JP2009115775A - Indenter, method and system for measuring bracing rigidity - Google Patents

Indenter, method and system for measuring bracing rigidity Download PDF

Info

Publication number
JP2009115775A
JP2009115775A JP2008084420A JP2008084420A JP2009115775A JP 2009115775 A JP2009115775 A JP 2009115775A JP 2008084420 A JP2008084420 A JP 2008084420A JP 2008084420 A JP2008084420 A JP 2008084420A JP 2009115775 A JP2009115775 A JP 2009115775A
Authority
JP
Japan
Prior art keywords
indenter
load
panel
measuring
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008084420A
Other languages
Japanese (ja)
Other versions
JP5024152B2 (en
Inventor
Takayuki Futatsuka
貴之 二塚
Kentaro Sato
健太郎 佐藤
Takashi Iwama
隆史 岩間
Toshiaki Urabe
俊明 占部
Kazunari Yoshitomi
一成 吉冨
Koyo Toida
公洋 問田
Eiichi Shiraishi
栄一 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008084420A priority Critical patent/JP5024152B2/en
Publication of JP2009115775A publication Critical patent/JP2009115775A/en
Application granted granted Critical
Publication of JP5024152B2 publication Critical patent/JP5024152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an indenter, a method and a system for measuring bracing rigidity in order to solve the problem that a conventional bracing rigidity measuring technology cannot reproduce the sensory assessment of hand-pushing and also cannot continuously understand the deformation state of the whole panel. <P>SOLUTION: The indenter 1 includes a cylindrical shaped elastic body with its base 2 of 35-55 mm diameter D and D/6-D/2 height to be pressed against the measuring material (panel) 8 of curvature radius R, the hardness of which, IRHD, satisfies a formula (1):30≤IRHD≤0.283×D<SP>4</SP>/R<SP>2</SP>-9.063×D<SP>2</SP>/R+103.2. While applying a metal plate 4 to the top face of this indenter 1 to continuously and statically press the indenter against the panel, load detection and displacement detection from the back side of the panel are performed, and a load-displacement curve is measured. Additionally, the use of a mirror image 12 of a light-dark pattern reflectively-projected on a given similar mirror surface area of the measuring material enables the deformation state of the entire measuring material to be simultaneously and continuously viewed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、張り剛性測定用圧子および張り剛性測定方法に関し、詳しくは、金属パネル、特に金属製のドア、フードなど自動車アウター部品パネルの張り剛性評価に際し、荷重‐変位カーブを高精度で測定するための、張り剛性測定用圧子、張り剛性測定方法および装置に関する。   The present invention relates to an indenter for tension stiffness measurement and a tension stiffness measurement method. More specifically, the load-displacement curve is measured with high accuracy when evaluating the stiffness of a metal panel, in particular, an automotive outer part panel such as a metal door or hood. The present invention relates to a tension stiffness measurement indenter, a tension stiffness measurement method and apparatus.

近年、特に自動車など車両の軽量化を実現するため、ドアやフードなど自動車アウター部品においても薄肉軽量化のニーズが高まっている。しかしながら、パネル部品の薄肉化は部品剛性の低下を招き、人が触れたときにパネルが容易に変形したり、パネルがベコベコと音を立てるなどの現象が発生しやすくなる。これにより、自動車の品質感が大きく損なわれることから、自動車メーカにとって張り剛性の確保と部品軽量化の両立が大きな課題となっている。   In recent years, in order to reduce the weight of vehicles such as automobiles, there has been a growing need for thinner and lighter automobile outer parts such as doors and hoods. However, the thinning of the panel parts leads to a reduction in the rigidity of the parts, and a phenomenon such as the panel being easily deformed when touched by a person or the panel making a noise is likely to occur. As a result, the sense of quality of the automobile is greatly impaired, and it is therefore a major challenge for automobile manufacturers to ensure both the rigidity and weight reduction of parts.

また、車体設計コンピュータシミュレーション技術を用いて実験をせずに張り剛性を予測評価する技術も確立されつつあるが、予測結果と実験結果は必ずしも一致せず、依然として実験による測定評価は不可欠であり、コンピュータシミュレーションの予測精度向上のためにも精度の高い測定・解析技術が必要となっている。
これまで張り剛性の評価方法として以下の方法が用いられてきた。
In addition, a technology for predicting and evaluating the tension stiffness without performing an experiment using the vehicle body design computer simulation technology is being established, but the predicted result and the experimental result are not necessarily consistent, and the measurement evaluation by the experiment is still indispensable. In order to improve the prediction accuracy of computer simulation, high-precision measurement and analysis technology is required.
Until now, the following methods have been used as evaluation methods of tension stiffness.

製造現場においては、簡便的に手押しによる官能評価が行われている。これは、検査員がパネルを手で押してそのときの反力を定性的に判断して合否を判定するものである。
しかし、このような官能評価は熟練を要し、熟練者の確保に難がある。熟練者でない人が検査するとばらつきが大きく信頼性に乏しい。
そのため、機械的に張り剛性を評価するための方法がいくつか提案されている。
At the manufacturing site, sensory evaluation is easily performed by hand. In this case, the inspector pushes the panel by hand, and the reaction force at that time is qualitatively determined to determine pass / fail.
However, such sensory evaluation requires skill, and it is difficult to secure skilled people. When a non-expert is inspected, the variation is large and the reliability is poor.
Therefore, several methods for mechanically evaluating the tension rigidity have been proposed.

特許文献1に開示されている方法は、被測定物に圧子を押し付けて測定点の部位を変形させながら、その荷重と変位との関係を電気信号に変換して記録するものである。このとき、荷重は圧子上部に設置されたロードセルで測定し、変位は圧子に取り付けられた加速度計の信号を積分することで変位に換算して算出する方法である。
特許文献2に開示されている方法は、荷重計と変位計とを一体に備えた張り剛性測定ヘッドを用いて、予め決められた荷重を被測定物に加え、その状態から荷重が除去するまでの圧子変位量を測定することにより、張り剛性の測定を正確に行おうとするものである。
In the method disclosed in Patent Document 1, the relationship between the load and the displacement is converted into an electric signal and recorded while the indenter is pressed against the object to be measured to deform the portion of the measurement point. At this time, the load is measured by a load cell installed on the top of the indenter, and the displacement is calculated by converting to a displacement by integrating a signal of an accelerometer attached to the indenter.
In the method disclosed in Patent Document 2, a predetermined load is applied to an object to be measured using a tension rigidity measurement head integrally provided with a load meter and a displacement meter, and the load is removed from the state. By measuring the amount of displacement of the indenter, the tension stiffness is accurately measured.

特許文献3に開示されている方法は、手動油圧ポンプで駆動される押圧試験ユニットをロボットに持たせて自動車車体の外板の張り剛性を測定するものである。押圧試験ユニットには、荷重測定用のロードセルを介してアルミ材よりなる略円柱状の圧子が取り付けられており、ダイアルゲージによりその変位を測定して張り剛性を評価するものである。
特許文献4に開示されている方法は、自動車ルーフパネルの張り剛性測定を目的に、圧子に荷重を加えるためのシャフトとシャフトの移動量を検出する変位計、シャフトの端部に対向する荷重計が設けられた装置を遠隔操作することにより張り剛性を評価するものである。
特開昭59−9542号公報 特開昭62−70730号公報 実開平6−18947号公報 実公平7−14857号公報
In the method disclosed in Patent Document 3, a robot has a pressing test unit driven by a manual hydraulic pump, and the tension rigidity of the outer plate of the automobile body is measured. A substantially cylindrical indenter made of an aluminum material is attached to the press test unit via a load measuring load cell, and the displacement is measured by a dial gauge to evaluate the tension rigidity.
For the purpose of measuring the tension rigidity of an automobile roof panel, a method disclosed in Patent Document 4 is a displacement meter that detects a moving amount of a shaft and a shaft for applying a load to an indenter, and a load meter that faces an end of the shaft. The tension stiffness is evaluated by remotely operating the apparatus provided with the.
JP 59-9542 A JP-A-62-70730 Japanese Utility Model Publication No. 6-18947 No. 7-14857

しかし、上述の従来技術は、手押しによる官能評価を必ずしも再現していないことが発明者らの調査で分かった。これまで一般的に用いられていた金属製、硬質ゴム製の圧子は、荷重負荷開始からパネル面との接触面積が小さく、特に、比較的変位の小さい領域において手押しの場合よりも荷重が低くなる傾向が認められた。
また、これらの圧子では荷重の増大とともに、パネル面が塑性変形を起こす場合があり、測定精度の低下につながる問題もあった。
However, the inventors have found out that the above-described conventional technology does not necessarily reproduce the sensory evaluation by hand. Conventionally used metal and hard rubber indenters have a small contact area with the panel surface from the beginning of load application, and in particular, the load is lower than in the case of manual pushing in a relatively small displacement area. A trend was observed.
In addition, with these indenters, the panel surface may undergo plastic deformation as the load increases, and there is a problem that leads to a decrease in measurement accuracy.

また、これらの測定装置において、変位測定計は荷重軸と連動するように設置されているが、圧子が軟らかいものになると、圧子自身の変形も測定してしまい、正確なパネルのたわみ挙動を測定できないことが考えられた。
さらに上述した従来の技術は、圧子の位置の変位量と圧子に加わる荷重の関係を精度よく記録し、その荷重‐変位曲線から張り剛性の良否を評価することに主眼を置いたものである。一般に荷重‐変位曲線は、図1に示すように初期に急激に立ち上がり、パネルの変形とともに荷重増加が緩やかになり、ベコツキが発生する場合には、荷重の急激な低下を伴う変化を示す。このような荷重の変化は、圧子負荷に伴うパネルの変形状態と密接な関係があることが知られている。特に、ベコツキ挙動は、パネル飛び移り座屈現象による、不連続なパネル変形が原因と考えられている。
In these measuring devices, the displacement meter is installed so as to be linked with the load axis. However, if the indenter becomes soft, the deformation of the indenter itself is also measured, and the accurate flexure behavior of the panel is measured. I thought it was impossible.
Furthermore, the above-described conventional technique focuses on recording the relationship between the displacement of the position of the indenter and the load applied to the indenter with high accuracy and evaluating the rigidity of the tension from the load-displacement curve. In general, as shown in FIG. 1, the load-displacement curve rises rapidly in the initial stage, and when the panel is deformed, the load increases gradually. When the sticking occurs, the load-displacement curve shows a change accompanied by a rapid decrease in the load. It is known that such a change in load is closely related to the deformation state of the panel accompanying the indenter load. In particular, the beveling behavior is considered to be caused by discontinuous panel deformation due to the panel jumping buckling phenomenon.

製造現場、品質保証の現場では、単純な荷重‐変位曲線による合否判定で十分であるが、設計段階における張り剛性向上方策検討のためには、荷重‐変位曲線のみならず、パネル全体の変形状態を把握して、張り剛性特性を左右している部位の特定が重要となる。また、コンピュータシミュレーションの予測精度を検証する上でも、荷重‐変位曲線と同時にパネルの変形状態が実験と一致しているかどうかの確認が必要である。しかしながら、従来の技術では、圧子部の変形状態を測定するのみで、パネル全体の変形状態を連続的に測定・解析することは不可能であった。   In manufacturing and quality assurance sites, pass / fail judgment based on a simple load-displacement curve is sufficient, but not only the load-displacement curve but also the deformation state of the entire panel is used for studying measures for improving the stiffness at the design stage. It is important to identify the part that affects the stiffness characteristics. In addition, to verify the prediction accuracy of computer simulation, it is necessary to confirm whether the deformation state of the panel coincides with the experiment at the same time as the load-displacement curve. However, in the prior art, it is impossible to continuously measure and analyze the deformation state of the entire panel only by measuring the deformation state of the indenter.

本発明の目的は、これら従来技術の問題点に鑑み、より精度の高い張り剛性評価を可能にする、張り剛性測定用圧子、張り剛性測定方法および装置を提供することにある。   An object of the present invention is to provide a tension stiffness measurement indenter, a tension stiffness measurement method, and an apparatus that enable a more accurate tension stiffness evaluation in view of the problems of these conventional techniques.

発明者らは、前記目的を達成すべく鋭意検討を重ね、その結果、熟練者の手押しによる官能評価を高精度に再現し、さらに張り剛性を左右する部位を特定するため、パネル変形状態を可視化し、高速で同時に連続的に測定する測定方法を開発した。すなわち、本発明は次のとおりである。
1. 曲率半径Rの金属パネルの張り剛性を測定するための圧子であって、前記金属パネルに押し付ける底面の直径Dが35〜55mm、高さがD/6〜D/2の円柱形状の弾性体からなり、該弾性体の硬さIRHDが下記式(1)を満足し、該弾性体の頂面を金属板で押されて前記金属パネルと当接することを特徴とする張り剛性測定用圧子。
The inventors have made extensive studies to achieve the above-mentioned objectives, and as a result, the sensory evaluation by the hand of an expert is reproduced with high accuracy, and the panel deformation state is visualized in order to identify the part that affects the stiffness. In addition, we have developed a measurement method for continuous measurement at high speed at the same time. That is, the present invention is as follows.
1. An indenter for measuring the stiffness of a metal panel having a radius of curvature R, from a cylindrical elastic body having a diameter D of 35 to 55 mm and a height of D / 6 to D / 2 on the bottom surface pressed against the metal panel An indenter for tension stiffness measurement, characterized in that the hardness IRHD of the elastic body satisfies the following formula (1), and the top surface of the elastic body is pressed by a metal plate and comes into contact with the metal panel.


30≦IRHD≦0.283×D/R−9.063×D/R+103.2 …(1)
2. 前項1に記載の張り剛性測定用圧子を使用して前記金属パネルの張り剛性を測定する方法であって、押圧装置により前記金属板を介した前記圧子から前記金属パネルの被測定面への押圧荷重を連続的かつ静的に負荷しつつ、前記金属パネルの被測定面の裏面側から該被測定面の変位量を連続的に測定することを特徴とする張り剛性測定方法。
Record
30 ≦ IRHD ≦ 0.283 × D 4 / R 2 −9.063 × D 2 /R+103.2 (1)
2. A method for measuring the tension stiffness of the metal panel using the tension stiffness measuring indenter according to the preceding item 1, wherein the pressing device presses the indenter from the indenter through the metal plate to the surface to be measured. A tension stiffness measurement method, comprising: continuously measuring a displacement amount of a surface to be measured from a back surface side of the surface to be measured of the metal panel while applying a load continuously and statically.

3. 測定材である前記金属パネルとして、前記被測定面の裏面が類鏡面であるものを用い、該裏面側から前記被測定面の変位量を連続的に測定するに併せて、該裏面に明暗パターンを反射投影して該明暗パターンの鏡像を得、該鏡像により、前記測定材全体の変形状態を、同時かつ連続的に、可視化することを特徴とする前項2に記載の張り剛性測定方法。   3. As the metal panel that is a measurement material, the back surface of the measured surface is a mirror-like surface, and in addition to continuously measuring the amount of displacement of the measured surface from the back surface side, a light-dark pattern is formed on the back surface. 3. The tension stiffness measurement method according to item 2, wherein a reflected image is obtained to obtain a mirror image of the light-dark pattern, and the deformation state of the entire measurement material is visualized simultaneously and continuously by the mirror image.

ここで、類鏡面とは、鏡面または半鏡面を意味する。
4. 前項3に記載の張り剛性測定方法の実施に用いる装置であって、前記測定材に荷重を加える負荷手段と、該加えた荷重およびそれによる変位量を測定する手段と、これら荷重‐変位データを記録する手段と、複数の明暗パターンを切替えて出力する演算手段と、前記出力された明暗パターンを投影する投影手段と、該投影手段からの投影像を表示する表示手段と、前記表示された投影像を前記測定材中の所定の類鏡面部に映してなる鏡像を撮影および記録する手段とを有することを特徴とする張り剛性測定装置。
Here, the mirror surface means a mirror surface or a semi-mirror surface.
4). An apparatus used for carrying out the tension stiffness measurement method according to the preceding item 3, wherein a load means for applying a load to the measurement material, a means for measuring the applied load and a displacement amount due thereto, and the load-displacement data are obtained. Means for recording, arithmetic means for switching and outputting a plurality of light and dark patterns, projection means for projecting the outputted light and dark patterns, display means for displaying a projection image from the projection means, and the displayed projection A tension rigidity measuring apparatus comprising: means for photographing and recording a mirror image formed by projecting an image on a predetermined mirror surface portion in the measurement material.

本発明によれば、手押しによる官能評価を再現でき、また、高荷重域での塑性変形発生を抑制できるので、張り剛性の高精度な定量評価が可能である。また、張り剛性評価時の荷重‐変位特性と同時に、光学的手法を用いてパネル全体の変形状態および三次元形状を可視化することで、圧子への荷重増加に伴うパネル形状の変化を連続的に把握すること、また張り剛性特性を左右している部位の特定、張り剛性のメカニズムを把握することが可能となる。   According to the present invention, sensory evaluation by hand pressing can be reproduced, and the occurrence of plastic deformation in a high load range can be suppressed, so that high-precision quantitative evaluation of tension stiffness is possible. In addition to the load-displacement characteristics at the time of tension stiffness evaluation, the deformation state and three-dimensional shape of the entire panel are visualized using an optical method, so that changes in the panel shape as the load on the indenter increases are continuously observed. It becomes possible to grasp, to identify the part that affects the tension rigidity characteristic, and to understand the tension rigidity mechanism.

金属パネル例えば自動車アウター部品のプレスパネルは、比較的曲率半径の大きい緩曲面をもち、曲率半径が大きいことから、張り剛性の低下が懸念される。張り剛性の評価はこのような緩曲面を対象とすることが多く、手押し官能評価を再現する精度の高い評価を行う場合は、その曲面に合った測定方法の検討が必要である。
荷重‐変位挙動には、圧子と測定対象パネルとの接触面積が影響することが発明者らの調査により明確になった。
A press panel of a metal panel, for example, an automobile outer part has a gently curved surface with a relatively large curvature radius, and since the curvature radius is large, there is a concern about a decrease in tension rigidity. The evaluation of the tension stiffness often targets such a gently curved surface, and in the case of performing a highly accurate evaluation that reproduces the manual sensory evaluation, it is necessary to examine a measurement method suitable for the curved surface.
The inventors have clarified that the contact area between the indenter and the measurement target panel affects the load-displacement behavior.

板厚0.7mmの冷延鋼板(引張強さ340MPa級)を350mm角のカマボコ形状(曲率半径R1200)の金型でプレス成形したモデルパネルを測定対象とし、これのパネル凸面側中央部を、手のひらで押す条件、および硬質ゴム、軟質ゴム、鋼(先端R50)、ボール(ゴム製)の各圧子で押す条件で、押し込んだ際の荷重‐変位曲線を測定し、手押しでのデータとの荷重差ΔXを求めた。このΔXは、前記荷重‐変位曲線に基づき、各圧子で押し込む条件について、変位0.05mm毎の手押し条件との荷重差分を所定の変位のところまでとってそれらを積算したものである。一方、手のひらまたは前記各圧子の、パネル(測定対象パネル)との接触面積を感圧紙で実測した。   A model panel obtained by press-molding a cold-rolled steel sheet having a thickness of 0.7 mm (tensile strength of 340 MPa class) with a 350 mm square die (curvature radius R1200) is used as a measurement target. Measure the load-displacement curve at the time of pushing under the condition of pushing with the palm and the condition of pushing with each indenter of hard rubber, soft rubber, steel (tip R50) and ball (made of rubber), and the load with the data by pushing The difference ΔX was determined. This ΔX is obtained by accumulating the load difference between the pushing condition with each indenter and the pushing condition for every displacement of 0.05 mm up to a predetermined displacement based on the load-displacement curve. On the other hand, the contact area of the palm or each indenter with the panel (measurement target panel) was measured with pressure-sensitive paper.

パネルとの接触面積とΔXの関係を図2に示す。同図より、バラツキはあるが接触面積の増加によりΔXが増大することが分かる。
手のひらの接触面積をAとして、圧子の形状は押し込みの荷重負荷中の安定性の点で好ましい円柱形状とし、その圧子底面の直径Dは、D=2×√(A/π)で表される。なお、Dの値としては、一般的な大きさの手の接触面積を調査した結果、35〜55mmが必要であることも分かった。
The relationship between the contact area with the panel and ΔX is shown in FIG. From the figure, it can be seen that ΔX increases as the contact area increases although there is variation.
The contact area of the palm is A, and the shape of the indenter is a cylindrical shape that is preferable in terms of stability during indentation loading. The diameter D of the bottom surface of the indenter is expressed by D = 2 × √ (A / π). . In addition, as a value of D, as a result of investigating the contact area of the hand of a general size, it was found that 35 to 55 mm was necessary.

硬度の異なる16種類の弾性体(ここではゴムを用いた)で直径D=55mm、高さ(厚さ)15mmの円柱形状の圧子を作製し、鋼板(引張強さ340MPa級、板厚0.8mm)を曲率半径R800、R1200のカマボコ形状の金型でプレス成形したパネルの張り剛性を測定した結果を図3に示す。なおゴムの硬度は国際ゴム硬さIRHDを使用した。
圧子の円柱底面積=パネルとの接触面積、となるには、圧子が荷重負荷後パネルに完全に馴染む必要がある。それはパネルの曲率半径Rと関係があると考え、調査した結果、パネルと馴染むには以下の条件を満たす必要があることを見出した。
A cylindrical indenter having a diameter D of 55 mm and a height (thickness) of 15 mm was prepared using 16 types of elastic bodies (in this case, rubber) having different hardnesses, and a steel plate (tensile strength of 340 MPa class, plate thickness of 0.2 mm). FIG. 3 shows the result of measuring the tension rigidity of a panel that is press-molded with a die having a radius of curvature of R800 and R1200. The rubber hardness used was the international rubber hardness IRHD.
In order that the cylindrical bottom area of the indenter = the contact area with the panel, the indenter needs to fully adapt to the panel after loading. As a result of investigating that it is related to the radius of curvature R of the panel, it was found that the following conditions must be satisfied in order to be familiar with the panel.

IRHD≦0.283×D/R−9.063×D/R+103.2 …(1A)
式(1A)の導出方法について以下に述べる。
硬さを10水準違えた弾性体(ここではゴムを用いた)製円柱形状の圧子の底面を、曲率半径R1200の前記パネル上に置き、圧子の頂面に当て板(鋼製)を当ててその上からパネル面に対し荷重550gfで垂直に押込んだ時のパネルとの圧子底面側のたわみ量(凹み量)δを実測し、そのデータから最小二乗法により以下の曲線近似式(2)を求めた。なお、この際、パネルの変形およびゴムのせん断変形は無いことを確認している。
IRHD ≦ 0.283 × D 4 / R 2 −9.063 × D 2 /R+103.2 (1A)
The method for deriving equation (1A) is described below.
Place the bottom surface of a cylindrical indenter made of an elastic body (in this case, rubber) having a hardness of 10 levels on the panel having a radius of curvature R1200, and apply a backing plate (made of steel) to the top surface of the indenter. The amount of deflection (dent) δ on the bottom side of the indenter with respect to the panel when pushed vertically with respect to the panel surface with a load of 550 gf is measured, and the following curve approximation formula (2) is obtained from the data by the least square method. Asked. At this time, it was confirmed that there was no panel deformation and no rubber shear deformation.

IRHD=18.1×δ−72.5×δ+103.2 …(2)
(ただし、δ>0のときである。δ=0のときは、IRHD=100とする)
また、パネル変形の無い状態で、圧子底面がパネルに完全に接触する(馴染む)ために必要な圧子のたわみ量dは、図4に示すように幾何学的な方法により以下のように求められる。
IRHD = 18.1 × δ 2 −72.5 × δ + 103.2 (2)
(However, when δ> 0. When δ = 0, IRHD = 100)
In addition, the indenter deflection d required for the bottom surface of the indenter to completely contact (adhere) to the panel without deformation of the panel is obtained as follows by a geometric method as shown in FIG. .

d=D/(8R) …(3)
一方、荷重負荷を受けた圧子がたわみ、底面がパネルに完全に馴染むためには、式(2)において、δ=dを満たすことが必要である。
式(2)にδ=dを代入し、さらに式(3)より以下の式
IRHDMAX=0.283×D/R−9.063×D/R+103.2
(ただし、R=∞のときは、IRHD=100とする)
が求まり、この硬度IRHDMAX以下であれば圧子がパネル面に馴染むので、前記式(1A)の関係が求められた。
d = D 2 / (8R) (3)
On the other hand, in order for the indenter that receives the load to bend and the bottom surface to be fully adapted to the panel, it is necessary to satisfy δ = d in equation (2).
Substituting δ = d into equation (2), and further using equation (3)
IRHD MAX = 0.283 × D 4 / R 2 −9.063 × D 2 /R+103.2
(However, when R = ∞, IRHD = 100)
If the hardness is less than IRHD MAX , the indenter becomes familiar with the panel surface, so the relationship of the above formula (1A) was obtained.

さらに、IRHD<30では、圧子底面はパネルと馴染むが、圧子自体の潰れが大きく正確な測定ができないため、圧子硬度IRHDは、前記式(1)すなわち、
30≦IRHD≦0.283×D/R−9.063×D/R+103.2 …(1)
を満たすものとした。
板厚0.8mmの引張強さ340MPa級ハイテン鋼板を350mm角のカマボコ形状(曲率半径R1200)の金型でプレス成形したモデルパネルについて、底面直径Dが35〜55mm、厚さ(高さ)がD/18〜D×(9/10)の円柱形状で、硬度が30〜100IRHDであるゴム圧子にてパネル中央部を押下し、荷重‐変位曲線を測定した。
圧子厚さ(円柱高さ)とΔXの関係を図5に示した。圧子硬さ(圧子とした弾性体の硬さ)IRHDが、式(1)を満たす場合(発明範囲の場合)は圧子厚さD/6〜D/2の広い範囲でΔX=0を満たし良好な結果を示すが、IRHDMAXを超えた場合はΔX=0となる領域が狭まることが分かる。
Further, when IRHD <30, the bottom surface of the indenter is compatible with the panel, but the indenter itself is crushed and cannot be measured accurately.
30 ≦ IRHD ≦ 0.283 × D 4 / R 2 −9.063 × D 2 /R+103.2 (1)
It was supposed to satisfy.
A model panel obtained by press-molding a high strength steel plate with a tensile strength of 340 MPa class with a plate thickness of 0.8 mm with a 350 mm square die (curvature radius R1200) has a bottom diameter D of 35 to 55 mm and a thickness (height). The center of the panel was pressed with a rubber indenter having a cylindrical shape of D / 18 to D × (9/10) and a hardness of 30 to 100 IRHD, and a load-displacement curve was measured.
The relationship between the indenter thickness (column height) and ΔX is shown in FIG. Indenter hardness (hardness of the elastic body used as an indenter) When IRHD satisfies the formula (1) (in the case of the invention), ΔX = 0 is satisfied in a wide range of indenter thickness D / 6 to D / 2. However, when IRHD MAX is exceeded, the region where ΔX = 0 is narrowed.

この圧子を使用した本発明の実施の形態(その1)を図6に示す。定盤5上に配置した測定材8の被測定面(凸面側、荷重負荷面)に圧子1の底面を当て、圧子1の頂面に当て板とした配置した金属板(例えば鋼板)4を、図示しない押圧装置(例えば油圧装置あるいは電動モータ装置など)により連続的かつ静的に押下しながら、この押下の荷重をロードセル7で検出する。それと同時に測定材8の被測定面の裏面側(凹面側)から変位計6により被測定面の下方への変位を検出する。ここで、押圧装置にて静的に押下する際の速度(単位時間あたりの押下量)は、手の押下速度に合わせて、0.05〜100mm/sとするのが好ましい。この押し速度範囲内であれば、荷重‐変位曲線への押し速度の影響は極めて小さい。   An embodiment (No. 1) of the present invention using this indenter is shown in FIG. A metal plate (for example, a steel plate) 4 arranged as a contact plate on the top surface of the indenter 1 with the bottom surface of the indenter 1 applied to the surface to be measured (convex surface, load loading surface) of the measuring material 8 disposed on the surface plate 5. The load of the press is detected by the load cell 7 while being pressed continuously and statically by a pressing device (not shown) (for example, a hydraulic device or an electric motor device). At the same time, the displacement meter 6 detects the downward displacement of the measured surface from the back surface side (concave surface side) of the measured material 8. Here, it is preferable that the speed (pressing amount per unit time) when pressing statically with the pressing device is 0.05 to 100 mm / s in accordance with the pressing speed of the hand. Within this pushing speed range, the influence of the pushing speed on the load-displacement curve is very small.

なお、荷重負荷中における円柱形状の圧子支持のため、および、圧子頂面に均等に荷重がかかることを目的として、圧子の頂面側に当て板として前記金属板4を当接配置することが必要である。この金属板は、荷重負荷中にたわみが発生しないものならば特に限定されないが、例えば、鉄、アルミニウム、銅、チタンなどが適しており、厚みについてもたわみが発生しないものならば、特に限定されない。   In order to support a cylindrical indenter during load application and to apply a load evenly to the top surface of the indenter, the metal plate 4 may be disposed in contact with the top surface of the indenter as a contact plate. is necessary. This metal plate is not particularly limited as long as it does not cause deflection during load application, but for example, iron, aluminum, copper, titanium, etc. are suitable, and there is no particular limitation if thickness does not cause deflection. .

このようにして測定した荷重‐変位曲線を用いて測定材8の張り剛性を評価することにより、手押しの張り剛性官能評価を高精度に再現することができ、高精度な張り剛性の評価が可能となる。
特に、荷重負荷面の裏側から変位を検出するようにしたことで、圧子の弾性変形の影響を受けることなく、パネルのたわみ量を正確に測定することができる。
By evaluating the tension stiffness of the measuring material 8 using the load-displacement curve measured in this way, it is possible to reproduce the tension stiffness sensory evaluation of the handstock with high accuracy and to evaluate the tension stiffness with high accuracy. It becomes.
In particular, since the displacement is detected from the back side of the load loading surface, the panel deflection can be accurately measured without being affected by the elastic deformation of the indenter.

また、測定材全体の変形状態を評価する手法として、本発明の実施の形態(その2)を図7に示す。測定材8の被測定面(凸面側、荷重負荷面)に圧子1の底面を当て、圧子1の頂面に当て板とした配置した金属板(例えば鋼板)4を、図示しない押圧装置(測定材に荷重を加える負荷手段、例えば油圧装置あるいは電動モータ装置など)により連続的かつ静的に押下しながら、この押下の荷重をロードセル(荷重を測定する手段)7で検出する。それと同時に測定材8の被測定面の変位を裏面側(凹面側)から変位計(変位量を測定する手段)6により検出する。変位計6およびロードセル7は、レコーダ(荷重‐変位データを記録する手段)10と接続されている。   FIG. 7 shows an embodiment (No. 2) of the present invention as a method for evaluating the deformation state of the entire measuring material. A metal plate (for example, a steel plate) 4 placed on the measured surface (convex surface, load-loading surface) of the measuring material 8 with the bottom surface of the indenter 1 as a contact plate on the top surface of the indenter 1 is not shown in the figure. A load cell (means for measuring the load) 7 detects the pressed load while continuously and statically pressing it with a load means for applying a load to the material, such as a hydraulic device or an electric motor device. At the same time, the displacement of the surface to be measured of the measuring material 8 is detected from the back surface (concave surface) by the displacement meter (means for measuring the displacement) 6. The displacement meter 6 and the load cell 7 are connected to a recorder (means for recording load-displacement data) 10.

パターン表示機構は、複数の明暗パターンを切替えて出力する演算装置(演算手段)14から出力された明暗パターンが、演算装置14に接続されたプロジェクタ(投影手段)13に送られ、送られた明暗パターンをプロジェクタ13がスクリーン(表示手段)11へ投影するよう構成されている。明暗パターンは特に限定されない。例えば、図7に示すようなストライプ状の明暗パターンでもよく、これ以外にも格子状、波形状など各種パターンが適応できる。測定材8の所定の表面(ここでは、変位計6配置側の面)は、類鏡面(鏡面または半鏡面)状とされている。スクリーン11で表示された投影像(明暗パターン)は、そこから発して測定材8の所定の類鏡面状の表面で正反射することによって、その鏡像が前記類鏡面状の表面に映る。この鏡像は、これを観察可能に配置・配向されたカメラ(鏡像を撮影する手段)9で撮影される。プロジェクタ13およびカメラ9は、レコーダ10と接続されている。レコーダ10は、前記荷重‐変位データを記録するとともに、プロジェクタ13が投影した明暗パターン、およびカメラ9が撮影した鏡像の、画像データを記録する。   In the pattern display mechanism, the light / dark pattern output from the arithmetic device (arithmetic means) 14 that switches and outputs a plurality of light / dark patterns is sent to the projector (projection means) 13 connected to the arithmetic device 14, and the transmitted light / dark pattern is transmitted. The projector 13 is configured to project the pattern onto the screen (display means) 11. The light / dark pattern is not particularly limited. For example, a stripe-like light / dark pattern as shown in FIG. 7 may be used, and various patterns such as a lattice shape and a wave shape can be applied. The predetermined surface of the measuring material 8 (here, the surface on the side where the displacement meter 6 is arranged) is in the shape of a mirror-like surface (mirror surface or semi-mirror surface). The projected image (bright / dark pattern) displayed on the screen 11 is emitted from the reflected image and regularly reflected on a predetermined mirror-like surface of the measuring material 8 so that the mirror image is reflected on the mirror-like surface. This mirror image is taken by a camera (means for taking a mirror image) 9 arranged and oriented so that it can be observed. The projector 13 and the camera 9 are connected to the recorder 10. The recorder 10 records the load-displacement data, and also records image data of the light / dark pattern projected by the projector 13 and the mirror image captured by the camera 9.

このようにして測定された変位‐荷重曲線および測定材8に映った反射投影パターン12を撮影した画像より、手押しの張り剛性官能評価を高精度に再現しつつ、パネル飛び移り座屈現象による、不連続なパネル全体の変形挙動を連続的に把握することが可能である。   Based on the displacement-load curve measured in this way and the image of the reflection projection pattern 12 reflected on the measurement material 8, while reproducing the hand-stiffness stiffness sensory evaluation with high accuracy, It is possible to continuously grasp the deformation behavior of the entire discontinuous panel.

図6に示した測定方法により、測定対象パネルの荷重と変位を測定した。測定対象パネル(引張強さ340,440MPa級、板厚0.7mmの鋼板を金型でカマボコ形にプレス成形したもの)の曲率半径、および圧子(ゴム製円柱形状のもの)の底面直径(圧子径)、硬さ、厚さを種々変えて測定し、手押しの荷重‐変位曲線との差をΔXとした。ΔXの算出方法は、図8に示すように、手押しの荷重‐変位曲線(例えば図8中の曲線A)を基準にとり、飛び移り変位(座屈変位)まで、または飛び移りのない場合は変位5mmまで、変位0.05mmごとの荷重差の積算値で表し、ΔX=0の場合(例えば図8中の曲線A’)は適、ΔX≠0の場合(例えば図8中の曲線B,C)は不適とした。なお、圧子径は手のひらの接触面積Aに合わせ、2×√(A/π)の径にて実施している。手押しにおける測定では、測定対象パネルを支持する台(図6中の定盤5)の下にロードセルを、測定対象パネル裏面に変位計を配置することで、変位と荷重を同時に測定した。押圧装置(ここでは電動モータで構成)の押し速度は前記好適範囲内の0.1mm/sとした。   The load and displacement of the measurement target panel were measured by the measurement method shown in FIG. The radius of curvature of the panel to be measured (tensile strength of 340, 440 MPa class, 0.7 mm thick steel plate pressed into a flat shape with a mold), and the bottom diameter of the indenter (rubber cylindrical shape) (Diameter), hardness, and thickness were measured in various ways, and the difference from the hand load-displacement curve was taken as ΔX. As shown in FIG. 8, ΔX is calculated based on a hand-loaded load-displacement curve (for example, curve A in FIG. 8), up to the jump displacement (buckling displacement), or when there is no jump, the displacement Up to 5 mm, expressed as an integrated value of the load difference for each displacement of 0.05 mm, when ΔX = 0 (for example, curve A ′ in FIG. 8) is appropriate, and when ΔX ≠ 0 (for example, curves B and C in FIG. 8) ) Was inappropriate. The indenter diameter is 2 × √ (A / π) according to the contact area A of the palm. In the measurement by hand, the displacement and the load were measured simultaneously by placing a load cell under the table (the surface plate 5 in FIG. 6) supporting the measurement target panel and a displacement meter on the back of the measurement target panel. The pressing speed of the pressing device (here constituted by an electric motor) was set to 0.1 mm / s within the preferred range.

ΔXの算出結果を表1に示す。本発明範囲内ではΔX=0となり、手押しによる評価結果を再現していることがわかる。   Table 1 shows the calculation result of ΔX. Within the scope of the present invention, ΔX = 0, and it can be seen that the evaluation result by hand is reproduced.

引張強さ340MPa級で板厚0.7mmの鋼板を1200mmR円筒面のポンチでプレス成形し、得られた600mm角、パネル曲率半径1200mmのカマボコ形状のパネル(略してカマボコパネル)の凹側を塗油により半鏡面状態とした上で、図7に示した本発明実施形態の例と同様に測定装置を組んだ。明暗パターンは幅20mmの明るいラインと幅20mmの暗いラインとが交互に配列されたストライプ状のパターンとした。圧子には圧子径45mm、圧子硬さ50IRHD、圧子厚16mmのものを用い、この圧子でカマボコパネル中央部を、押し速度0.1mm/sで押し込み量4.5mmまで押し込んで、張り剛性を測定した。図9は、説明用として、圧子を押込む一連の過程におけるカマボコパネルの変形挙動を示した図である。これよりカマボコパネルに映った反射投影パターンの変化からカマボコパネル全体の変形状態が一目瞭然であり、押し込み量2.0mmでは押し込み部にたわみが発生しているが、押し込み量4.5mmでは、飛び移り座屈現象により、図9中の点線で囲った箇所に大きなたわみが発生しており、荷重負荷時のベコツキ挙動を容易に捉えうることがわかる。   A steel plate with a tensile strength of 340 MPa and a thickness of 0.7 mm is press-molded with a punch with a 1200 mmR cylindrical surface, and the concave side of the resulting 600 mm square panel panel radius of curvature 1200 mm is applied. After making a semi-mirror surface state with oil, a measuring device was assembled in the same manner as in the example of the embodiment of the present invention shown in FIG. The light / dark pattern was a stripe pattern in which bright lines with a width of 20 mm and dark lines with a width of 20 mm were alternately arranged. An indenter with an indenter diameter of 45 mm, an indenter hardness of 50 IRHD, and an indenter thickness of 16 mm is used, and the center part of the panel is pushed into the indentation amount of 4.5 mm at a pushing speed of 0.1 mm / s to measure the tension stiffness. did. FIG. 9 is a diagram showing the deformation behavior of the kamaboko panel in a series of processes for pushing the indenter for explanation. From this, the deformation state of the entire Kamaboko panel is obvious from the change in the reflection projection pattern reflected on the Kamaboko panel. When the push amount is 2.0 mm, deflection is generated in the push portion, but when the push amount is 4.5 mm, it jumps. It can be seen that due to the buckling phenomenon, a large deflection is generated at the portion surrounded by the dotted line in FIG. 9, and the uneven behavior under load is easily captured.

また、図10は、説明用として、パネル曲率半径を800mmRにした場合と比較し、荷重‐変位曲線と対応するパネル変形状態を示した図である。これより通常の荷重‐変位曲線からパネル曲率半径を800mmRにした方が同じたわみ量に対して、大きな荷重を必要とするため、張り剛性が向上していることが分かるが、パネル全体の変形挙動を見ることで、さらにたわみが発生する箇所(図10中の点線で囲った箇所)が明瞭に特定でき、例えばたわみ発生箇所に形状(たわみ抵抗が増すような形状)を付与するなどの対策をとることが容易に可能となることが分かる。   FIG. 10 is a diagram showing a panel deformation state corresponding to a load-displacement curve as compared with a case where the panel curvature radius is set to 800 mmR for explanation. From this, it can be seen from the normal load-displacement curve that the panel curvature radius of 800 mmR requires a larger load for the same amount of deflection, so the tension stiffness is improved. Can clearly identify the location where the deflection occurs (the location surrounded by the dotted line in Fig. 10). For example, take measures such as adding a shape (a shape that increases the deflection resistance) to the location where the deflection occurs. It can be seen that it can be easily taken.

なお、本実施例では、たわみ発生箇所の特定は、その場観察によるマーキングにて実施したが、例えば測定材そのものあるいはその周囲に縮尺として目盛りを設置することでたわみ発生箇所の特定を行ってもよい。   In this embodiment, the deflection occurrence location is specified by marking by in-situ observation. For example, even if the deflection occurrence location is specified by installing a scale as a scale around the measurement material itself or around it. Good.

荷重‐変位曲線を示すグラフである。It is a graph which shows a load-displacement curve. パネルとの接触面積とΔXの関係を示すグラフである。It is a graph which shows the relationship between a contact area with a panel, and (DELTA) X. 圧子硬度IRHDとΔXの関係を示すグラフである。It is a graph which shows the relationship between indenter hardness IRHD and (DELTA) X. 圧子凹み量δとパネル曲率半径R、圧子底面直径Dの関係算出方法を示す説明図である。It is explanatory drawing which shows the relationship calculation method of indenter dent amount (delta), panel curvature radius R, and indenter bottom face diameter D. FIG. 圧子厚さ(円柱高さ)とΔXの関係を示すグラフである。It is a graph which shows the relationship between indenter thickness (cylinder height) and (DELTA) X. 本発明の圧子を用いた張り剛性測定方法の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the tension rigidity measuring method using the indenter of this invention. 測定材全体の変形状態を同時にかつ連続的に可視化可能とする本発明実施形態の1例を示す模式図である。It is a schematic diagram which shows an example of embodiment of this invention which enables visualization of the deformation state of the whole measuring material simultaneously and continuously. ΔXの算出方法を示す説明図である。It is explanatory drawing which shows the calculation method of (DELTA) X. 測定材全体の一連の変形挙動を示す説明図である。It is explanatory drawing which shows a series of deformation | transformation behavior of the whole measuring material. 荷重‐変位曲線とこれに対応するパネル変形状態を示す説明図である。It is explanatory drawing which shows a panel deformation | transformation state corresponding to a load-displacement curve.

符号の説明Explanation of symbols

1 圧子
2 底面(圧子底面)
3 金属パネル(略してパネル)
4 金属板(例えば鋼板)
5 定盤
6 変位計(変位量を測定する手段)
7 ロードセル(荷重を測定する手段)
8 測定材(測定対象パネル、モデルパネルまたは金属パネルともいう)
9 カメラ(鏡像を撮影する手段)
10 レコーダ(荷重‐変位データ、投影明暗パターンおよび鏡像の画像データを記録する手段)
11 スクリーン(表示手段)
12 反射投影パターン(鏡像)
13 プロジェクタ(投影手段)
14 演算手段
1 Indenter 2 Bottom (Indenter bottom)
3 Metal panels (Panels for short)
4 Metal plate (for example, steel plate)
5 Surface plate 6 Displacement meter (Means to measure displacement)
7 Load cell (means to measure load)
8 Measurement materials (also called measurement target panels, model panels, or metal panels)
9 Camera (Means to take a mirror image)
10 Recorder (Means to record load-displacement data, projected light / dark pattern and mirror image data)
11 Screen (display means)
12 Reflective projection pattern (mirror image)
13 Projector (projection means)
14 Calculation means

Claims (4)

曲率半径Rの金属パネルの張り剛性を測定するための圧子であって、前記金属パネルに押し付ける底面の直径Dが35〜55mm、高さがD/6〜D/2の円柱形状の弾性体からなり、該弾性体の硬さIRHDが下記式(1)を満足し、該弾性体の頂面を金属板で押されて前記金属パネルと当接することを特徴とする張り剛性測定用圧子。

30≦IRHD≦0.283×D/R−9.063×D/R+103.2 …(1)
An indenter for measuring the stiffness of a metal panel having a radius of curvature R, from a cylindrical elastic body having a diameter D of 35 to 55 mm and a height of D / 6 to D / 2 on the bottom surface pressed against the metal panel An indenter for tension stiffness measurement, characterized in that the hardness IRHD of the elastic body satisfies the following formula (1), and the top surface of the elastic body is pressed by a metal plate and comes into contact with the metal panel.
Record
30 ≦ IRHD ≦ 0.283 × D 4 / R 2 −9.063 × D 2 /R+103.2 (1)
請求項1に記載の張り剛性測定用圧子を使用して前記金属パネルの張り剛性を測定する方法であって、押圧装置により前記金属板を介した前記圧子から前記金属パネルの被測定面への押圧荷重を連続的かつ静的に負荷しつつ、前記金属パネルの被測定面の裏面側から該被測定面の変位量を連続的に測定することを特徴とする張り剛性測定方法。   A method for measuring the tension stiffness of the metal panel using the indenter for tension stiffness measurement according to claim 1, wherein the indenter via the metal plate is pressed from the indenter to the measurement surface of the metal panel by a pressing device. A tension rigidity measuring method, comprising: continuously measuring a displacement amount of a surface to be measured from a back surface side of the surface to be measured of the metal panel while applying a pressing load continuously and statically. 測定材である前記金属パネルとして、前記被測定面の裏面が類鏡面であるものを用い、該裏面側から前記被測定面の変位量を連続的に測定するに併せて、該裏面に明暗パターンを反射投影して該明暗パターンの鏡像を得、該鏡像により、前記測定材全体の変形状態を、同時かつ連続的に、可視化することを特徴とする請求項2に記載の張り剛性測定方法。   As the metal panel that is a measurement material, the back surface of the measured surface is a mirror-like surface, and in addition to continuously measuring the amount of displacement of the measured surface from the back surface side, a light-dark pattern is formed on the back surface. The tension rigidity measurement method according to claim 2, wherein a reflected image is obtained to obtain a mirror image of the light-dark pattern, and the deformation state of the entire measurement material is visualized simultaneously and continuously by the mirror image. 請求項3に記載の張り剛性測定方法の実施に用いる装置であって、前記測定材に荷重を加える負荷手段と、該加えた荷重およびそれによる変位量を測定する手段と、これら荷重‐変位データを記録する手段と、複数の明暗パターンを切替えて出力する演算手段と、前記出力された明暗パターンを投影する投影手段と、該投影手段からの投影像を表示する表示手段と、前記表示された投影像を前記測定材中の所定の類鏡面部に映してなる鏡像を撮影および記録する手段とを有することを特徴とする張り剛性測定装置。   An apparatus used for carrying out the tension rigidity measuring method according to claim 3, wherein a load means for applying a load to the measurement material, a means for measuring the applied load and a displacement amount due thereto, and these load-displacement data Recording means, calculation means for switching and outputting a plurality of light and dark patterns, projection means for projecting the output light and dark patterns, display means for displaying a projection image from the projection means, and the displayed A tension stiffness measuring apparatus comprising: means for capturing and recording a mirror image formed by projecting a projected image on a predetermined mirror surface portion in the measurement material.
JP2008084420A 2007-10-16 2008-03-27 Tension stiffness measurement indenter, tension stiffness measurement method and apparatus Expired - Fee Related JP5024152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008084420A JP5024152B2 (en) 2007-10-16 2008-03-27 Tension stiffness measurement indenter, tension stiffness measurement method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007268773 2007-10-16
JP2007268773 2007-10-16
JP2008084420A JP5024152B2 (en) 2007-10-16 2008-03-27 Tension stiffness measurement indenter, tension stiffness measurement method and apparatus

Publications (2)

Publication Number Publication Date
JP2009115775A true JP2009115775A (en) 2009-05-28
JP5024152B2 JP5024152B2 (en) 2012-09-12

Family

ID=40783051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008084420A Expired - Fee Related JP5024152B2 (en) 2007-10-16 2008-03-27 Tension stiffness measurement indenter, tension stiffness measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP5024152B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054611A (en) * 2011-09-06 2013-03-21 Jfe Steel Corp Method for predicting tensile rigidity distribution of metal panel
WO2013094176A1 (en) * 2011-12-20 2013-06-27 Jfeスチール株式会社 Panel evaluation method
WO2014069518A1 (en) * 2012-11-05 2014-05-08 Jfeスチール株式会社 Method and apparatus for measuring dynamic stretch rigidity of outer panel of automobile component
JPWO2019004211A1 (en) * 2017-06-28 2020-04-30 国立研究開発法人産業技術総合研究所 Mechanical property test method and measuring device
JP2020201827A (en) * 2019-06-12 2020-12-17 Jfeスチール株式会社 Accretion position predicting method, panel conveyance rigidity predicting method, and panel shape changing method
CN112752963A (en) * 2019-08-29 2021-05-04 汤浅系统机器株式会社 Deformation testing machine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857361U (en) * 1971-11-04 1973-07-21
JPS599542A (en) * 1982-07-09 1984-01-18 Nissan Motor Co Ltd Load displacement measuring apparatus
JPS6270730A (en) * 1985-09-24 1987-04-01 Toyota Motor Corp Method for measuring tensile rigidity
JPS642144U (en) * 1987-06-24 1989-01-09
JPH02182448A (en) * 1989-01-09 1990-07-17 Sumitomo Metal Ind Ltd Damping steel plate excellent in tensile rigidity and dent resistance
JPH0618947A (en) * 1992-07-06 1994-01-28 Matsushita Electric Ind Co Ltd Nonlinear optical thin film
JPH0714857Y2 (en) * 1990-03-30 1995-04-10 日産車体株式会社 Tensile rigidity tester
JPH07225181A (en) * 1994-02-14 1995-08-22 Kawasaki Steel Corp Method and apparatus for measurement of dent property of metal material
JP2005091265A (en) * 2003-09-19 2005-04-07 Makoto Kaneko Method and apparatus for measuring distribution of surface hardness
JP2005265542A (en) * 2004-03-17 2005-09-29 Symbolic Atorii:Kk Measuring instrument for measuring degree of deterioration of elastomer
JP2006053022A (en) * 2004-08-11 2006-02-23 Toray Ind Inc Evaluate method of member for display

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857361U (en) * 1971-11-04 1973-07-21
JPS599542A (en) * 1982-07-09 1984-01-18 Nissan Motor Co Ltd Load displacement measuring apparatus
JPS6270730A (en) * 1985-09-24 1987-04-01 Toyota Motor Corp Method for measuring tensile rigidity
JPS642144U (en) * 1987-06-24 1989-01-09
JPH02182448A (en) * 1989-01-09 1990-07-17 Sumitomo Metal Ind Ltd Damping steel plate excellent in tensile rigidity and dent resistance
JPH0714857Y2 (en) * 1990-03-30 1995-04-10 日産車体株式会社 Tensile rigidity tester
JPH0618947A (en) * 1992-07-06 1994-01-28 Matsushita Electric Ind Co Ltd Nonlinear optical thin film
JPH07225181A (en) * 1994-02-14 1995-08-22 Kawasaki Steel Corp Method and apparatus for measurement of dent property of metal material
JP2005091265A (en) * 2003-09-19 2005-04-07 Makoto Kaneko Method and apparatus for measuring distribution of surface hardness
JP2005265542A (en) * 2004-03-17 2005-09-29 Symbolic Atorii:Kk Measuring instrument for measuring degree of deterioration of elastomer
JP2006053022A (en) * 2004-08-11 2006-02-23 Toray Ind Inc Evaluate method of member for display

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054611A (en) * 2011-09-06 2013-03-21 Jfe Steel Corp Method for predicting tensile rigidity distribution of metal panel
TWI505955B (en) * 2011-12-20 2015-11-01 Jfe Steel Corp Evaluation method for panel
WO2013094176A1 (en) * 2011-12-20 2013-06-27 Jfeスチール株式会社 Panel evaluation method
JP2013130429A (en) * 2011-12-20 2013-07-04 Jfe Steel Corp Panel evaluation method
KR101731893B1 (en) * 2012-11-05 2017-05-02 제이에프이 스틸 가부시키가이샤 Method and apparatus for measuring dynamic panel stiffness of outer panel for automobile parts
CN104769411A (en) * 2012-11-05 2015-07-08 杰富意钢铁株式会社 Method and apparatus for measuring dynamic stretch rigidity of outer panel of automobile component
JP5858170B2 (en) * 2012-11-05 2016-02-10 Jfeスチール株式会社 Method and apparatus for measuring dynamic tension stiffness of outer panel of automotive parts
JPWO2014069518A1 (en) * 2012-11-05 2016-09-08 Jfeスチール株式会社 Method and apparatus for measuring dynamic tension stiffness of outer panel of automotive parts
WO2014069518A1 (en) * 2012-11-05 2014-05-08 Jfeスチール株式会社 Method and apparatus for measuring dynamic stretch rigidity of outer panel of automobile component
US9709473B2 (en) 2012-11-05 2017-07-18 JFS Steel Corporation Method and apparatus for measuring dynamic panel stiffness of outer panel for automobile parts
JPWO2019004211A1 (en) * 2017-06-28 2020-04-30 国立研究開発法人産業技術総合研究所 Mechanical property test method and measuring device
JP7046383B2 (en) 2017-06-28 2022-04-04 国立研究開発法人産業技術総合研究所 Mechanical property test method and measuring device
JP2020201827A (en) * 2019-06-12 2020-12-17 Jfeスチール株式会社 Accretion position predicting method, panel conveyance rigidity predicting method, and panel shape changing method
JP7111066B2 (en) 2019-06-12 2022-08-02 Jfeスチール株式会社 Method for predicting uneven position, method for predicting panel transport rigidity, and method for changing panel shape
CN112752963A (en) * 2019-08-29 2021-05-04 汤浅系统机器株式会社 Deformation testing machine
CN112752963B (en) * 2019-08-29 2024-05-24 汤浅系统机器株式会社 Deformation testing machine

Also Published As

Publication number Publication date
JP5024152B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5024152B2 (en) Tension stiffness measurement indenter, tension stiffness measurement method and apparatus
EP2916122B1 (en) Method and apparatus for measuring dynamic panel stiffness of outer panel for automobile parts
Yang et al. Evaluation of change in material properties due to plastic deformation
KR102556134B1 (en) Method and facility for collision performance evaluation test for metal sheet material for automobile body
JP5029424B2 (en) Tension stiffness measurement method and apparatus
CN101413859A (en) Method and system for testing material hardness
Holmberg et al. Influence of material properties and stamping conditions on the stiffness and static dent resistance of automotive panels
Noder et al. Evaluation of the VDA 238–100 tight radius bend test for plane strain fracture characterization of automotive sheet metals
CN111458243B (en) Experimental method for measuring mechanical properties of metal by using indentation instrument
CN109100236B (en) Thin-specification high-strength pure steel bending test system and test method for automobile
US20190145878A1 (en) Methods for surface evaluation
Liu et al. Identification of strain rate-dependent mechanical behaviour of DP600 under in-plane biaxial loadings
KR101643458B1 (en) Determinating Apparatus, Determinating Method, Analysis System, Analysis Method and Recording Medium of Ultimate Tensile Strength through a Small Punch Test
JP5098901B2 (en) Calculation method of material property parameters
Holmberg et al. Numerical assessment of stiffness and dent properties of automotive exterior panels
KR102378199B1 (en) Metal plate bending processing test device
JP6620780B2 (en) Dynamic crush test apparatus and dynamic crush test method
KR100736436B1 (en) Method for measuring indentation hardness through analysis of indentation shape
JP5648172B2 (en) Method for judging bending limit value of plate material and method for judging bending crack of pressed parts using the same
KR20100035222A (en) Method and apparatus for measuring extensity of metallic meterial
WO2022123825A1 (en) Method for calculating residual stress
JPH07225181A (en) Method and apparatus for measurement of dent property of metal material
Ahn et al. Modeling of anisotropic plastic behavior of ferritic stainless steel sheet
JP5423574B2 (en) Method for determining limit condition during bending of metal plate and method for predicting defects in bent portion of metal plate during press forming
US10942078B2 (en) Measurement of pressure in pressure-filled containers with flexible walls, in particular tires

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees