JP2019163637A - Soil material, manufacturing method of soil material, and ground construction method - Google Patents

Soil material, manufacturing method of soil material, and ground construction method Download PDF

Info

Publication number
JP2019163637A
JP2019163637A JP2018052124A JP2018052124A JP2019163637A JP 2019163637 A JP2019163637 A JP 2019163637A JP 2018052124 A JP2018052124 A JP 2018052124A JP 2018052124 A JP2018052124 A JP 2018052124A JP 2019163637 A JP2019163637 A JP 2019163637A
Authority
JP
Japan
Prior art keywords
soil
mixing
water
volcanic ash
soil material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018052124A
Other languages
Japanese (ja)
Other versions
JP7401962B2 (en
Inventor
裕一 田中
Yuichi Tanaka
裕一 田中
匠 辻
Takumi Tsuji
匠 辻
中川 雅夫
Masao Nakagawa
雅夫 中川
宗一郎 野中
Soichiro Nonaka
宗一郎 野中
賢師 花田
Kenshi Hanada
賢師 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Penta Ocean Construction Co Ltd
Original Assignee
Nippon Steel Corp
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Penta Ocean Construction Co Ltd filed Critical Nippon Steel Corp
Priority to JP2018052124A priority Critical patent/JP7401962B2/en
Publication of JP2019163637A publication Critical patent/JP2019163637A/en
Application granted granted Critical
Publication of JP7401962B2 publication Critical patent/JP7401962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

To provide a soil material, a manufacturing method of a soil material and a ground construction method having prescribed strength and water shielding property without using dredge soil.SOLUTION: A manufacturing method of a soil material mixes volcanic ash soil, water and steel slag while adjusting moisture content of the volcanic ash soil and the water at the time of mixing to 40 to 60 wt%, in which an uniaxial compressive strength 28 days after mixing is equal to or larger than 50kN/m, and a water permeability coefficient 91 days after mixing is equal to or smaller than 1.0×10m/s.SELECTED DRAWING: Figure 1

Description

本発明は、火山灰土と製鋼スラグと水とを混合した土質材料、土質材料の製造方法、および土質材料を用いた地盤造成方法に関する。   The present invention relates to a soil material in which volcanic ash soil, steelmaking slag and water are mixed, a method for producing the soil material, and a ground formation method using the soil material.

従来、液状化を抑制し、遮水性能を有する地盤材料として、現地発生土にセメント等の固化材を混合したセメント改良土、または、港湾工事等で発生する浚渫土に製鋼スラグ等のカルシア改質材を混合したカルシア改質土が知られている(特許文献1,2参照)。   Conventionally, as a ground material that suppresses liquefaction and has a water-blocking performance, cement-modified soil in which solidified material such as cement is mixed with locally generated soil, or calcia modification such as steelmaking slag in dredged soil generated in port construction, etc. A calcia-modified soil in which a material is mixed is known (see Patent Documents 1 and 2).

非特許文献1によれば、火山灰は、日本国内に広く分布し採取可能な天然ポゾランであり、防波堤コンクリートに使用されるなど、コンクリートの長期的な耐久性向上が期待されている。   According to Non-Patent Document 1, volcanic ash is a natural pozzolana that can be widely distributed and collected in Japan, and is expected to improve the long-term durability of concrete, such as being used for breakwater concrete.

特許第5014961号公報Japanese Patent No. 5014961 特許第5318013号公報Japanese Patent No. 5318013

「火山灰の反応性と火山灰を用いたコンクリートの特性」寒地土木研究所月報 No.729 2014年2月“Reactivity of volcanic ash and properties of concrete using volcanic ash” Monthly Bulletin No.729, February 2014

従来のセメント改良土は、水中に投入されて使用される場合には、セメント分のみが水に洗われて分離し易いという問題がある。また、浚渫土と製鋼スラグを混合したカルシア改質土は、沿岸域から遠く離れた場所での工事では浚渫土の調達が難しいことが多いこと、浚渫土は粘性が高いため、粒度の細かい製鋼スラグやセメント等との混合には長時間を要し、作業効率が低下してしまう、といった問題がある。   When the conventional cement-improved soil is thrown into water and used, there is a problem that only the cement is washed and separated by water. In addition, calcia-modified soil, which is a mixture of dredged soil and steelmaking slag, is often difficult to procure dredged soil for construction far away from the coastal area, and dredged clay is highly viscous, so fine-grained steelmaking. There is a problem that mixing with slag, cement, or the like requires a long time and the working efficiency is lowered.

本発明は、上述のような従来技術の問題に鑑み、浚渫土を使用せずに所定の強度と遮水性能とを有する土質材料、土質材料の製造方法および地盤造成方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a soil material having a predetermined strength and water shielding performance without using dredged soil, a method for producing the soil material, and a ground preparation method. And

上記目的を達成するため本発明者等の調査・実験・検討によれば、浚渫土の代わりに、適度な細粒分を有する火山灰土を用い、適度な含水比の火山灰土にアルカリ度の高い製鋼スラグを混合することで、一軸圧縮強さが高く、液状化を抑制でき、遮水性能に優れる土質材料を得ることが可能なことが判明し、本発明に至ったものである。   In order to achieve the above object, according to the investigations, experiments and examinations of the present inventors, instead of dredged soil, volcanic ash soil having an appropriate fine grain content is used, and volcanic ash soil having an appropriate water content is highly alkaline. It has been found that by mixing steelmaking slag, it is possible to obtain a soil material that has high uniaxial compressive strength, can suppress liquefaction, and is excellent in water shielding performance.

上記目的を達成するための土質材料は、火山灰土と製鋼スラグと水とを混合した土質材料であって、前記火山灰土と前記水との混合時の含水比が40〜60重量%であり、前記混合28日後の一軸圧縮強さが50kN/m2以上であり、前記混合91日後の透水係数が1.0×10-7m/s以下である。 The soil material for achieving the above object is a soil material in which volcanic ash soil, steelmaking slag and water are mixed, and the water content ratio at the time of mixing the volcanic ash soil and the water is 40 to 60% by weight, The uniaxial compressive strength after 28 days of mixing is 50 kN / m 2 or more, and the hydraulic conductivity after 91 days of mixing is 1.0 × 10 −7 m / s or less.

この土質材料によれば、火山灰土と製鋼スラグと水とを混合した土質材料は、火山灰土と水との混合時の含水比が40〜60重量%であることで、混合28日後の一軸圧縮強さが50kN/m2以上、混合91日後の透水係数が1.0×10-7m/s以下である土質材料とすることができる。 According to this soil material, the soil material mixed with volcanic ash soil, steelmaking slag and water has a water content ratio of 40 to 60% by weight when mixed with volcanic ash soil and water. The soil material can have a strength of 50 kN / m 2 or more and a water permeability coefficient of 1.0 × 10 −7 m / s or less after 91 days of mixing.

上記土質材料において、前記火山灰土の細粒分含有率が20%以上であることが好ましい。また、前記製鋼スラグはpH12以上であることが好ましい。   In the soil material, it is preferable that the fine-grain content of the volcanic ash soil is 20% or more. Moreover, it is preferable that the said steelmaking slag is pH12 or more.

上記目的を達成するためのもう1つの土質材料は、火山灰土と製鋼スラグと水とを混合した土質材料であって、セメントと高炉スラグ微粉末と高炉セメントとのうちの少なくとも1つをさらに混合し、前記火山灰土と前記水との混合時の含水比が40〜80重量%であり、前記混合28日後の一軸圧縮強さが50kN/m2以上であり、前記混合91日後の透水係数が1.0×10-7m/s以下である。 Another soil material for achieving the above object is a soil material obtained by mixing volcanic ash soil, steelmaking slag and water, and further mixing at least one of cement, blast furnace slag fine powder and blast furnace cement. The water content ratio when mixing the volcanic ash soil and the water is 40 to 80% by weight, the uniaxial compressive strength after 28 days of mixing is 50 kN / m 2 or more, and the hydraulic conductivity after 91 days of mixing is It is 1.0 × 10 −7 m / s or less.

この土質材料によれば、火山灰土と製鋼スラグと水とを混合し、セメントと高炉スラグ微粉末と高炉セメントとのうちの少なくとも1つをさらに混合した土質材料は、火山灰土と水との混合時の含水比が40〜80重量%であることで、混合28日後の一軸圧縮強さが50kN/m2以上、混合91日後の透水係数が1.0×10-7m/s以下である土質材料とすることができる。 According to this soil material, volcanic ash soil, steelmaking slag and water are mixed, and the soil material obtained by further mixing at least one of cement, blast furnace slag fine powder and blast furnace cement is a mixture of volcanic ash soil and water. When the moisture content at the time is 40 to 80% by weight, the uniaxial compressive strength after 28 days of mixing is 50 kN / m 2 or more, and the hydraulic conductivity after 91 days of mixing is 1.0 × 10 −7 m / s or less. It can be a soil material.

上記目的を達成するための土質材料の製造方法は、火山灰土と水と製鋼スラグとを混合し、前記火山灰土と前記水との混合時の含水比を40〜60重量%に調整し、前記混合28日後の一軸圧縮強さが50kN/m2以上であり、前記混合91日後の透水係数が1.0×10-7m/s以下である。 The method for producing a soil material for achieving the above object comprises mixing volcanic ash soil, water and steelmaking slag, adjusting the water content ratio when mixing the volcanic ash soil and water to 40 to 60% by weight, The uniaxial compressive strength after 28 days of mixing is 50 kN / m 2 or more, and the hydraulic conductivity after 91 days of mixing is 1.0 × 10 −7 m / s or less.

この土質材料の製造方法によれば、火山灰土と製鋼スラグと水とを混合し、火山灰土と水との混合時の含水比を40〜60重量%に調整することで、混合28日後の一軸圧縮強さが50kN/m2以上であり、混合91日後の透水係数が1.0×10-7m/s以下である土質材料を得ることができる。 According to this method for producing a soil material, volcanic ash earth, steelmaking slag and water are mixed, and the water content ratio at the time of mixing volcanic ash earth and water is adjusted to 40 to 60% by weight. A soil material having a compressive strength of 50 kN / m 2 or more and a water permeability coefficient of 1.0 × 10 −7 m / s or less after 91 days of mixing can be obtained.

上記目的を達成するための地盤造成方法は、上述の土質材料、または、上述の製造方法により製造された土質材料を打設することで地盤を造成するものである。   The ground formation method for achieving the above object is to create the ground by placing the above-mentioned soil material or the soil material manufactured by the above-described manufacturing method.

この地盤造成方法によれば、上述の土質材料、または、上述の製造方法により製造された土質材料を用いることで、一軸圧縮強さが高く、液状化を抑制でき、遮水性能に優れる地盤を造成することができる。   According to this ground preparation method, by using the above-mentioned soil material or the soil material manufactured by the above-described manufacturing method, a ground that has high uniaxial compressive strength, can suppress liquefaction, and has excellent water shielding performance. Can be created.

上記地盤造成方法において、前記土質材料を埋め立てまたは埋め戻しのために打設するようにできる。   In the ground preparation method, the soil material can be placed for landfill or backfill.

本発明によれば、浚渫土を使用せずに所定の強度と遮水性能とを有する土質材料、土質材料の製造方法および地盤造成方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the soil material which has predetermined intensity | strength and water-insulating performance, without using dredged soil, the manufacturing method of a soil material, and the ground preparation method can be provided.

本実施形態による土質材料の製造方法の主要工程を説明するためのフローチャートである。It is a flowchart for demonstrating the main processes of the manufacturing method of the earth material by this embodiment. 表1の実施例、比較例の結果のうち、混合28日後、混合91日後の一軸圧縮強さをケース(A-1〜D-3)毎に示すグラフである。It is a graph which shows the uniaxial compressive strength after mixing 28 days and mixing 91 days for every case (A-1 to D-3) among the results of Examples and Comparative Examples in Table 1. 表1の実施例、比較例の結果のうち、混合91日後の透水係数と含水比との関係を示すグラフである。It is a graph which shows the relationship between the water permeability coefficient after mixing 91 days after the result of the Example of Table 1, and a comparative example, and a water content ratio. 本実施例で用いた製鋼スラグのpHの測定結果と、表1の含水比60%,50%,40%の場合の混合28日後の透水係数との関係を示すグラフである。It is a graph which shows the relationship between the measurement result of pH of the steelmaking slag used in the present Example, and the water permeability after 28 days of mixing in the case of the water content ratio of 60%, 50% and 40% in Table 1. 本実施例で用いた製鋼スラグのpHの測定結果と、表1の含水比60%,50%,40%の場合の混合28日後の一軸圧縮強さとの関係を示すグラフである。It is a graph which shows the relationship between the measurement result of pH of the steelmaking slag used in the present Example, and the uniaxial compressive strength after 28 days of mixing in the case of the water content ratio of 60%, 50% and 40% in Table 1. 本実施例の土質材料を用いた岸壁の鋼矢板背面構造を概略的に示す断面模式図である。It is a cross-sectional schematic diagram which shows roughly the steel sheet pile back structure of a quay using the earth material of a present Example. 本実施例での地盤造成施工時に採取した試料を一定期間養生した後に実施した一軸圧縮試験結果と混合後経過期間との関係を示すグラフである。It is a graph which shows the relationship between the uniaxial compression test result implemented after curing the sample extract | collected at the time of the ground preparation in a present Example for a fixed period, and the elapsed time after mixing. 図7と同様の試料を一定期間養生した後に実施した透水試験結果と混合後経過期間との関係を示すグラフである。It is a graph which shows the relationship between the water permeability test result implemented after curing the sample similar to FIG. 7 for a fixed period, and the elapsed time after mixing.

以下、本発明を実施するための形態について説明する。本実施形態による土質材料は、細粒分の含有率が20%以上の火山灰土と、アルカリ度が高い製鋼スラグと、水とを混合し、火山灰土と水との混合時の含水比が40〜60重量%であることで、混合28日後の一軸圧縮強さが50kN/m2以上であり、混合91日後の透水係数が1.0×10-7m/s以下である。 Hereinafter, modes for carrying out the present invention will be described. The soil material according to the present embodiment is a mixture of volcanic ash soil with a fine particle content of 20% or more, steelmaking slag with high alkalinity, and water, and the water content ratio when mixing the volcanic ash soil and water is 40. By being -60% by weight, the uniaxial compressive strength after 28 days of mixing is 50 kN / m 2 or more, and the hydraulic conductivity after 91 days of mixing is 1.0 × 10 −7 m / s or less.

火山灰土とは、火山灰が堆積して形成された地盤で、一般的に可溶性シリカを多く含み、アルカリ環境下で水酸化カルシウムと反応して、カルシウム・シリケート水和物を生成し固化するポゾラン反応性を有している土である。北海道などでは、現在活動中の火山が多数あり、火山灰土は安価で大量に調達することが可能である。   Volcanic ash soil is a ground formed by the accumulation of volcanic ash, which generally contains a lot of soluble silica and reacts with calcium hydroxide in an alkaline environment to form calcium silicate hydrate and solidify. It is a soil that has sex. In Hokkaido and other countries, there are many active volcanoes, and volcanic ash soil can be procured at a low price.

なお、コンクリート用混和剤としてのポゾラン材の規格として、ASTM C618があるが、この規格には、Class N(天然ポゾランは、SiO2+Al2O3+Fe2O3が70%以上、SO3が4.0%以下、強熱減量が10%以下と規定されている(非特許文献1参照)。また、火山灰のポゾラン性評価方法の規格としては、BS EN 196-5:2005(Pozzolanicity test for pozzolanic cements)がある。 In addition, there is ASTM C618 as a standard of pozzolanic material as an admixture for concrete, but this standard includes Class N (natural pozzolana is more than 70% of SiO 2 + Al 2 O 3 + Fe 2 O 3 and SO 3 It is specified that the loss on ignition is less than 4.0% and the loss on ignition is less than 10% (see Non-Patent Document 1), and the standard for evaluating the pozzolanic properties of volcanic ash is BS EN 196-5: 2005 (Pozzolanicity test for pozzolanic cements )

火山灰土の細粒分の含有率を20%以上としたのは、同様のメカニズムで固化するカルシア改質土の原材料である浚渫土の条件と同様であると考えられるからである。   The reason why the fine ash content of the volcanic ash soil is set to 20% or more is considered to be the same as the conditions of the dredged soil that is the raw material of the calcia-modified soil that solidifies by the same mechanism.

製鋼スラグとして、溶銑予備処理、転炉吹錬、鋳造などの工程で発生する製鋼系スラグ等を用いることができる。アルカリ度の高い製鋼スラグは、pHが12以上、または、遊離CaO:f-CaOを0.5%以上、好ましくは1.0%以上含有するものをいう。f-CaOを0.5%以上、好ましくは1.0%以上含有する製鋼スラグとしたのは、同様のメカニズム(Caの溶出による固化反応)で固化するカルシア改質土に適用する製鋼スラグの条件と同様と考えられるためである(特許文献1,2,沿岸技術研究センター「港湾・空港・海岸等におけるカルシア改質土利用技術マニュアル」附2-5頁、2017)参照)。   As the steelmaking slag, a steelmaking slag generated in processes such as hot metal preliminary treatment, converter blowing, and casting can be used. Steelmaking slag having a high alkalinity means one having a pH of 12 or more or containing free CaO: f-CaO of 0.5% or more, preferably 1.0% or more. Steelmaking slag containing 0.5% or more, preferably 1.0% or more of f-CaO is the same as the conditions for steelmaking slag applied to calcia modified soil that is solidified by the same mechanism (solidification reaction by elution of Ca). (See Patent Documents 1 and 2, Coastal Technology Research Center “Technical Manual for Utilization of Calcia Modified Soil at Ports, Airports, Coasts, etc.” Appendix 2-5, 2017)).

また、製鋼スラグのアルカリ度が低い場合、セメント、高炉スラグ微粉末、または、高炉セメントをさらに混合して一軸圧縮強さおよび透水性の調整を行うことができる。高炉スラグ微粉末は、高炉水砕スラグを粉砕したものまたはこれに石膏を添加したもの等を用いることができる。高炉セメントは高炉スラグ微粉末からなる。火山灰土にセメントを混合した改良土は、混合28日以降の一軸圧縮強さ上昇や透水性低下がほとんどみられないのに対し、本実施形態による火山灰土とセメントと製鋼スラグと水とを混合した改良土(土質材料)は、混合28日以降の長期強度の伸びが大きく、透水性も低下する。これは、製鋼スラグと火山灰土とでポゾラン反応が生じて長期的に強度が向上し透水性が低下するためと考えられる。このため、セメント、高炉スラグ微粉末、または、高炉セメントをさらに混合した土質材料では、火山灰土と水との混合時の含水比の上限は80重量%であってよい。   Moreover, when the alkalinity of steelmaking slag is low, uniaxial compressive strength and water permeability can be adjusted by further mixing cement, blast furnace slag fine powder, or blast furnace cement. As the blast furnace slag fine powder, pulverized blast furnace granulated slag or one obtained by adding gypsum to this can be used. Blast furnace cement consists of fine blast furnace slag powder. The improved soil in which cement is mixed with volcanic ash soil shows almost no increase in uniaxial compressive strength and low permeability after 28 days of mixing, whereas volcanic ash soil, cement, steelmaking slag and water are mixed according to this embodiment. The improved soil (soil material) has a large increase in long-term strength after 28 days of mixing, and the water permeability also decreases. This is presumably because the pozzolanic reaction occurs between steelmaking slag and volcanic ash soil, and the strength is improved over the long term and the water permeability is lowered. For this reason, in the soil material further mixed with cement, blast furnace slag fine powder, or blast furnace cement, the upper limit of the water content ratio when mixing volcanic ash soil and water may be 80% by weight.

次に、本実施形態による土質材料の製造方法の主要な工程について図1のフローチャートを参照して説明する。土質材料の製造プラント等において、火山灰土をバックホウにより投入ホッパーに貯留し(S01)、製鋼スラグをバックホウにより別の投入ホッパーに貯留し(S02)、水をタンクに貯留する(S03)。このようにして、火山灰土と製鋼スラグと水とを用意してから、投入ホッパーからの火山灰土を計量ベルトコンベア等で計量し(S04)、投入ホッパーからの製鋼スラグを計量ベルトコンベア等で計量し(S05)、タンクからポンプにより送られた水を流量計等で計量し(06)、これらの計量された各材料を運搬し連続式2軸パドルミキサ等で混合し(S07)、混合された土質材料を施工場所へと運搬し打設し(S08)、所定期間養生する(S09)。   Next, main steps of the method for producing a soil material according to the present embodiment will be described with reference to the flowchart of FIG. In a soil material manufacturing plant or the like, volcanic ash soil is stored in a charging hopper by a backhoe (S01), steelmaking slag is stored in another charging hopper by a backhoe (S02), and water is stored in a tank (S03). After preparing volcanic ash soil, steelmaking slag and water in this way, the volcanic ash soil from the input hopper is weighed with a weighing belt conveyor or the like (S04), and the steelmaking slag from the input hopper is measured with a weighing belt conveyor or the like. (S05), the water sent by the pump from the tank was weighed with a flow meter (06), and each of these weighed materials was transported and mixed with a continuous 2-shaft paddle mixer (S07) and mixed. The soil material is transported to the construction site and placed (S08), and cured for a predetermined period (S09).

上述の製造方法により、混合28日後の一軸圧縮強さが50kN/m2以上であり、混合91日後の透水係数が1.0×10-7m/s以下である土質材料を得ることができる。また、必要に応じて、セメント、高炉スラグ微粉末、または、高炉セメントを混合する場合は、水と混合してセメントミルクとしてから流量計等で計量して所定量を混合する。 By the manufacturing method described above, a soil material having a uniaxial compressive strength of 50 kN / m 2 or more after 28 days of mixing and a water permeability coefficient of 1.0 × 10 −7 m / s or less after 91 days of mixing can be obtained. . Moreover, when mixing a cement, blast furnace slag fine powder, or a blast furnace cement as needed, it mixes with water, is made into cement milk, and measures with a flowmeter etc. and mixes predetermined amount.

火山灰土は、浚渫土と比べて自然含水比が低く、粘性も小さいため、細粒分を含む製鋼スラグと混合するときには、本実施形態のように連続式2軸パドルミキサ等を用いることが好ましい。これにより、短時間で混合できるため、施工時間が短縮可能で、施工コストの低減を実現できる。   Since volcanic ash soil has a lower natural water content and lower viscosity than dredged soil, it is preferable to use a continuous biaxial paddle mixer or the like as in this embodiment when mixing with steelmaking slag containing fine particles. Thereby, since it can mix in a short time, construction time can be shortened and construction cost reduction is realizable.

なお、図1の火山灰土と製鋼スラグと水との計量工程(S04〜S06)は、次のように行う。火山灰土と水とについては、火山灰土と水との混合時の含水比が40〜60重量%になるように火山灰土と水とを計量する(S04,S06)。製鋼スラグについては火山灰土に関して所定の容積率αとなるように計量する(S05)。容積率αは、湿潤単位容積質量より算出される火山灰土の容積Vsと、表乾密度より算出される製鋼スラグの実容積Vcとから、次式(1)で求めることができる。
α=Vc/(Vc+Vs) (1)
また、セメント、高炉スラグ微粉末、または、高炉セメントをさらに加える場合は、火山灰土と製鋼スラグと水とを混合した土質材料に外割りで添加して混合する。
In addition, the measurement process (S04-S06) of volcanic ash soil, steelmaking slag, and water of FIG. 1 is performed as follows. About volcanic ash soil and water, volcanic ash soil and water are measured so that the water content ratio at the time of mixing volcanic ash soil and water may become 40 to 60 weight% (S04, S06). Steelmaking slag is measured so as to have a predetermined volume ratio α with respect to volcanic ash soil (S05). The volume ratio α can be obtained by the following equation (1) from the volume Vs of volcanic ash soil calculated from the wet unit volume mass and the actual volume Vc of steelmaking slag calculated from the surface dry density.
α = Vc / (Vc + Vs) (1)
Moreover, when adding cement, blast furnace slag fine powder, or blast furnace cement further, it adds to the earth material which mixed volcanic ash soil, steelmaking slag, and water, and is mixed and mixed.

次に、実施例により本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.

次の表1のように、実施例として火山灰(細粒分含有率33.3%、自然含水比21.3%)に加水して火山灰の含水比を40%、50%、60%の3段階に調整し、f-CaOの異なる3種類の製鋼スラグA,B,Cと混合した9種類(A-1〜3,B-1〜3,C-1〜3)の土質材料を一定期間養生した後、一軸圧縮試験と透水試験を実施した。また、比較例としてf-CaOの異なる製鋼スラグD(D-1〜3)を用いた以外は、同様にして同試験を実施した。それらの結果を表1にあわせて示す。なお、一軸圧縮試験は、JIS A1216:2009(土の一軸圧縮試験方法)に基づいて行い、透水試験は、JIS A 1218:2009(土の透水試験方法)に基づいて行った。また、表や図面では、冪の指数を、Eを用いて表す場合があり、たとえば、7.8E-08は、7.8×10-8を意味する。 As shown in Table 1 below, the water content of the volcanic ash is adjusted to three levels of 40%, 50% and 60% by adding water to the volcanic ash (fine particle content: 33.3%, natural water content: 21.3%) as an example. After curing for a certain period of nine types of soil materials (A-1 to 3, B-1 to 3, C-1 to 3) mixed with three types of steelmaking slags A, B, and C with different f-CaO, A uniaxial compression test and a water permeability test were conducted. Moreover, the same test was implemented similarly except having used steelmaking slag D (D-1-3) from which f-CaO differs as a comparative example. The results are also shown in Table 1. The uniaxial compression test was performed based on JIS A1216: 2009 (soil uniaxial compression test method), and the water permeability test was performed based on JIS A 1218: 2009 (soil permeability test method). In the tables and drawings, the index of 冪 may be expressed by using E, for example, 7.8E-08 means 7.8 × 10 −8 .

Figure 2019163637
Figure 2019163637

図2は、表1の実施例、比較例の結果のうち、混合28日後、混合91日後の一軸圧縮強さをケース(A-1〜D-3)毎に示すグラフである。図3は、表1の実施例、比較例の結果のうち、混合91日後の透水係数と含水比との関係を示すグラフである。表1、図2,図3から、土質材料の養生期間が長くなるにつれて一軸圧縮強さが増加すること、および、透水係数が小さくなることがわかる。また、実施例の3種類の製鋼スラグA,B,Cの各ケース(A-1〜C-3)についてはいずれも、混合28日後の一軸圧縮強さが50kN/m2を超えるとともに、混合91日後の透水係数が1.0×10-7m/s以下となった。 FIG. 2 is a graph showing the uniaxial compressive strength after mixing 28 days and mixing 91 days for each case (A-1 to D-3) among the results of Examples and Comparative Examples in Table 1. FIG. 3 is a graph showing the relationship between the water permeability and the water content ratio after 91 days of mixing, among the results of Examples and Comparative Examples in Table 1. From Table 1, FIG. 2, and FIG. 3, it turns out that a uniaxial compressive strength increases and the hydraulic conductivity becomes small as the curing period of a soil material becomes long. Moreover, about each case (A-1-C-3) of three types of steelmaking slag A, B, and C of an Example, while the uniaxial compressive strength after mixing 28 days exceeds 50 kN / m < 2 >, mixing The hydraulic conductivity after 91 days became 1.0 × 10 -7 m / s or less.

比較例の製鋼スラグDでは、含水比50%と60%のケース(D-1、D-2)について混合28日後の一軸圧縮強さが50kN/m2に到達せず、含水比40%のケース(D-3)では50kN/m2を超えたが、図3のように、混合91日後の透水係数が全ての含水比について1.0×10-7m/s以下にならなかった。これは、製鋼スラグDは、後述のように、f-CaOが少なく、pHが小さく、アルカリ度が小さいためと考えられる。なお、本実施形態のような土質材料は含水比が低い程強度が大きくなるが、表1のケース以外の実験において、含水比を30%とした場合には材料の混練ができなかった。また、含水比80%の場合には供試体が自立しなかった。 In the steelmaking slag D of the comparative example, the uniaxial compressive strength after 28 days of mixing did not reach 50 kN / m 2 for the cases (D-1, D-2) with a moisture content of 50% and 60%, and the moisture content was 40%. In case (D-3), it exceeded 50 kN / m 2 , but as shown in FIG. 3, the hydraulic conductivity after 91 days of mixing was not less than 1.0 × 10 −7 m / s for all the water content ratios. This is probably because the steelmaking slag D has a low f-CaO, a low pH, and a low alkalinity, as will be described later. The soil material as in this embodiment has a higher strength as the moisture content is lower. However, in experiments other than the cases shown in Table 1, the materials could not be kneaded when the moisture content was 30%. In addition, when the water content was 80%, the specimen did not stand by itself.

表1と同じ火山灰と製鋼スラグDを使用し、さらに高炉セメントを混合し、含水比を60%とし、高炉セメントの添加量を30kg/m3、100kg/m3とした実施例(D-5、D-6)について表1と同様の試験を行った。その結果を次の表2に示す。 Example using the same volcanic ash and steelmaking slag D as shown in Table 1 and mixing blast furnace cement to a moisture content of 60% and adding blast furnace cement to 30kg / m 3 and 100kg / m 3 (D-5 , D-6) were tested in the same manner as in Table 1. The results are shown in Table 2 below.

Figure 2019163637
Figure 2019163637

表1の比較例(D-1)は、高炉セメントを混合せず、混合後28日一軸圧縮強さが50kN/m2に満たず、透水係数が1.0×10-7m/sを超えているが、表2の高炉セメントを混合した実施例(D-5、D-6)は、混合28日後の一軸圧縮強さが50kN/m2を大きく越えるとともに、透水係数は混合28日後の段階で1.0×10-7m/s以下となった。透水係数は、製鋼スラグと火山灰土とでポゾラン反応が生じて長期的に透水性が低下すると考えられる。また、含水比が80%と高い実施例(D-7)においても、高炉セメントを添加することにより、50kN/m2以上の一軸圧縮強さと1.0×10-7m/s以下の透水係数を達成することができた。 Comparative Example (D-1) in Table 1 shows no mixing of blast furnace cement, 28 days after mixing, uniaxial compressive strength is less than 50 kN / m 2 , and hydraulic conductivity exceeds 1.0 × 10 -7 m / s However, in the examples (D-5, D-6) mixed with blast furnace cement in Table 2, the uniaxial compressive strength after 28 days of mixing greatly exceeded 50 kN / m 2 and the hydraulic conductivity was the stage after 28 days of mixing. It became 1.0 × 10 -7 m / s or less. The hydraulic conductivity is considered to be that the pozzolanic reaction occurs between steelmaking slag and volcanic ash soil, resulting in a decrease in water permeability over the long term. Also in Example (D-7), which has a high water content ratio of 80%, by adding blast furnace cement, a uniaxial compressive strength of 50 kN / m 2 or more and a hydraulic conductivity of 1.0 × 10 -7 m / s or less are achieved. Could be achieved.

次に、表1,表2の製鋼スラグA〜Dについてf-CaOとpHの測定を行った結果を次の表3に示す。表3の各製鋼スラグのpHの測定結果と、表1の含水比60%,50%,40%の場合の混合91日後の透水係数との関係を図4に示す。図4から透水係数が1.0×10-7m/s以下となる条件を求めると、pHが11.9以上となることがわかる。 Next, Table 3 shows the results of measuring f-CaO and pH for steelmaking slags A to D shown in Tables 1 and 2. FIG. 4 shows the relationship between the measurement results of the pH of each steelmaking slag in Table 3 and the hydraulic conductivity after 91 days of mixing when the water content ratios in Table 1 are 60%, 50% and 40%. From FIG. 4, it is found that the pH is 11.9 or more when the condition that the water permeability coefficient is 1.0 × 10 −7 m / s or less is obtained.

Figure 2019163637
Figure 2019163637

また、表3の製鋼スラグのpHの測定結果と、表1の含水比60%,50%,40%の場合の混合28日後の一軸圧縮強さとの関係を図5に示す。図5からpHが11.9以上であると、混合28日後の一軸圧縮強さが50kN/m2を大きく越えることがわかる。なお、f-CaOの測定は、エチレングリコール抽出-ICP発光分光分析法(鉄鋼協会法)により行い、pHの測定は、環境省告示46号による検液作成-ガラス電極法により行った。 Further, FIG. 5 shows the relationship between the measurement results of the pH of the steelmaking slag shown in Table 3 and the uniaxial compressive strength after 28 days of mixing when the water content ratios shown in Table 1 are 60%, 50% and 40%. FIG. 5 shows that when the pH is 11.9 or more, the uniaxial compressive strength after 28 days of mixing greatly exceeds 50 kN / m 2 . In addition, f-CaO was measured by ethylene glycol extraction-ICP emission spectrometry (Iron and Steel Institute method), and pH was measured by preparing a test solution according to Ministry of the Environment Notification No. 46-glass electrode method.

本実施形態による土質材料では製鋼スラグからCaが溶出して固化反応が進むが、このCaの溶出に伴いpHが上昇する。表3からわかるように、製鋼スラグDは、製鋼スラグA〜Cよりもf-CaOが少なく、pHが小さいため、表1の結果のように、一軸圧縮強さが小さく透水係数が大きくなった。ただし、上述のように、製鋼スラグのpHやf-CaOが不足する場合には、セメント、高炉スラグ微粉末、または、高炉セメントを添加することにより目標強度や目標透水係数を満たすことが可能である。   In the soil material according to the present embodiment, Ca is eluted from the steelmaking slag and the solidification reaction proceeds, but the pH increases with the dissolution of Ca. As can be seen from Table 3, because the steelmaking slag D has less f-CaO and less pH than the steelmaking slags A to C, the uniaxial compressive strength is small and the water permeability coefficient is large, as shown in Table 1. . However, as mentioned above, when the steelmaking slag has insufficient pH or f-CaO, it is possible to satisfy the target strength and target permeability by adding cement, blast furnace slag fine powder, or blast furnace cement. is there.

次に、火山灰・製鋼スラグ・高炉セメント・水を連続式2軸パドルミキサ(100m3/h)により混合して土質材料を作製し、この土質材料をグラブにより岸壁の鋼矢板背面に投入し、遮水対策層・液状化対策層とした地盤造成例について説明する。この岸壁の鋼矢板背面構造の断面模式図を図6に示す。図6の岸壁の鋼矢板背面構造は、海水に接する鋼矢板の背面(陸側)に裏込石が配置され、そのさらに陸側に本実施例の土質材料が打設されて配置されたものである。なお、土質材料は、図1のように、各材料の混合後に運搬され打設されてから、所定期間養生される。 Next, volcanic ash, steelmaking slag, blast furnace cement, and water are mixed by a continuous twin-shaft paddle mixer (100 m 3 / h) to produce a soil material. An example of ground formation as a water countermeasure layer / liquefaction countermeasure layer will be described. The cross-sectional schematic diagram of the steel sheet pile back structure of this quay is shown in FIG. The steel sheet pile back structure of the quay in FIG. 6 is a steel sheet pile in contact with seawater on the back side (land side) with a backside stone placed on the land side with the soil material of this embodiment. It is. As shown in FIG. 1, the soil material is transported after being mixed and placed and then cured for a predetermined period.

図6の岸壁の鋼矢板背面構造に用いた土質材料は、火山灰(細粒分含有率35%程度、平均自然含水比26.6%)に火山灰の含水比が65%になるように水を加え、製鋼スラグを容積率35%になるように加え、高炉セメントを50kg/m3分添加し混合し作製された。この地盤造成施工時に採取した試料(9箇所から採取)を一定期間養生した後、一軸圧縮試験および透水試験を実施した結果を図7,図8に示す。図7のように、混合後期間の経過とともに一軸圧縮強さが増加し、混合28日後の一軸圧縮強さが50kN/m2を超えた。液状化しない一軸圧縮強さは50〜100kN/m2以上とされているが(「事前混合処理工法技術マニュアル」沿岸技術研究センター,2008)、この試験結果はこれを大きく超えている。また、図8のように、混合後期間の経過とともに透水係数が低下し、混合91日後には全てのケースにおいて、透水係数が1.0×10-7m/s以下となった。このように、図6の岸壁の鋼矢板背面構造は、本実施例による土質材料からなる遮水対策層・液状化対策層を備えることができた。 The soil material used for the steel sheet pile rear structure of the quay in Fig. 6 is to add water so that the water content of the volcanic ash is 65% to the volcanic ash (fine particle content of about 35%, average natural water content 26.6%), Steelmaking slag was added to a volume ratio of 35%, and blast furnace cement was added and mixed at 50 kg / m 3 min. FIGS. 7 and 8 show the results of conducting a uniaxial compression test and a water permeability test after curing the samples (collected from nine places) collected during the ground preparation for a certain period of time. As shown in FIG. 7, the uniaxial compressive strength increased with the lapse of the post-mixing period, and the uniaxial compressive strength after 28 days of mixing exceeded 50 kN / m 2 . The uniaxial compressive strength without liquefaction is 50-100 kN / m 2 or more (“Pre-mixing Method Technical Manual” Coastal Technology Research Center, 2008), but this test result greatly exceeds this. Moreover, as shown in FIG. 8, the hydraulic conductivity decreased with the passage of the period after mixing, and the hydraulic conductivity became 1.0 × 10 −7 m / s or less in all cases after 91 days of mixing. Thus, the steel sheet pile back structure of the quay of FIG. 6 was able to be provided with the water shielding countermeasure layer and the liquefaction countermeasure layer made of the soil material according to this example.

次に、本実施例の土質材料において用いた火山灰と、コンクリートの混和剤として火山灰を使用する場合の各条件の文献値(ASTM C618)との比較を次の表4に示す。表4からわかるように、本実施例で使用した火山灰は、コンクリートの混和剤としても適用可能である。なお、強熱減量の試験は、JIS R 5202に基づいて行った。   Next, Table 4 shows a comparison between the volcanic ash used in the soil material of this example and the literature values (ASTM C618) for each condition when using volcanic ash as an admixture for concrete. As can be seen from Table 4, the volcanic ash used in this example is also applicable as an admixture for concrete. The ignition loss test was performed based on JIS R 5202.

Figure 2019163637
Figure 2019163637

以上のように本発明を実施するための形態および実施例について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、図4の鋼矢板背面構造は岸壁に限定されず、護岸にも適用可能であることはもちろんである。また、本発明による土質材料は、岸壁や護岸の鋼矢板背面構造への使用に限定されず、他の地盤造成にも使用できることはもちろんであり、たとえば、地盤の埋め立てや埋め戻しのために使用できる。   As mentioned above, although the form and Example for implementing this invention were demonstrated, this invention is not limited to these, A various deformation | transformation is possible within the range of the technical idea of this invention. For example, the steel sheet pile rear structure in FIG. 4 is not limited to a quay, but can be applied to a seawall. In addition, the soil material according to the present invention is not limited to use on the steel sheet pile back structure of a quay or revetment, but can be used for other ground preparations, for example, used for land reclamation and backfilling. it can.

本発明の土質材料、土質材料の製造方法および地盤造成方法によれば、火山灰土を用いることで、浚渫土を使用せずに所定の強度と遮水性能とを有する土質材料を得ることができ、この土質材料を用いることで地盤造成において遮水対策や液状化対策を有効に施すことができる。   According to the soil material, the soil material manufacturing method and the ground preparation method of the present invention, by using volcanic ash soil, a soil material having a predetermined strength and water shielding performance can be obtained without using dredged soil. By using this soil material, it is possible to effectively take measures for water shielding and liquefaction in ground formation.

Claims (7)

火山灰土と製鋼スラグと水とを混合した土質材料であって、
前記火山灰土と前記水との混合時の含水比が40〜60重量%であり、
前記混合28日後の一軸圧縮強さが50kN/m2以上であり、
前記混合91日後の透水係数が1.0×10-7m/s以下である、土質材料。
A soil material that mixes volcanic ash soil, steelmaking slag and water,
The water content at the time of mixing the volcanic ash soil and the water is 40 to 60% by weight,
The uniaxial compressive strength after 28 days of the mixing is 50 kN / m 2 or more,
A soil material having a hydraulic conductivity of 1.0 × 10 −7 m / s or less after 91 days of mixing.
前記火山灰土の細粒分含有率が20%以上である請求項1に記載の土質材料。   The soil material according to claim 1, wherein a content of fine particles of the volcanic ash soil is 20% or more. 前記製鋼スラグはpH12以上である請求項1または2に記載の土質材料。   The soil material according to claim 1 or 2, wherein the steelmaking slag has a pH of 12 or more. 火山灰土と製鋼スラグと水とを混合した土質材料であって、
セメントと高炉スラグ微粉末と高炉セメントとのうちの少なくとも1つをさらに混合し、
前記火山灰土と前記水との混合時の含水比が40〜80重量%であり、
前記混合28日後の一軸圧縮強さが50kN/m2以上であり、
前記混合91日後の透水係数が1.0×10-7m/s以下である、土質材料。
A soil material that mixes volcanic ash soil, steelmaking slag and water,
Further mixing at least one of cement, blast furnace slag fine powder and blast furnace cement;
The water content at the time of mixing the volcanic ash soil and the water is 40 to 80% by weight,
The uniaxial compressive strength after 28 days of the mixing is 50 kN / m 2 or more,
A soil material having a hydraulic conductivity of 1.0 × 10 −7 m / s or less after 91 days of mixing.
火山灰土と水と製鋼スラグとを混合し、前記火山灰土と前記水との混合時の含水比を40〜60重量%に調整し、
前記混合28日後の一軸圧縮強さが50kN/m2以上であり、
前記混合91日後の透水係数が1.0×10-7m/s以下である、土質材料の製造方法。
Mixing volcanic ash soil, water and steelmaking slag, adjusting the water content ratio at the time of mixing the volcanic ash soil and the water to 40-60 wt%,
The uniaxial compressive strength after 28 days of the mixing is 50 kN / m 2 or more,
The method for producing a soil material, wherein the water permeability after 91 days of mixing is 1.0 × 10 −7 m / s or less.
請求項1乃至4のいずれか1項に記載の土質材料、または、請求項5に記載の製造方法により製造された土質材料を打設することで地盤を造成する地盤造成方法。   A soil creation method for creating a ground by placing the soil material according to any one of claims 1 to 4 or the soil material produced by the production method according to claim 5. 前記土質材料を埋め立てまたは埋め戻しのために打設する請求項6に記載の地盤造成方法。   The ground preparation method according to claim 6, wherein the soil material is placed for landfill or backfill.
JP2018052124A 2018-03-20 2018-03-20 Soil materials, soil material manufacturing methods, and ground preparation methods Active JP7401962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018052124A JP7401962B2 (en) 2018-03-20 2018-03-20 Soil materials, soil material manufacturing methods, and ground preparation methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018052124A JP7401962B2 (en) 2018-03-20 2018-03-20 Soil materials, soil material manufacturing methods, and ground preparation methods

Publications (2)

Publication Number Publication Date
JP2019163637A true JP2019163637A (en) 2019-09-26
JP7401962B2 JP7401962B2 (en) 2023-12-20

Family

ID=68065938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018052124A Active JP7401962B2 (en) 2018-03-20 2018-03-20 Soil materials, soil material manufacturing methods, and ground preparation methods

Country Status (1)

Country Link
JP (1) JP7401962B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263490A (en) * 1993-03-05 1994-09-20 Nippon Steel Corp Steelmaking slag-containing solidifying composition
JP2001090054A (en) * 1999-09-21 2001-04-03 Okumura Corp Engineering method for preventing liquefaction of sandy soil ground by chemical grouting
JP2003119465A (en) * 2001-10-05 2003-04-23 Kyokado Eng Co Ltd Liquefaction-preventing grouting chemical liquid
JP2006226000A (en) * 2005-02-18 2006-08-31 Jdc Corp Compounding method of solidification material in improved soil, and compounding method of solidification material and auxiliary agent in improved soil
JP2009121167A (en) * 2007-11-16 2009-06-04 Nippon Steel Corp Mud reforming material and method
JP2014133782A (en) * 2013-01-08 2014-07-24 Nippon Steel & Sumitomo Metal Soft soil conditioner, and improvement method of soft soil and improvement method of soft ground using the same
JP2015098699A (en) * 2013-11-19 2015-05-28 徳倉建設株式会社 Delay curing type fluidized soil and filling method of underground cavity
JP2016094782A (en) * 2014-11-17 2016-05-26 Jfeミネラル株式会社 Ground improvement method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6263490B2 (en) 2015-03-06 2018-01-17 株式会社ユニバーサルエンターテインメント Game machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263490A (en) * 1993-03-05 1994-09-20 Nippon Steel Corp Steelmaking slag-containing solidifying composition
JP2001090054A (en) * 1999-09-21 2001-04-03 Okumura Corp Engineering method for preventing liquefaction of sandy soil ground by chemical grouting
JP2003119465A (en) * 2001-10-05 2003-04-23 Kyokado Eng Co Ltd Liquefaction-preventing grouting chemical liquid
JP2006226000A (en) * 2005-02-18 2006-08-31 Jdc Corp Compounding method of solidification material in improved soil, and compounding method of solidification material and auxiliary agent in improved soil
JP2009121167A (en) * 2007-11-16 2009-06-04 Nippon Steel Corp Mud reforming material and method
JP2014133782A (en) * 2013-01-08 2014-07-24 Nippon Steel & Sumitomo Metal Soft soil conditioner, and improvement method of soft soil and improvement method of soft ground using the same
JP2015098699A (en) * 2013-11-19 2015-05-28 徳倉建設株式会社 Delay curing type fluidized soil and filling method of underground cavity
JP2016094782A (en) * 2014-11-17 2016-05-26 Jfeミネラル株式会社 Ground improvement method

Also Published As

Publication number Publication date
JP7401962B2 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
CN108203281B (en) Micro-expansion grouting material and preparation method thereof
KR100988151B1 (en) Hardening material comprising soil, industrial wastes, sea sand and desert sand, and method for preparing the same
JP5853399B2 (en) Manufacturing method of artificial stone
JP5047745B2 (en) Ground improvement material
CN105622023A (en) Silt curing agent using furnace slags
CN115140994A (en) High-strength cementing material, mould bag concrete, and preparation and application thereof
JP2011093750A (en) Mud-containing solidified matter and method for manufacturing the same
CN108821711A (en) A kind of slope protection plant-growing type eco-concrete and preparation method thereof
CN103965918A (en) Curing agent for water quenching manganese slag mollisol
JP2017122203A (en) Manufacturing method of mud-containing solidified body
JP5907246B2 (en) Manufacturing method of solidified body
JP6682920B2 (en) Manufacturing method of artificial stone
KR101600747B1 (en) Composition for solidification of spoil or sludge, method for solidification of spoil or sludge using the same, and solid matter prepared therefrom
KR101870874B1 (en) High density concrete composition and manufacturing method of high density concrete composition for manufacturing habor structure
JP2019163637A (en) Soil material, manufacturing method of soil material, and ground construction method
JPH10236862A (en) Backfilling material
JP2020015850A (en) Manufacturing method of calcia-modified soil
JP2015193537A (en) artificial stone
KR101816937B1 (en) Hydraulic cement composition for injection into soil, and method for improvement in soil using same
CN115140995A (en) Cementing material, mould bag concrete, preparation and application thereof
JP2011079990A (en) Grouting material
JP2015010010A (en) Salt damage-resistant concrete
JP4979365B2 (en) Concrete using concrete admixture
JP2001137894A (en) Method for solidifying mud and soil and artificially solidified ground
JP2002131481A (en) Method of solidification of radioactive waste

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220906

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231208

R150 Certificate of patent or registration of utility model

Ref document number: 7401962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150