JP2009116614A - Operation support device for vehicle - Google Patents

Operation support device for vehicle Download PDF

Info

Publication number
JP2009116614A
JP2009116614A JP2007288904A JP2007288904A JP2009116614A JP 2009116614 A JP2009116614 A JP 2009116614A JP 2007288904 A JP2007288904 A JP 2007288904A JP 2007288904 A JP2007288904 A JP 2007288904A JP 2009116614 A JP2009116614 A JP 2009116614A
Authority
JP
Japan
Prior art keywords
vehicle
risk
risk level
evaluation function
host vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007288904A
Other languages
Japanese (ja)
Other versions
JP5083959B2 (en
Inventor
Shinji Sawada
慎司 澤田
Yuichiro Tsukasaki
裕一郎 塚崎
Takehiko Fujioka
健彦 藤岡
Atsushi Shibata
温史 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Fuji Heavy Industries Ltd filed Critical University of Tokyo NUC
Priority to JP2007288904A priority Critical patent/JP5083959B2/en
Publication of JP2009116614A publication Critical patent/JP2009116614A/en
Application granted granted Critical
Publication of JP5083959B2 publication Critical patent/JP5083959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Regulating Braking Force (AREA)
  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve safety by controlling a vehicle to pass an optimal evasion route by taking into consideration not only a current risk but also a risk predicted in the future, and to achieve the traveling of a natural evasion route by suppressing useless acceleration. <P>SOLUTION: A control unit 5 sets a current total risk function by using a white line, guard rail, side wall and three-dimensional object existing in the periphery of its own vehicle 1 as an object, and predicts the temporal change of the total risk function by predicting the temporal change of the position of each object, and converts the total risk function in each distance ahead its own vehicle, and sets an evaluation function J based on the converted total risk function and the longitudinal acceleration ax0 and lateral acceleration ay0 of its own vehicle and a parameter showing the weight of a traveling time, and calculates the longitudinal acceleration ax0 and lateral acceleration ay0 of its own vehicle to minimize the evaluation function J as controlled variables. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ステレオカメラ、単眼カメラ、ミリ波レーダ等で検出した自車両周辺の白線や立体物に対して危険度を設定し、最適経路を走行させるべく操舵制御を行い、或いは、制動制御を行わせる車両の運転支援装置に関する。   The present invention sets the degree of danger for white lines and three-dimensional objects around the vehicle detected by a stereo camera, a monocular camera, a millimeter wave radar, etc., performs steering control to drive the optimum route, or performs braking control. The present invention relates to a driving support apparatus for a vehicle to be performed.

近年、車両においては、車載したカメラやレーザレーダ装置等により前方の走行環境を検出し、この走行環境データから障害物や先行車を認識して、警報や自動ブレーキ、自動操舵を実行して安全性を向上させる様々な技術が開発され実用化されている。   In recent years, in vehicles, the on-board camera or laser radar device detects the driving environment ahead, recognizes obstacles and leading vehicles from this driving environment data, and executes alarms, automatic brakes, and automatic steering for safety. Various technologies for improving the performance have been developed and put into practical use.

例えば、特開2004−110346号公報や特開2007−253745号公報では、自車両の周囲に存在する障害物を検出し、自車両の障害物に対する現状のリスクポテンシャルを算出して、このリスクポテンシャルに基づき、ドライバによる自車両の前後運動および左右運動に関わる運転操作を促すように車両機器の動作を制御する技術や、障害物を回避するように操舵量を算出する技術が開示されている。
特開2004−110346号公報 特開2007−253745号公報
For example, in Japanese Patent Application Laid-Open Nos. 2004-110346 and 2007-253745, an obstacle present around the host vehicle is detected, a current risk potential for the obstacle of the host vehicle is calculated, and this risk potential is calculated. Based on the above, there are disclosed a technique for controlling the operation of the vehicle equipment so as to prompt the driver to perform driving operations related to the longitudinal and lateral movements of the host vehicle, and a technique for calculating the steering amount so as to avoid obstacles.
JP 2004-110346 A JP 2007-253745 A

しかしながら、上述の特許文献1で開示される技術では、あくまでも現状のリスクポテンシャルに応じた制御となるため、自車両や障害物が移動することにより変化する危険度に対して有効に対応することができないという問題がある。すなわち、現状では最適と思われる経路であっても、将来的には却って危険度が増加してしまうような場合も多く存在し、そうした時々刻々変化する交通環境に適切に対応することが難しいという問題がある。また、最適な回避ルートは、可能な限り無駄な加速をすることなく走行できるルートを選定することが自然であり望ましい。   However, in the technique disclosed in Patent Document 1 described above, since control according to the current risk potential is performed, it is possible to effectively cope with the risk that changes due to movement of the host vehicle or an obstacle. There is a problem that you can not. In other words, even if the route seems to be optimal at present, there are many cases where the degree of risk will increase in the future, and it is difficult to appropriately respond to such an ever-changing traffic environment. There's a problem. In addition, it is natural and desirable to select an optimum avoidance route that can travel without unnecessary acceleration as much as possible.

一方、上述の特許文献2には、将来の危険度を考慮して回避ルートを演算する技術が開示されている。しかしながら、その技術では、将来の危険度を微小時間毎の加算により算出しているため、障害物の大きさ(道路上の縦横の長さ)で危険度を設定した場合、障害物が小さく自車両に対する相対速度の差が大きいと、障害物に対する距離分解能が粗くなり、適切な回避ルートを得られなくなる虞がある。具体的には、障害物を回避せずとも、車速を上げて短時間で危険領域を走破するという回避ルートを演算してしまう虞がある。   On the other hand, Patent Document 2 described above discloses a technique for calculating an avoidance route in consideration of a future risk level. However, in that technology, the future risk level is calculated by adding every minute time. Therefore, when the risk level is set by the size of the obstacle (vertical and horizontal length on the road), the obstacle is small and the If the difference in relative speed with respect to the vehicle is large, the distance resolution with respect to the obstacle becomes rough, and there is a possibility that an appropriate avoidance route cannot be obtained. Specifically, there is a possibility of calculating an avoidance route in which the vehicle speed is increased and the dangerous area is run in a short time without avoiding the obstacle.

本発明は上記事情に鑑みてなされたもので、障害物の大きさや車速が異なる状況においても、現在のみならず将来予測される危険度を考慮して最適な回避ルートを通過するように制御して安全性を向上させることができ、また、無駄な加速を抑制して自然な回避ルートの走行を可能とする車両の運転支援装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and even when the size of the obstacle and the vehicle speed are different, control is performed so as to pass the optimum avoidance route in consideration of not only the present but also the predicted risk in the future. It is an object of the present invention to provide a vehicle driving support device that can improve safety and that can travel on a natural avoidance route while suppressing unnecessary acceleration.

本発明は、自車両の周辺環境を認識する周辺環境認識手段と、上記認識した周辺環境の各対象に現在の危険度を設定する危険度設定手段と、上記危険度を設定した各対象の位置の時間的変化を予測して上記危険度の時間的変化を予測する危険度変化予測手段と、上記危険度変化予測手段で予測した上記危険度の時間的変化に基づき自車両前方の各距離毎に変換して設定するリスク関数の第1の演算項と少なくとも前方の距離毎の自車両の加速状態に応じて設定する第2の演算項とを有する評価関数を設定する評価関数設定手段と、上記評価関数が最小となる上記自車両の加速状態を演算し、該自車両の加速状態を制御量として出力する制御量演算手段とを備えたことを特徴としている。   The present invention includes a surrounding environment recognizing unit for recognizing the surrounding environment of the host vehicle, a risk setting unit for setting a current risk level for each object in the recognized surrounding environment, and a position of each target for which the risk level is set. A risk change predicting means for predicting a temporal change of the risk and predicting a temporal change of the risk, and for each distance ahead of the host vehicle based on the temporal change of the risk predicted by the risk change predicting means. An evaluation function setting means for setting an evaluation function having a first calculation term of the risk function that is converted and set and a second calculation term that is set according to the acceleration state of the host vehicle at least for each forward distance; Control amount calculation means for calculating the acceleration state of the host vehicle that minimizes the evaluation function and outputting the acceleration state of the host vehicle as a control amount is provided.

本発明による車両の運転支援装置によれば、障害物の大きさや車速が異なる状況においても、現在のみならず将来予測される危険度を考慮して最適な回避ルートを通過するように制御して安全性を向上させることができ、また、無駄な加速を抑制して自然な回避ルートの走行が可能となる。   According to the vehicle driving support device of the present invention, even when the size of the obstacle and the vehicle speed are different, the vehicle is controlled so as to pass through the optimum avoidance route in consideration of not only the present but also the predicted risk in the future. Safety can be improved, and a natural avoidance route can be traveled by suppressing unnecessary acceleration.

以下、図面に基づいて本発明の実施の形態を説明する。
図1乃至図6は本発明の実施の一形態を示し、図1は車両に搭載した運転支援装置の概略構成図、図2は運転支援制御プログラムのフローチャート、図3は立体物に設定するリスク関数の説明図、図4は前後方向の長さが不明な立体物に設定するリスク関数の説明図、図5は前方に設定されるリスク関数の一例を示す説明図、図6は生成される回避ルートの一例を示す説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 6 show an embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a driving support device mounted on a vehicle, FIG. 2 is a flowchart of a driving support control program, and FIG. 3 is a risk set for a three-dimensional object. 4 is an explanatory diagram of a risk function set for a three-dimensional object whose length in the front-rear direction is unknown, FIG. 5 is an explanatory diagram illustrating an example of a risk function set in front, and FIG. 6 is generated. It is explanatory drawing which shows an example of an avoidance route.

図1において、符号1は自動車等の車両(自車両)で、この車両1には、運転支援装置2が搭載されている。この運転支援装置2は、ステレオカメラ3、ステレオ画像認識装置4、制御ユニット5等を主要部として構成されている。   In FIG. 1, reference numeral 1 denotes a vehicle such as an automobile (own vehicle), and a driving support device 2 is mounted on the vehicle 1. The driving support device 2 includes a stereo camera 3, a stereo image recognition device 4, a control unit 5, and the like as main parts.

また、自車両1には、自車速Vを検出する車速センサ11、運転支援制御のON−OFF信号が入力されるメインスイッチ12等が設けられており、自車速Vはステレオ画像認識装置4と制御ユニット5に入力され、運転支援制御のON−OFF信号等は制御ユニット5に入力される。   In addition, the host vehicle 1 is provided with a vehicle speed sensor 11 that detects the host vehicle speed V, a main switch 12 to which an ON-OFF signal for driving support control is input, and the host vehicle speed V is the same as that of the stereo image recognition device 4. An ON-OFF signal or the like for driving support control is input to the control unit 5.

ステレオカメラ3は、ステレオ光学系として例えば電荷結合素子(CCD)等の固体撮像素子を用いた1組の(左右の)CCDカメラで構成される。これら左右のCCDカメラは、それぞれ車室内の天井前方に一定の間隔をもって取り付けられ、車外の対象を異なる視点からステレオ撮像し、画像データをステレオ画像認識装置4に入力する。   The stereo camera 3 is composed of a set of (left and right) CCD cameras using a solid-state imaging device such as a charge coupled device (CCD) as a stereo optical system. These left and right CCD cameras are respectively mounted at a certain interval in front of the ceiling in the vehicle interior, take a stereo image of an object outside the vehicle from different viewpoints, and input image data to the stereo image recognition device 4.

ステレオ画像認識装置4における、ステレオカメラ3からの画像の処理は、例えば以下のように行われる。まず、ステレオカメラ3で撮像した自車両1の進行方向の1組のステレオ画像対に対し、対応する位置のずれ量から距離情報を求め、距離画像を生成する。そして、このデータを基に、周知のグルーピング処理を行い、予め記憶しておいた3次元的な道路形状データ、側壁データ、立体物データ等の枠(ウインドウ)と比較し、白線データ、道路に沿って存在するガードレール、縁石等の側壁データを抽出すると共に、立体物を、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出する。   The processing of the image from the stereo camera 3 in the stereo image recognition device 4 is performed as follows, for example. First, distance information is obtained from a pair of stereo image pairs captured in the traveling direction of the host vehicle 1 taken by the stereo camera 3 from the corresponding positional shift amount, and a distance image is generated. Then, based on this data, a well-known grouping process is performed and compared with frames (windows) such as three-dimensional road shape data, side wall data, and three-dimensional object data stored in advance. Side wall data such as guardrails and curbs that exist along the road are extracted, and three-dimensional objects are classified and extracted into other three-dimensional objects such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, and utility poles.

上述の認識した各データは、図3(a)に示すように、自車両1を原点とし、自車両1の前後方向をX軸、幅方向をY軸とする座標系におけるそれぞれの位置が演算され、特に、立体物においては、それぞれの幅Wyと、2輪車、普通車両、大型車両の車両データにおいては、その前後方向長さWxが、例えば、3m、4.5m、10m等と予め推定される。そして、これら立体物の幅Wyと前後方向長さWxを基に、その立体物の現在存在する中心位置が(xobstacle,yobstacle)の座標で演算される。尚、車車間通信等により、車両の前後方向長さWxが精度良く得られる場合には、その長さデータを用いて、上述の中心位置を演算するようにしても良い。また、立体物の種別が分類できない場合等により、立体物の前後方向長さWxが得られない場合は、例えば、図4に示すように、立体物を正方形として考え、前後方向長さWxを幅Wyと同じ値とみなすようにしても良い。   As shown in FIG. 3 (a), each of the above recognized data is calculated as a position in a coordinate system having the own vehicle 1 as the origin, the front-rear direction of the own vehicle 1 as the X axis, and the width direction as the Y axis. In particular, in the case of a three-dimensional object, the width Wy of each vehicle, and in the vehicle data of a two-wheeled vehicle, a normal vehicle, and a large vehicle, the length Wx in the front-rear direction is, for example, 3 m, 4.5 m, or 10 m in advance. Presumed. Based on the width Wy and the length Wx in the front-rear direction of the three-dimensional object, the center position of the three-dimensional object is calculated using the coordinates of (xobstacle, yobstacle). In addition, when the vehicle longitudinal direction length Wx can be obtained with high accuracy by inter-vehicle communication or the like, the above-described center position may be calculated using the length data. In addition, when the type of the three-dimensional object cannot be classified or the like, the front-rear direction length Wx of the three-dimensional object cannot be obtained. For example, as shown in FIG. You may make it consider that it is the same value as the width Wy.

更に、立体物データにおいては、自車両1からの距離のX軸方向変化及びY軸方向変化から自車両1に対する相対速度が演算され、この相対速度に自車両1の速度Vをベクトル量を考慮して演算することにより、それぞれの立体物のX軸方向速度、Y軸方向速度(vxobstacle,vyobstacle)が演算される。   Further, in the three-dimensional object data, the relative speed with respect to the own vehicle 1 is calculated from the change in the X-axis direction and the change in the Y-axis direction of the distance from the own vehicle 1, and the vector V is taken into consideration for the speed V of the own vehicle 1 in this relative speed. Thus, the X-axis direction speed and the Y-axis direction speed (vxobstacle, vyobstacle) of each three-dimensional object are calculated.

こうして得られた各情報、すなわち、白線データ、道路に沿って存在するガードレール、縁石等の側壁データ、及び、立体物データ(種別、自車両1からの距離、中心位置(xobstacle,yobstacle)、速度(vxobstacle,vyobstacle)等)の各データは制御ユニット5に入力される。このように、本実施の形態においては、ステレオカメラ3及びステレオ画像認識装置4は、周辺環境認識手段として設けられている。   Each information obtained in this way, that is, white line data, guard rails existing along the road, side walls such as curbs, and solid object data (type, distance from own vehicle 1, center position (xobstacle, yobstacle), speed) (Vxobstacle, vyobstacle, etc.) is input to the control unit 5. Thus, in this embodiment, the stereo camera 3 and the stereo image recognition device 4 are provided as surrounding environment recognition means.

制御ユニット5は、車速センサ11から自車速V、ステレオ画像認識装置4から白線データ、道路に沿って存在するガードレール、縁石等の側壁データ、及び、立体物データ(種別、自車両1からの距離、中心位置(xobstacle,yobstacle)、速度(vxobstacle,vyobstacle)等)の各データが入力される。そして、後述する運転支援制御プログラムに従って、上述の各入力信号に基づき、前方に存在する白線、ガードレール、側壁、及び、立体物のそれぞれを対象として、現在の危険度をリスク関数Dline、Dobstacleとして設定し、これらリスク関数Dline、Dobstacleから現在のトータルリスク関数Dを設定する。その後、トータルリスク関数Dを設定した各対象の位置の時間的変化を予測してトータルリスク関数Dの時間的変化を予測し、このトータルリスク関数Dを自車両前方の各距離毎に変換し、この変換したトータルリスク関数Dと自車両の前後加速度ax0と横加速度ay0と走行時間の重みを表すパラメータとで評価関数Jを設定し、この評価関数Jが最小となる自車両の前後加速度ax0と横加速度ay0を制御量として演算する。そして、この横加速度ay0を目標操舵角δftに変換して操舵制御手段としての自動操舵制御装置23に制御信号を出力して操舵制御を実行させ、また、前後加速度ax0を制動制御手段としての自動ブレーキ制御装置22に信号を出力してブレーキ制御を実行させる。尚、自動ブレーキ制御装置22、自動操舵制御装置23に信号出力された場合は、ディスプレイ21によりその信号を視覚的に表示させ、ドライバに報知する。すなわち、制御ユニット5は、危険度設定手段、危険度変化予測手段、評価関数設定手段、及び、制御量演算手段としての機能を有して構成されている。   The control unit 5 detects the vehicle speed V from the vehicle speed sensor 11, white line data from the stereo image recognition device 4, side wall data such as guardrails and curbs along the road, and solid object data (type, distance from the vehicle 1). , Center position (xobstacle, yobstacle), velocity (vxobstacle, vyobstacle), etc.) are input. Then, according to the driving support control program described later, based on each input signal described above, the current risk level is set as the risk function Dline, Dobstacle for each of the white line, guardrail, side wall, and three-dimensional object existing ahead. Then, the current total risk function D is set from these risk functions Dline and Dobstacle. Thereafter, the temporal change of the position of each target for which the total risk function D is set is predicted to predict the temporal change of the total risk function D, and the total risk function D is converted for each distance ahead of the host vehicle. An evaluation function J is set with the converted total risk function D, the longitudinal acceleration ax0 and the lateral acceleration ay0 of the host vehicle, and a parameter representing the weight of the running time, and the longitudinal acceleration ax0 of the host vehicle that minimizes the evaluation function J The lateral acceleration ay0 is calculated as a control amount. The lateral acceleration ay0 is converted into a target steering angle δft and a control signal is output to the automatic steering control device 23 serving as a steering control means to execute steering control, and the longitudinal acceleration ax0 is automatically used as a braking control means. A signal is output to the brake control device 22 to execute brake control. When signals are output to the automatic brake control device 22 and the automatic steering control device 23, the signals are visually displayed on the display 21 to notify the driver. That is, the control unit 5 is configured to have functions as a risk level setting unit, a risk level change prediction unit, an evaluation function setting unit, and a control amount calculation unit.

次に、運転支援装置2で実行される運転支援制御プログラムを図2のフローチャートで説明する。
まず、ステップ(以下、「S」と略称)101で必要パラメータ、具体的には、白線データ、道路に沿って存在するガードレール、縁石等の側壁データ、及び、立体物データ(種別、自車両1からの距離、中心位置(xobstacle,yobstacle)、速度(vxobstacle,vyobstacle)等)、自車速Vの各データを読み込む。
Next, the driving support control program executed by the driving support device 2 will be described with reference to the flowchart of FIG.
First, in step (hereinafter, abbreviated as “S”) 101, necessary parameters, specifically, white line data, side data of guardrails, curbs, etc. existing along the road, and three-dimensional object data (type, own vehicle 1 Distance, center position (xobstacle, yobstacle), speed (vxobstacle, vyobstacle), etc.) and own vehicle speed V are read.

次に、S102に進み、白線(ガードレール、側壁も白線と同等に扱うものとする)を対象とする現在のリスク関数Dlineを、以下の(1)式により、演算する。
Dline=exp(aR・y)−1 …(1)
aR=(2/WR)・log(Ds+1) …(2)
ここで、WRは道路幅、Dsは道路端(すなわち、y=±WR/2)における予め設定した危険度を示す。
Next, the process proceeds to S102, and the current risk function Dline for the white line (the guard rail and the side wall are handled in the same way as the white line) is calculated by the following equation (1).
Dline = exp (aR · y 4 ) −1 ... (1)
aR = (2 / WR) 4 · log (Ds + 1) (2)
Here, WR indicates the road width, and Ds indicates a preset risk degree at the road edge (ie, y = ± WR / 2).

次いで、S103に進み、立体物(2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物)を対象とする現在のリスク関数Dobstacleを、危険度が滑らかに分布されるように、以下の(3)式により、演算する。
Dobstacle=DG・exp(−px・(x−xobstacle)
−py・(y−yobstacle)) …(3)
DG=DEx・(DEy/DR)Wy・Wy/(4・q・(Wy+q)) …(4)
px=−(2/Wx)・log(DEx/DR) …(5)
py=(1/(b・(Wy+q)))・log(DEy/DR) …(6)
ここで、DEx、DEy、DR、qは、図3に示すように、予め設定される。すなわち、立体物は、前後方向に設定する危険度と左右方向に設定する危険度とが異なるように設定されており、前後方向に設定する危険度は、図3(c)の中心位置(xobstacle,yobstacle)を通るX方向断面に示すように、前後の上端部の危険度が予め設定した値DExとなるように設定される。また、左右方向に設定する危険度は、図3(b)の中心位置(xobstacle,yobstacle)を通るY方向断面に示すように、左右の上端部の危険度が予め設定した値DEyとなるように設定され、更に、左右の縁部から距離q離れた位置の危険度が予め設定した値DRとなるように設定される。すなわち、存在する立体物に対し、制駆動制御して回避する場合と立体物の横をすり抜けて回避する場合とではドライバが感じる感覚が異なり、このように、前後方向に設定する危険度と左右方向に設定する危険度とを異なるように設定することで、実際の回避運転に則した自然な回避制御を行えるようになっている。
Next, the process proceeds to S103, and the current risk function Dobstacle for a three-dimensional object (two-wheeled vehicle, ordinary vehicle, large vehicle, pedestrian, utility pole or other three-dimensional object) is targeted so that the risk level is smoothly distributed. The calculation is performed according to the following equation (3).
Dobstacle = DG · exp (−px · (x−xobstacle) 2
−py · (y-yobstacle) 2 ) (3)
DG = DEx · (DEy / DR) Wy · Wy / (4 · q · (Wy + q)) (4)
px = − (2 / Wx) 2 · log (DEx / DR) (5)
py = (1 / (b · (Wy + q))) · log (DEy / DR) (6)
Here, DEx, DEy, DR, and q are preset as shown in FIG. That is, the three-dimensional object is set so that the risk set in the front-rear direction is different from the risk set in the left-right direction, and the risk set in the front-rear direction is the center position (xobstacle in FIG. 3C). , Yobstacle), the risk level of the front and rear upper ends is set to a preset value DEx as shown in the X-direction cross section. Further, as shown in the Y-direction cross section passing through the center position (xobstacle, yobstacle) in FIG. 3B, the risk degree set in the left-right direction is such that the risk degree at the left and right upper ends becomes a preset value DEy. Further, the degree of risk at a position q away from the left and right edges is set to a preset value DR. In other words, the driver feels a difference between the case of avoiding the existing three-dimensional object by braking / driving control and the case of avoiding by passing through the side of the three-dimensional object. By setting the degree of danger to be set differently in the direction, natural avoidance control according to actual avoidance driving can be performed.

次に、S104に進み、現在のトータルリスク関数Dを、以下の(7)式により、演算する。これにより、前方のトータルリスク関数Dは、例えば、図5に示すように、表現される。
D=Dline+Dobstacle …(7)
Next, it progresses to S104 and calculates the present total risk function D by the following (7) Formula. Thereby, the front total risk function D is expressed as shown in FIG. 5, for example.
D = Dline + Dobstacle (7)

次いで、S105に進み、t秒後の立体物位置(xobstacle(t),yobstacle(t))を、以下の(8)式により推定する。
(xobstacle(t),yobstacle(t))
=(xobstacle+vxobstacle・t,yobstacle+vyobstacle・t) …(8)
Next, in S105, the position of the three-dimensional object (xobstacle (t), yobstacle (t)) after t seconds is estimated by the following equation (8).
(Xobstacle (t), yobstacle (t))
= (Xobstacle + vxobstacle.t, yobstacle + vyobstacle.t) (8)

次に、S106に進み、上述のS105で推定したt秒後の立体物位置(xobstacle(t),yobstacle(t))を、上述のS104で演算したトータルリスク関数Dのx及びyにそれぞれ代入し、t秒後のトータルリスク関数D(xobstacle(t),yobstacle(t))を設定する。   Next, the process proceeds to S106, and the position of the three-dimensional object (xobstacle (t), yobstacle (t)) estimated in S105 is substituted into x and y of the total risk function D calculated in S104. Then, the total risk function D (xobstacle (t), yobstacle (t)) after t seconds is set.

次いで、S107に進み、前方距離Sにおける自車位置情報を演算する。t秒後における自車位置は、自車両の前後方向速度をvx0、横方向速度をvy0、前後加速度をax0、横加速度をay0を用いて表すと、
(vx0・t+(1/2)・ax0・t
vy0・t+(1/2)・ay0・t)…(9)
Next, the process proceeds to S107, and the vehicle position information at the forward distance S is calculated. The vehicle position after t seconds can be expressed by using vx0 for the longitudinal velocity of the vehicle, vy0 for the lateral velocity, ax0 for the longitudinal acceleration, and ay0 for the lateral acceleration.
(Vx0 · t + (1/2) · ax0 · t 2 ,
vy0 · t + (1/2) · ay0 · t 2 ) (9)

そして、S=vx0・t+(1/2)・ax0・tとおいて、時間tを逆算すると、前方距離Sに到達するのに必要な時間tsは、以下の(10)式により与えられる。 Then, at the S = vx0 · t + (1/2 ) · ax0 · t 2, when calculated back time t, the time ts required to reach the forward distance S, is given by the following equation (10).

ts=(−vx0+(vx0+2・ax0・S)1/2)/ax0 …(10)
また、前方距離Sにおける自車両の横方向位置は上述の(10)式で得られる時間tsを(9)式のY座標に代入することで得ることができる。
ts = (− vx0 + (vx0 2 + 2 · ax0 · S) 1/2 ) / ax0 (10)
Further, the lateral position of the host vehicle at the forward distance S can be obtained by substituting the time ts obtained by the above equation (10) into the Y coordinate of the equation (9).

次に、S108に進み、上述のS107で演算した前方距離Sにおける自車位置情報を、前述のS106で設定したt秒後のトータルリスク関数D(xobstacle(t),yobstacle(t))に代入して自車両前方の各距離S毎に変換したトータルリスク関数D(s)を設定し、以下の(11)式に示す評価関数Jを設定する。
J=∫(K1・D(s))ds(積分範囲0〜S)
+∫(C+K2・ax0+K3・ay0)dt(積分範囲0〜Tf)…(11)
ここで、Cは走行時間の重みを表すパラメータ、K1は危険度の重みパラメータ、K2は前後加速度の重みパラメータ、K3は横加速度の重みパラメータである。
Next, in S108, the own vehicle position information at the forward distance S calculated in S107 is substituted into the total risk function D (xobstacle (t), yobstacle (t)) after t seconds set in S106. Then, the total risk function D (s) converted for each distance S in front of the host vehicle is set, and the evaluation function J shown in the following equation (11) is set.
J = ∫ (K1 · D (s)) ds (integral range 0 to S)
+ ∫ (C + K 2 · ax 0 2 + K 3 · ay 0 2 ) dt (integral range 0 to Tf) (11)
Here, C is a parameter representing the weight of travel time, K1 is a weight parameter for risk, K2 is a weight parameter for longitudinal acceleration, and K3 is a weight parameter for lateral acceleration.

すなわち、上述の評価関数Jの∫(K1・D(s))ds(積分範囲0〜S)の演算項が第1の演算項であり、∫(C+K2・ax0+K3・ay0)dt(積分範囲0〜Tf)の演算項が第2の演算項となっている。 That is, the calculation term of ∫ (K1 · D (s)) ds (integration range 0 to S) of the evaluation function J is the first calculation term, and ∫ (C + K2 · ax0 2 + K3 · ay0 2 ) dt ( The calculation term in the integration range 0 to Tf) is the second calculation term.

そして、S109に進み、上述のS108で設定した評価関数Jを最小とする前後加速度ax0と横加速度ay0を周知の最適化計算により求め、これを制御量として、前後加速度ax0は、自動ブレーキ制御装置22に出力し、横加速度ay0は、例えば、以下の(12)式により目標操舵角δftに変換して自動操舵制御装置23に出力して、プログラムを抜ける。評価関数Jを最小とする前後加速度ax0と横加速度ay0で走行する回避ルートの一例を図6に示す。
δft=((N・(1+A0・V))/V)・ay0 …(12)
ここで、Nはステアリングギヤ比、A0はスタビリティファクタである。
Then, the process proceeds to S109, where the longitudinal acceleration ax0 and the lateral acceleration ay0 that minimize the evaluation function J set in S108 described above are obtained by a well-known optimization calculation. The lateral acceleration ay0 is converted to the target steering angle δft by the following equation (12) and output to the automatic steering control device 23, and the program exits. An example of an avoidance route that travels with the longitudinal acceleration ax0 and the lateral acceleration ay0 that minimizes the evaluation function J is shown in FIG.
δft = ((N · (1 + A0 · V 2 )) / V 2 ) · ay0 (12)
Here, N is a steering gear ratio, and A0 is a stability factor.

すなわち、本実施形態で設定する評価関数Jは、トータルリスク関数Dに基づく第1の演算項により危険をできるかぎり少なくし、自車両の前後加速度ax0と横加速度ay0に基づく第2の演算項により無駄な加速を抑制し、また、この第2の演算項に走行時間の重みを表すパラメータを含ませることで、時間のかからない効率の良い回避ルートを走行させることを可能とするものである。   That is, the evaluation function J set in the present embodiment reduces the risk as much as possible by the first calculation term based on the total risk function D, and by the second calculation term based on the longitudinal acceleration ax0 and the lateral acceleration ay0 of the host vehicle. By suppressing unnecessary acceleration and including a parameter representing the weight of the travel time in the second calculation term, it is possible to travel an efficient avoidance route that does not require time.

尚、本実施の形態では、ブレーキ制御と操舵制御の2つが行える例を説明しているが、どちらか1つを行うものであっても良い。   In the present embodiment, an example in which brake control and steering control can be performed has been described, but either one may be performed.

また、本実施の形態で説明したブレーキ制御は、あくまでもその一例であり、他の周知のブレーキ制御、例えば、スロットル開度の閉鎖や自動変速機におけるシフトダウンと併用するようにしても良い。   The brake control described in this embodiment is merely an example, and may be used in combination with other well-known brake control, for example, closing of the throttle opening or downshifting in an automatic transmission.

更に、本実施の形態では、周辺環境をステレオカメラ3からの撮像画像を基に認識するようになっているが、他に、単眼カメラ、ミリ波レーダ等で検出するものであっても良い。   Furthermore, in this embodiment, the surrounding environment is recognized based on the captured image from the stereo camera 3, but it may also be detected by a monocular camera, millimeter wave radar, or the like.

また、本実施の形態では、自車両1の前方における白線や立体物等を対象として、現在のトータルリスク関数Dを設定し、その時間的変化を予測する構成について述べたが、これに限らず、自車両1の側方や側後方の立体物をも対象として、トータルリスク関数Dの設定やその時間的変化を予測するようにしても良い。   In the present embodiment, the current total risk function D is set for a white line or a three-dimensional object in front of the host vehicle 1 and the temporal change thereof is predicted. However, the present invention is not limited to this. The setting of the total risk function D and its temporal change may be predicted for the three-dimensional object on the side or rear side of the host vehicle 1.

車両に搭載した運転支援装置の概略構成図Schematic configuration diagram of a driving support device mounted on a vehicle 運転支援制御プログラムのフローチャートFlow chart of driving support control program 立体物に設定するリスク関数の説明図Explanatory drawing of the risk function set for a three-dimensional object 前後方向の長さが不明な立体物に設定するリスク関数の説明図Explanatory drawing of the risk function set for a three-dimensional object whose longitudinal length is unknown 前方に設定されるリスク関数の一例を示す説明図Explanatory drawing which shows an example of the risk function set ahead 生成される回避ルートの一例を示す説明図Explanatory drawing which shows an example of the avoidance route produced | generated

符号の説明Explanation of symbols

1 自車両
2 運転支援装置
3 ステレオカメラ(周辺環境認識手段)
4 ステレオ画像認識装置(周辺環境認識手段)
5 制御ユニット(危険度設定手段、危険度変化予測手段、評価関数設定手段、制御量演算手段)
11 車速センサ
12 メインスイッチ
21 ディスプレイ
22 自動ブレーキ制御装置(制動制御手段)
23 自動操舵制御装置(操舵制御手段)
DESCRIPTION OF SYMBOLS 1 Own vehicle 2 Driving support device 3 Stereo camera (Ambient environment recognition means)
4 Stereo image recognition device (peripheral environment recognition means)
5 Control unit (risk level setting means, risk level change prediction means, evaluation function setting means, control amount calculation means)
11 Vehicle speed sensor 12 Main switch 21 Display 22 Automatic brake control device (braking control means)
23 Automatic steering control device (steering control means)

Claims (5)

自車両の周辺環境を認識する周辺環境認識手段と、
上記認識した周辺環境の各対象に現在の危険度を設定する危険度設定手段と、
上記危険度を設定した各対象の位置の時間的変化を予測して上記危険度の時間的変化を予測する危険度変化予測手段と、
上記危険度変化予測手段で予測した上記危険度の時間的変化に基づき自車両前方の各距離毎に変換して設定するリスク関数の第1の演算項と少なくとも前方の距離毎の自車両の加速状態に応じて設定する第2の演算項とを有する評価関数を設定する評価関数設定手段と、
上記評価関数が最小となる上記自車両の加速状態を演算し、該自車両の加速状態を制御量として出力する制御量演算手段と、
を備えたことを特徴とする車両の運転支援装置。
A surrounding environment recognition means for recognizing the surrounding environment of the host vehicle;
Risk level setting means for setting the current risk level for each of the recognized surrounding environment objects;
A risk change predicting means for predicting a time change of the risk by predicting a time change of the position of each target for which the risk is set;
A first calculation term of a risk function that is converted and set for each distance ahead of the host vehicle based on the temporal change in the degree of risk predicted by the risk level change predicting means, and acceleration of the host vehicle at least for each distance ahead. An evaluation function setting means for setting an evaluation function having a second operation term set in accordance with the state;
Control amount calculation means for calculating the acceleration state of the host vehicle that minimizes the evaluation function and outputting the acceleration state of the host vehicle as a control amount;
A vehicle driving support apparatus comprising:
上記危険度設定手段は、周囲に存在する立体物に対応する危険度と走行レーンに対応する危険度とにより上記危険度を設定することを特徴とする請求項1記載の車両の運転支援装置。   2. The vehicle driving support apparatus according to claim 1, wherein the risk level setting unit sets the risk level based on a risk level corresponding to a three-dimensional object existing in the vicinity and a risk level corresponding to a travel lane. 上記周囲に存在する立体物に対応する危険度は、立体物の前後方向に設定する危険度と左右方向に設定する危険度とを異なる危険度に設定することを特徴とする請求項2記載の車両の運転支援装置。   The risk level corresponding to the three-dimensional object existing in the surroundings is set such that the risk level set in the front-rear direction of the three-dimensional object is different from the risk level set in the left-right direction. Vehicle driving support device. 上記評価関数設定手段で設定する上記評価関数の第2の演算項は、走行時間の重みを表す演算項を有することを特徴とする請求項1乃至請求項3の何れか一つに記載の車両の運転支援装置。   The vehicle according to any one of claims 1 to 3, wherein the second calculation term of the evaluation function set by the evaluation function setting means includes a calculation term representing a weight of travel time. Driving assistance device. 上記制御量演算手段で演算した上記制御量に基づいて操舵制御を行う操舵制御手段と制動制御を行う制動制御手段の少なくとも一方を備えたことを特徴とする請求項1乃至請求項4の何れか一つに記載の車両の運転支援装置。   5. The system according to claim 1, further comprising at least one of a steering control unit that performs steering control based on the control amount calculated by the control amount calculation unit and a braking control unit that performs braking control. The vehicle driving support apparatus according to one of the above.
JP2007288904A 2007-11-06 2007-11-06 Vehicle driving support device Expired - Fee Related JP5083959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007288904A JP5083959B2 (en) 2007-11-06 2007-11-06 Vehicle driving support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007288904A JP5083959B2 (en) 2007-11-06 2007-11-06 Vehicle driving support device

Publications (2)

Publication Number Publication Date
JP2009116614A true JP2009116614A (en) 2009-05-28
JP5083959B2 JP5083959B2 (en) 2012-11-28

Family

ID=40783698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007288904A Expired - Fee Related JP5083959B2 (en) 2007-11-06 2007-11-06 Vehicle driving support device

Country Status (1)

Country Link
JP (1) JP5083959B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225493A1 (en) * 2017-06-07 2018-12-13 日立オートモティブシステムズ株式会社 Vehicle movement controller
CN110001643A (en) * 2017-12-28 2019-07-12 本田技研工业株式会社 Controller of vehicle, control method for vehicle, storage medium and information acquisition device
CN113076641A (en) * 2021-03-31 2021-07-06 同济大学 Intelligent vehicle-to-vehicle and computer-to-vehicle cooperative steering control parallel computing method based on risk assessment
CN113434808A (en) * 2021-06-17 2021-09-24 中国地质大学(武汉) Electric power operation VR training operation flow adaptability assessment method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238403A (en) * 1992-02-28 1993-09-17 Mitsubishi Motors Corp Four-wheel steering gear
JP2004086289A (en) * 2002-08-23 2004-03-18 Nissan Motor Co Ltd Operation auxiliary device
JP2004157910A (en) * 2002-11-08 2004-06-03 Nissan Motor Co Ltd Vehicular recommended control input generation system
JP2007253745A (en) * 2006-03-22 2007-10-04 Nissan Motor Co Ltd Avoidance operation calculating device, avoidance controller, vehicle provided with each device, avoidance operation calculating method, and avoidance control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238403A (en) * 1992-02-28 1993-09-17 Mitsubishi Motors Corp Four-wheel steering gear
JP2004086289A (en) * 2002-08-23 2004-03-18 Nissan Motor Co Ltd Operation auxiliary device
JP2004157910A (en) * 2002-11-08 2004-06-03 Nissan Motor Co Ltd Vehicular recommended control input generation system
JP2007253745A (en) * 2006-03-22 2007-10-04 Nissan Motor Co Ltd Avoidance operation calculating device, avoidance controller, vehicle provided with each device, avoidance operation calculating method, and avoidance control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225493A1 (en) * 2017-06-07 2018-12-13 日立オートモティブシステムズ株式会社 Vehicle movement controller
JP2018203126A (en) * 2017-06-07 2018-12-27 日立オートモティブシステムズ株式会社 Vehicle motion control device
CN110001643A (en) * 2017-12-28 2019-07-12 本田技研工业株式会社 Controller of vehicle, control method for vehicle, storage medium and information acquisition device
CN110001643B (en) * 2017-12-28 2022-03-04 本田技研工业株式会社 Vehicle control device, vehicle control method, storage medium, and information acquisition device
CN113076641A (en) * 2021-03-31 2021-07-06 同济大学 Intelligent vehicle-to-vehicle and computer-to-vehicle cooperative steering control parallel computing method based on risk assessment
CN113076641B (en) * 2021-03-31 2022-09-20 同济大学 Intelligent vehicle-to-vehicle and computer-to-vehicle cooperative steering control parallel computing method based on risk assessment
CN113434808A (en) * 2021-06-17 2021-09-24 中国地质大学(武汉) Electric power operation VR training operation flow adaptability assessment method and system

Also Published As

Publication number Publication date
JP5083959B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP4949063B2 (en) Vehicle driving support device
JP4970156B2 (en) Vehicle driving support device
JP5167051B2 (en) Vehicle driving support device
JP5345350B2 (en) Vehicle driving support device
JP4980076B2 (en) Vehicle driving support device
WO2018110400A1 (en) Vehicle control device
JP4021344B2 (en) Vehicle driving support device
JP6485328B2 (en) Vehicle driving support device
JP2020163900A (en) Vehicle control device, vehicle control method, and program
US8224564B2 (en) Vehicle drive assist system
JP2010018062A (en) Vehicle driving support device
JP2008179251A (en) Traveling support device for vehicle and traveling support method for vehicle
JP2018158709A (en) Driving support device
JP2009286279A (en) Drive support device for vehicle
JP5210064B2 (en) Vehicle collision prevention device
JP2004314843A (en) Operation assisting device for vehicles
JP2012046143A (en) Target trajectory calculation device
JP5452004B2 (en) Vehicle driving support device
JP5083959B2 (en) Vehicle driving support device
JP6626293B2 (en) Vehicle driving support device
JP5249696B2 (en) Vehicle driving support device
JP5336800B2 (en) Vehicle driving support device
JP5261045B2 (en) Vehicle driving support device
JP4954956B2 (en) Vehicle driving support device
JP2011192176A (en) Vehicle controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120831

R150 Certificate of patent or registration of utility model

Ref document number: 5083959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees