JP3139260U - Plant rearing system - Google Patents
Plant rearing system Download PDFInfo
- Publication number
- JP3139260U JP3139260U JP2007009070U JP2007009070U JP3139260U JP 3139260 U JP3139260 U JP 3139260U JP 2007009070 U JP2007009070 U JP 2007009070U JP 2007009070 U JP2007009070 U JP 2007009070U JP 3139260 U JP3139260 U JP 3139260U
- Authority
- JP
- Japan
- Prior art keywords
- light
- plant
- emitting element
- led light
- led
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Cultivation Of Plants (AREA)
Abstract
【課題】 省電力をより進めたLEDによって、簡易に、強さが十分な異なる波長の光を発光でき、さらに商用の植物の育成という特殊な用途にも適した植物育成システムを提供する。
【解決手段】 栽培植物3に光を照射することが可能な発光体モジュール9がアルミハウジング15の底部15aに取り付けられた回路基板16を介して配置される照明装置が育成装置5として用いられ、発光体モジュール9は、赤色の第1の波長域の光を発光する3つの面指向型LED発光素子11a,11b,11cと、青色の第2の波長域の光を発光するLED発光素子11dとを有し、面指向型LED発光素子11a,11b,11c,11dは互いに隣接して配置されて互いに独立して制御され、予め定められたタイミングに、補光として植物に照射される。植物育成システムは、育成装置5のほか、支持機構6、コントローラも備える。
【選択図】 図3PROBLEM TO BE SOLVED: To provide a plant breeding system that can easily emit light having different wavelengths with sufficient intensity by using an LED that further promotes power saving, and that is also suitable for a special purpose of growing commercial plants.
An illuminating device in which a light emitter module 9 capable of irradiating light to a cultivated plant 3 is arranged via a circuit board 16 attached to a bottom portion 15a of an aluminum housing 15 is used as a growing device 5. The light emitter module 9 includes three surface-oriented LED light emitting elements 11a, 11b, and 11c that emit light in the first wavelength range of red, and an LED light emitting element 11d that emits light in the second wavelength range of blue. The surface-directed LED light emitting elements 11a, 11b, 11c, and 11d are arranged adjacent to each other and controlled independently from each other, and are irradiated to a plant as supplementary light at a predetermined timing. The plant growing system includes a support mechanism 6 and a controller in addition to the growing device 5.
[Selection] Figure 3
Description
本考案は、植物育成システムに関し、特に施設内に列をなして栽培された植物に上方から自然光とは別に光を照射することが可能な複数の発光体モジュールを基板に配置した施設園芸用照明装置を備えた植物育成システムに関する。 The present invention relates to a plant growing system, and in particular, a facility gardening illumination in which a plurality of light emitting modules capable of irradiating light separately from natural light from above are arranged on a substrate on plants grown in a row in the facility. The present invention relates to a plant growing system equipped with a device.
特許文献1に記載のように植物の生育のために用いられる照明装置がある。特許文献1に具体的に記載されている照明装置には中心軸に対して放射状に2色以上の光を放射するように光源が配設された発光装置が備えられ、蛍光ランプのようなこの発光装置は中心軸を回転軸として回転し、植物という被照射物へ照射する光の波長の選択を行えるものとしている。特許文献1では、蛍光ランプの代わりにLEDを用いることも示されている。 There exists an illuminating device used for plant growth as described in Patent Document 1. The illuminating device specifically described in Patent Document 1 includes a light emitting device in which a light source is disposed so as to radiate light of two or more colors radially with respect to a central axis, such as a fluorescent lamp. The light-emitting device rotates about the central axis as a rotation axis, and can select the wavelength of light that irradiates an irradiated object called a plant. Patent Document 1 also shows that LEDs are used instead of fluorescent lamps.
また、本願の発明者は、図15に示すような教育現場用或いは研究現場用の植物栽培LED照明器の他、図16に示すような教育現場用或いは研究現場用のLEDインキュベータを創出している。図15(B)及び図16(B)には、それぞれコントローラも示している。 In addition, the inventor of the present application creates an LED incubator for an education site or a research site as shown in FIG. 16 in addition to a plant cultivation LED illuminator for an education site or a research site as shown in FIG. Yes. FIG. 15B and FIG. 16B also show controllers.
しかしながら、特許文献1に記載の照明装置では、回転させて異なる波長の光を照射するとすれば回転機構が不可欠であり、構造上の制約があるばかりか、発光装置と被照射物との位置関係の制約も大きかった。 However, in the illumination device described in Patent Document 1, if it is rotated to irradiate light of different wavelengths, a rotation mechanism is indispensable, and not only there are structural restrictions, but also the positional relationship between the light emitting device and the irradiated object There were also large restrictions.
また、本願の発明者による植物栽培LED照明器とLEDインキュベータでは、教育用・研究用の装置なため商用や量産用のものではなかった。また商用や量産用という点からすれば、所謂砲弾型LEDを使用しており、まだ不十分な点もあった。すなわち、砲弾型LEDではチップからの少ない光をドームレンズで集光して指向性を持たせている。その結果、発光の強さが不十分なために指向性を狭くすれば高輝度化が可能な方向となるが、商用等のために装置を大型化して複数の砲弾型LEDを配置した場合には光のムラが顕在化してしまうという問題もあった。 Further, the plant cultivation LED illuminator and the LED incubator by the inventors of the present application are not for commercial or mass production because they are educational and research devices. In terms of commercial and mass production, so-called bullet-type LEDs are used, and there are still insufficient points. In other words, in the bullet-type LED, a small amount of light from the chip is collected by a dome lens to give directionality. As a result, if the directivity is narrowed because the intensity of light emission is insufficient, it will be possible to increase the brightness, but when the equipment is enlarged and multiple cannonball LEDs are arranged for commercial use etc. However, there was a problem that unevenness of light became obvious.
ゆえに、本考案は、省電力をより進めたLEDによって、簡易に、強さが十分な異なる波長の光を発光でき、さらに商用の植物の育成という特殊な用途にも適した植物育成システムを提供することを目的とする。 Therefore, the present invention provides a plant breeding system that can easily emit light of different wavelengths with sufficient intensity, and that is suitable for special purposes such as commercial plant breeding, with LEDs that have further promoted power saving. The purpose is to do.
請求項1に係る考案は、施設内に列をなして栽培された植物に上方から自然光とは別に光を照射することが可能な複数の発光体モジュールを基板に配置した施設園芸用照明装置を備えた植物育成システムであって、前記照明装置を前記施設内の所定位置に保持する保持機構を備え、前記各発光体モジュールは所定波長域の光を発光する面指向性LED発光素子を有し、前記基板は各列に対応して延びる金属ベース基板であってその断面が所定のテーパ角を有する略コの字状をしており、前記複数の発光体モジュールが当該金属ベース基板の底部に間隔をおいて配置されるとともに前記植物に対向している。 The invention according to claim 1 is a facility horticulture lighting device in which a plurality of light emitting modules capable of irradiating light separately from natural light from above onto plants cultivated in a row in a facility are arranged on a substrate. A plant growing system comprising: a holding mechanism for holding the lighting device at a predetermined position in the facility; and each of the light emitter modules includes a surface-directed LED light emitting element that emits light in a predetermined wavelength range. The substrate is a metal base substrate extending corresponding to each row, and the cross section thereof has a substantially U shape with a predetermined taper angle, and the plurality of light emitter modules are disposed at the bottom of the metal base substrate. It is arranged at an interval and faces the plant.
請求項2に係る考案は、施設内に列をなして栽培された植物に上方から自然光とは別に光を照射することが可能な複数の発光体モジュールを基板に配置した施設園芸用照明装置を備えた植物育成システムであって、前記照明装置を前記施設内の所定位置に保持する保持機構を備え、前記各発光体モジュールは、第1の波長域の光を発光する第1の面指向性LED発光素子と、第2の波長域の光を発光する第2の面指向性LED発光素子とを有し、前記第1の面指向性LED発光素子と前記第2の面指向性LED発光素子とは隣接して配置され、前記基板は各列に対応して延びる金属ベース基板であってその断面が所定のテーパ角を有する略コの字状をしており、前記複数の発光体モジュールが当該金属ベース基板の底部に間隔をおいて配置されるとともに前記植物に対向している。 The invention according to claim 2 is a facility horticulture lighting device in which a plurality of light emitting modules capable of irradiating light separately from natural light onto plants cultivated in a row in a facility are arranged on a substrate. A plant growth system comprising a holding mechanism for holding the lighting device at a predetermined position in the facility, wherein each of the light emitter modules emits light in a first wavelength range. An LED light-emitting element and a second surface-directed LED light-emitting element that emits light in a second wavelength range, the first surface-directed LED light-emitting element and the second surface-directed LED light-emitting element Are disposed adjacent to each other, and the substrate is a metal base substrate extending corresponding to each row, and the cross-section thereof has a substantially U-shape having a predetermined taper angle, and the plurality of light emitter modules are Arranged at the bottom of the metal base substrate and spaced apart It is opposed to the thing.
LED発光素子が発光することによる光を植物に照射し、植物の光合成に加えて光形態形成を促進させて天然果実を生産でき、商用の植物育成における大きな効果を得ることができる。 The light emitted from the LED light emitting element is irradiated on the plant, and in addition to the photosynthesis of the plant, the photomorphogenesis can be promoted to produce a natural fruit, and a great effect in commercial plant growth can be obtained.
図1は、本発明の実施の形態に係る照明装置の利用例としての育成装置を説明するための図である。図2は、図1の一部を拡大した斜視図である。 FIG. 1 is a diagram for explaining a growing apparatus as an example of use of an illumination apparatus according to an embodiment of the present invention. FIG. 2 is an enlarged perspective view of a part of FIG.
この育成装置5は施設としてのビニールハウス1内に用いられている。ビニールハウス1には、奥行き方向に列をなして延びる栽培植物3があり、その栽培植物3の各列に対応してその上方に必要な数の育成装置5が配置される。その配置のために育成装置5は支持機構6によって支持される。支持機構6には高さ調節部7があり、後述する発光体モジュールから1.5m離れた位置において80Lux以上の明るさとなるように自然光とは別に補光される光の強さが調節される。植物育成システムとしては、育成装置5、支持機構6、及び、図示を省略した下記コントローラを備える。 This breeding device 5 is used in a greenhouse 1 as a facility. The greenhouse 1 has cultivated plants 3 extending in rows in the depth direction, and a necessary number of cultivating devices 5 are arranged above the cultivated plants 3 corresponding to the rows of the cultivated plants 3. For this arrangement, the growing device 5 is supported by the support mechanism 6. The support mechanism 6 has a height adjusting unit 7 that adjusts the intensity of supplemented light separately from natural light so that the brightness is 80 Lux or more at a position 1.5 m away from a light emitter module described later. . The plant growing system includes a growing device 5, a support mechanism 6, and the following controller (not shown).
図3は図1及び図2の育成装置の発光体モジュールの部分を下方から拡大した図であり、図4は図3のIV-IVライン断面図である。 3 is an enlarged view of a portion of the light emitter module of the growing apparatus of FIGS. 1 and 2 from below, and FIG. 4 is a sectional view taken along line IV-IV in FIG.
図3に示すように発光体モジュール9には、4つの面指向型LED発光素子11a,11b,11c,11dが含まれている。この発光体モジュール9のサイズは約1cm四方である。面指向型LED発光素子11a〜11cは赤色の発光が可能であり、面指向型LED発光素子11dは青色の発光が可能である。赤色の光の波長は通常は660nmに調整されており、青色の波長は通常は470nmに調整されている。なお、図示を省略したコントローラにより互いに独立に制御される。そして、赤色の波長の波長域は625nm〜690nmの範囲内が好ましく、さらには640nm〜660nmの範囲内がより好ましいが、ここでは625nm〜660nmの範囲で調整可能としている。青色の波長の波長域は420nm〜490nmの範囲内が好ましく、さらには460nm〜470nmの範囲内がより好ましく、ここでは460nm〜470nmの範囲で調整可能としている。各面指向型LED発光素子11a〜11dには、図4に示すように、指向性を調整するためのガラスによるレンズ13a,13b(図4では13c,13dの図示を省略)が装着されている。 As shown in FIG. 3, the light emitter module 9 includes four surface-oriented LED light emitting elements 11a, 11b, 11c, and 11d. The size of the light emitter module 9 is about 1 cm square. The surface-oriented LED light emitting elements 11a to 11c can emit red light, and the surface-oriented LED light emitting element 11d can emit blue light. The wavelength of red light is normally adjusted to 660 nm, and the wavelength of blue light is normally adjusted to 470 nm. Note that they are controlled independently from each other by a controller (not shown). The wavelength range of the red wavelength is preferably in the range of 625 nm to 690 nm, more preferably in the range of 640 nm to 660 nm, but here it is adjustable in the range of 625 nm to 660 nm. The wavelength range of the blue wavelength is preferably in the range of 420 nm to 490 nm, more preferably in the range of 460 nm to 470 nm, and here it can be adjusted in the range of 460 nm to 470 nm. As shown in FIG. 4, lenses 13 a and 13 b made of glass for adjusting directivity (illustration of 13 c and 13 d is omitted in FIG. 4) are attached to the surface-directed LED light emitting elements 11 a to 11 d. .
ここで、発光体モジュール9の量子化率は30%〜40%なため放射機能をどのようにするかが重要である。そのため、金属ベース基板としての例えばアルミハウジング15が用いられればよく、発光体モジュール9は回路基板16を介してその底部15aに取り付けられている。このアルミハウジング15は各面指向型LED発光素子11a〜11dから発せられる熱を放熱するだけでなく、反射板としての役割も果たす。そのため、アルミハウジング15は、反射のための表面処理が施されるだけなく、αで示されるテーパ角が形成されるように側壁15bが傾斜している。このテーパ角は、面指向型LED発光素子11a〜11dから発光される光の強さと栽培植物3までの距離他、栽培植物3の葉のなどの広がり具合、栽培植物3の位置において必要な光の強さなどから定められる。 Here, since the quantization rate of the light emitter module 9 is 30% to 40%, it is important how to perform the radiation function. Therefore, for example, an aluminum housing 15 may be used as a metal base substrate, and the light emitter module 9 is attached to the bottom portion 15a via the circuit board 16. The aluminum housing 15 not only radiates heat generated from the surface-oriented LED light emitting elements 11a to 11d but also serves as a reflector. Therefore, the aluminum housing 15 is not only subjected to a surface treatment for reflection, but the side wall 15b is inclined so that a taper angle indicated by α is formed. This taper angle depends on the intensity of light emitted from the surface-directed LED light emitting elements 11a to 11d and the distance to the cultivated plant 3, as well as the extent of the leaf of the cultivated plant 3 and the light required at the position of the cultivated plant 3. It is determined from the strength of the.
なお、詳しい図示はしないが、面指向型LED発光素子にはヒートスラッグ部分があり、銅タングステン(CuW)、窒化アルミニウム(AlN)、ダイヤモンドなどが使われればよい。 Although not shown in detail, the surface-oriented LED light emitting element has a heat slug portion, and copper tungsten (CuW), aluminum nitride (AlN), diamond, or the like may be used.
また、面指向型LED発光素子(及びアルミ板のような反射板も含めて)の指向性にもよるが、指向幅が狭いものであれば、その下部に円柱のガラス棒を集光と反射用に用いる工夫が行われてもよい。 Also, depending on the directivity of the surface-oriented LED light-emitting element (and the reflector such as an aluminum plate), if the directivity width is narrow, a cylindrical glass rod is condensed and reflected below it. A device used for the purpose may be used.
さらに、上記では、赤色の面指向型LED発光素子の青色の面指向型LED発光素子の数を3:1としたが、数ではなく、発光面の面積比を3:1とするようにしたものであってもよい。そのため、赤色の面指向型LED発光素子を正三角形の頂点位置に配置し、その重心位置に青色面指向型LED発光素子を配置するようにしてもよい。 Furthermore, in the above, the number of blue surface-oriented LED light emitting elements of the red surface-oriented LED light emitting element is set to 3: 1, but instead of the number, the area ratio of the light emitting surface is set to 3: 1. It may be a thing. Therefore, the red surface-oriented LED light-emitting element may be arranged at the apex position of the regular triangle, and the blue surface-oriented LED light-emitting element may be arranged at the center of gravity.
さらに、上記では、赤色と青色の2色とし、その割合を上記のように3:1としたが、これに限られず、対象とする植物の種類や生育状況、その他気候といった時期等に応じて割合の比率の他、波長の選択も行えばよい。 Furthermore, in the above, two colors of red and blue were used, and the ratio was 3: 1 as described above. However, the present invention is not limited to this, and it depends on the type of plant, growth status, other climate, etc. In addition to the ratio, the wavelength may be selected.
さらに、2色として、赤と青を示したが、遠赤色、白色、パープル(赤色+青色)のような他の色も含めた組み合わせにしてもよく、3色以上を発光できるものとしてもよい。 Furthermore, although red and blue are shown as two colors, it may be a combination including other colors such as far red, white, purple (red + blue), and may emit three or more colors. .
ところで、光と植物との関係は図5に示されるような関係がある。図5は植物の生活環調節における光の役割を示した図である。 Incidentally, the relationship between light and plants is as shown in FIG. FIG. 5 is a diagram showing the role of light in regulating the life cycle of plants.
「赤色光・遠赤色光」が有効な光となるのは「発芽誘導、発芽阻害、成長調節、茎伸張・葉面積拡大というような形態形成、発芽形成、色素合成」という作用であり、各作用と「発芽、栄養成長、生殖成長、老化」という各期が関係する。また、「青色」が有効な光となるのは「茎伸張・出葉速度・葉厚というような形態形成、光屈性、気孔開口、葉緑体の運動、花成というような花芽形成、既日リズムの同調、色素合成」という作用であり、各作用と前記した各期が関係する。さらに、これらの各期における各作用との関係では、「フィトクロム、クリプトクロム、フォトトロピン」の対応するものが関係する。 “Red light / far-red light” is an effective light, which is the action of “morphogenesis such as germination induction, germination inhibition, growth regulation, stem elongation / leaf area expansion, germination, pigment synthesis” The action and each stage of germination, vegetative growth, reproductive growth, aging are related. In addition, "blue" is an effective light "formation such as stem elongation, leaf speed, leaf thickness, phototropism, stomatal opening, chloroplast movement, flower bud formation such as flowering, It is the action of “Synchronization of day rhythm, pigment synthesis”, and each action is related to each period described above. Furthermore, in relation to each action in each of these phases, the corresponding ones of “phytochrome, cryptochrome, phototropin” are related.
なお、フィトクロムについてさらに記載すると、植物工場研究所HPにも記載されているが、フィトクロムという色素の働きを介して、種子発芽、花芽分化、開花、子葉の展開、葉緑素合成節間伸長などの植物の質的変化である光形態形成が弱光反応と強光反応によって誘起されると言われている。また、強光下における葉緑素合成は青色光によって促進され、赤色光よって阻害される傾向があると言われている。また、光合成に対しては640nm〜690nmの赤色光の効果がもっとも大きく、葉の正常な形態形成には420nm〜470nmの青色光が必要とされ、植物種や成長段階に応じて、赤色光と青色光の最適な割合(R/B)比があると考えられている。 Further, phytochrome is also described in Plant Factory Research Institute HP, but plants such as seed germination, flower bud differentiation, flowering, cotyledon development, chlorophyll synthesis internode expansion, etc., through the action of a pigment called phytochrome. It is said that photomorphogenesis, which is a qualitative change, is induced by weak light reaction and strong light reaction. It is also said that chlorophyll synthesis under strong light is promoted by blue light and tends to be inhibited by red light. In addition, the effect of red light of 640 nm to 690 nm is the largest for photosynthesis, and blue light of 420 nm to 470 nm is required for normal morphogenesis of leaves, and depending on the plant species and growth stage, It is believed that there is an optimal ratio (R / B) ratio of blue light.
本願の発明者は、このような考え方も踏まえつつ、下記の実験により、植物栽培用の基準とすべきR/B比は上記したように3:1にした。 The inventor of the present application has set the R / B ratio to be a standard for plant cultivation to 3: 1 as described above by the following experiment in consideration of such an idea.
以下、施設園芸栽培の対象として夏イチゴの高設栽培施設における補光用植物栽培LED照明器の原理試作器における実験について示す。ビニールハウスの奥行き60メートルに対して、90cm×40cmのプランターにイチゴ苗を千鳥に10個定植し、高設を3列に設置して栄養液を灌水チューブで供給している。イチゴ苗の品種はペチカでケーキ用イチゴとして出荷されるものである。実験地は旭川近郊の富良野で行い、期間は2007年9月18日〜11月16日までの約2ヶ月間である。ここで、9月から11月までの3ヶ月の日照時間は東京と旭川ではかなり差があることを指摘しておく。すなわち、東京では月毎の日照時間変化は小さいが、旭川では9月、10月と比較すると11月にはそれらの約4割の日照時間にまで落ちてしまう。また、言うまでもないが、11月以降ビニールハウスも積雪の影響を受けるために更に日照時間が短くなり、平均気温が低下して行く中でイチゴの株が休眠状態に移行して生産活動を終了することを防ぐために、自然光のみに頼らない補光には大きな意義がある。本実験における補光の効果が表れる地域として旭川近郊の富良野において実験を行ったことを付言する。 In the following, experiments on the principle prototype of the plant cultivating LED illuminator for supplementary light at the high-altitude cultivation facility for summer strawberries will be shown as the subject of institutional horticulture. Ten strawberry seedlings are planted in a staggered pattern in a 90 cm x 40 cm planter for a depth of 60 meters in a greenhouse, and three rows of tall strawberry seedlings are provided to supply nutrient solution through an irrigation tube. Strawberry seedling varieties are shipped as cake strawberries in Pettika. The experimental site is in Furano near Asahikawa, and the period is about two months from September 18th to November 16th, 2007. Here, it is pointed out that the sunshine hours for three months from September to November are quite different between Tokyo and Asahikawa. In other words, the change in daylight hours per month is small in Tokyo, but in Asahikawa it falls to about 40% of those hours in November compared to September and October. Needless to say, since November, the greenhouses are also affected by snow, so the sunshine hours become even shorter, and the average temperature drops, so the strawberry strain moves to a dormant state and ends production activities. In order to prevent this, supplementary light that does not rely only on natural light has great significance. It is added that the experiment was conducted in Furano near Asahikawa as a region where the effect of supplementary light appears in this experiment.
波長毎に比較するため7つの区(LH赤区、LH青区、LH白区、PLT赤区、PLT青区、PLT白区、非処理区)に分けた。ここで、LH赤区〜LH白区における「赤」「青」「白」はLEDが発光する色の種類を表し、具体的な設置状況は図6に示す状況である。PLT赤区〜PLT白区における「赤」「青」「白」も発光する色の種類を表している。すなわち、波長の特徴を解析するために「赤」「青」「白」の単色光源を用いた。「LH」と「PLT」の区別は、面指向型LED発光素子(及びアルミ板のような反射板も含めて)の指向性の違いから異なる照射機構を採用した。「PLT」側は指向性が広いものであり、「LH」側は指向性が狭くその下部に円柱のガラス棒を集光と反射用に用いる工夫が行われている。補光は夜間と明け方に行った。そして、非処理区では補光は行われていないようにすべく他の6種類のLED照射区(LH赤区、LH青区、LH白区、PLT赤区、PLT青区、PLT白区)から外乱影響を受けない距離としてそれぞれから5m隔てたエリアにしている。 In order to compare each wavelength, it was divided into seven sections (LH red section, LH blue section, LH white section, PLT red section, PLT blue section, PLT white section, non-process section). Here, “red”, “blue”, and “white” in the LH red section to the LH white section represent the types of colors emitted by the LEDs, and the specific installation status is the status shown in FIG. “Red”, “blue”, and “white” in the PLT red area to the PLT white area also represent the types of colors that emit light. That is, in order to analyze the characteristics of the wavelength, “red”, “blue”, and “white” monochromatic light sources were used. The distinction between “LH” and “PLT” employs a different irradiation mechanism due to the difference in the directivity of the surface-oriented LED light-emitting elements (and the reflector such as an aluminum plate). The “PLT” side has a wide directivity, and the “LH” side has a narrow directivity, and a contrivance is made to use a cylindrical glass rod for condensing and reflecting at the bottom. Auxiliary light was used at night and at dawn. And other six types of LED irradiation zones (LH red zone, LH blue zone, LH white zone, PLT red zone, PLT blue zone, PLT white zone) so that supplementary light is not performed in the untreated zone The area is 5m away from each other as it is not affected by disturbance.
なお、図7に、使用した赤色LEDと他の照明装置との相違点を示す。消費電力の少なさとPAR(光合成有効放射)効率を見れば、他の照明装置に比べて赤色LEDが植物栽培に適した照明装置に用いられると好ましいLED発光素子であることも理解できる。また、寿命は実験では5万時間の点灯も確認できており、他の光源と異なって球切れの恐れも少ないという効果もある。 FIG. 7 shows the difference between the red LED used and other lighting devices. From the viewpoint of low power consumption and PAR (Photosynthesis Effective Radiation) efficiency, it can be understood that red LEDs are preferable LED light emitting elements when used in lighting devices suitable for plant cultivation compared to other lighting devices. In addition, the lifetime has been confirmed to be 50,000 hours of lighting in the experiment, and unlike other light sources, there is also an effect that there is less risk of a broken ball.
図8は実験結果をまとめた表である。図9は図8の葉柄長についてのデータをグラフ化した図であり、図10は図8の葉柄径(葉柄断面径)についてのデータをグラフ化した図であり、図11は図8の葉身長についてのデータをグラフ化した図であり、図12は図8の葉身幅についてのデータをグラフ化した図であり、図13は図8の葉円周(葉の大きさ)についてのデータをグラフ化した図であり、図14は図8の糖度についてデータをグラフ化した図である。 FIG. 8 is a table summarizing the experimental results. 9 is a graph of data on the petiole length of FIG. 8, FIG. 10 is a graph of data on the petiole diameter (petiole cross-sectional diameter) of FIG. 8, and FIG. 11 is a graph of FIG. FIG. 12 is a graph of the height data, FIG. 12 is a graph of the leaf width of FIG. 8, and FIG. 13 is the data of the leaf circumference (leaf size) of FIG. FIG. 14 is a graph of data, and FIG. 14 is a graph of data on the sugar content of FIG.
実験結果によると、データ全体からすれば、以下のことが言える。第一に、赤色・青色照射区では葉の緑色が濃くなっていた。そのため、光合成が活発化したと言える。第二に、赤色光は花房の上がりが早かった。第三に、赤色光は果実の着色が早かった。第四に、赤色光は果粒が大きく充実した果実が得られた。第五に、青色光は株が低くどっしりした状態になった。第六に、全ての照射区で糖度が上昇した。第七に、株疲れの防止に効果が得られた。 According to the experimental results, the following can be said from the whole data. First, the green color of the leaves was darker in the red and blue irradiated areas. Therefore, it can be said that photosynthesis was activated. Secondly, the red light had a fast rise of the flower bunches. Thirdly, red light colored the fruits quickly. Fourth, the red light produced fruits with large and large fruit grains. Fifth, the blue light became low and stocky. Sixth, sugar content rose in all irradiation sections. Seventh, it was effective in preventing strain fatigue.
まとめると、図8の非処理区を見ると分かるように自然光のみで行った場合には、展葉は休眠状態になり、株疲れが起こり、10月頃には収穫が終了して休眠状態になるのに対し、補光を行った各区では非処理区に比べて光合成が活発になる結果が得られ(特にPLT赤区という赤色照射区では草型が盛り上がり、株の勢いを感じられる結果が得られ)、11月以降にまで収穫が可能になった。つまり、LEDによる光を照射することにより株疲れが起こりにくくなり、収穫期間を延ばすことができた。また、収穫期間が延びたことによる収穫量が多くなっただけでなく、光合成速度の加速により収穫までの期間を短縮化でき、花芽形成時期の調節というようなことも可能になり、形態形成による成長がよいことから株のエネルギーが増して摘花が減り収穫果数が増加し、同一期間でも収穫量が多くなった。さらに、光合成が促進されることから二酸化炭素と水から糖類の量も多くなり、収穫されるイチゴの糖度も高くなった。 In summary, as can be seen from the non-treated section of FIG. 8, when it is carried out with only natural light, the leaf leaves become dormant, strain fatigue occurs, and harvesting ends and the dormant state occurs around October. On the other hand, in each section where light supplementation was performed, the result was that photosynthesis was more active than in the non-treated section (especially in the red irradiation section called PLT Aka-ku, the grass was swelled, and the result was that the strain was felt. It was possible to harvest until after November. In other words, by irradiating light from the LED, strain fatigue was less likely to occur and the harvesting period could be extended. In addition, not only has the yield increased due to the extended harvest period, but also the time to harvest can be shortened by accelerating the photosynthetic rate, and it is possible to adjust the timing of flower bud formation. Because of the good growth, the energy of the strain increased, the number of harvested fruits decreased, the number of harvested fruits increased, and the yield increased even during the same period. Furthermore, since photosynthesis was promoted, the amount of sugars from carbon dioxide and water increased, and the sugar content of the harvested strawberries increased.
以上のような実験結果に基づく植物栽培の育成のための補光用LED照明器によって自然光のみでは栽培が困難な状況下においても栽培が可能になる上に、収穫量の増加に加えて糖度上昇のような新たな効果を奏させることもできる。 The supplementary LED illuminator for plant cultivation based on the experimental results described above enables cultivation even in situations where it is difficult to grow using only natural light, and increases the sugar content in addition to increased yield. A new effect like this can also be produced.
なお、上記の実施の形態における実験ではイチゴについて説明したが、装置自体が小型なため防除作業の邪魔にならず、キク、バラ、トルコキキョウなどの他の高設栽培にも適しているばかりか、適用範囲は高設栽培以外の他の施設園芸に用いられてもよい。 In the experiment in the above embodiment, strawberry was described. However, since the apparatus itself is small, it does not interfere with the control work and is suitable not only for other high-growth cultivation such as chrysanthemum, roses, and lisianthus. The application range may be used for other horticultural horticultures other than high cultivation.
5 育成装置
6 支持機構
5 Growth device 6 Support mechanism
Claims (2)
前記照明装置を前記施設内の所定位置に保持する保持機構を備え、
前記各発光体モジュールは所定波長域の光を発光する面指向性LED発光素子を有し、
前記基板は各列に対応して延びる金属ベース基板であってその断面が所定のテーパ角を有する略コの字状をしており、
前記複数の発光体モジュールが当該金属ベース基板の底部に間隔をおいて配置されるとともに前記植物に対向している、植物育成システム。 A plant growth system comprising a facility horticulture lighting device in which a plurality of light emitter modules capable of irradiating light from above to plants cultivated in a row in a facility are arranged on a substrate. ,
A holding mechanism for holding the lighting device at a predetermined position in the facility;
Each of the light emitter modules has a surface-directed LED light emitting element that emits light in a predetermined wavelength range,
The substrate is a metal base substrate extending corresponding to each row, and has a substantially U-shaped cross section with a predetermined taper angle,
The plant breeding system, wherein the plurality of light emitter modules are arranged at intervals on a bottom portion of the metal base substrate and face the plant.
前記照明装置を前記施設内の所定位置に保持する保持機構を備え、
前記各発光体モジュールは、第1の波長域の光を発光する第1の面指向性LED発光素子と、第2の波長域の光を発光する第2の面指向性LED発光素子とを有し、前記第1の面指向性LED発光素子と前記第2の面指向性LED発光素子とは隣接して配置され、
前記基板は各列に対応して延びる金属ベース基板であってその断面が所定のテーパ角を有する略コの字状をしており、
前記複数の発光体モジュールが当該金属ベース基板の底部に間隔をおいて配置されるとともに前記植物に対向している、植物育成システム。 A plant growth system comprising a facility horticulture lighting device in which a plurality of light emitter modules capable of irradiating light from above to plants cultivated in a row in a facility are arranged on a substrate. ,
A holding mechanism for holding the lighting device at a predetermined position in the facility;
Each of the light emitter modules has a first surface-directed LED light-emitting element that emits light in a first wavelength range and a second surface-directed LED light-emitting element that emits light in a second wavelength range. The first surface-directed LED light-emitting element and the second surface-directed LED light-emitting element are disposed adjacent to each other,
The substrate is a metal base substrate extending corresponding to each row, and has a substantially U-shaped cross section with a predetermined taper angle,
The plant breeding system, wherein the plurality of light emitter modules are arranged at intervals on a bottom portion of the metal base substrate and face the plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007009070U JP3139260U (en) | 2007-11-25 | 2007-11-25 | Plant rearing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007009070U JP3139260U (en) | 2007-11-25 | 2007-11-25 | Plant rearing system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3139260U true JP3139260U (en) | 2008-02-07 |
Family
ID=43289490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007009070U Expired - Fee Related JP3139260U (en) | 2007-11-25 | 2007-11-25 | Plant rearing system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3139260U (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010130986A (en) * | 2008-12-08 | 2010-06-17 | Mkv Dream Co Ltd | Method for cultivating plants |
JP2010140644A (en) * | 2008-12-09 | 2010-06-24 | Ccs Inc | Packaged light-emitting diode for plant cultivation, light source unit for plant cultivation, and plant cultivation device |
WO2011025059A2 (en) * | 2009-08-24 | 2011-03-03 | Okabe Toshihiko | Lighting equipment for making up for insufficient sunlight in open-field cultivation or greenhouse cultivation, and method for manufacturing said lighting equipment |
JP2011055816A (en) * | 2009-09-09 | 2011-03-24 | Nobuyuki Takahashi | Method for controlling growth of plant utilizing light ray |
JP2011101635A (en) * | 2009-11-12 | 2011-05-26 | Yamato Gijutsu Kenkyusho:Kk | Irradiation device for plant cultivation |
JP2014113145A (en) * | 2012-11-19 | 2014-06-26 | Odc:Kk | Illumination device for plant cultivation |
CN107006353A (en) * | 2017-03-30 | 2017-08-04 | 东莞市中实创半导体照明有限公司 | A kind of rose cuttage breeding method and a kind of rose indoor cultivation method for Ganoderma |
JP2021058141A (en) * | 2019-10-08 | 2021-04-15 | 史朗 武藤 | Illumination for plant cultivation |
-
2007
- 2007-11-25 JP JP2007009070U patent/JP3139260U/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010130986A (en) * | 2008-12-08 | 2010-06-17 | Mkv Dream Co Ltd | Method for cultivating plants |
JP2010140644A (en) * | 2008-12-09 | 2010-06-24 | Ccs Inc | Packaged light-emitting diode for plant cultivation, light source unit for plant cultivation, and plant cultivation device |
WO2011025059A2 (en) * | 2009-08-24 | 2011-03-03 | Okabe Toshihiko | Lighting equipment for making up for insufficient sunlight in open-field cultivation or greenhouse cultivation, and method for manufacturing said lighting equipment |
WO2011025059A3 (en) * | 2009-08-24 | 2011-06-23 | Okabe Toshihiko | Lighting equipment for making up for insufficient sunlight in open-field cultivation or greenhouse cultivation, and method for manufacturing said lighting equipment |
JP2011055816A (en) * | 2009-09-09 | 2011-03-24 | Nobuyuki Takahashi | Method for controlling growth of plant utilizing light ray |
JP2011101635A (en) * | 2009-11-12 | 2011-05-26 | Yamato Gijutsu Kenkyusho:Kk | Irradiation device for plant cultivation |
JP2014113145A (en) * | 2012-11-19 | 2014-06-26 | Odc:Kk | Illumination device for plant cultivation |
CN107006353A (en) * | 2017-03-30 | 2017-08-04 | 东莞市中实创半导体照明有限公司 | A kind of rose cuttage breeding method and a kind of rose indoor cultivation method for Ganoderma |
JP2021058141A (en) * | 2019-10-08 | 2021-04-15 | 史朗 武藤 | Illumination for plant cultivation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009125007A (en) | Method for raising, method for production, and lighting apparatus | |
JP3139260U (en) | Plant rearing system | |
EP3278020B1 (en) | Method and apparatus for stimulation of plant growth and development with near infrared and visible lights | |
Heo et al. | Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED) | |
US11116143B2 (en) | Method and an apparatus for stimulation of plant growth and development with near infrared and visible lights | |
EP2946654B1 (en) | Method for cultivating fruit or vegetable | |
US9549507B2 (en) | Method for cultivating plant | |
JP6325771B2 (en) | Cultivation method using plant growing lighting device and plant growing lighting device | |
EA020928B1 (en) | System and method for growing a plant in an at least partly conditioned environment | |
KR102285707B1 (en) | Plant cultivation apparatus and plant cultivation method using light source for plant cultivation | |
JP2012165665A (en) | Lighting device, strawberry cultivation system and strawberry cultivation method | |
JP6444611B2 (en) | Plant cultivation method | |
JP2020500027A (en) | Segmented addressable light engine for horticulture | |
US20230276750A1 (en) | Tomato plant, tomato fruit, and method of cultivating tomato plant | |
JP2005192517A (en) | Method for growing plant | |
Moerkens et al. | The added value of LED assimilation light in combination with high pressure sodium lamps in protected tomato crops in Belgium | |
JP4928143B2 (en) | Flower cultivation method, plant cultivation method, flower cultivation lighting device and plant cultivation lighting device | |
Dyśko et al. | Effects of LED and HPS lighting on the growth, seedling morphology and yield of greenhouse tomatoes and cucumbers. | |
KR20210051970A (en) | ICT convergence LED lighting device for dedicated seedling of tomato | |
WO2017209187A1 (en) | Spinach cultivation method using artificial lights | |
JP2001258389A (en) | Method for cultivating plant | |
JP2017046651A (en) | Plant cultivation luminaire and plant cultivation method using the same | |
JP2019106955A (en) | Plant cultivation method | |
JP2007082489A (en) | Method for culturing plant | |
JP4159485B2 (en) | Method for inducing flower buds of cruciferous plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R323113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R323113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |