JP5261045B2 - Vehicle driving support device - Google Patents

Vehicle driving support device Download PDF

Info

Publication number
JP5261045B2
JP5261045B2 JP2008174744A JP2008174744A JP5261045B2 JP 5261045 B2 JP5261045 B2 JP 5261045B2 JP 2008174744 A JP2008174744 A JP 2008174744A JP 2008174744 A JP2008174744 A JP 2008174744A JP 5261045 B2 JP5261045 B2 JP 5261045B2
Authority
JP
Japan
Prior art keywords
vehicle
rate
recognition
risk
recognition rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008174744A
Other languages
Japanese (ja)
Other versions
JP2010015386A (en
Inventor
尚志 近藤
勝 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2008174744A priority Critical patent/JP5261045B2/en
Publication of JP2010015386A publication Critical patent/JP2010015386A/en
Application granted granted Critical
Publication of JP5261045B2 publication Critical patent/JP5261045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain a natural driving support by setting a recognition ratio appropriately in accordance with a traveling environment. <P>SOLUTION: A control unit 3 sets a current risk as a risk function with respect to a white line, guard rail, sidewall and a three-dimensional object existing ahead a vehicle, and sets the degree that a target vehicle recognizes its own vehicle as a recognition ratio according to the vehicle speed of the target vehicle and the direction of the its own vehicle with respect to the target vehicle and the direction of the line of sight of the driver of the target vehicle as for the risk function of the target vehicle, and variably sets a recognition rate by comparing the current recognition rate with the previous recognition rate, and corrects the risk function of the vehicle to the recognition rate, and predicts the final avoidance route from the set risk function, and outputs a control signal to an automatic steering control device 14 based on the turning controlled variables of the final avoidance route to execute steering control, and outputs a signal to an automatic controller 15 for brake control. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、対象車両の自車両に対する認知の度合いを被認知率として設定し、被認知率によりリスクを設定して該リスクを基に車両の運転を支援する車両の運転支援装置に関する。   The present invention relates to a driving support apparatus for a vehicle that sets a degree of recognition of a target vehicle with respect to the host vehicle as a recognition rate, sets a risk based on the recognition rate, and supports driving of the vehicle based on the risk.

近年、車両においては、ITS(Intelligent Transport Systems)、車車間通信システム、車載の画像処理システム、レーダ装置等から得られる情報を基に、前方環境を認識し、安全な走行ができるように運転を支援する様々な運転支援装置が提案され、実用化されている。   In recent years, vehicles have been driven so that they can recognize the front environment and drive safely based on information obtained from ITS (Intelligent Transport Systems), inter-vehicle communication systems, in-vehicle image processing systems, radar devices, etc. Various driving assistance devices to assist have been proposed and put into practical use.

例えば、特開2007−241729号公報では、交差点における自車側車両と他車側車両との位置予測を行い、交差点において自車側車両と他車側車両とが最も接近したときの最小距離を算出し、算出された最小距離に基づいて、交差点における他車側車両との衝突の危険度を算出する。そして、他車側車両のドライバが自車を認知しているか否かを判定し、視線の方向に自車がなく、自車を認知していないと推定される場合には、予め定められた交差車衝突危険度閾値を所定値だけ下げるように変更する技術が開示されている。
特開2007−241729号広報
For example, in Japanese Patent Application Laid-Open No. 2007-241729, the position of the own vehicle side vehicle and the other vehicle side vehicle at the intersection is predicted, and the minimum distance when the own vehicle side vehicle and the other vehicle side vehicle are closest to each other at the intersection is calculated. Based on the calculated minimum distance, the risk of collision with another vehicle side vehicle at the intersection is calculated. Then, it is determined whether or not the driver of the other vehicle side vehicle recognizes the vehicle, and when it is estimated that there is no vehicle in the direction of the line of sight and the vehicle is not recognized, it is determined in advance. A technique for changing a crossing vehicle collision risk threshold value so as to be lowered by a predetermined value is disclosed.
JP 2007-241729

しかしながら、上述の特許文献1に開示されるような認知を考慮する場合、ドライバの視線の方向だけでは精度の良い認知の判定ができないという問題がある。例えば、同じ方向を向いていたとしても、車速が低い場合には認知できていたものが、車速が高い場合には認知できない場合があり、また、たとえ認知対象とは他の方向に視線が向いていたとしても、既にドライバが十分に記憶していれば、認知したものとみなすこともできる。こうした変化を考慮せず警報システムを構築すると、不必要な警報が行われたり、或いは、警報が行われ難いシステムとなり、ドライバにとって使い勝手の悪いものとなってしまう虞がある。   However, when considering the recognition as disclosed in the above-mentioned Patent Document 1, there is a problem that it is not possible to determine the recognition with high accuracy only by the direction of the driver's line of sight. For example, even if the vehicle is facing the same direction, it may be recognized when the vehicle speed is low, but may not be recognized when the vehicle speed is high. Even if it is, it can be regarded as recognized if the driver has already memorized enough. If an alarm system is constructed without taking such changes into account, an unnecessary alarm may be performed or a system in which an alarm is difficult to be performed may result in inconvenience for the driver.

本発明は上記事情に鑑みてなされたもので、走行環境に応じて適切に被認知率を設定し、自然な感覚でドライバの運転支援を行うことができる車両の運転支援装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and provides a driving support device for a vehicle that can set a recognition rate appropriately according to the driving environment and can provide driving support to the driver with a natural feeling. It is aimed.

本発明は、走行環境を認識して少なくとも車外の立体物の情報を取得するとともに他車両との通信を行って該他車両から情報を取得する走行環境認識手段と、上記走行環境認識手段で認識された立体物の情報から制御対象とする対象車両を抽出し、該対象車両に対してリスクを設定するリスク設定手段と、上記走行環境認識手段から上記対象車両の車速、上記対象車両からの自車両の方向と上記対象車両のドライバの向きとが入力され、該入力情報に応じ、上記対象車両の自車両に対する認知の度合いを被認知率として設定する被認知率設定手段と、上記被認知率に応じて上記各対象車両のリスクを補正するリスク補正手段とを備え、上記被認知率設定手段は、今回設定した被認知率と前回設定した被認知率とを比較し、上記今回設定した被認知率が上記前回設定した被認知率より小さい場合は、予め設定した割合で上記前回設定した被認知率を低下させて該低下させられた被認知率を前回設定した被認知率として出力し、逆に、上記今回設定した被認知率が上記前回設定した被認知率以上の場合は、上記今回設定した被認知率をそのまま前回設定した被認知率として出力する。
The present invention recognizes a traveling environment recognizing means for recognizing a traveling environment and acquiring at least information of a three-dimensional object outside the vehicle and communicating with another vehicle to acquire information from the other vehicle, and the traveling environment recognizing means. The target vehicle to be controlled is extracted from the information of the three-dimensional object, the risk setting means for setting a risk for the target vehicle, the vehicle speed of the target vehicle from the traveling environment recognition means, and the vehicle from the target vehicle. The direction of the vehicle and the direction of the driver of the target vehicle are input, and the perceived rate setting means for setting the degree of recognition of the target vehicle with respect to the host vehicle as the perceived rate according to the input information, and the perceived rate And a risk correction means for correcting the risk of each of the target vehicles according to the above.The perceived rate setting means compares the currently set perceived rate with the previously set perceived rate, and compares the currently set perceived rate. If knowledge rate is smaller than the recognition rate is set above the previous outputs the recognition rate was allowed Please low by lowering the object recognition rate set the last time at a rate set in advance as an object recognition rate previously set, On the other hand, when the perceived rate set this time is equal to or higher than the previously set perceived rate, the perceived rate set this time is output as it is as the previously set perceived rate .

本発明による車両の運転支援装置によれば、走行環境に応じて適切に被認知率を設定し、自然な感覚でドライバの運転支援を行うことが可能となる。   According to the vehicle driving assistance device of the present invention, it becomes possible to set the recognition rate appropriately according to the driving environment and to provide driving assistance to the driver with a natural feeling.

以下、図面に基づいて本発明の実施の形態を説明する。
図1乃至図9は本発明の実施の一形態を示し、図1は車両に搭載した運転支援装置の概略構成図、図2は運転支援制御プログラムのフローチャート、図3は図2から続くフローチャート、図4は被認知率補正ゲイン演算ルーチン、図5は前方に設定されるリスク関数の一例を示す説明図、図6は自車方向に対する視線方向角度の説明図、図7は被認知率の設定マップ、図8は被認知率の特性の説明図、図9は記憶による変化を予測して設定される被認知率の説明図、図10は生成される回避ルートと旋回制御量の一例を示す説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 9 show an embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a driving support device mounted on a vehicle, FIG. 2 is a flowchart of a driving support control program, and FIG. 3 is a flowchart continuing from FIG. FIG. 4 is an explanatory diagram showing an example of a risk rate correction gain calculation routine, FIG. 5 is an explanatory diagram showing an example of a risk function set in front, FIG. 6 is an explanatory diagram of a gaze direction angle with respect to the vehicle direction, and FIG. FIG. 8 is an explanatory diagram of the characteristics of the recognition rate, FIG. 9 is an explanatory diagram of the recognition rate set by predicting a change due to memory, and FIG. 10 shows an example of the generated avoidance route and turning control amount It is explanatory drawing.

図1において、符号1は自動車等の車両(自車両)で、この車両1には、運転支援装置2が搭載されている。この運転支援装置2は、制御ユニット3に、前方環境を画像データを基に認識するステレオ画像認識装置4と、ドライバの視線方向(角度)を検出する視線方向検出装置5と、他車両と車車間通信を行って他車両の情報を取得する通信装置6と、測位装置7と、自車速Vを検出する車速センサ8と、ヨーレート(dψ/dt)を検出するヨーレートセンサ9とが接続され、構成されている。   In FIG. 1, reference numeral 1 denotes a vehicle such as an automobile (own vehicle), and a driving support device 2 is mounted on the vehicle 1. The driving support device 2 includes a control unit 3 that includes a stereo image recognition device 4 that recognizes a forward environment based on image data, a gaze direction detection device 5 that detects a gaze direction (angle) of a driver, and other vehicles and vehicles. A communication device 6 that performs inter-vehicle communication to acquire information on other vehicles, a positioning device 7, a vehicle speed sensor 8 that detects the host vehicle speed V, and a yaw rate sensor 9 that detects the yaw rate (dψ / dt) are connected. It is configured.

ステレオ画像認識装置4は、車室内の天井前方に一定の間隔をもって取り付けられ、車外の対象を異なる視点からステレオ撮像する1組の(左右の)CCDカメラ10からの画像データを処理するものである。   The stereo image recognition device 4 is mounted at a certain interval in front of the ceiling in the vehicle interior, and processes image data from a set of (left and right) CCD cameras 10 that captures an object outside the vehicle in stereo from different viewpoints. .

ステレオ画像認識装置4における、CCDカメラ10からの画像の処理は、例えば以下のように行われる。まず、CCDカメラ10で撮像した自車両1の進行方向の1組のステレオ画像対に対し、対応する位置のずれ量から距離情報を求め、距離画像を生成する。そして、このデータを基に、周知のグルーピング処理を行い、予め記憶しておいた3次元的な道路形状データ、側壁データ、立体物データ等の枠(ウインドウ)と比較し、白線データ、道路に沿って存在するガードレール、縁石等の側壁データを抽出すると共に、立体物を、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出する。   Processing of an image from the CCD camera 10 in the stereo image recognition device 4 is performed as follows, for example. First, distance information is obtained from a set of stereo image pairs taken in the traveling direction of the host vehicle 1 captured by the CCD camera 10 from the corresponding positional shift amount, and a distance image is generated. Then, based on this data, a well-known grouping process is performed and compared with frames (windows) such as three-dimensional road shape data, side wall data, and three-dimensional object data stored in advance. Side wall data such as guardrails and curbs that exist along the road are extracted, and three-dimensional objects are classified and extracted into other three-dimensional objects such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, and utility poles.

上述の認識した各データは、自車両1を原点とし、自車両1の前後方向をX軸、幅方向をY軸とする座標系におけるそれぞれの位置が演算され、特に、2輪車、普通車両、大型車両の車両データにおいては、その前後方向長さが、例えば、3m、4.5m、10m等と予め推定されて、また、幅方向は検出した幅の中心位置を用いて、その車両の現在存在する中心位置が(xobstacle,yobstacle)の座標で演算される。尚、車車間通信等により、車両の前後方向長さが精度良く得られる場合には、その長さデータを用いて、上述の中心位置を演算するようにしても良い。   Each of the recognized data is calculated by calculating the position in the coordinate system in which the own vehicle 1 is the origin, the front-rear direction of the own vehicle 1 is the X axis, and the width direction is the Y axis. In the vehicle data of a large vehicle, the length in the front-rear direction is preliminarily estimated as 3 m, 4.5 m, 10 m, etc., and the width direction uses the center position of the detected width. The currently existing center position is calculated with the coordinates of (xobstacle, yobstacle). In addition, when the longitudinal length of the vehicle can be obtained with high accuracy by inter-vehicle communication or the like, the above-described center position may be calculated using the length data.

更に、立体物データにおいては、自車両1からの距離のX軸方向変化及びY軸方向変化から自車両1に対する相対速度が演算され、この相対速度に自車両1の速度Vをベクトル量を考慮して演算することにより、それぞれの立体物のX軸方向速度、Y軸方向速度(vxobstacle,vyobstacle)が演算される。   Further, in the three-dimensional object data, the relative speed with respect to the own vehicle 1 is calculated from the change in the X-axis direction and the change in the Y-axis direction of the distance from the own vehicle 1, and the vector V is taken into consideration for the relative speed and the vector V Thus, the X-axis direction speed and the Y-axis direction speed (vxobstacle, vyobstacle) of each three-dimensional object are calculated.

こうして得られた各情報、すなわち、白線データ、道路に沿って存在するガードレール、縁石等の側壁データ、及び、立体物データ(種別、自車両1からの距離、中心位置(xobstacle,yobstacle)、速度(vxobstacle,vyobstacle)、自車位置に対する立体物の方向(角度)θvo等)の各データは制御ユニット3に入力される。このように、本実施の形態においては、ステレオ画像認識装置4は、走行環境認識手段として設けられている。   Each information obtained in this way, that is, white line data, guard rails existing along the road, side walls such as curbs, and solid object data (type, distance from own vehicle 1, center position (xobstacle, yobstacle), speed) Each data of (vxobstacle, vyobstacle), the direction (angle) θvo of the three-dimensional object with respect to the vehicle position) is input to the control unit 3. Thus, in this Embodiment, the stereo image recognition apparatus 4 is provided as a driving | running | working environment recognition means.

視線方向検出装置5は、ドライバの顔方向に向けて配設された視野カメラ11からドライバの眼の画像情報が入力される。この視線方向検出装置5は、ドライバの視線方向θeの検出を、所謂、瞳孔/角膜反射法により検出するものであり、角膜上の赤外線ランプ12による虚像が、角膜と眼球の回転中心の違いにより、眼球運動によって平行移動するのを視野カメラ11で瞳孔中心も同時に検出しながら瞳孔中心を基準として検出することで視線挙動の検出を行うようになっている。この視線方向θeの情報は、制御ユニット3に入力され、通信装置6により車車間通信によって他車両に対しても送信される。尚、視線方向θeの検出は、この検出法に限るものではなく、可能であれば、他の検出法(EOG(Electro-Oculography)法、強膜反射法、角膜反射法、サーチコイル法等)により検出するものであっても良い。   The line-of-sight detection device 5 receives image information of the driver's eyes from a field-of-view camera 11 arranged in the direction of the driver's face. This gaze direction detection device 5 detects the gaze direction θe of the driver by a so-called pupil / corneal reflection method, and the virtual image by the infrared lamp 12 on the cornea is caused by the difference between the rotation centers of the cornea and the eyeball. The eye movement is detected by detecting the movement of the eyeball in parallel with the visual field camera 11 while simultaneously detecting the center of the pupil by the visual field camera 11. Information on the line-of-sight direction θe is input to the control unit 3 and transmitted to other vehicles by inter-vehicle communication by the communication device 6. Note that the detection of the line-of-sight direction θe is not limited to this detection method, and other detection methods (EOG (Electro-Oculography) method, scleral reflection method, corneal reflection method, search coil method, etc.) if possible. It may be detected by.

通信装置6は、例えばITS(Intelligent Transport Systems;高度道路交通システム)に対応した装置として、道路付帯設備からの光や電波ビーコンを受信して交通渋滞情報、天気情報、特定区域の交通規制情報等の各種情報を取得し、また、自車両1周辺を走行する他の車両との車車間通信を行い、車両情報を授受する機能を有している。本形態における車車間通信においては、所定の周波数帯でのキャリア信号を用いて通信可能エリア内に存在する車両との通信を行い、車両種別、車両位置、車両方向、ドライバの視線方向、車速、加減速状態、ブレーキ作動状態、ウィンカ状態等の情報を相互に交換し、取得した情報を制御ユニット3に入力する。従って、通信装置6は走行環境認識手段として設けられている。   The communication device 6 is a device compatible with, for example, ITS (Intelligent Transport Systems), receives light and radio wave beacons from road incidental facilities, and receives traffic congestion information, weather information, traffic regulation information in a specific area, etc. In addition, it has a function of acquiring vehicle information, performing vehicle-to-vehicle communication with other vehicles traveling around the host vehicle 1, and exchanging vehicle information. In vehicle-to-vehicle communication in this embodiment, communication with a vehicle existing in a communicable area is performed using a carrier signal in a predetermined frequency band, vehicle type, vehicle position, vehicle direction, driver's line-of-sight direction, vehicle speed, Information such as an acceleration / deceleration state, a brake operation state, a blinker state, etc. are exchanged, and the acquired information is input to the control unit 3. Accordingly, the communication device 6 is provided as a traveling environment recognition unit.

測位装置7は、例えばナビゲーション装置によって構成されるものであり、自車両1の位置を測位し、この測位した自車両位置と地図情報とを演算・合成し、地図の縮尺変更、地名の詳細表示、地域情報の表示切換え等の操作入力に対応して、自車両1の現在位置及びその周辺の地図をディスプレイ13に表示し、また、通信装置6を介して受信した道路・交通情報等の各種情報を表示する。自車両1の位置は、GPS(Global Positioning System;全世界測位衛星システム)等の測位衛星からの電波に基づく自車両1の位置、地磁気センサ及び車輪速センサからの信号に基づく推測航法による自車両1の位置、通信装置6を介して取得した情報等に基づいて測位する。この測位情報は制御ユニット3に入力され、更には、通信装置6を介した車車間通信により、他の車両にも送信される。   The positioning device 7 is composed of, for example, a navigation device, measures the position of the host vehicle 1, calculates and synthesizes the position of the host vehicle and the map information, changes the scale of the map, and displays the detailed name of the place name. In response to an operation input such as display switching of area information, the current position of the host vehicle 1 and a map around it are displayed on the display 13, and various road / traffic information received via the communication device 6 are displayed. Display information. The position of the host vehicle 1 is determined by dead reckoning navigation based on the position of the host vehicle 1 based on radio waves from positioning satellites such as GPS (Global Positioning System) and signals from the geomagnetic sensor and the wheel speed sensor. Positioning is performed based on the position of 1 and information acquired via the communication device 6. This positioning information is input to the control unit 3 and further transmitted to other vehicles by inter-vehicle communication via the communication device 6.

制御ユニット3は、後述する運転支援制御プログラムに従って、上述の各入力信号に基づき、前方に存在する白線、ガードレール、側壁、及び、立体物のそれぞれを対象として、現在の危険度をリスク関数Rline、Robstacleとして設定する。この際、対象が車両のリスク関数に対しては、対象車両の車速と対象車両に対する自車両の方向と対象車両のドライバの視線方向とに応じ、対象車両の自車両に対する認知の度合いを被認知率として設定し、更に、今回設定した被認知率と前回設定した被認知率とを比較して被認知率を可変設定して、車両のリスク関数をこの被認知率で補正する。こうして設定したリスク関数Rline、Robstacleから現在のトータルリスク関数Rを設定し、トータルリスク関数Rを設定した各対象の位置の時間的変化を予測してトータルリスク関数Rの時間的変化を予測し、これを基に最終的な回避ルートR(t)fを予測して、最終的な回避ルートR(t)fの旋回制御量u(t)に基づいて自動操舵制御装置14に制御信号を出力して操舵制御を実行させ、また、最終的な回避ルートR(t)fの値に基づいて自動ブレーキ制御装置15に信号を出力してブレーキ制御を実行させる。尚、自動ブレーキ制御装置15、自動操舵制御装置14に信号出力された場合は、ディスプレイ13によりその信号を視覚的に表示させ、ドライバに報知する。すなわち、制御ユニット3は、リスク設定手段、被認知率設定手段、リスク補正手段としての機能を有して構成されている。   In accordance with the driving support control program described later, the control unit 3 determines the current risk level for each of the white line, guardrail, side wall, and three-dimensional object existing in front of the risk function Rline, Set as Robstacle. At this time, for the risk function of the target vehicle, the degree of recognition of the target vehicle is recognized according to the vehicle speed of the target vehicle, the direction of the host vehicle with respect to the target vehicle, and the line-of-sight direction of the driver of the target vehicle. It is set as a rate, and the perceived rate set this time is compared with the previously set perceived rate to variably set the perceived rate, and the risk function of the vehicle is corrected by this perceived rate. The current total risk function R is set from the risk functions Rline and Robstacle set in this way, the temporal change of the position of each target for which the total risk function R is set is predicted, and the temporal change of the total risk function R is predicted, Based on this, a final avoidance route R (t) f is predicted, and a control signal is output to the automatic steering control device 14 based on the turning control amount u (t) of the final avoidance route R (t) f. Then, the steering control is executed, and a signal is output to the automatic brake control device 15 based on the value of the final avoidance route R (t) f to execute the brake control. When signals are output to the automatic brake control device 15 and the automatic steering control device 14, the signals are visually displayed on the display 13 to notify the driver. That is, the control unit 3 is configured to have functions as a risk setting unit, a recognition rate setting unit, and a risk correction unit.

次に、運転支援装置2で実行される運転支援制御プログラムを図2、図3のフローチャートで説明する。
まず、ステップ(以下、「S」と略称)101で必要パラメータを読み込み、S102に進み、白線(ガードレール、側壁も白線と同等に扱うものとする)を対象とする現在のリスク関数Rlineを、以下の(1)式により、演算する。
Rline=Kline・(y−ylinec) …(1)
ここで、Klineは、予め設定したゲイン、ylinecは白線中央座標である。すなわち、白線を対象とする現在のリスク関数Rlineは、図5に示すように、左右の白線(ガードレール、側壁も白線と同等に扱う)で認識される走行路の中心を、中心軸とする2次関数で与えられる。尚、本実施の形態では、リスク関数Rlineを2次の関数としているが、リスク関数Rlineは、走行路の中心から白線に近いほど、より大きなリスク値を導く関数であれば良く、例えば、4次或いは6次の関数とすることもできる。また、本実施の形態では、ガードレール、側壁も白線と同等に扱って2次関数のリスク関数Rlineを与えるようにしているが、ガードレール、側壁の場合は、白線に対するリスク関数Rlineとは異なる関数に変更し、白線の場合よりも大きなリスク値を導くようにしても良い。例えば、左右の白線に対するリスク関数Rlineを2次関数で与えた場合、カードレール、側壁に対しては4次或いは6次の関数に変更する。また、同じ2次関数であっても、ゲインKlineの値を大きな値に変更するようにしても良い。さらに、白線に対するリスク関数Rlineは、走行路の中心を中心軸とする例に限らず、中心軸をオフセットさせて、左側と右側の白線とでリスク値を互いに異ならせるようにしても良い。
Next, the driving support control program executed by the driving support device 2 will be described with reference to the flowcharts of FIGS.
First, in step (hereinafter abbreviated as “S”) 101, necessary parameters are read, and the process proceeds to S102, where the current risk function Rline for white lines (guardrails and side walls are treated as equivalent to white lines) is The calculation is performed according to the equation (1).
Rline = Kline · (y−ylinec) 2 (1)
Here, Kline is a preset gain, and ylinec is a white line center coordinate. That is, as shown in FIG. 5, the current risk function Rline for the white line is 2 centered on the center of the road recognized by the left and right white lines (guardrails and side walls are also treated as white lines). Is given by In the present embodiment, the risk function Rline is a quadratic function. However, the risk function Rline may be a function that leads to a larger risk value as it approaches the white line from the center of the road, for example, 4 It can also be a second or sixth order function. In the present embodiment, the guard rail and the side wall are also treated in the same way as the white line so as to give a risk function Rline of a quadratic function. However, in the case of the guardrail and the side wall, the function is different from the risk function Rline for the white line. It may be changed so that a larger risk value is derived than in the case of the white line. For example, when the risk function Rline for the left and right white lines is given by a quadratic function, the card rail and the side wall are changed to a quartic or sixth order function. Further, even for the same quadratic function, the value of the gain Kline may be changed to a large value. Furthermore, the risk function Rline for the white line is not limited to the example in which the center of the travel path is the central axis, but the central axis may be offset so that the risk values differ between the left and right white lines.

次に、S103に進み、被認知率補正ゲインGrの演算を行う。この被認知率補正ゲインGrは、対象が車両の場合に演算されるもので、具体的には、図4のフローチャートにより演算される。   Next, proceeding to S103, the recognition rate correction gain Gr is calculated. This recognition rate correction gain Gr is calculated when the target is a vehicle, and specifically, is calculated according to the flowchart of FIG.

まず、S201では、対象車両のドライバについて車車間通信により取得された視線方向θeから、対象車両からの自車方向θv0を減算することにより、自車方向に対する視線方向θdが検出される。例えば、図6に示すような走行環境では、車両1における自車方向に対する視線方向θd1は、視線方向の角度をθe1、自車方向の角度をθv01として、θe1−θv01にて演算される。また、車両2における自車方向に対する視線方向θd2は、視線方向の角度をθe2、自車方向の角度をθv02として、θe2−θv02にて演算される。尚、ドライバの視線方向θeと自車方向θvはそれぞれ、対象車両の前方方向を基準(角度ゼロ)に左側を負の角度、右側を正の角度として検出される。   First, in S201, the line-of-sight direction θd with respect to the vehicle direction is detected by subtracting the vehicle direction θv0 from the target vehicle from the line-of-sight direction θe acquired by inter-vehicle communication for the driver of the target vehicle. For example, in the traveling environment shown in FIG. 6, the line-of-sight direction θd1 with respect to the direction of the vehicle in the vehicle 1 is calculated as θe1−θv01, where θe1 is the angle of the line-of-sight direction and θv01 is the angle of the vehicle direction. Further, the line-of-sight direction θd2 with respect to the vehicle direction in the vehicle 2 is calculated as θe2−θv02, where θe2 is the angle of the line-of-sight direction and θv02 is the angle of the vehicle direction. The driver's line-of-sight direction θe and the vehicle direction θv are detected with the left side as a negative angle and the right side as a positive angle with respect to the front direction of the target vehicle (angle zero).

次いで、S202に進み、それぞれ対象車両の車速と自車方向に対する視線方向θdを基に、予め設定しておいたマップ(図7)を参照して、被認知率rを設定する。被認知率rのマップは、図7に示すように、対象車両の車速と自車方向に対する視線方向θdを変数として予め設定されている。   Next, the process proceeds to S202, and a recognition rate r is set with reference to a map (FIG. 7) set in advance based on the vehicle speed of the target vehicle and the line-of-sight direction θd with respect to the direction of the host vehicle. As shown in FIG. 7, the map of the recognition rate r is set in advance with the vehicle speed of the target vehicle and the line-of-sight direction θd with respect to the vehicle direction as variables.

図7に示す被認知率rのマップは、本実施の形態では、以下のように形成している。
図8(a)に示すように、まず、対象車両の自車方向に対する視線方向θdが0°となる点、すなわち、自車両が対象車両のドライバの中心視となる点では最も高い被認知率が期待でき、このときの被認知率を1.0に設定する。
In the present embodiment, the map of the recognition rate r shown in FIG. 7 is formed as follows.
As shown in FIG. 8A, first, the highest recognition rate at the point where the line-of-sight direction θd with respect to the direction of the subject vehicle becomes 0 °, that is, the point at which the subject vehicle becomes the central view of the driver of the subject vehicle. The recognition rate at this time is set to 1.0.

更に、注視点における視力に対し、視力が次第に低下すると考えられる0°<θd≦10°、−10°≦θd<0の領域では、被認知率を1.0よりも次第に低くなるように設定する。   Further, the recognition rate is set to be gradually lower than 1.0 in the region of 0 ° <θd ≦ 10 ° and −10 ° ≦ θd <0 where the visual acuity is considered to gradually decrease with respect to the visual acuity at the gazing point. To do.

そして、両目で色彩まで認知できる領域(−35°≦θd≦35°)、両目で認知できる領域(−60°≦θd≦60°)、視野限界(θd=±100°)まで、次第に被認知率を減少させて設定し、視野外となる領域(100°<θd、θd<−100°)では被認知率が0となるように設定する。   Then, gradually, the area to be recognized by both eyes (−35 ° ≦ θd ≦ 35 °), the area that can be recognized by both eyes (−60 ° ≦ θd ≦ 60 °), and the visual field limit (θd = ± 100 °) are gradually recognized. The rate is set to decrease, and the recognition rate is set to 0 in the region outside the field of view (100 ° <θd, θd <−100 °).

また、図8(b)に示すように、動体視力は車速が高くなるほど低下することが知られている。従って、この動体視力と車速の関係を、図8(a)の被認知率と自車方向に対する視線方向の関係の縦軸方向に反映させて、同じ自車方向に対する視線方向θdであっても対象車両の車速が高くなるほど被認知率が低下するように設定する。   Further, as shown in FIG. 8B, it is known that the moving object visual acuity decreases as the vehicle speed increases. Accordingly, the relationship between the moving object visual acuity and the vehicle speed is reflected in the vertical axis direction of the relationship between the recognition rate and the vehicle direction in FIG. The recognition rate is set to decrease as the vehicle speed of the target vehicle increases.

更に、図8(c)に示すように、視野角は車速が高くなるほど狭くなることが知られている。従って、この視野角と車速の関係を、図8(a)の被認知率と自車方向に対する視線方向の関係の横軸方向に反映させて、同じ自車方向に対する視線方向θdであっても対象車両の車速が高くなるほど被認知率が低下するように設定する。   Furthermore, as shown in FIG. 8C, it is known that the viewing angle becomes narrower as the vehicle speed increases. Accordingly, the relationship between the viewing angle and the vehicle speed is reflected in the horizontal axis direction of the relationship between the recognition rate and the viewing direction with respect to the own vehicle direction in FIG. The recognition rate is set to decrease as the vehicle speed of the target vehicle increases.

上述のS202で被認知率rを設定した後は、S203以降に進み、S203〜S206の処理は、記憶による変化を予測して被認知率を設定する処理となっている。すなわち、S203では、前回の処理で設定した被認知率r_flt(z)を、今回の処理の前回値r_flt(z-1)として置き換える(r_flt(z-1)=r_flt(z))。   After the recognizable rate r is set in S202 described above, the process proceeds to S203 and the subsequent steps, and the processes in S203 to S206 are processes for setting a recognized rate by predicting a change due to storage. That is, in S203, the recognition rate r_flt (z) set in the previous process is replaced with the previous value r_flt (z-1) of the current process (r_flt (z-1) = r_flt (z)).

そして、S204に進み、S202で設定した被認知率rと前回値r_flt(z-1)とを比較して、被認知率rが前回値r_flt(z-1)より低い場合はS205に進んで、被認知率の今回値r_flt(z)をD・r_flt(z-1)(但し、Dは、0<D<1で予め設定した値)とし、前回値より所定に低下させて設定する。   Then, the process proceeds to S204, where the perceived rate r set in S202 is compared with the previous value r_flt (z-1). If the perceived rate r is lower than the previous value r_flt (z-1), the process proceeds to S205. The current value r_flt (z) of the recognition rate is set to D · r_flt (z−1) (where D is a value set in advance with 0 <D <1), and is set lower than the previous value by a predetermined amount.

逆に、被認知率rが前回値r_flt(z-1)以上の場合はS206に進んで、被認知率の今回値r_flt(z)を被認知率rに設定する。   Conversely, if the perceived rate r is equal to or greater than the previous value r_flt (z-1), the process proceeds to S206, and the current value r_flt (z) of the perceived rate is set as the perceived rate r.

このS203〜S206の処理により、被認知率の今回値r_flt(z)は、例えば、図9のタイムチャートのように設定されることになる。
すなわち、被認知率r_flt(z)を、対象車両の車速、自車方向に対する視線方向θdだけに基づいて設定すると、対象車両のドライバが安全確認を行っている最中に、自車両の情報が対象車両のドライバの記憶にとどまっているにも関わらず、被認知率r_flt(z)が低くなり、不必要な警報若しくは不必要な制御が実行されてしまう虞がある。
Through the processing of S203 to S206, the current value r_flt (z) of the recognition rate is set as shown in the time chart of FIG. 9, for example.
That is, if the recognition rate r_flt (z) is set based only on the vehicle speed of the target vehicle and the line-of-sight direction θd with respect to the host vehicle direction, information on the host vehicle is obtained while the driver of the target vehicle is checking safety. The recognition rate r_flt (z) is lowered despite the memory of the driver of the target vehicle, and an unnecessary alarm or unnecessary control may be executed.

従って、対象車両の車速、自車方向に対する視線方向θdに基づく被認知率rが低下した場合であっても、これを直ぐに反映させることはせずに、人間の記憶が、時間の経過と共に曖昧になることを考慮して、被認知率r_flt(z)を、時間の経過と共に徐々に低下して設定することを基本とする。   Therefore, even if the recognition rate r based on the vehicle speed of the target vehicle and the line-of-sight direction θd with respect to the direction of the host vehicle is reduced, this is not reflected immediately, and human memory is ambiguous over time. In consideration of the above, the recognition rate r_flt (z) is basically set to gradually decrease with the passage of time.

この際、十分に自車両を認識した場合と、十分に自車両を認識できなかった場合(視野の片隅で捉えた場合等)とでは、記憶にとどめられる時間にも差異が生じると考えられる。従って、被認知率r_flt(z)が0になるまでの時間は、その値の大きさに比例して変化させる。すなわち、r_flt(z)=D・r_flt(z-1)として設定されるので、当初の被認知率の値が大きいほど、0になるまでの時間も長くなる。   At this time, it is considered that there is a difference in time that can be stored in memory when the vehicle is sufficiently recognized and when the vehicle is not sufficiently recognized (such as when captured at one corner of the field of view). Accordingly, the time until the recognition rate r_flt (z) becomes 0 is changed in proportion to the magnitude of the value. That is, since r_flt (z) = D · r_flt (z−1) is set, the larger the initial recognition rate value, the longer the time until it becomes zero.

また、自車両から視線をそらした後、再度、自車両を認識した場合は、上述のS204からS206へ進む処理となり、改めて大きな被認知率が設定されることになる。   Further, when the user's own vehicle is recognized again after diverting his / her eyes from the own vehicle, the process proceeds from S204 to S206 described above, and a large recognition rate is set again.

上述のS205、或いは、S206で被認知率の今回値r_flt(z)を設定した後は、S207に進み、例えば、以下の(2)式により、被認知率補正ゲインGrを演算し、ルーチンを抜ける。
Gr=1/(1+r_flt(z)) …(2)
尚、この被認知率補正ゲインGrは、被認知率の今回値r_flt(z)が大きくなるほど、被認知率補正ゲインGrは小さな値となり、車両のリスク関数についてのみ適用されるものであり、車両以外の立体物については、Gr=1とする。
After setting the current value r_flt (z) of the recognition rate in S205 or S206 described above, the process proceeds to S207. For example, the recognition rate correction gain Gr is calculated by the following equation (2), and the routine is executed. Exit.
Gr = 1 / (1 + r_flt (z)) (2)
Note that the recognition rate correction gain Gr is applied only to the risk function of the vehicle as the current value r_flt (z) of the recognition rate increases, and the recognition rate correction gain Gr decreases. For three-dimensional objects other than, Gr = 1.

図2のフローチャートに戻り、S103で被認知率補正ゲインGrを演算した後は、S104に進み、立体物(2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物)を対象とする現在のリスク関数Robstacleを、以下の(3)式により、演算する。
Robstacle=Gr・Kobstacle・exp(−((xobstacle−x)
/(2・σxobstacle))−((yobstacle−y)
/(2・σyobstacle))) …(3)
ここで、Kobstacleは、予め設定したゲインである。また、σxobstacleは予め設定しておいた対象のX軸方向の分散を示し、σyobstacleは、予め設定しておいた対象のY軸方向の分散を示し、これら分散σxobstacle、σyobstacleは、例えば、CCDカメラ10による認識精度が低いほど大きく設定するようにしても良い。また、分散σxobstacle、σyobstacleは、対象の種別が、普通車両及び大型車両の場合を基準として、歩行者、2輪車である場合は大きく設定し、それ以外の立体物の場合は小さく設定するようにしても良い。更に、自車両1と対象となる立体物の幅方向のラップ率に応じて設定するようにしても良い。図5中、立体物A1及び立体物A2は、上述の(3)式により演算した立体物を対象とする現在のリスク関数Robstacleの一例である。
Returning to the flowchart of FIG. 2, after calculating the recognition rate correction gain Gr in S103, the process proceeds to S104, and a three-dimensional object (two-dimensional vehicle, ordinary vehicle, large vehicle, pedestrian, other three-dimensional object such as a power pole) is targeted. The current risk function Robstacle is calculated by the following equation (3).
Robstacle = Gr · Kobstacle · exp (− ((xobstacle−x) 2
/ (2 · σxobstacle 2 ))-((yobstacle-y) 2
/ (2 · σyobstacle 2 )))… (3)
Here, Kobstacle is a preset gain. Also, σxobstacle indicates the dispersion in the X-axis direction of the preset object, σyobstacle indicates the dispersion in the Y-axis direction of the preset object, and these dispersions σxobstacle and σyobstacle are, for example, CCD cameras 10 may be set larger as the recognition accuracy by 10 is lower. Also, the variances σxobstacle and σyobstacle should be set larger when the target type is a pedestrian or two-wheeled vehicle, and smaller when it is a three-dimensional object. Anyway. Furthermore, you may make it set according to the lap | wrap rate of the width direction of the own vehicle 1 and the target solid object. In FIG. 5, the three-dimensional object A <b> 1 and the three-dimensional object A <b> 2 are examples of the current risk function Robtacle for the three-dimensional object calculated by the above-described equation (3).

次に、S105に進み、現在のトータルリスク関数Rを、以下の(4)式により、演算する。
R=Rline+Robstacle …(4)
Next, it progresses to S105 and calculates the present total risk function R by the following (4) Formula.
R = Rline + Robstacle (4)

次いで、S106に進み、t秒後の立体物位置(xobstacle(t),yobstacle(t))を、以下の(5)式により推定する。
(xobstacle(t),yobstacle(t))
=(xobstacle+vxobstacle・t,yobstacle+vyobstacle・t) …(5)
Next, the process proceeds to S106, and the position of the three-dimensional object (xobstacle (t), yobstacle (t)) after t seconds is estimated by the following equation (5).
(Xobstacle (t), yobstacle (t))
= (Xobstacle + vxobstacle.t, yobstacle + vyobstacle.t) (5)

次に、S107に進み、上述のS106で推定したt秒後の立体物位置(xobstacle(t),yobstacle(t))を、上述のS105で演算したトータルリスク関数Rのx及びyにそれぞれ代入し、t秒後のトータルリスク関数R(xobstacle(t),yobstacle(t))を設定する。   Next, the process proceeds to S107, and the position of the three-dimensional object (xobstacle (t), yobstacle (t)) estimated in t106 described above is substituted into x and y of the total risk function R calculated in S105. Then, the total risk function R (xobstacle (t), yobstacle (t)) after t seconds is set.

次いで、S108に進み、上述のS107で設定したt秒後のトータルリスク関数R(xobstacle(t),yobstacle(t))を、幅方向(y方向)で偏微分して、その値が0となる点から幅方向(y方向)の極小点ymin(x,t)を演算する。すなわち、
∂R(xobstacle(t),yobstacle(t))/∂y=0 …(6)
となる点が極小点である。
Next, in S108, the total risk function R (xobstacle (t), yobstacle (t)) after t seconds set in S107 is partially differentiated in the width direction (y direction), and the value is 0. From this point, the minimum point ymin (x, t) in the width direction (y direction) is calculated. That is,
∂R (xobstacle (t), yobstacle (t)) / ∂y = 0 (6)
The point that becomes is the minimum point.

次に、S109に進み、t秒後の自車位置(X(t),Y(t))を、以下の(7)式により推定する。
(X(t),Y(t))=(V・t,V・∫sinψ(τ)dτ;積分範囲は0≦τ≦t)
…(7)
ここで、ψ(t)は、自車両1のヨー角であり、以下の(8)式により、演算される。
ψ(t)=(dψ/dt)・t
+(1/2)・((dψ/dt)+(u(t)/Iz))・t …(8)
ここで、Izは、ヨー慣性モーメントである。また、u(t)は前述の如く旋回制御量であり、付加ヨーモーメントである。
Next, the process proceeds to S109, and the own vehicle position (X (t), Y (t)) after t seconds is estimated by the following equation (7).
(X (t), Y (t)) = (V · t, V · ∫sinψ (τ) dτ; integration range is 0 ≦ τ ≦ t)
... (7)
Here, ψ (t) is the yaw angle of the host vehicle 1 and is calculated by the following equation (8).
ψ (t) = (dψ / dt) · t
+ (1/2) · ((d 2 ψ / dt 2 ) + (u (t) / Iz)) · t 2 (8)
Here, Iz is the yaw moment of inertia. U (t) is the turning control amount as described above, and is the additional yaw moment.

次いで、S110に進み、上述のS108で演算したy方向の極小点ymin(x,t)に、上述のS110で推定した自車位置を代入し、自車位置X(t)における極小点ymin(X(t),t)を演算する。   Next, the process proceeds to S110, where the own vehicle position estimated in S110 is substituted for the y-direction minimum point ymin (x, t) calculated in S108, and the minimum point ymin ( Calculate X (t), t).

次に、S111に進み、各時間毎の自車の横位置Y(t)と極小点ymin(X(t),t)の偏差と旋回制御量u(t)で各目的関数Jを作成し、それぞれの目的関数Jについて目的関数Jを最少とする各時間毎の旋回制御量u(t)を求める。   Next, the process proceeds to S111, and each objective function J is created by the deviation of the lateral position Y (t) of the own vehicle and the minimum point ymin (X (t), t) and the turning control amount u (t) for each time. For each objective function J, a turn control amount u (t) for each time that minimizes the objective function J is obtained.

例えば、図10に示すように、自車両1が時刻0(現在)〜Δtまで移動する範囲を制御対象領域と考え、この間を、dtで分割し、1dt、2dt、3dt、…、mdt、…、(n−2)dt、(n−1)dt、ndt(=Δt)とする例を考える。   For example, as shown in FIG. 10, a range in which the host vehicle 1 moves from time 0 (current) to Δt is considered as a control target region, and this region is divided by dt, 1dt, 2dt, 3dt,..., Mdt,. , (N−2) dt, (n−1) dt, and ndt (= Δt).

時刻0〜1dtの間には、例えば、以下(9)式の目的関数J0~1dtを設定し、この目的関数J0~1dtを最少とする旋回制御量u(0)を周知の最適化計算により求める。
J0~1dt=Wy・(ymin(X(1dt),1dt)−Y(1dt))+Wu・u(0) …(9)
ここで、Wy、Wuは予め設定する重み値である。
Between time 0 and 1 dt, for example, the objective function J0 to 1dt of the following equation (9) is set, and the turning control amount u (0) that minimizes the objective function J0 to 1dt is determined by a well-known optimization calculation. Ask.
J0 ~ 1dt = Wy · (ymin (X (1dt), 1dt) −Y (1dt)) 2 + Wu · u (0) 2 (9)
Here, Wy and Wu are preset weight values.

また、時刻1dt〜2dtの間には、例えば、以下(10)式の目的関数J1dt~2dtを設定し、この目的関数J1dt~2dtを最少とする旋回制御量u(1dt)を周知の最適化計算により求める。
J1dt~2dt=Wy・(ymin(X(2dt),2dt)−Y(2dt))+Wu・u(1dt) …(10)
Further, for example, objective functions J1dt to 2dt of the following expression (10) are set between times 1dt and 2dt, and the turning control amount u (1dt) that minimizes the objective functions J1dt to 2dt is well known and optimized. Obtain by calculation.
J1dt ~ 2dt = Wy · (ymin (X (2dt), 2dt) −Y (2dt)) 2 + Wu · u (1dt) 2 (10)

更に、時刻2dt〜3dtの間には、例えば、以下(11)式の目的関数J2dt~3dtを設定し、この目的関数J2dt~3dtを最少とする旋回制御量u(2dt)を周知の最適化計算により求める。
J2dt~3dt=Wy・(ymin(X(3dt),3dt)−Y(3dt))+Wu・u(2dt) …(11)
尚、時刻3dtには極小点が2つ存在するため、旋回制御量u(2dt)も2つの値が得られる。
Further, for example, the objective function J2dt to 3dt of the following equation (11) is set between the times 2dt to 3dt, and the turning control amount u (2dt) that minimizes the objective function J2dt to 3dt is known optimization. Obtain by calculation.
J2dt ~ 3dt = Wy · (ymin (X (3dt), 3dt) −Y (3dt)) 2 + Wu · u (2dt) 2 (11)
Since there are two minimum points at time 3dt, two values are also obtained for the turning control amount u (2dt).

以下、時刻3dt以降も同様の目的関数を設定し、旋回制御量を求め、時刻(n−1)dt〜ndtの間には、例えば、以下(12)式の目的関数J(n-1)dt~ndtを設定し、この目的関数J(n-1)dt~ndtを最少とする旋回制御量u((n-1)dt)を周知の最適化計算により求める。
J(n-1)dt~ndt=Wy・(ymin(X(ndt),ndt)−Y(ndt))
+Wu・u((n-1)dt) …(12)
Hereinafter, the same objective function is set after time 3dt, and the turning control amount is obtained. Between time (n-1) dt and ndt, for example, the objective function J (n-1) of the following equation (12) is used. dt ~ ndt is set, and the turning control amount u ((n-1) dt) that minimizes the objective function J (n-1) dt ~ ndt is obtained by a known optimization calculation.
J (n-1) dt ~ ndt = Wy. (Ymin (X (ndt), ndt) -Y (ndt)) 2
+ Wu · u ((n-1) dt) 2 (12)

次いで、S112に進み、以下の(13)式により、自車両1が各時間毎の旋回制御量u(t)で移動したときの各ルート毎のリスク関数R(t)を設定する。   Next, the process proceeds to S112, and the risk function R (t) for each route when the host vehicle 1 moves with the turn control amount u (t) for each time is set by the following equation (13).

R(t)=Rline+Robstacle …(13)
ここで、Rline、及び、Robstacleは、前述の(1)式、及び、(3)式に、自車両1が各時間毎の旋回制御量u(t)で移動したときの値で与えられるものであり、
Rline=Kline・(Y(t)−ylinec) …(14)
Robstacle=Gr・Kobstacle・exp(−((xobstacle(t)−X(t))
/(2・σxobstacle))−((yobstacle(t)−Y(t))
/(2・σyobstacle))) …(15)
R (t) = Rline + Robstacle (13)
Here, Rline and Robstacle are given by the values obtained when the host vehicle 1 moves with the turn control amount u (t) for each time in the above-described equations (1) and (3). And
Rline = Kline · (Y (t) −ylinec) 2 (14)
Robstacle = Gr · Kobstacle · exp (− ((xobstacle (t) −X (t)) 2
/ (2 · σxobstacle 2 ))-((yobstacle (t) -Y (t)) 2
/ (2 · σyobstacle 2 ))) (15)

次いで、S113に進み、S112で設定した各ルート毎のリスク関数R(t)から最終的な回避ルートをR(t)fとして選択する。   Next, the process proceeds to S113, and a final avoidance route is selected as R (t) f from the risk function R (t) for each route set in S112.

具体的には、S112で設定した各ルート毎にその最大値Rmaxを求める。すなわち、
Rmax=max(R(t))(0≦t≦Δt) …(16)
そして、最大値Rmaxの最も小さなルートを最終的な回避ルートR(t)fとして選択する。
Specifically, the maximum value Rmax is obtained for each route set in S112. That is,
Rmax = max (R (t)) (0 ≦ t ≦ Δt) (16)
Then, the route with the smallest maximum value Rmax is selected as the final avoidance route R (t) f.

尚、各ルート毎にリスクの累積値Rsum(=∫R(t)dt;積分範囲は0≦t≦Δt)を求め、その値が最も小さなルートを最終的な回避ルートR(t)fとして選択するようにしても良い。   A cumulative risk value Rsum (= ∫R (t) dt; integration range is 0 ≦ t ≦ Δt) is obtained for each route, and a route having the smallest value is defined as a final avoidance route R (t) f. You may make it select.

また、上述のS113において、S112で設定されたルートが1つのみしか存在しない場合は、そのルートが最終的な回避ルートR(t)fとして設定される。   In S113 described above, if there is only one route set in S112, that route is set as the final avoidance route R (t) f.

例えば、図10に示す例では、S112の処理により、実線で示すルート1と破線で示すルート2とが設定され、S113の処理により、これらルート1,2から最大値Rmaxが小さなルート、或いは、リスクの累積値Rsumが小さなルートが最終的な回避ルートR(t)fとして選択される。尚、ルート1,2のそれぞれの旋回制御量u(t)は、図10(b)に示す通りである。   For example, in the example shown in FIG. 10, the route 1 indicated by the solid line and the route 2 indicated by the broken line are set by the process of S112, and the route having a smaller maximum value Rmax from these routes 1 and 2 by the process of S113, or A route having a small risk accumulation value Rsum is selected as a final avoidance route R (t) f. The turning control amounts u (t) for the routes 1 and 2 are as shown in FIG.

そして、S114に進み、最終的な回避ルートR(t)fに予め定めておいた最大許容リスク値Rlim以上(R(t)f≧Rlim)となる領域が有るか否か判定し、R(t)f≧Rlimとなる領域がない場合は、S117に進んで、自動操舵制御装置14に対して最終的な回避ルートR(t)fの旋回制御量u(t)を基に操舵制御指令を出力してプログラムを抜ける。   Then, the process proceeds to S114, where it is determined whether or not there is an area that is equal to or greater than the predetermined maximum allowable risk value Rlim (R (t) f ≧ Rlim) in the final avoidance route R (t) f, and R ( t) When there is no region where f ≧ Rlim, the routine proceeds to S117, where the steering control command is issued to the automatic steering control device 14 based on the turning control amount u (t) of the final avoidance route R (t) f. To exit the program.

また、S114の判定の結果、R(t)f≧Rlimとなる領域があると判定した場合は、S115に進み、R(t)f≧Rlimとなる最も早い時間を基に制動開始地点Xbrake、制動開始時間Tbrakeを演算する。   As a result of the determination in S114, if it is determined that there is a region where R (t) f ≧ Rlim, the process proceeds to S115, and the braking start point Xbrake, based on the earliest time when R (t) f ≧ Rlim is satisfied. The braking start time Tbrake is calculated.

R(t)f≧Rlimとなる最も早い時間をTmとすると、制動開始地点Xbrakeは、以下の(17)式により、演算される。
Xbrake=X(Tm)−Bx …(17)
ここで、Bxは予め設定しておいた減速度Gによる制動距離であり、以下の(18)式により演算される。
Bx=(V/(2・G))+Bx0 …(18)
ここで、Bx0は、予め設定しておいた停止時における障害物までの距離であり、例えば、2m程度の値である。
If the earliest time when R (t) f ≧ Rlim is Tm, the braking start point Xbrake is calculated by the following equation (17).
Xbrake = X (Tm) −Bx (17)
Here, Bx is a braking distance by the deceleration G set in advance, and is calculated by the following equation (18).
Bx = (V 2 /(2.G))+Bx0 (18)
Here, Bx0 is a preset distance to the obstacle when the vehicle is stopped, and is a value of about 2 m, for example.

また、制動開始時間Tbrakeは、上述の制動開始地点Xbrakeから逆算することにより演算される。   The braking start time Tbrake is calculated by calculating backward from the above-described braking start point Xbrake.

次いで、S116に進み、自動ブレーキ制御装置15に対し、制動開始地点Xbrake、制動開始時間Tbrakeに基づく制動制御指令を出力する。   Next, in S116, a braking control command based on the braking start point Xbrake and the braking start time Tbrake is output to the automatic brake control device 15.

そして、S117に進み、自動操舵制御装置14に対して最終的な回避ルートR(t)fの旋回制御量u(t)を基に操舵制御指令を出力してプログラムを抜ける。   In S117, the steering control command is output to the automatic steering control device 14 based on the turning control amount u (t) of the final avoidance route R (t) f, and the program is exited.

このように本発明の実施の形態によれば、前方に存在する白線、ガードレール、側壁、及び、立体物のそれぞれを対象として、現在のトータルリスク関数Rを設定し、各対象の位置の時間的変化を予測してトータルリスク関数Rの時間的変化を予測して、このトータルリスク関数Rの時間的変化を基に、各時間毎の自車位置におけるY軸方向の極小点ymin(x,t)を演算する。そして、各時間毎の目的関数Jを作成し、該目的関数Jを最小とする各時間毎の旋回制御量u(t)を自車両1の旋回制御量u(t)として演算して、自車両1が各時間毎の旋回制御量u(t)で移動したときの各ルート毎のリスク関数R(t)を設定し、各ルート毎のリスク関数R(t)から最終的な回避ルートR(t)fを選択し、最終的な回避ルートR(t)fの旋回制御量u(t)に基づいて操舵制御を実行させ、また、最終的な回避ルートR(t)fの値に基づいてブレーキ制御を実行させる。このため、目前の危険性だけではなく、その先に訪れる危険性をも考慮して衝突回避制御を実現することができる。   As described above, according to the embodiment of the present invention, the current total risk function R is set for each of the white line, the guardrail, the side wall, and the three-dimensional object existing in front, and the time of the position of each target is determined. A change is predicted to predict a temporal change of the total risk function R, and based on the temporal change of the total risk function R, a local minimum point ymin (x, t ) Is calculated. Then, an objective function J for each time is created, and the turn control amount u (t) for each time that minimizes the objective function J is calculated as the turn control amount u (t) of the host vehicle 1. The risk function R (t) for each route when the vehicle 1 moves with the turning control amount u (t) for each time is set, and the final avoidance route R is determined from the risk function R (t) for each route. (t) f is selected, steering control is executed based on the turning control amount u (t) of the final avoidance route R (t) f, and the final avoidance route R (t) f is set to the value. Based on this, brake control is executed. For this reason, it is possible to realize the collision avoidance control in consideration of not only the immediate danger but also the risk of coming ahead.

また、車両のリスク関数においては、対象車両の車速と対象車両に対する自車両の方向と対象車両のドライバの視線方向とに応じ、対象車両の自車両に対する認知の度合いを被認知率として設定し、更に、今回設定した被認知率と前回設定した被認知率とを比較して被認知率を可変設定して、車両のリスク関数をこの被認知率で補正する。従って、対象車両の自車両に対する認知の度合いが正確にリスク関数に反映されるので、自然な感覚でドライバの運転支援を行うことが可能となる。   Further, in the risk function of the vehicle, according to the vehicle speed of the target vehicle, the direction of the host vehicle with respect to the target vehicle, and the line-of-sight direction of the driver of the target vehicle, the degree of recognition of the target vehicle with respect to the host vehicle is set as the recognition rate. Furthermore, the recognition rate set this time is compared with the previously set recognition rate, the recognition rate is variably set, and the risk function of the vehicle is corrected by this recognition rate. Accordingly, since the degree of recognition of the target vehicle with respect to the subject vehicle is accurately reflected in the risk function, it is possible to provide driving assistance to the driver with a natural feeling.

尚、本実施の形態では、最終的な回避ルートR(t)fを基にブレーキ制御と操舵制御の2つが行える例を説明しているが、どちらか1つを行うものであっても良い。   In the present embodiment, an example in which brake control and steering control can be performed based on the final avoidance route R (t) f has been described, but either one may be performed. .

また、ブレーキ制御或いは操舵制御を行わずに、例えば最終的な回避ルートR(t)fにおいて予め設定された閾値を上回る時間を警報開始時刻として設定することで、警報制御を行うものであっても良い。   Further, the alarm control is performed without setting the brake control or the steering control, for example, by setting a time exceeding a preset threshold in the final avoidance route R (t) f as the alarm start time. Also good.

更に、本実施の形態で説明したブレーキ制御は、あくまでもその一例であり、他の周知のブレーキ制御、例えば、スロットル開度の閉鎖や自動変速機におけるシフトダウンと併用するようにしても良い。   Furthermore, the brake control described in the present embodiment is merely an example, and may be used in combination with other well-known brake control, for example, closing of the throttle opening or downshifting in an automatic transmission.

また、本実施の形態では、自車両1の前方における白線や立体物等を対象として、現在のトータルリスク関数Rを設定し、その時間的変化を予測する構成について述べたが、これに限らず、自車両1の側方や側後方の立体物をも対象として、トータルリスク関数Rの設定やその時間的変化を予測するようにしても良い。   In the present embodiment, the current total risk function R is set for a white line or a three-dimensional object in front of the host vehicle 1 and the temporal change thereof is predicted. However, the present invention is not limited to this. The setting of the total risk function R and its temporal change may be predicted for the three-dimensional object on the side or rear side of the vehicle 1.

更に、本実施の形態では、自車両1の前進時において回避ルートを生成する構成について述べたが、これに限らず、自車両1の後方環境を認識して自車両1の後退時に回避ルートを生成するようにしても良い。   Furthermore, in the present embodiment, the configuration for generating the avoidance route when the host vehicle 1 moves forward is described. However, the present invention is not limited to this, and the avoidance route is determined when the host vehicle 1 moves backward by recognizing the rear environment of the host vehicle 1. You may make it produce | generate.

また、本実施の形態で説明した被認知率は、他のリスクを求めて制御するシステムの形態(例えば、衝突余裕時間や車間時間等からリスクを求める形態)においても適用できることは云うまでもない。   Needless to say, the recognition rate described in the present embodiment can also be applied to a form of a system that obtains and controls other risks (for example, a form that obtains risks from a collision allowance time, an inter-vehicle time, etc.). .

更に、本実施の形態では、被認知率を(2)式に示す被認知率補正ゲインGrで反映させているが、他の演算式により求められるゲインで反映するようにしても良い。   Further, in the present embodiment, the recognition rate is reflected by the recognition rate correction gain Gr shown in the equation (2), but may be reflected by a gain obtained by another arithmetic expression.

また、本実施形態の被認知率は、対象車両の視線方向を視線方向検出装置5で検出して用いるようにしているが、顔向き方向を検出し、該顔向き方向を視線方向と仮定して演算するようにしても良い。   The recognition rate of the present embodiment is such that the gaze direction of the target vehicle is detected and used by the gaze direction detection device 5, but the face direction is detected, and the face direction is assumed to be the gaze direction. May be calculated.

車両に搭載した運転支援装置の概略構成図Schematic configuration diagram of a driving support device mounted on a vehicle 運転支援制御プログラムのフローチャートFlow chart of driving support control program 図2から続くフローチャートFlowchart continuing from FIG. 被認知率補正ゲイン演算ルーチンRecognition rate correction gain calculation routine 前方に設定されるリスク関数の一例を示す説明図Explanatory drawing which shows an example of the risk function set ahead 自車方向に対する視線方向角度の説明図Explanatory drawing of gaze direction angle with respect to own vehicle direction 被認知率の設定マップRecognition rate setting map 被認知率の特性の説明図Explanatory diagram of characteristics of recognition rate 記憶による変化を予測して設定される被認知率の説明図Explanatory diagram of recognition rate set by predicting changes due to memory 生成される回避ルートと旋回制御量の一例を示す説明図Explanatory drawing which shows an example of the avoidance route and turning control amount which are produced | generated

符号の説明Explanation of symbols

1 自車両
2 運転支援装置
3 制御ユニット(リスク設定手段、被認知率設定手段、リスク補正手段)
4 ステレオ画像認識装置(走行環境認識手段)
5 視線方向検出装置
6 通信装置(走行環境認識手段)
7 測位装置
8 車速センサ
9 ヨーレートセンサ
10 CCDカメラ
11 視野カメラ
12 赤外線ランプ
13 ディスプレイ
14 自動操舵制御装置
15 自動ブレーキ制御装置
1 self-vehicle 2 driving support device 3 control unit (risk setting means, recognition rate setting means, risk correction means)
4 Stereo image recognition device (traveling environment recognition means)
5 Gaze direction detection device 6 Communication device (traveling environment recognition means)
7 Positioning device 8 Vehicle speed sensor 9 Yaw rate sensor 10 CCD camera 11 Field of view camera 12 Infrared lamp 13 Display 14 Automatic steering control device 15 Automatic brake control device

Claims (5)

走行環境を認識して少なくとも車外の立体物の情報を取得するとともに他車両との通信を行って該他車両から情報を取得する走行環境認識手段と、
上記走行環境認識手段で認識された立体物の情報から制御対象とする対象車両を抽出し、該対象車両に対してリスクを設定するリスク設定手段と、
上記走行環境認識手段から上記対象車両の車速、上記対象車両からの自車両の方向と上記対象車両のドライバの向きとが入力され、該入力情報に応じ、上記対象車両の自車両に対する認知の度合いを被認知率として設定する被認知率設定手段と、
上記被認知率に応じて上記各対象車両のリスクを補正するリスク補正手段とを備え、
上記被認知率設定手段は、今回設定した被認知率と前回設定した被認知率とを比較し、上記今回設定した被認知率が上記前回設定した被認知率より小さい場合は、予め設定した割合で上記前回設定した被認知率を低下させて該低下させられた被認知率を前回設定した被認知率として出力し、逆に、上記今回設定した被認知率が上記前回設定した被認知率以上の場合は、上記今回設定した被認知率をそのまま前回設定した被認知率として出力することを特徴とする車両の運転支援装置。
A travel environment recognition means for recognizing a travel environment and acquiring at least information of a three-dimensional object outside the vehicle and communicating with another vehicle to acquire information from the other vehicle;
A risk setting means for extracting a target vehicle to be controlled from information of the three-dimensional object recognized by the traveling environment recognition means, and setting a risk for the target vehicle;
The vehicle speed of the target vehicle, the direction of the host vehicle from the target vehicle, and the direction of the driver of the target vehicle are input from the travel environment recognition unit, and the degree of recognition of the target vehicle with respect to the host vehicle according to the input information A recognition rate setting means for setting as a recognition rate;
A risk correcting means for correcting the risk of each target vehicle according to the recognition rate,
The perceived rate setting means compares the currently set perceived rate with the previously set perceived rate, and when the currently set perceived rate is smaller than the previously set perceived rate, a preset rate Lower the previously set cognitive rate and output the reduced cognitive rate as the previously set cognitive rate , and conversely, the currently set cognitive rate is greater than the previously set cognitive rate In this case, the vehicle driving assistance device is characterized in that the recognition rate set this time is output as it is as the previously set recognition rate .
上記被認知率は、車速が高くなると視力が低下する関係を含んで設定されることを特徴とする請求項1記載の車両の運転支援装置。   The vehicle driving support apparatus according to claim 1, wherein the recognition rate is set so as to include a relationship in which visual acuity decreases when the vehicle speed increases. 上記被認知率は、車速が高くなると視野角が狭くなる関係を含んで設定されることを特徴とする請求項1又は請求項2記載の車両の運転支援装置。   3. The vehicle driving support apparatus according to claim 1, wherein the recognition rate is set so as to include a relationship that a viewing angle becomes narrower as a vehicle speed increases. 上記被認知率は、記憶による変化を予測して設定されることを特徴とする請求項1乃至請求項3の何れか一つに記載の車両の運転支援装置。   4. The vehicle driving support apparatus according to claim 1, wherein the recognition rate is set by predicting a change due to memory. 5. 上記リスク補正手段は、上記被認知率の値が大きいほど上記リスクを小さく補正することを特徴とする請求項1乃至請求項4の何れか一つに記載の車両の運転支援装置。   The vehicle driving support device according to any one of claims 1 to 4, wherein the risk correction unit corrects the risk to be smaller as the value of the recognition rate is larger.
JP2008174744A 2008-07-03 2008-07-03 Vehicle driving support device Active JP5261045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008174744A JP5261045B2 (en) 2008-07-03 2008-07-03 Vehicle driving support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008174744A JP5261045B2 (en) 2008-07-03 2008-07-03 Vehicle driving support device

Publications (2)

Publication Number Publication Date
JP2010015386A JP2010015386A (en) 2010-01-21
JP5261045B2 true JP5261045B2 (en) 2013-08-14

Family

ID=41701449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008174744A Active JP5261045B2 (en) 2008-07-03 2008-07-03 Vehicle driving support device

Country Status (1)

Country Link
JP (1) JP5261045B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312217B2 (en) * 2009-06-16 2013-10-09 本田技研工業株式会社 Vehicle collision possibility determination device
JP6301714B2 (en) * 2014-04-14 2018-03-28 株式会社Soken Travel route generator
JP2016009251A (en) * 2014-06-23 2016-01-18 エイディシーテクノロジー株式会社 Control device for vehicle
US11360442B2 (en) * 2019-01-31 2022-06-14 Morgan Stanley Services Group Inc. Exposure minimization response by artificial intelligence

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4385392B2 (en) * 2000-06-15 2009-12-16 マツダ株式会社 Vehicle information providing device
JP2004210213A (en) * 2003-01-08 2004-07-29 Toyota Central Res & Dev Lab Inc Information providing device
JP4566822B2 (en) * 2005-05-24 2010-10-20 本田技研工業株式会社 Image display device for vehicle
JP4735346B2 (en) * 2006-03-09 2011-07-27 株式会社豊田中央研究所 Driving support device and driving support system
JP5171629B2 (en) * 2006-09-04 2013-03-27 パナソニック株式会社 Driving information providing device

Also Published As

Publication number Publication date
JP2010015386A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP4970156B2 (en) Vehicle driving support device
JP4949063B2 (en) Vehicle driving support device
JP5453048B2 (en) Vehicle driving support control device
JP5167051B2 (en) Vehicle driving support device
US8630793B2 (en) Vehicle controller
JP5066478B2 (en) Vehicle driving support device
JP7416176B2 (en) display device
KR101231510B1 (en) System for alarming a danger coupled with driver-viewing direction, thereof method and vehicle for using the same
EP3075618A2 (en) Vehicle control apparatus
EP2535224B1 (en) Driving support equipment for vehicles
US10232772B2 (en) Driver assistance system
JP2017159827A (en) Vehicle control device
EP3686864A1 (en) Information processing device, autonomous moving apparatus, method, and program
JP2010030513A (en) Driving support apparatus for vehicle
CN108604413B (en) Display device control method and display device
JP6720732B2 (en) Vehicle control device
KR102184598B1 (en) Driving Prediction and Safety Driving System Based on Judgment of Driver Emergency Situation of Autonomous Driving Vehicle
JP5261045B2 (en) Vehicle driving support device
JP2009301123A (en) Vehicle driving support device
JP6790522B2 (en) Vehicle control device
JP5249696B2 (en) Vehicle driving support device
JP5336800B2 (en) Vehicle driving support device
JP4754305B2 (en) Operating state estimation device
JP5083959B2 (en) Vehicle driving support device
JP5175634B2 (en) Vehicle driving support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5261045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250