JP2009121167A - Mud reforming material and method - Google Patents

Mud reforming material and method Download PDF

Info

Publication number
JP2009121167A
JP2009121167A JP2007297468A JP2007297468A JP2009121167A JP 2009121167 A JP2009121167 A JP 2009121167A JP 2007297468 A JP2007297468 A JP 2007297468A JP 2007297468 A JP2007297468 A JP 2007297468A JP 2009121167 A JP2009121167 A JP 2009121167A
Authority
JP
Japan
Prior art keywords
mud
slag
steelmaking slag
blast furnace
steelmaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007297468A
Other languages
Japanese (ja)
Other versions
JP5014961B2 (en
Inventor
Eiji Kiso
英滋 木曽
Masao Nakagawa
雅夫 中川
Masato Tsujii
正人 辻井
Kimio Ito
公夫 伊藤
Masabumi Ikeda
正文 池田
Hitoshi Nakada
等 中田
Go Masayasu
剛 正保
Kiyonori Yamamoto
毅洋則 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Sumitomo Metal Industries Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel Corp, Sumitomo Metal Industries Ltd, Nisshin Steel Co Ltd filed Critical JFE Steel Corp
Priority to JP2007297468A priority Critical patent/JP5014961B2/en
Publication of JP2009121167A publication Critical patent/JP2009121167A/en
Application granted granted Critical
Publication of JP5014961B2 publication Critical patent/JP5014961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mud reforming material and method for reforming mud into strong one. <P>SOLUTION: The mud reforming material which is mixed into mud to reform the mud includes only steelmaking slag, or the steelmaking slag and one or both of granulated blast furnace slag and blast furnace slag fine powder, the steelmaking slag having a free lime content of at least 0.5 mass%, the steelmaking slag having a particle size of 30 mm or smaller. The mud reforming method for mixing it into the mud to reform the mud includes mixing only the steelmaking slag, or the steelmaking slag and one or both of the granulated blast furnace slag and the blast furnace slag fine powder into the mud, the steelmaking slag having the free lime content of at least 0.5 mass%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、浚渫工事あるいは建設工事において発生する泥土を改質して、港湾工事や海域環境修復工事用の材料として有効利用を図るための泥土改質材料および泥土改質方法に関し、特に、泥土の強度を改善するための製鋼スラグを含む泥土改質材料および泥土改質方法に関する。   The present invention relates to a mud reforming material and a mud reforming method for reforming mud generated in dredging or construction work and effectively using it as a material for port construction or marine environment restoration work. The present invention relates to a mud reforming material including a steelmaking slag and a mud reforming method for improving the strength of the steel.

従来、泥土を改善する技術としては、次の(1)〜(4)の技術が知られている。
(1)浚渫土に、水硬性の高い高炉水砕スラグを混合して、浚渫土の強度を改善し、水中動植物の生育・生息に好適な水底基盤を造成する技術が知られている(例えば、特許文献1参照)。
Conventionally, the following techniques (1) to (4) are known as techniques for improving mud.
(1) A technology is known in which dredged blast furnace granulated slag is mixed with dredged soil to improve dredged soil strength and to create a submarine base suitable for the growth and inhabitation of underwater animals and plants (for example, , See Patent Document 1).

また、(2)固化材料として高炉水砕スラグで土壌を固化処理し、2〜30質量%の製鋼スラグを水砕スラグに対する刺激材として混合し使用することも知られている(例えば、特許文献2参照)。   It is also known that (2) soil is solidified with blast furnace granulated slag as a solidifying material, and 2 to 30% by mass of steelmaking slag is mixed and used as a stimulant for the granulated slag (for example, Patent Documents). 2).

さらに、(3)製鋼スラグとセメントで軟弱土を固化処理することも知られている(例えば、特許文献3参照)。   Furthermore, it is also known that (3) soft soil is solidified with steel slag and cement (see, for example, Patent Document 3).

さらにまた、(4)製鋼スラグ、もしくは製鋼スラグと高炉スラグ微粉末を用い、これらを、建設汚泥中の水分の体積1に対して、建設汚泥中の土粒子の体積と製鋼スラグの150μm以下分の体積との合計が0.7以上となるように、製鋼スラグを混合撹拌して、建設汚泥の強度をコーン指数200kN/m以上の改良土に改善することも知られている(例えば、特許文献4参照)。
特開2006―288323号公報 特開2004―105783号公報 特開2006―231208号公報 特開2006―326446号公報
Furthermore, (4) steelmaking slag, or steelmaking slag and blast furnace slag fine powder are used, and these are divided into the volume of soil particles in construction sludge and 150 μm or less of steelmaking slag relative to the volume of moisture in construction sludge. It is also known to improve the strength of construction sludge to improved soil with a cone index of 200 kN / m 2 or more by mixing and stirring steelmaking slag so that the total volume of (See Patent Document 4).
JP 2006-288323 A JP 2004-105783 A JP 2006-231208 A JP 2006-326446 A

前記(1)の場合は、水硬性が高く、高炉セメントの原料となる高炉水砕スラグのみを利用したものであるので、製鋼スラグの有効利用については開示されていない。
前記(2)の場合は、固化材料として高炉水砕スラグを使用し、その高炉水砕スラグの刺激材として製鋼スラグの利用が目的であるため、固化材料としての製鋼スラグの使用ではなく、またその使用量は少ないという問題がある。
前記(3)の場合には、製鋼スラグを使用することにより、セメント使用量を削減可能にしているが、固化材料の基礎として、セメントを主に使用しているので、経済的でないなどの問題がある。
前記(4)の場合には、泥土粒子と製鋼スラグの粉分の合計と泥土の水分との比が規定されているのみで、製鋼スラグの必要条件は示されていないため、高含水比汚泥に対しては、粒径0mm超−5mm以下の製鋼スラグ(一般的に150μm以下の体積は20%以下)を使用しても、混合率が50容積%程度必要(粒径0mm超−25mm以下の場合はさらに必要)となり、相当量のスラグ混合が必要になり、そのため、泥土活用度が低いという問題がある。
前記のように、従来の場合には、製鋼スラグを泥土の固結材料の主体とする技術についは、知られていない。特に、前記従来の場合は、製鋼スラグのフリ−ライム含有率(質量%)に着目した知見は示されていない。
そこで本発明は、製鋼スラグのフリーライム含有率が泥土混合材料の強度と関係し、強度発現の有無の境界値が、フリーライム(f−CaO)含有率で、0.5質量%であることを新規に知見し、フリーライムが少なくとも0.5質量%の製鋼スラグの場合、強度が発現しにくい泥土でも、養生期間の長期化により、また高炉水砕スラグもしくは高炉スラグ微粉末の添加により、必要強度の確保が可能になることを知見し、種々検討して本発明を完成させた。
In the case of (1), since the hydraulic property is high and only blast furnace granulated slag as a raw material for blast furnace cement is used, the effective use of steelmaking slag is not disclosed.
In the case of (2), since blast furnace granulated slag is used as a solidifying material and steelmaking slag is used as a stimulating material for the blast furnace granulated slag, not steelmaking slag as a solidifying material is used. There is a problem that the amount used is small.
In the case of (3), it is possible to reduce the amount of cement used by using steelmaking slag. However, since cement is mainly used as the basis of the solidifying material, it is not economical. There is.
In the case of the above (4), only the ratio of the total amount of mud particles and steelmaking slag powder to the moisture content of the mud is specified, and the requirements for steelmaking slag are not shown. On the other hand, even if steelmaking slag having a particle size of more than 0 mm to -5 mm or less (generally, a volume of 150 μm or less is 20% or less), a mixing ratio of about 50% by volume is necessary (particle size of more than 0 mm to -25 mm or less). In this case, it is further necessary), and a considerable amount of slag mixing is required, and therefore, there is a problem that mud utilization is low.
As described above, in the conventional case, there is no known technique in which steelmaking slag is mainly used as a mud consolidation material. In particular, in the case of the conventional case, there is no knowledge that focuses on the free lime content (mass%) of steelmaking slag.
Therefore, in the present invention, the free lime content of steelmaking slag is related to the strength of the mud mixed material, and the boundary value of presence or absence of strength development is 0.5% by mass in terms of free lime (f-CaO) content. In the case of steelmaking slag with a free lime of at least 0.5% by mass, even in mud that is difficult to develop strength, by the extension of the curing period and by addition of granulated blast furnace slag or blast furnace slag fine powder, The inventors have found that the necessary strength can be ensured, and have made various studies to complete the present invention.

そこで、本発明は、鉄鋼スラグのなかでも、特に製鋼スラグを主体に泥土と混合して、泥土を強度改質することが可能な泥土改質材料および改質方法を提供することを目的とする。   Therefore, the present invention has an object to provide a mud modifying material and a reforming method capable of modifying the strength of the mud by mixing the mud with mainly steel-making slag, among steel slags. .

前記の課題を有利に解決するために、第1発明の泥土改質材料では、泥土に混合して泥土の改質をはかる泥土改質材料であって、その泥土改質材料が、製鋼スラグのみ、または製鋼スラグと、高炉水砕スラグまたは高炉スラグ微粉末のいずれか一方または両方からなることを特徴とする。
また、第2発明では、第1発明の泥土改質材料において、製鋼スラグのフリーライム含有率が、少なくとも0.5質量%であることを特徴とする。
また、第3発明では、第1発明または第2発明の泥土改質材料において、製鋼スラグの粒径が、30mm以下であることを特徴とする。
また、第4発明の泥土改質方法においては、泥土に混合して泥土の改質をはかる泥土改質方法であって、泥土に、製鋼スラグのみ、または製鋼スラグと、高炉水砕スラグまたは高炉スラグ微粉末のいずれか一方または両方を混合することを特徴とする。
また、第5発明では、第4発明の泥土改質方法において、製鋼スラグのフリーライム含有率が、少なくとも0.5質量%であることを特徴とする。
また、第6発明では、第4発明または第5発明の泥土改質方法において、製鋼スラグの粒径が、30mm以下であることを特徴とする。
また、第7発明では、第4〜第6発明のいずれかの泥土改質方法において、製鋼スラグの混合率が、混合材料としての泥土に対して10容積%以上、50容積%以下であることを特徴とする。
第8発明では、第4〜第7発明のいずれかの泥土改質方法において、泥土の含水比が、少なくとも100%であることを特徴とする。
また、第9発明では、第4〜第8発明のいずれかの泥土改質方法において、泥土の改質強度を、製鋼スラグのフリーライム含有率、高炉水砕スラグおよび高炉スラグ微粉末の混合率、混合後の養生期間により調整することを特徴とする。
In order to solve the above-mentioned problem advantageously, the mud modifying material of the first invention is a mud modifying material which is mixed with mud to improve the mud, and the mud modifying material is only steelmaking slag. Or a steelmaking slag and blast furnace granulated slag or blast furnace slag fine powder, or both.
Moreover, in 2nd invention, the free lime content rate of steelmaking slag is at least 0.5 mass% in the mud reforming material of 1st invention, It is characterized by the above-mentioned.
Moreover, in the 3rd invention, the particle size of the steelmaking slag is 30 mm or less in the mud modifying material of the 1st invention or the 2nd invention.
Further, in the mud reforming method of the fourth invention, the mud reforming method mixes with mud to improve the mud, and the mud includes only steelmaking slag or steelmaking slag and blast furnace granulated slag or blast furnace. One or both of the slag fine powder is mixed.
The fifth invention is characterized in that in the mud reforming method of the fourth invention, the free lime content of the steelmaking slag is at least 0.5% by mass.
The sixth invention is characterized in that the particle size of the steelmaking slag is 30 mm or less in the mud reforming method of the fourth or fifth invention.
In the seventh invention, in the mud reforming method according to any one of the fourth to sixth inventions, the mixing rate of the steelmaking slag is 10% by volume or more and 50% by volume or less with respect to the mud as the mixed material. It is characterized by.
According to an eighth aspect, in the mud reforming method according to any one of the fourth to seventh aspects, the water content of the mud is at least 100%.
In the ninth invention, in the mud reforming method of any one of the fourth to eighth inventions, the reforming strength of the mud is set to a free lime content of steelmaking slag, a mixing ratio of granulated blast furnace slag and blast furnace slag fine powder. It is characterized by adjusting according to the curing period after mixing.

本発明によると、高含水比の泥土の強度改質を行う場合、フリーライム(f−CaO)を含有する製鋼スラグを使用することにより、泥土の強度改質することができ、特に、製鋼スラグのフリーライム(f−CaO)含有率が少なくとも0.5質量%の製鋼スラグを使用するだけで、(1)泥土の強度は経時的に上昇し、(2)また、泥土の強度はフリーライム(f−CaO)含有率に比例して改質することができ、(3)製鋼スラグの一部を高炉水砕スラグや高炉スラグ微粉末に置き換えれば強度が増進するため、混合後の養生期間、使用する製鋼スラグのフリーライム(f−CaO)含有率、高炉水砕スラグや高炉スラグ微粉末添加量の調整により、泥土の混合率が高い場合でも強度改質が可能になる等の効果が得られる。
また、泥土に対する製鋼スラグの使用量を、従来の場合より少なくして、泥土の強度改質を確実に行うことができる。
また、安価な製鋼スラグを使用することができるので、経済的に泥土の強度改質をすることができ、泥土の強度改質も、製鋼スラグのみを混合撹拌したり、これに加えて、高炉水砕スラグを混合撹拌したり、さらには、高炉スラグ微粉末を加えて混合撹拌する簡単な操作でよいので、施工が容易である。
According to the present invention, when the strength of a high moisture content mud is modified, the strength of the mud can be improved by using a steelmaking slag containing free lime (f-CaO). By simply using steelmaking slag having a free lime (f-CaO) content of at least 0.5% by mass, (1) the strength of the mud increases over time, and (2) the strength of the mud is free lime. (F-CaO) can be reformed in proportion to the content, (3) Since the strength is increased if a part of steelmaking slag is replaced with granulated blast furnace slag or blast furnace slag fine powder, the curing period after mixing By adjusting the free lime (f-CaO) content of steelmaking slag to be used and the amount of ground granulated blast furnace slag and blast furnace slag, it is possible to improve the strength even when the mixing ratio of mud is high. can get.
Moreover, the amount of steelmaking slag used for the mud can be reduced as compared with the conventional case, and the strength of the mud can be reliably improved.
In addition, since inexpensive steelmaking slag can be used, the strength of mud can be improved economically. For the strength improvement of mud, only steelmaking slag can be mixed and stirred. Since the granulated slag is mixed and stirred, and further, a simple operation of mixing and stirring the blast furnace slag fine powder is sufficient, construction is easy.

次に、本発明を図示の実施形態に基づいて詳細に説明する。     Next, the present invention will be described in detail based on the illustrated embodiment.

一般に、建設泥土あるいは浚渫泥土は、高含水比(100%〜350%)であり、その有効利用を図る上で、鉄鋼スラグの中でも、リサイクル材としての製鋼スラグを主体に混合して、製鋼スラグの使用を押えながら、泥土を効率よく強度改善することに関して、種々検討実験して、製鋼スラグのみを泥土に混合しても、高含水比の泥土を効率よく硬化させて、強度改善を図ることができることを知見し、本発明を完成させた。   Generally, construction mud or dredged mud has a high water content ratio (100% to 350%), and in order to effectively use it, steel slag as a recycled material is mainly mixed to produce steel slag. In order to improve the strength of mud by efficiently examining mud soil with high water content even if only steelmaking slag is mixed with the mud, various experiments are conducted to improve the strength of the mud efficiently. As a result, the present invention has been completed.

ここで、製鋼スラグとは、製鋼工程で生じる石灰分を主体とした粉粒状の副産物であり、本発明において使用する製鋼スラグは、転炉スラグ、予備処理スラグ、脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、電気炉還元スラグ、電気炉酸化スラグ、二次精錬スラグ、造塊スラグのうち、1種または2種以上を混合したものである。   Here, the steelmaking slag is a granular by-product mainly composed of lime generated in the steelmaking process, and the steelmaking slag used in the present invention is a converter slag, pretreatment slag, decarburized slag, dephosphorized slag, One or two or more of desulfurization slag, desiliconization slag, electric furnace reduction slag, electric furnace oxidation slag, secondary refining slag, and ingot slag are mixed.

高炉水砕スラグとは、銑鉄を製造する製銑過程で生成する溶融状態の高炉スラグを、水によって、微粒化させ、急冷したもので、弱い水硬性を有する。   Granulated blast furnace slag is a blast furnace slag in a molten state produced in the ironmaking process for producing pig iron, atomized with water and rapidly cooled, and has weak hydraulic properties.

高炉スラグ微粉末とは、高炉スラグを微粉砕したものである。これには、例えば、炉前で急冷したスラグを微粉砕したもの、炉外で徐冷したスラグを微粉砕したものもある。   The blast furnace slag fine powder is obtained by pulverizing blast furnace slag. This includes, for example, finely pulverized slag rapidly cooled in front of the furnace and finely pulverized slag slowly cooled outside the furnace.

また、泥土は、標準ダンプトラックに山積みできず、またその上を人が歩けない状態の土であり、浚渫工事にて発生し、汚泥に該当する浚渫土と、建設工事等にかかわる掘削工事に伴って排出される建設汚泥とがある。前記の浚渫土と建設汚泥とを含めて、本明細書では泥土という。   In addition, mud is soil that cannot be piled up on a standard dump truck and that cannot be walked on by it, and is generated by dredging work, and is used for excavation work related to dredged soil that corresponds to sludge and construction work. There is construction sludge discharged with it. Including the dredged soil and construction sludge, it is called mud in this specification.

本発明者等は、製鋼スラグ中に含有するフリーライム(遊離石灰、f−CaO)に着目し、その含有率が少なくとも0.5質量%である場合と、フリーライム含有率が0.5%未満の場合では、これを混合撹拌して得られる泥土の改質状態が大きく異なることを知見すると共に、フリーライムの含有率が0.5質量%以上含む製鋼スラグを、高含水比の泥土に混合撹拌した場合は、一軸圧縮強度の改善が可能であることを知見して本発明を完成したものであり、以下に、図または表に基づいて説明する。   The present inventors pay attention to free lime (free lime, f-CaO) contained in steelmaking slag, and when the content is at least 0.5% by mass, the free lime content is 0.5%. In the case of less than the above, it is found that the modified state of the mud obtained by mixing and stirring this is greatly different, and steelmaking slag containing 0.5% by mass or more of free lime is made into mud with a high water content ratio. In the case of mixing and stirring, the present invention has been completed by finding that the uniaxial compressive strength can be improved, and will be described below with reference to the drawings or tables.

まず、図1は、製鋼スラグのフリーライム(f−CaO)含有率(質量%)と、製鋼スラグを泥土に混合撹拌して得られる改良土の一軸圧縮強度の発現関係を示すグラフであり、7質量%未満のフリーライム(遊離石灰)を含有する各種のフリーライム含有率(質量%)の異なる製鋼スラグを、東京湾で採取した各種泥土に所定の割合で混合して、フリーライム含有率の異なる各種製鋼スラグ混合泥土とし、それらの製鋼スラグ混合泥土を7日〜14日養生して、製鋼スラグ混合泥土の状態を観察すると共に、固化した製鋼スラグ混合泥土の一軸圧縮強度を測定した結果を、グラフに示したものである。なお、図1のグラフに用いた材料は、製鋼スラグ(粒径0mm超―0.5mm以下)を30容積%、浚渫土(東京湾採取、含水比136%)を70容積%混合した製鋼スラグ混合泥土である。   First, FIG. 1 is a graph showing the expression relationship between the free lime (f-CaO) content (% by mass) of steelmaking slag and the uniaxial compressive strength of improved soil obtained by mixing and stirring steelmaking slag with mud. Steel slag with various free lime contents (mass%) containing free lime (free lime) of less than 7% by mass is mixed with various mud collected in Tokyo Bay at a predetermined ratio, and the free lime content is As a result, the steelmaking slag mixed mud was cured for 7 to 14 days, the state of the steelmaking slag mixed mud was observed, and the uniaxial compressive strength of the solidified steelmaking slag mixed mud was measured. Is shown in the graph. The material used in the graph of FIG. 1 is a steelmaking slag mixed with 30% by volume of steelmaking slag (particle size greater than 0 mm-0.5 mm or less) and 70% by volume of dredged soil (collected in Tokyo Bay, water content 136%). Mixed mud.

図1から、製鋼スラグのフリーライム(f−CaO)含有率と、これを混合された製鋼スラグ混合泥土の強度との間に強い相関関係があることがわかる。また、製鋼スラグのフリーライム(f−CaO)含有率が0.5質量%以上であれば、強度が発現し出すことも知見した。   FIG. 1 shows that there is a strong correlation between the free lime (f-CaO) content of steelmaking slag and the strength of the steelmaking slag mixed mud mixed with this. In addition, it has also been found that if the free lime (f-CaO) content of the steelmaking slag is 0.5% by mass or more, strength starts to appear.

また、製鋼スラグ中のフリーライム(f−CaO)含有率が、0.5%未満では、養生期間を14日とっても強度発現しないこともわかる。   It can also be seen that when the content of free lime (f-CaO) in the steelmaking slag is less than 0.5%, the strength does not develop even if the curing period is 14 days.

図2には、製鋼スラグ内に含まれるフリーライム(f−CaO)含有率(容積%)が0.5質量%以上で異なる5種類の製鋼スラグを、それぞれ泥土に混合撹拌して、養生日数と一軸圧縮強度(kg/m)との関係を試験した結果をグラフにしたものであって、本発明におけるフリーライムを含有した製鋼スラグを使用すると、養生期間が長くなると、前記5種類の一軸圧縮強度が向上していることからこの図より、製鋼スラグを混合撹拌した泥土の一軸圧縮強度は、養生期間に応じて上昇することがわかる。このことから、製鋼スラグを混合した泥土の強度は養生期間に応じて上昇するとの知見を得た。 In FIG. 2, five types of steelmaking slags with different free lime (f-CaO) content (volume%) contained in the steelmaking slag are 0.5 mass% or more, mixed and stirred in mud, respectively, When the steelmaking slag containing free lime in the present invention is used as a graph, the result of testing the relationship between the uniaxial compressive strength (kg / m 2 ) and the freezing lime in the present invention is used. Since the uniaxial compressive strength is improved, it can be seen from this figure that the uniaxial compressive strength of the mud obtained by mixing and stirring the steelmaking slag increases with the curing period. From this, the knowledge that the strength of the mud mixed with steelmaking slag increases according to the curing period was obtained.

前記のような知見を得た上でさらに、フリーライム(f−CaO)が0.5質量%未満であるか、0.5質量%以上であるかによる、強度発現の違いを調べる実験を行った。すなわち、東京湾採取の含水比(%)が、136%、100%、136%、220%、136%、219%、136%と異なる泥土に、粒径0mmを超え30mm以下の製鋼スラグで、その製鋼スラグ中に含まれるフリーライム(遊離石灰、f−CaO)が、0.2質量%、0.4質量%、0.5質量%、0.9質量%、2.7質量%、3.7質量%、4.2質量%、5.5質量%、6.4質量%と、フリーライム含有率の異なる製鋼スラグを混合養生して、フリ−ライムの含有率による製鋼スラグ混合泥土の一軸圧縮強度の変化を実験した。その結果を表1に示す。表1では、粒径0mm超―0.5mm以下等を単に0−0.5mm以下等と記した。   After obtaining the above-mentioned knowledge, an experiment was conducted to examine the difference in strength depending on whether the free lime (f-CaO) is less than 0.5% by mass or more than 0.5% by mass. It was. That is, in the steelmaking slag with a water content ratio (%) collected from Tokyo Bay different from 136%, 100%, 136%, 220%, 136%, 219%, and 136%, a steelmaking slag having a particle size of more than 0 mm and not more than 30 mm, Free lime (free lime, f-CaO) contained in the steelmaking slag is 0.2 mass%, 0.4 mass%, 0.5 mass%, 0.9 mass%, 2.7 mass%, 3 Of steelmaking slag mixed with different free lime contents, such as 0.7 mass%, 4.2 mass%, 5.5 mass%, and 6.4 mass%. The change of uniaxial compressive strength was experimented. The results are shown in Table 1. In Table 1, a particle size of more than 0 mm-0.5 mm or less is simply described as 0-0.5 mm or less.

Figure 2009121167
Figure 2009121167

前記表1からわかるように、製鋼スラグのフリーライム(遊離石灰:f−CaO)の含有率が0.5質量%未満の場合、そのような製鋼スラグを泥土に撹拌混合して養生しても、また、泥土に対する製鋼スラグの混合率を、50容積%に引き上げても、7日養生あるいは14日養生時点で、強度発現は見られなかった。また、そのような低フリーライム含有の製鋼スラグを混合撹拌した泥土は、養生後においても、泥状であり、さらに高炉水砕スラグや高炉スラグ微粉末を添加しても強度発現は見られなかった。   As can be seen from Table 1 above, when the content of free lime (free lime: f-CaO) in the steelmaking slag is less than 0.5% by mass, the steelmaking slag can be agitated and mixed with mud and cured. Moreover, even if the mixing rate of the steelmaking slag with respect to the mud was increased to 50% by volume, no strength development was observed at the time of 7-day curing or 14-day curing. In addition, mud soil mixed and stirred with such low-free-lime-containing steelmaking slag is mud even after curing, and even if blast furnace granulated slag or blast furnace slag fine powder is added, strength development is not seen. It was.

一方、フリーライム(f−CaO)含有率が、0.5質量%になると、製鋼スラグ添加量を10%とし、製鋼スラグ粒径が0mmを超え30mm以下、さらに泥土の含水比が220%の場合でも、強度が発現することがわかった。さらに、高炉水砕スラグや高炉スラグ微粉末の添加により強度増進することが可能であることがわかった。これらのことから、製鋼スラグ中のフリーライム(f−CaO)の含有率が、0.5質量%以上必要であることがわかる。製鋼スラグ中のフリーライム(f−CaO)含有率質量%の上限値としては、製鋼工程において製鋼スラグを使用すると経済的であるので、製鋼スラグ中のフリーライムは、実用的には、10質量%以下である。なお、泥土中にシリカが含まれる場合には、フリーライム(f−CaO)によるポゾラン反応と、シリカの溶出によるポゾラン反応が生じるが、本発明では、フリーライム(f−CaO)にのみ着目して、規定している。   On the other hand, when the free lime (f-CaO) content is 0.5% by mass, the steelmaking slag addition amount is 10%, the steelmaking slag particle size is more than 0 mm and not more than 30 mm, and the water content of the mud is 220%. Even in this case, it was found that strength was developed. In addition, it was found that the strength could be increased by adding granulated blast furnace slag or blast furnace slag fine powder. From these things, it turns out that the content rate of the free lime (f-CaO) in steelmaking slag is 0.5 mass% or more. As the upper limit of the content percentage by mass of free lime (f-CaO) in steelmaking slag, it is economical to use steelmaking slag in the steelmaking process. Therefore, the free lime in steelmaking slag is practically 10 masses. % Or less. In addition, when silica is contained in mud, a pozzolanic reaction by free lime (f-CaO) and a pozzolanic reaction by elution of silica occur. In the present invention, however, attention is paid only to free lime (f-CaO). It stipulates.

なお、海底浚渫土等の泥土では、珪素が多く含まれており、また、製鋼スラグにも、可溶性シリカあるいは可溶性アルミナが含まれていることから、可溶性シリカによるポゾラン反応、あるいは可溶性アルミナによるポゾラン反応も生じるため、可溶性シリカ(Si)の溶出量を、例えば、5.0mg/Lとして、また、可溶性アルミナの溶出量を、例えば0.05mg/Lとして、本発明においては、製鋼スラグに含まれるフリーライム(f−CaO)含有量を、少なくとも0.5質量%に設定している。このように製鋼スラグに含まれるフリーライム(f−CaO)含有量を、少なくとも0.5質量%に設定することにより、陸に近い位置の陽浜部の海底浚渫土および河川における水域浚渫土あるいは建設汚泥における可溶性シリカあるいは可溶性アルミナの有無にかかわらず、泥土の強度改質をすることができる。   In addition, since mud such as submarine dredged soil contains a lot of silicon, and steelmaking slag also contains soluble silica or soluble alumina, pozzolanic reaction with soluble silica or pozzolanic reaction with soluble alumina. Therefore, the elution amount of soluble silica (Si) is, for example, 5.0 mg / L, and the elution amount of soluble alumina is, for example, 0.05 mg / L. Free lime (f-CaO) content is set to at least 0.5 mass%. In this way, by setting the free lime (f-CaO) content contained in the steelmaking slag to at least 0.5 mass%, the submarine soil of the positive beach near the land and the water body soil in the river or Regardless of the presence or absence of soluble silica or soluble alumina in construction sludge, the strength of the mud can be improved.

なお、泥土としては、その含水比の範囲としては、100%〜350%程度の範囲の泥土を対象とすることができ、好ましくは、100%〜220%の範囲とするとよい。泥土の含水比が、100%を下回るようになると、製鋼スラグとの混合撹拌が困難になり、また、350%以上になると、所望の改質が得られなくなるので、好ましくない。したがって、泥土の含水比は、少なくとも100%とする。   In addition, as a mud, as the range of the moisture content, the mud in the range of about 100% to 350% can be targeted, and the range of 100% to 220% is preferable. If the water content of the mud falls below 100%, mixing and stirring with the steelmaking slag becomes difficult, and if it exceeds 350%, the desired modification cannot be obtained, which is not preferable. Therefore, the water content of the mud is at least 100%.

また、前記表1から、泥土の一軸圧縮強度を改善する上では、(1)フリーライムを含有する製鋼スラグのみでもよく、また、(2)フリーライムを含有する製鋼スラグと、高炉水砕スラグとを含有する材料でもよく、また、(3)フリーライムを含有する製鋼スラグと、高炉スラグ微粉末とを混合した材料でもよく、(4)フリーライムを含有する製鋼スラグと高炉水砕スラグおよび高炉スラグ微粉末を混合した材料でもよく、前記(1)〜(4)のいずれかであれば、泥土の一軸圧縮強度を改質できる材料であることがわかる。   Moreover, from the said Table 1, in improving the uniaxial compressive strength of mud, (1) Only the steelmaking slag containing free lime may be sufficient, (2) Steelmaking slag containing free lime, and blast furnace granulated slag Or (3) steelmaking slag containing free lime and blast furnace slag fine powder, and (4) steelmaking slag containing free lime and blast furnace granulated slag and A material mixed with blast furnace slag fine powder may be used, and any of the above (1) to (4) can be understood as a material capable of modifying the uniaxial compressive strength of the mud.

また、製鋼スラグの粒径が、0mmを超え、30mm以下の粒径であればよいことがわかるが、製鋼スラグは、通常得られる状態は、大小の粒状物の混合体であるからして、実用的には、0mmを超え、30mm以上を超える場合も可能であり、概して、製鋼スラグの粒径の範囲としては、0mmを超え、50mm以下の粒径であればよい。しかし、泥土の固化は、泥土中のシリカと、製鋼スラグに含まれるフリーライム(f−CaO)によるポゾラン反応によることからして、最大粒径は、小さいほうがポゾラン反応の反応性がよいことが考えられるから、例えば、20mm以下、より好ましくは、10mmまたは5mm以下の製鋼スラグの粒状体あるいは粒状微粉末を使用するのがよい。   Moreover, although it turns out that the particle size of steelmaking slag should be a particle size exceeding 0 mm and 30 mm or less, steelmaking slag is usually obtained because it is a mixture of large and small granular materials, Practically, it is possible to exceed 0 mm and exceed 30 mm. Generally, the range of the particle size of the steelmaking slag may be a particle size exceeding 0 mm and not exceeding 50 mm. However, the solidification of the mud is due to the pozzolanic reaction between the silica in the mud and free lime (f-CaO) contained in the steelmaking slag, so the smaller the maximum particle size, the better the pozzolanic reaction is. Therefore, for example, it is preferable to use a steel slag granule or granular fine powder of 20 mm or less, more preferably 10 mm or 5 mm or less.

また、含水比が350%以下の泥土に対する製鋼スラグの混合率が10容積%以下では、泥土が、主として、製鋼スラグ中のフリーライム(f−CaO)による水和反応により固まらないので、製鋼スラグの混合率は、10容積%以上必要になる。また、泥土に対する製鋼スラグの混合率が50容積%以上になると、例えば、海底土を対象とした場合、製鋼スラグ中のカルシウムが水中に溶け出し、海水中の水と反応して水酸化カルシウム(Ca(OH)を生じ、これが電離し、OHと、海底土中に含まれるマグネシウムとが結合し、水酸化マグネシウム(Mg(OH))を生じて白濁が顕著になるため、また、製鋼スラグを多量に泥土に混合しても、改質される泥土の量が少なくなり、極力、泥土を多く処理し泥土の有効利用を図ることにならないので、さらに、製鋼スラグは、アルカリ性が強いので、泥土に対する製鋼スラグの混合率を、50容積%以下にするのが好ましい。なお、製鋼スラグを泥土内に入れると物理的にスラグが泥土に封じ込められて白濁が起こりにくくなるが、製鋼スラグが50容積%を超えると白濁しやすい。
したがって、製鋼スラグの泥土に対する混合率は、10容積%以上で、50容積%以下であるのが好ましい。
In addition, when the mixing ratio of the steelmaking slag with respect to the mud having a moisture content of 350% or less is 10% by volume or less, the mud is not solidified mainly by a hydration reaction by free lime (f-CaO) in the steelmaking slag. The mixing ratio is required to be 10% by volume or more. Moreover, when the mixing rate of steelmaking slag with respect to mud becomes 50% by volume or more, for example, when seabed soil is targeted, calcium in steelmaking slag dissolves into water and reacts with water in seawater to produce calcium hydroxide ( Ca (OH) 2 is generated, which is ionized, OH and magnesium contained in the seabed soil are combined to form magnesium hydroxide (Mg (OH) 2 ), and white turbidity becomes remarkable. Even if a large amount of steelmaking slag is mixed with mud, the amount of mud that is reformed is reduced, and as much as possible, it will not be possible to effectively treat the mud by treating much of the mud, so steelmaking slag is highly alkaline. Therefore, it is preferable that the mixing ratio of steelmaking slag with respect to the mud is 50% by volume or less.When steelmaking slag is put in the mud, the slag is physically confined in the mud and hardly becomes cloudy. However, when the steelmaking slag exceeds 50% by volume, it tends to become cloudy.
Accordingly, the mixing ratio of steelmaking slag to mud is preferably 10% by volume or more and 50% by volume or less.

また、表1から、泥土に対する製鋼スラグの添加量が多くなるほど、また、製鋼スラグの粒径が小さくなるほど、一軸圧縮強度が高くなることがわかる。   Table 1 also shows that the uniaxial compressive strength increases as the amount of steelmaking slag added to the mud increases and as the particle size of the steelmaking slag decreases.

次に、表2について説明する。   Next, Table 2 will be described.

表2には、大阪湾採取の泥土で、含水比を113%と一定にした泥土に、製鋼スラグ粒径が0mmを超え5mm以下の場合(表2では、0−5以下と表記)、さらに製鋼スラグの混合率(容積%)を30容積%〜19容積%とし、フリーライム含有率(質量%)が、4.2質量%、5.5質量%、6.4質量%、2.7質量%、4.2質量%と異なる製鋼スラグを混合撹拌して、泥土を改質された改質土とする場合、製鋼スラグを混合撹拌された泥土の養生日数と一軸圧縮強度との関係、あるいは高炉水砕スラグや高炉スラグ微粉末の添加によって、改質土の一軸圧縮強度の変化の関係を示したものである。表2では、泥土に応じて、フリーライム(f−CaO)含有率または高炉スラグまたは高炉スラグ微粉末の添加で、改質される改質土の強度調整が可能であることを示している。

Figure 2009121167
Table 2 shows the case where the steelmaking slag particle size is more than 0mm and less than 5mm (indicated as 0-5 or less in Table 2) in the mud collected from Osaka Bay, with a moisture content constant of 113%. The mixing ratio (volume%) of the steelmaking slag is 30 volume% to 19 volume%, and the free lime content (mass%) is 4.2 mass%, 5.5 mass%, 6.4 mass%, 2.7 When mixing and stirring steelmaking slag different from mass% and 4.2% by mass to make the mud into a modified soil, the relationship between the curing days of mud and the uniaxial compressive strength after mixing and stirring the steelmaking slag, Or the relationship of the change of uniaxial compressive strength of reformed soil by the addition of granulated blast furnace slag or blast furnace slag fine powder is shown. Table 2 shows that the strength of the modified soil to be modified can be adjusted by adding free lime (f-CaO) content or blast furnace slag or blast furnace slag fine powder according to the mud.
Figure 2009121167

表2から、製鋼スラグ中に含まれるフリーライムの含有率が、4.2質量%、5.5質量%、6.4質量%と、含有率が上昇するにつれて一軸圧縮強度が上昇し、また、養生期間が長くなるにつれて、一軸圧縮強度が上昇していることからして、製鋼スラグのフリーライム(f−CaO)の含有率(質量%)を調整することにより、これを泥土に混合撹拌して得られる改質土の強度発現を調整可能であることがわかる。また、製鋼スラグに加えて、高炉水砕スラグや高炉スラグ微粉末の添加することにより、また、混合後の養生期間により、強度発現を向上可能であることがわかる。前記の高炉水砕スラグや高炉スラグ微粉末の添加量が多くなると、泥土の一軸圧縮強度が向上することもわかり、また、前記したように、フリーライムの添加量が多くなると、一軸圧縮強度が向上することから、製鋼スラグのフリーライム含有率、高炉水砕スラグおよび高炉スラグ微粉末の混合率、混合後の養生期間により、改質土の一軸圧縮荷重を調整することが可能になる。   From Table 2, the content of free lime contained in the steelmaking slag is 4.2% by mass, 5.5% by mass, and 6.4% by mass, and the uniaxial compressive strength increases as the content increases. Since the uniaxial compressive strength increases as the curing period becomes longer, this is mixed and stirred in mud by adjusting the content (% by mass) of free lime (f-CaO) in steelmaking slag. It can be seen that the strength of the modified soil obtained can be adjusted. Moreover, in addition to steelmaking slag, it turns out that strength expression can be improved by addition of granulated blast furnace slag or blast furnace slag fine powder and the curing period after mixing. It can also be seen that when the amount of blast furnace granulated slag or blast furnace slag fine powder increases, the uniaxial compressive strength of the mud improves, and as described above, when the amount of free lime increases, the uniaxial compressive strength increases. Since it improves, it becomes possible to adjust the uniaxial compression load of reformed soil by the free lime content rate of steelmaking slag, the mixing rate of granulated blast furnace slag and blast furnace slag, and the curing period after mixing.

特に、高炉微粉末を添加した場合には、一軸圧縮強度を格段に向上させることができること、養生期間が7日から14日と2倍になると、一軸圧縮強度(kN/m)もほぼ2倍に近い値になっていることがわかる。なお、14日養生経過後においても、例えば、3ヶ月経過程度まで一軸圧縮強度は向上した。 In particular, when blast furnace fine powder is added, the uniaxial compressive strength can be remarkably improved. When the curing period is doubled from 7 days to 14 days, the uniaxial compressive strength (kN / m 2 ) is almost 2 It can be seen that the value is close to double. In addition, even after 14 days of curing, for example, the uniaxial compressive strength improved until about 3 months.

また、前記のように、強度改質された泥土(改質土)は、主として、水域領域における土工材あるいは盛土材として利用し、例えば、海底あるいは水底敷設土として使用したり、貧酸素水域における穴埋め土として利用したり、矢板壁背面の裏埋土として利用することが可能になる。また、強度の高く改質された材料は、陸上における土工材として利用することも可能になる。   Further, as described above, the strength-modified mud soil (modified soil) is mainly used as an earthwork material or embankment material in a water area, for example, used as a seabed or a bottom laying soil, or in an anoxic water area. It can be used as a hole-filling soil or as a back-filling soil behind a sheet pile wall. Further, the material modified with high strength can be used as an earthwork material on land.

なお、本発明において使用する高炉水砕スラグまたは高炉スラグ微粉末のいずれか一方または両方は、強度発現用の補助材料であり、これらの添加量は、泥土の改質目標強度にあわせ、設計により適宜決定される。   Either one or both of granulated blast furnace slag and fine powder of blast furnace slag used in the present invention is an auxiliary material for strength development, and the amount of these added depends on the design target strength of the mud. It is determined appropriately.

前記実施形態では、海底浚渫土の場合を主に説明したが、本発明は、河川における浚渫土あるいは、その他の建設汚泥に適用に適用するようにしてもよい。   Although the above embodiment has mainly described the case of submarine dredged soil, the present invention may be applied to dredged soil in rivers or other construction sludge.

製鋼スラグのフリーライム(f−CaO)含有率と、これを混合した泥土の一軸圧縮強度の発現関係を示すグラフである。It is a graph which shows the expression relationship of the free lime (f-CaO) content rate of steelmaking slag, and the uniaxial compressive strength of the mud which mixed this. 製鋼スラグを含有した泥土の養生日数と一軸圧縮強度との関係を示すグラフである。It is a graph which shows the relationship between the curing days of the mud containing steelmaking slag, and uniaxial compressive strength.

Claims (9)

泥土に混合して泥土の改質をはかる泥土改質材料であって、その泥土改質材料が、製鋼スラグのみ、または製鋼スラグと、高炉水砕スラグまたは高炉スラグ微粉末のいずれか一方または両方からなることを特徴とする泥土改質材料。   A mud modifying material that is mixed with mud to improve the mud, and the mud modifying material is made of only steelmaking slag, steelmaking slag, blast furnace granulated slag, blast furnace slag fine powder, or both. A mud reforming material characterized by comprising: 製鋼スラグのフリーライム含有率が、少なくとも0.5質量%であることを特徴とする請求項1に記載の泥土改質材料。   2. The mud reforming material according to claim 1, wherein the free lime content of the steelmaking slag is at least 0.5% by mass. 製鋼スラグの粒径が、30mm以下であることを特徴とする請求項1または2に記載の泥土改質材料。   3. The mud modifying material according to claim 1 or 2, wherein the steelmaking slag has a particle size of 30 mm or less. 泥土に混合して泥土の改質をはかる泥土改質方法であって、泥土に、製鋼スラグのみ、または製鋼スラグと、高炉水砕スラグまたは高炉スラグ微粉末のいずれか一方または両方を混合することを特徴とする泥土改質方法。   A mud reforming method for modifying mud by mixing with mud, mixing only one or both of steelmaking slag or steelmaking slag with blast furnace granulated slag or blast furnace slag fine powder. A method for improving mud soil. 製鋼スラグのフリーライム含有率が、少なくとも0.5質量%であることを特徴とする請求項4に記載の泥土改質方法。   The mud reforming method according to claim 4, wherein the free lime content of the steelmaking slag is at least 0.5 mass%. 製鋼スラグの粒径が、30mm以下であることを特徴とする請求項4および5に記載の泥土改質方法。   The mud reforming method according to claim 4 or 5, wherein the particle diameter of the steelmaking slag is 30 mm or less. 製鋼スラグの混合率が、混合材料としての泥土に対して10容積%以上、50容積%以下であることを特徴とする請求項4〜6のいずれかに記載の泥土改質方法。   The mixing ratio of steelmaking slag is 10 volume% or more and 50 volume% or less with respect to the mud as a mixed material, The mud reforming method in any one of Claims 4-6 characterized by the above-mentioned. 泥土の含水比が、少なくとも100%であることを特徴とする請求項4〜7のいずれかに記載の泥土改質方法。   8. The mud reforming method according to any one of claims 4 to 7, wherein the moisture content of the mud is at least 100%. 泥土の改質強度を、製鋼スラグのフリーライム含有率、高炉水砕スラグおよび高炉スラグ微粉末の混合率、混合後の養生期間により調整することを特徴とする請求項4〜8のいずれかに記載の泥土改質方法。   The modified strength of the mud is adjusted according to the free lime content of steelmaking slag, the mixing ratio of granulated blast furnace slag and blast furnace slag, and the curing period after mixing. The mud modification method described.
JP2007297468A 2007-11-16 2007-11-16 Mud modification material and modification method Active JP5014961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007297468A JP5014961B2 (en) 2007-11-16 2007-11-16 Mud modification material and modification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007297468A JP5014961B2 (en) 2007-11-16 2007-11-16 Mud modification material and modification method

Publications (2)

Publication Number Publication Date
JP2009121167A true JP2009121167A (en) 2009-06-04
JP5014961B2 JP5014961B2 (en) 2012-08-29

Family

ID=40813610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007297468A Active JP5014961B2 (en) 2007-11-16 2007-11-16 Mud modification material and modification method

Country Status (1)

Country Link
JP (1) JP5014961B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206625A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Method for modifying dredged soil
JP2012031618A (en) * 2010-07-30 2012-02-16 Jfe Steel Corp Method for estimating strength of modified dredged material and method for modifying dredged material
JP2012149426A (en) * 2011-01-18 2012-08-09 Nippon Steel Corp Manufacturing method of modified soil and water area environment restoration execution method
JP2014000560A (en) * 2012-06-21 2014-01-09 Nippon Steel & Sumitomo Metal Manufacturing method of modified soil
JP2014133782A (en) * 2013-01-08 2014-07-24 Nippon Steel & Sumitomo Metal Soft soil conditioner, and improvement method of soft soil and improvement method of soft ground using the same
JP2014173285A (en) * 2013-03-07 2014-09-22 Penta Ocean Construction Co Ltd Mixing apparatus and method for mixing steel-making slag to soft soil
JP2014173284A (en) * 2013-03-07 2014-09-22 Penta Ocean Construction Co Ltd Mixing apparatus and method for mixing steel-making slag to soft soil
JP2015074914A (en) * 2013-10-08 2015-04-20 新日鐵住金株式会社 Modified soil strength prediction method
JP2015193537A (en) * 2010-06-03 2015-11-05 Jfeスチール株式会社 artificial stone
JP2016130403A (en) * 2015-01-13 2016-07-21 新日鐵住金株式会社 Method for predicting strength of modified soil
JP2016183525A (en) * 2015-03-26 2016-10-20 新日鐵住金株式会社 Construction method for civil engineering structure on land preventing white turbidity phenomenon
JP2017172107A (en) * 2016-03-18 2017-09-28 五洋建設株式会社 Construction method of backfill structure, and mixed material
JP2019163637A (en) * 2018-03-20 2019-09-26 五洋建設株式会社 Soil material, manufacturing method of soil material, and ground construction method
JP2022013448A (en) * 2020-07-03 2022-01-18 Jfeスチール株式会社 Backfilling method for deep-dig underwater depression
JP7415231B2 (en) 2021-08-20 2024-01-17 Jfeスチール株式会社 Ground covering material and its manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189409A (en) * 1982-04-28 1983-11-05 Agency Of Ind Science & Technol Land grading with coal cinder
JPH0416534A (en) * 1990-05-07 1992-01-21 Nippon Jiryoku Senko Kk Method for utilizing slag and coal ash
JPH0853668A (en) * 1995-07-31 1996-02-27 Nippon Cement Co Ltd Method and hardener for treating soft ground by deep mixing
JPH0860152A (en) * 1994-08-17 1996-03-05 Nippon Steel Corp Method for hardening soil
JPH09100470A (en) * 1995-08-03 1997-04-15 Nippon Steel Corp Hardening of soil
JP2001137894A (en) * 1999-11-12 2001-05-22 Kawasaki Steel Corp Method for solidifying mud and soil and artificially solidified ground
JP2004105783A (en) * 2002-09-13 2004-04-08 Jfe Steel Kk Solidification material and solidification method for soil
JP2005273296A (en) * 2004-03-25 2005-10-06 Geotop Corp Foundation structure
JP2006326446A (en) * 2005-05-25 2006-12-07 Nippon Steel Corp Construction sludge improvement method and improvement system used for it

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189409A (en) * 1982-04-28 1983-11-05 Agency Of Ind Science & Technol Land grading with coal cinder
JPH0416534A (en) * 1990-05-07 1992-01-21 Nippon Jiryoku Senko Kk Method for utilizing slag and coal ash
JPH0860152A (en) * 1994-08-17 1996-03-05 Nippon Steel Corp Method for hardening soil
JPH0853668A (en) * 1995-07-31 1996-02-27 Nippon Cement Co Ltd Method and hardener for treating soft ground by deep mixing
JPH09100470A (en) * 1995-08-03 1997-04-15 Nippon Steel Corp Hardening of soil
JP2001137894A (en) * 1999-11-12 2001-05-22 Kawasaki Steel Corp Method for solidifying mud and soil and artificially solidified ground
JP2004105783A (en) * 2002-09-13 2004-04-08 Jfe Steel Kk Solidification material and solidification method for soil
JP2005273296A (en) * 2004-03-25 2005-10-06 Geotop Corp Foundation structure
JP2006326446A (en) * 2005-05-25 2006-12-07 Nippon Steel Corp Construction sludge improvement method and improvement system used for it

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206625A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Method for modifying dredged soil
JP2015193537A (en) * 2010-06-03 2015-11-05 Jfeスチール株式会社 artificial stone
JP2012031618A (en) * 2010-07-30 2012-02-16 Jfe Steel Corp Method for estimating strength of modified dredged material and method for modifying dredged material
JP2012149426A (en) * 2011-01-18 2012-08-09 Nippon Steel Corp Manufacturing method of modified soil and water area environment restoration execution method
JP2014000560A (en) * 2012-06-21 2014-01-09 Nippon Steel & Sumitomo Metal Manufacturing method of modified soil
JP2014133782A (en) * 2013-01-08 2014-07-24 Nippon Steel & Sumitomo Metal Soft soil conditioner, and improvement method of soft soil and improvement method of soft ground using the same
JP2014173284A (en) * 2013-03-07 2014-09-22 Penta Ocean Construction Co Ltd Mixing apparatus and method for mixing steel-making slag to soft soil
JP2014173285A (en) * 2013-03-07 2014-09-22 Penta Ocean Construction Co Ltd Mixing apparatus and method for mixing steel-making slag to soft soil
JP2015074914A (en) * 2013-10-08 2015-04-20 新日鐵住金株式会社 Modified soil strength prediction method
JP2016130403A (en) * 2015-01-13 2016-07-21 新日鐵住金株式会社 Method for predicting strength of modified soil
JP2016183525A (en) * 2015-03-26 2016-10-20 新日鐵住金株式会社 Construction method for civil engineering structure on land preventing white turbidity phenomenon
JP2017172107A (en) * 2016-03-18 2017-09-28 五洋建設株式会社 Construction method of backfill structure, and mixed material
JP2019163637A (en) * 2018-03-20 2019-09-26 五洋建設株式会社 Soil material, manufacturing method of soil material, and ground construction method
JP7401962B2 (en) 2018-03-20 2023-12-20 五洋建設株式会社 Soil materials, soil material manufacturing methods, and ground preparation methods
JP2022013448A (en) * 2020-07-03 2022-01-18 Jfeスチール株式会社 Backfilling method for deep-dig underwater depression
JP7415231B2 (en) 2021-08-20 2024-01-17 Jfeスチール株式会社 Ground covering material and its manufacturing method

Also Published As

Publication number Publication date
JP5014961B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5014961B2 (en) Mud modification material and modification method
JP5853399B2 (en) Manufacturing method of artificial stone
JP5326995B2 (en) Mud-containing solidified body and method for producing the same
JP2024045574A (en) Method for producing modified soil of high water content mud
JP2009079161A (en) Ground improving material
JP2017122203A (en) Manufacturing method of mud-containing solidified body
WO2019244856A1 (en) Heavy metal-insolubilized solidification material and technique for improving contaminated soil
JP5896057B2 (en) Manufacturing method of artificial stone
JP6142760B2 (en) Strength prediction method for modified soil
JP6682920B2 (en) Manufacturing method of artificial stone
JP6020677B2 (en) Artificial stone
JP3782376B2 (en) Method for suppressing fluorine elution from smelting slag containing fluorine
JP4632865B2 (en) Construction sludge improvement method and improvement equipment used therefor
JP2011246336A (en) Method for manufacturing solidified body
JP6409581B2 (en) Strength prediction method for modified soil
JP5002368B2 (en) Backfilling and backfilling material for underwater construction using granulated blast furnace slag and its manufacturing method
JP2001040652A (en) Soil improvement method and solidifying material
WO2011136395A1 (en) Method for producing artificial stone material
JP4979186B2 (en) Method for producing granulated material
JP2009185159A (en) Soil-improving material and soil-improving method
JP5998582B2 (en) Civil engineering materials processing method
JP5117930B2 (en) Neutral solidification method of mud and new stone-kow-based solidification improver
JPH08239662A (en) Soil conditioning method and additive using the same
JP2005306939A (en) Low alkaline solidifying material composition
WO2024052265A1 (en) Method for activating basic oxygen furnace steel slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5014961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250