of the number, the area ratio of the light emitting surface is set to 3: 1. It may be a thing. Therefore, the red surface-oriented LED light-emitting element may be arranged at the apex position of the regular triangle, and the blue surface-oriented LED light-emitting element may be arranged at the center of gravity.

さらに、上記では、赤色と青色の2色とし、その割合を上記のように3:1としたが、これに限られず、対象とする植物の種類や生育状況、その他気候といった時期等に応じて割合の比率の他、波長の選択も行えばよい。   Furthermore, in the above, two colors of red and blue were used, and the ratio was 3: 1 as described above. However, the present invention is not limited to this, and it depends on the type of plant, growth status, other climate, etc. In addition to the ratio, the wavelength may be selected.

さらに、2色として、赤と青を示したが、遠赤色、白色、パープル(赤色+青色)のような他の色も含めた組み合わせにしてもよく、3色以上を発光できるものとしてもよい。   Furthermore, although red and blue are shown as two colors, it may be a combination including other colors such as far red, white, purple (red + blue), and may emit three or more colors. .

ところで、光と植物との関係は図5に示されるような関係がある。図5は植物の生活環調節における光の役割を示した図である。   Incidentally, the relationship between light and plants is as shown in FIG. FIG. 5 is a diagram showing the role of light in regulating the life cycle of plants.

「赤色光・遠赤色光」が有効な光となるのは「発芽誘導、発芽阻害、成長調節、茎伸張・葉面積拡大というような形態形成、発芽形成、色素合成」という作用であり、各作用と「発芽、栄養成長、生殖成長、老化」という各期が関係する。また、「青色」が有効な光となるのは「茎伸張・出葉速度・葉厚というような形態形成、光屈性、気孔開口、葉緑体の運動、花成というような花芽形成、既日リズムの同調、色素合成」という作用であり、各作用と前記した各期が関係する。さらに、これらの各期における各作用との関係では、「フィトクロム、クリプトクロム、フォトトロピン」の対応するものが関係する。   “Red light / far-red light” is an effective light, which is the action of “morphogenesis such as germination induction, germination inhibition, growth regulation, stem elongation / leaf area expansion, germination, pigment synthesis” The action and each stage of germination, vegetative growth, reproductive growth, aging are related. In addition, "blue" is an effective light "formation such as stem elongation, leaf speed, leaf thickness, phototropism, stomatal opening, chloroplast movement, flower bud formation such as flowering, It is the action of “Synchronization of day rhythm, pigment synthesis”, and each action is related to each period described above. Furthermore, in relation to each action in each of these phases, the corresponding ones of “phytochrome, cryptochrome, phototropin” are related.

なお、フィトクロムについてさらに記載すると、植物工場研究所HPにも記載されているが、フィトクロムという色素の働きを介して、種子発芽、花芽分化、開花、子葉の展開、葉緑素合成節間伸長などの植物の質的変化である光形態形成が弱光反応と強光反応によって誘起されると言われている。また、強光下における葉緑素合成は青色光によって促進され、赤色光よって阻害される傾向があると言われている。また、光合成に対しては640nm〜690nmの赤色光の効果がもっとも大きく、葉の正常な形態形成には420nm〜470nmの青色光が必要とされ、植物種や成長段階に応じて、赤色光と青色光の最適な割合(R/B)比があると考えられている。   Further, phytochrome is also described in Plant Factory Research Institute HP, but plants such as seed germination, flower bud differentiation, flowering, cotyledon development, chlorophyll synthesis internode expansion, etc., through the action of a pigment called phytochrome. It is said that photomorphogenesis, which is a qualitative change, is induced by weak light reaction and strong light reaction. It is also said that chlorophyll synthesis under strong light is promoted by blue light and tends to be inhibited by red light. In addition, the effect of red light of 640 nm to 690 nm is most effective for photosynthesis, and blue light of 420 nm to 470 nm is required for normal morphogenesis of leaves, and depending on the plant species and growth stage, It is believed that there is an optimal ratio (R / B) ratio of blue light.

本願の発明者は、このような考え方も踏まえつつ、下記の実験により、植物栽培用の基準とすべきR/B比は上記したように3:1にした。   The inventor of the present application has set the R / B ratio to be a standard for plant cultivation to 3: 1 as described above by the following experiment in consideration of such an idea.

以下、施設園芸栽培の対象として夏イチゴの高設栽培施設における補光用植物栽培LED照明器の原理試作器における実験について示す。ビニールハウスの奥行き60メートルに対して、90cm×40cmのプランターにイチゴ苗を千鳥に10個定植し、高設を3列に設置して栄養液を灌水チューブで供給している。イチゴ苗の品種はペチカでケーキ用イチゴとして出荷されるものである。実験地は旭川近郊の富良野で行い、期間は2007年9月18日〜11月16日までの約2ヶ月間である。ここで、9月から11月までの3ヶ月の日照時間は東京と旭川ではかなり差があることを指摘しておく。すなわち、東京では月毎の日照時間変化は小さいが、旭川では9月、10月と比較すると11月にはそれらの約4割の日照時間にまで落ちてしまう。また、言うまでもないが、11月以降ビニールハウスも積雪の影響を受けるために更に日照時間が短くなり、平均気温が低下して行く中でイチゴの株が休眠状態に移行して生産活動を終了することを防ぐために、自然光のみに頼らない補光には大きな意義がある。本実験における補光の効果が表れる地域として旭川近郊の富良野において実験を行ったことを付言する。   In the following, experiments on the principle prototype of the plant cultivating LED illuminator for supplementary light at the high-altitude cultivation facility for summer strawberries will be shown as the subject of institutional horticulture. Ten strawberry seedlings are planted in a staggered pattern in a 90 cm x 40 cm planter for a depth of 60 meters in a greenhouse, and three rows of tall strawberry seedlings are provided to supply nutrient solution through an irrigation tube. Strawberry seedling varieties are shipped as cake strawberries in Pettika. The experimental site is in Furano near Asahikawa, and the period is about two months from September 18th to November 16th, 2007. Here, it is pointed out that the sunshine hours for three months from September to November are quite different between Tokyo and Asahikawa. In other words, the change in daylight hours per month is small in Tokyo, but in Asahikawa it falls to about 40% of those hours in November compared to September and October. Needless to say, since November, the greenhouses are also affected by snow, so the sunshine hours become even shorter, and the average temperature drops, so the strawberry strain moves to a dormant state and ends production activities. In order to prevent this, supplementary light that does not rely only on natural light has great significance. It is added that the experiment was conducted in Furano near Asahikawa as a region where the effect of supplementary light appears in this experiment.

波長毎に比較するため7つの区(LH赤区、LH青区、LH白区、PLT赤区、PLT青区、PLT白区、非処理区)に分けた。ここで、LH赤区〜LH白区における「赤」「青」「白」はLEDが発光する色の種類を表し、具体的な設置状況は図6に示す状況である。PLT赤区〜PLT白区における「赤」「青」「白」も発光する色の種類を表している。すなわち、波長の特徴を解析するために「赤」「青」「白」の単色光源を用いた。「LH」と「PLT」の区別は、面指向型LED発光素子(及びアルミ板のような反射板も含めて)の指向性の違いから異なる照射機構を採用した。「PLT」側は指向性が広いものであり、「LH」側は指向性が狭くその下部に円柱のガラス棒を集光と反射用に用いる工夫が行われている。補光は夜間と明け方に行った。そして、非処理区では補光は行われていないようにすべく他の6種類のLED照射区(LH赤区、LH青区、LH白区、PLT赤区、PLT青区、PLT白区)から外乱影響を受けない距離としてそれぞれから5m隔てたエリアにしている。   In order to compare each wavelength, it was divided into seven sections (LH red section, LH blue section, LH white section, PLT red section, PLT blue section, PLT white section, non-process section). Here, “red”, “blue”, and “white” in the LH red section to the LH white section represent the types of colors emitted by the LEDs, and the specific installation status is the status shown in FIG. “Red”, “blue”, and “white” in the PLT red area to the PLT white area also represent the types of colors that emit light. That is, in order to analyze the characteristics of the wavelength, “red”, “blue”, and “white” monochromatic light sources were used. The distinction between “LH” and “PLT” employs a different irradiation mechanism due to the difference in the directivity of the surface-oriented LED light-emitting elements (and the reflector such as an aluminum plate). The “PLT” side has a wide directivity, and the “LH” side has a narrow directivity, and a contrivance is made to use a cylindrical glass rod for condensing and reflecting at the bottom. Auxiliary light was used at night and at dawn. And other six types of LED irradiation zones (LH red zone, LH blue zone, LH white zone, PLT red zone, PLT blue zone, PLT white zone) so that supplementary light is not performed in the untreated zone The area is 5m away from each other as it is not affected by disturbance.

なお、図7に、使用した赤色LEDと他の照明装置との相違点を示す。消費電力の少なさとPAR(光合成有効放射)効率を見れば、他の照明装置に比べて赤色LEDが植物栽培に適した照明装置に用いられると好ましいLED発光素子であることも理解できる。また、寿命は実験では5万時間の点灯も確認できており、他の光源と異なって球切れの恐れも少ないという効果もある。   FIG. 7 shows the difference between the red LED used and other lighting devices. From the viewpoint of low power consumption and PAR (Photosynthesis Effective Radiation) efficiency, it can be understood that red LEDs are preferable LED light emitting elements when used in lighting devices suitable for plant cultivation compared to other lighting devices. In addition, the lifetime has been confirmed to be 50,000 hours of lighting in the experiment, and unlike other light sources, there is also an effect that there is less risk of a broken ball.

図8は実験結果をまとめた表である。図9は図8の葉柄長についてのデータをグラフ化した図であり、図10は図8の葉柄径(葉柄断面径)についてのデータをグラフ化した図であり、図11は図8の葉身長についてのデータをグラフ化した図であり、図12は図8の葉身幅についてのデータをグラフ化した図であり、図13は図8の葉円周(葉の大きさ)についてのデータをグラフ化した図であり、図14は図8の糖度についてデータをグラフ化した図である。   FIG. 8 is a table summarizing the experimental results. 9 is a graph of data on the petiole length of FIG. 8, FIG. 10 is a graph of data on the petiole diameter (petiole cross-sectional diameter) of FIG. 8, and FIG. 11 is a graph of FIG. FIG. 12 is a graph of the height data, FIG. 12 is a graph of the leaf width of FIG. 8, and FIG. 13 is the data of the leaf circumference (leaf size) of FIG. FIG. 14 is a graph of data, and FIG. 14 is a graph of data on the sugar content of FIG.

実験結果によると、データ全体からすれば、以下のことが言える。第一に、赤色・青色照射区では葉の緑色が濃くなっていた。そのため、光合成が活発化したと言える。第二に、赤色光は花房の上がりが早かった。第三に、赤色光は果実の着色が早かった。第四に、赤色光は果粒が大きく充実した果実が得られた。第五に、青色光は株が低くどっしりした状態になった。第六に、全ての照射区で糖度が上昇した。第七に、株疲れの防止に効果が得られた。   According to the experimental results, the following can be said from the whole data. First, the green color of the leaves was darker in the red and blue irradiated areas. Therefore, it can be said that photosynthesis was activated. Secondly, the red light had a fast rise of the flower bunches. Thirdly, red light colored the fruits quickly. Fourth, the red light produced fruits with large and large fruit grains. Fifth, the blue light became low and stocky. Sixth, sugar content rose in all irradiation sections. Seventh, it was effective in preventing strain fatigue.

まとめると、図8の非処理区を見ると分かるように自然光のみで行った場合には、展葉は休眠状態になり、株疲れが起こり、10月頃には収穫が終了して休眠状態になるのに対し、補光を行った各区では非処理区に比べて光合成が活発になる結果が得られ(特にPLT赤区という赤色照射区では草型が盛り上がり、株の勢いを感じられる結果が得られ)、11月以降にまで収穫が可能になった。つまり、LEDによる光を照射することにより株疲れが起こりにくくなり、収穫期間を延ばすことができた。また、収穫期間が延びたことによる収穫量が多くなっただけでなく、光合成速度の加速により収穫までの期間を短縮化でき、花芽形成時期の調節というようなことも可能になり、形態形成による成長がよいことから株のエネルギーが増して摘花が減り収穫果数が増加し、同一期間でも収穫量が多くなった。さらに、光合成が促進されることから二酸化炭素と水から糖類の量も多くなり、収穫されるイチゴの糖度も高くなった。   In summary, as can be seen from the non-treated section of FIG. 8, when it is carried out with only natural light, the leaf leaves become dormant, strain fatigue occurs, and harvesting ends and the dormant state occurs around October. On the other hand, in each section where light supplementation was performed, the result was that photosynthesis was more active than in the non-treated section (especially in the red irradiation section called PLT Aka-ku, the grass was swelled, and the result was that the strain was felt. It was possible to harvest until after November. In other words, by irradiating light from the LED, strain fatigue was less likely to occur and the harvesting period could be extended. In addition, not only has the yield increased due to the extended harvest period, but also the time to harvest can be shortened by accelerating the photosynthetic rate, and it is possible to adjust the timing of flower bud formation. Because of the good growth, the energy of the strain increased, the number of harvested fruits decreased, the number of harvested fruits increased, and the yield increased even during the same period. Furthermore, since photosynthesis was promoted, the amount of sugars from carbon dioxide and water increased, and the sugar content of the harvested strawberries increased.

以上のような実験結果に基づく植物栽培の育成のための補光用LED照明器によって自然光のみでは栽培が困難な状況下においても栽培が可能になる上に、収穫量の増加に加えて糖度上昇のような新たな効果を奏させることもできる。   The supplementary LED illuminator for plant cultivation based on the experimental results described above enables cultivation even in situations where it is difficult to grow using only natural light, and increases the sugar content in addition to increased yield. A new effect like this can also be produced.

なお、上記の実施の形態における実験ではイチゴについて説明したが、装置自体が小型なため防除作業の邪魔にならず、キク、バラ、トルコキキョウなどの他の高設栽培にも適しているばかりか、適用範囲は高設栽培以外の他の施設園芸に用いられてもよい。   In the experiment in the above embodiment, strawberry was described. However, since the apparatus itself is small, it does not interfere with the control work and is suitable not only for other high-growth cultivation such as chrysanthemum, roses, and lisianthus. The application range may be used for other horticultural horticultures other than high cultivation.

さらに、上記した実施の形態では、照明装置としての育成装置を説明したが、イカ釣り舟における集魚灯のような特殊な用途用の照明装置として使用されてもよい。   Furthermore, in the above-described embodiment, the growing device as the lighting device has been described. However, the growing device may be used as a lighting device for a special purpose such as a fishing light in a squid fishing boat.

本発明の実施の形態に係る照明装置の利用例としての育成装置を説明するための図である。It is a figure for demonstrating the breeding apparatus as an example of utilization of the illuminating device which concerns on embodiment of this invention. 図1の一部を拡大した斜視図である。It is the perspective view which expanded a part of FIG. 図1及び図2の育成装置の発光体モジュールの部分を下方から拡大した図である。It is the figure which expanded the part of the light-emitting body module of the growth apparatus of FIG.1 and FIG.2 from the downward direction. 図3のIV-IVライン断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 植物の生活環調節における光の役割を示した図である。It is the figure which showed the role of the light in the life cycle regulation of a plant. 補光用植物栽培LED照明器の原理試作器を示した図である。It is the figure which showed the principle prototype of the plant cultivation LED illuminator for supplementary light. 使用した赤色LEDと他の照明装置との相違点を示した図である。It is the figure which showed the difference with the used red LED and another illuminating device. 実験結果をまとめた表を示した図である。It is the figure which showed the table | surface which put together the experimental result. 図8の葉柄長についてのデータをグラフ化した図である。It is the figure which plotted the data about the petiole length of FIG. 図8の葉柄径(葉柄断面径)についてのデータをグラフ化した図である。It is the figure which plotted the data about the petiole diameter (petiole cross-sectional diameter) of FIG. 図8の葉身長についてのデータをグラフ化した図である。It is the figure which plotted the data about the leaf height of FIG. 図8の葉身幅についてのデータをグラフ化した図である。It is the figure which plotted the data about the leaf width of FIG. 図8の葉円周(葉の大きさ)についてのデータをグラフ化した図である。It is the figure which plotted the data about the leaf circumference (leaf size) of FIG. 図8の糖度についてデータをグラフ化した図である。It is the figure which graphed data about the sugar content of FIG. 発明者によって提案されている教育現場用或いは研究現場用の植物栽培LED照明器を示した図である。It is the figure which showed the plant cultivation LED illuminator for the educational field or research field proposed by the inventor. 発明者によって提案されている教育現場用或いは研究現場用のLEDインキュベータを示した図である。It is the figure which showed the LED incubator for the educational field or research field proposed by the inventor.

符号の説明Explanation of symbols

5 育成装置   5 training equipment

Claims (9)

植物に光を照射することが可能な発光体モジュールが基板に配置された照明装置による育成方法であって、
前記発光体モジュールは、第1の波長域の光を発光する第1のLED発光素子と、第2の波長域の光を発光する第2のLED発光素子とを少なくとも有し、
前記第1のLED発光素子と前記第2のLED発光素子とは隣接して配置されて互いに独立して制御され、
予め定められたタイミングに、前記第1のLED発光素子が発光することによる光を前記植物に照射し、前記第2のLED発光素子が発光する光を前記植物に照射し、又は、前記第1のLED発光素子及び前記第2のLED発光素子が発光することによる光を前記植物に照射する、育成方法。
A light emitting module capable of irradiating light to a plant is a growing method by a lighting device arranged on a substrate,
The light emitter module includes at least a first LED light emitting element that emits light in a first wavelength range, and a second LED light emitting element that emits light in a second wavelength range,
The first LED light emitting element and the second LED light emitting element are disposed adjacent to each other and controlled independently of each other;
At a predetermined timing, the plant is irradiated with light emitted from the first LED light-emitting element, and the plant is irradiated with light emitted from the second LED light-emitting element, or the first LED A growing method of irradiating the plant with light emitted by the LED light emitting element and the second LED light emitting element.
植物に光を照射することが可能な発光体モジュールが基板に配置された照明装置によって育成して天然果実を生産する生産方法であって、
前記発光体モジュールは、第1の波長域の光を発光する第1のLED発光素子と、第2の波長域の光を発光する第2のLED発光素子とを少なくとも有し、
前記第1のLED発光素子と前記第2のLED発光素子とは隣接して配置されて互いに独立して制御され、
予め定められたタイミングに、前記第1のLED発光素子が発光することによる光を前記植物に照射し、前記第2のLED発光素子が発光する光を前記植物に照射し、又は、前記第1のLED発光素子及び前記第2のLED発光素子が発光することによる光を前記植物に照射し、前記植物の光合成に加えて光形態形成を促進させて天然果実を生産する、生産方法。
A light emitting module capable of irradiating light to a plant is produced by a lighting device arranged on a substrate to produce a natural fruit,
The light emitter module includes at least a first LED light emitting element that emits light in a first wavelength range, and a second LED light emitting element that emits light in a second wavelength range,
The first LED light emitting element and the second LED light emitting element are disposed adjacent to each other and controlled independently of each other;
At a predetermined timing, the plant is irradiated with light emitted from the first LED light-emitting element, and the plant is irradiated with light emitted from the second LED light-emitting element, or the first LED A method for producing natural fruits by irradiating the plant with light emitted by the LED light-emitting element and the second LED light-emitting element, and promoting photomorphogenesis in addition to photosynthesis of the plant.
発光体モジュールが基板に配置された照明装置であって、
前記発光体モジュールは、第1の波長域の光を発光する第1のLED発光素子と第2の波長域の光を発光する第2のLED発光素子とを少なくとも有し、
前記第1のLED発光素子と前記第2のLED発光素子とは隣接して配置されていることを特徴とする、照明装置。
A lighting device in which a light emitter module is disposed on a substrate,
The light emitter module includes at least a first LED light emitting element that emits light in a first wavelength range and a second LED light emitting element that emits light in a second wavelength range,
The lighting device, wherein the first LED light-emitting element and the second LED light-emitting element are disposed adjacent to each other.
前記第1のLED発光素子は赤色の光を発光し、前記第2のLED発光素子は青色の光を発光し、前記発光体モジュール内に配置される前記第1のLED発光素子と前記第2のLED発光素子の数について発光面の面積比が3対1となるように調整されている、請求項3記載の照明装置。   The first LED light emitting element emits red light, the second LED light emitting element emits blue light, and the first LED light emitting element and the second LED light emitting element disposed in the light emitting module. The lighting device according to claim 3, wherein the area ratio of the light emitting surface is adjusted to be 3: 1 with respect to the number of the LED light emitting elements. 前記第1のLED発光素子の発光と前記第2のLED発光素子の発光を独立して制御する制御手段を備えた、請求項3又は4記載の照明装置。   5. The lighting device according to claim 3, further comprising a control unit that independently controls light emission of the first LED light emitting element and light emission of the second LED light emitting element. 前記第1のLED発光素子及び前記第2のLED発光素子の発光の指向性は面指向性である、請求項3から5のいずれかに記載の照明装置。   6. The illumination device according to claim 3, wherein the directivity of light emission of the first LED light-emitting element and the second LED light-emitting element is a plane directivity. 前記基板はその断面が所定のテーパ角を有する略コの字状をしており、前記発光体モジュールは当該基板の底部に配置される、請求項3から6のいずれかに記載の照明装置。   The lighting device according to claim 3, wherein the substrate has a substantially U-shaped cross section with a predetermined taper angle, and the light emitter module is disposed at a bottom portion of the substrate. 前記基板は金属ベース基板である、請求項3又は7記載の照明装置。   The lighting device according to claim 3, wherein the substrate is a metal base substrate. 前記第1のLED発光素子が発光する光の波長域内に660nmが含まれ、前記第2のLED発光素子が発光する第2の波長域内に470nmが含まれる、請求項3記載の照明装置。   The lighting device according to claim 3, wherein 660 nm is included in a wavelength range of light emitted from the first LED light emitting element, and 470 nm is included in a second wavelength range of light emitted from the second LED light emitting element.
JP2007303842A 2007-11-25 2007-11-25 Method for raising, method for production, and lighting apparatus Pending JP2009125007A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007303842A JP2009125007A (en) 2007-11-25 2007-11-25 Method for raising, method for production, and lighting apparatus
PCT/JP2008/071195 WO2009066751A2 (en) 2007-11-25 2008-11-21 Cultivating method, producing method, and illuminating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007303842A JP2009125007A (en) 2007-11-25 2007-11-25 Method for raising, method for production, and lighting apparatus

Publications (1)

Publication Number Publication Date
JP2009125007A true JP2009125007A (en) 2009-06-11

Family

ID=40667948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007303842A Pending JP2009125007A (en) 2007-11-25 2007-11-25 Method for raising, method for production, and lighting apparatus

Country Status (2)

Country Link
JP (1) JP2009125007A (en)
WO (1) WO2009066751A2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193824A (en) * 2009-02-26 2010-09-09 Fine Rubber Kenkyusho:Kk Light source for plant cultivation
WO2011016521A1 (en) * 2009-08-07 2011-02-10 昭和電工株式会社 Multicolour light emitting diode lamp for use in plant cultivation, lighting device and plant cultivation method
JP2011097900A (en) * 2009-11-09 2011-05-19 Sharp Corp Light source apparatus for plant growth and plant growth apparatus
JP2012125204A (en) * 2010-12-16 2012-07-05 Showa Denko Kk Lighting device for plant cultivation and plant cultivation system
JP2012143175A (en) * 2011-01-11 2012-08-02 Showa Denko Kk Illumination device for plant cultivation and plant cultivation device
WO2012108365A1 (en) * 2011-02-10 2012-08-16 シャープ株式会社 Lighting device, strawberry cultivation system and strawberry cultivation method
JP2013198484A (en) * 2012-02-23 2013-10-03 Kobe Univ Cultivation method of plant
KR20140020954A (en) * 2011-03-17 2014-02-19 발로야 오와이 Plant illumination device and method for dark growth chambers
JP2014064479A (en) * 2012-09-24 2014-04-17 Aomori Prefectural Industrial Technology Research Center Cultivation method and cultivation device of plant using led light source
JP2014075998A (en) * 2012-10-10 2014-05-01 Kyowa Concrete Industry Co Ltd Culture method of seaweed seedling
WO2015077948A1 (en) * 2013-11-28 2015-06-04 吕润春 Led lamp used for plant growth
JP2015133939A (en) * 2014-01-20 2015-07-27 スタンレー電気株式会社 Illumination device for plant cultivation
JP2016214260A (en) * 2011-09-21 2016-12-22 株式会社四国総合研究所 Method of inhibiting budding of perilla frutescen and method of suppressing dormancy of strawberries
EP3262924A1 (en) 2016-06-29 2018-01-03 Nichia Corporation Light emitting device and plant cultivation method
JP2019024433A (en) * 2017-08-01 2019-02-21 コイト電工株式会社 Lighting fixture for plant cultivation, and cultivation method of plant
JP7431438B2 (en) 2020-02-07 2024-02-15 国立大学法人宇都宮大学 Method for controlling leaf thickness and size of green leafy vegetables

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068182A1 (en) * 2009-12-03 2011-06-09 Okazaki Seiichi Plant cultivation system
IT1404854B1 (en) * 2010-07-01 2013-12-09 Esae Srl LED PROGRAM WIRELESS LIGHTED PROGRAM
CN103329802A (en) * 2013-06-21 2013-10-02 苏州市阳澄湖现代农业发展有限公司 Pollution-free high-yield planting method for strawberries
EP3275306A1 (en) * 2016-07-28 2018-01-31 Quazhar Lightning Company AG Led lamp for plants

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09252651A (en) * 1996-03-26 1997-09-30 Kensei Okamoto Led light source for plant cultivation and individual led light source mounting type plant culture container
JP3932581B2 (en) * 1996-11-08 2007-06-20 松下電工株式会社 Lighting device
JP2001000044A (en) * 1999-06-17 2001-01-09 Leben Co Ltd Method for controlling artificial light irradiation for raising plant
JP2001028947A (en) * 1999-07-23 2001-02-06 Yamato Kogyo Kk Method for raising useful plant
JP2002223636A (en) * 2001-01-29 2002-08-13 Rabo Sufia Kk Plant culture device using bulk type lens
JP4222011B2 (en) * 2002-11-28 2009-02-12 東芝ライテック株式会社 LED lighting fixtures
JP2005318821A (en) * 2004-05-07 2005-11-17 Palcom Corp Light irradiation device
JP2007166998A (en) * 2005-12-22 2007-07-05 Wako Denken Kk Led stand for growing plant

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193824A (en) * 2009-02-26 2010-09-09 Fine Rubber Kenkyusho:Kk Light source for plant cultivation
JP5393790B2 (en) * 2009-08-07 2014-01-22 昭和電工株式会社 Multicolor light emitting diode lamp for plant growth, lighting device and plant growth method
WO2011016521A1 (en) * 2009-08-07 2011-02-10 昭和電工株式会社 Multicolour light emitting diode lamp for use in plant cultivation, lighting device and plant cultivation method
TWI487139B (en) * 2009-08-07 2015-06-01 Showa Denko Kk Multicolor light emitting diode lamp for plant growth, lighting equipment and method of growing plant
KR101422364B1 (en) * 2009-08-07 2014-07-22 쇼와 덴코 가부시키가이샤 Multicolour light emitting diode lamp for use in plant cultivation, lighting device and plant cultivation method
US9485919B2 (en) 2009-08-07 2016-11-08 Showa Denko K.K. Multicolor light emitting diode lamp for plant growth, illumination apparatus, and plant growth method
JP2011097900A (en) * 2009-11-09 2011-05-19 Sharp Corp Light source apparatus for plant growth and plant growth apparatus
JP2012125204A (en) * 2010-12-16 2012-07-05 Showa Denko Kk Lighting device for plant cultivation and plant cultivation system
JP2012143175A (en) * 2011-01-11 2012-08-02 Showa Denko Kk Illumination device for plant cultivation and plant cultivation device
CN103379822A (en) * 2011-02-10 2013-10-30 夏普株式会社 Lighting device, strawberry cultivation system and strawberry cultivation method
JP2012165665A (en) * 2011-02-10 2012-09-06 Sharp Corp Lighting device, strawberry cultivation system and strawberry cultivation method
WO2012108365A1 (en) * 2011-02-10 2012-08-16 シャープ株式会社 Lighting device, strawberry cultivation system and strawberry cultivation method
KR101940828B1 (en) * 2011-03-17 2019-01-21 발로야 오와이 Plant illumination device and method for dark growth chambers
KR20140020954A (en) * 2011-03-17 2014-02-19 발로야 오와이 Plant illumination device and method for dark growth chambers
JP2016214260A (en) * 2011-09-21 2016-12-22 株式会社四国総合研究所 Method of inhibiting budding of perilla frutescen and method of suppressing dormancy of strawberries
JP2013198484A (en) * 2012-02-23 2013-10-03 Kobe Univ Cultivation method of plant
JP2014064479A (en) * 2012-09-24 2014-04-17 Aomori Prefectural Industrial Technology Research Center Cultivation method and cultivation device of plant using led light source
JP2014075998A (en) * 2012-10-10 2014-05-01 Kyowa Concrete Industry Co Ltd Culture method of seaweed seedling
WO2015077948A1 (en) * 2013-11-28 2015-06-04 吕润春 Led lamp used for plant growth
JP2015133939A (en) * 2014-01-20 2015-07-27 スタンレー電気株式会社 Illumination device for plant cultivation
EP3262924A1 (en) 2016-06-29 2018-01-03 Nichia Corporation Light emitting device and plant cultivation method
US10455773B2 (en) 2016-06-29 2019-10-29 Nichia Corporation Light emitting device and plant cultivation method
US10952382B2 (en) 2016-06-29 2021-03-23 Nichia Corporation Light emitting device and plant cultivation method
JP2019024433A (en) * 2017-08-01 2019-02-21 コイト電工株式会社 Lighting fixture for plant cultivation, and cultivation method of plant
JP7055546B2 (en) 2017-08-01 2022-04-18 コイト電工株式会社 Lighting equipment for plant cultivation and plant cultivation method
JP7431438B2 (en) 2020-02-07 2024-02-15 国立大学法人宇都宮大学 Method for controlling leaf thickness and size of green leafy vegetables

Also Published As

Publication number Publication date
WO2009066751A3 (en) 2009-07-16
WO2009066751A2 (en) 2009-05-28
WO2009066751A4 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP2009125007A (en) Method for raising, method for production, and lighting apparatus
EP3278020B1 (en) Method and apparatus for stimulation of plant growth and development with near infrared and visible lights
JP3139260U (en) Plant rearing system
CN104582472B (en) Horticultural lighting system and the horticultural production facility using this horticultural lighting system
US11116143B2 (en) Method and an apparatus for stimulation of plant growth and development with near infrared and visible lights
US9549507B2 (en) Method for cultivating plant
JP6325771B2 (en) Cultivation method using plant growing lighting device and plant growing lighting device
KR100944359B1 (en) A lamp for plant cultivation with multiple light sources and plant cultivation method thereby
EA020928B1 (en) System and method for growing a plant in an at least partly conditioned environment
Watanabe Light-controlled plant cultivation system in Japan-development of a vegetable factory using LEDs as a light source for plants
KR102285707B1 (en) Plant cultivation apparatus and plant cultivation method using light source for plant cultivation
EP3661348B1 (en) Wake up light optimization for plant growth
JP2020500027A (en) Segmented addressable light engine for horticulture
CN103574348A (en) Lighting device, plant cultivation system and plant cultivation method
Kanechi et al. Effects of pulsed lighting based light-emitting diodes on the growth and photosynthesis of lettuce leaves
RU2454066C2 (en) Light diode phyto-irradiator
JP2005192517A (en) Method for growing plant
JP4928143B2 (en) Flower cultivation method, plant cultivation method, flower cultivation lighting device and plant cultivation lighting device
Moerkens et al. The added value of LED assimilation light in combination with high pressure sodium lamps in protected tomato crops in Belgium
JP2011101616A (en) Method for cultivating plant by radiating three color mixed light
JP2001258389A (en) Method for cultivating plant
JP2019106955A (en) Plant cultivation method
JP2017046651A (en) Plant cultivation luminaire and plant cultivation method using the same
JP2007082489A (en) Method for culturing plant
JP4159485B2 (en) Method for inducing flower buds of cruciferous plants