JP5098901B2 - Calculation method of material property parameters - Google Patents

Calculation method of material property parameters Download PDF

Info

Publication number
JP5098901B2
JP5098901B2 JP2008224251A JP2008224251A JP5098901B2 JP 5098901 B2 JP5098901 B2 JP 5098901B2 JP 2008224251 A JP2008224251 A JP 2008224251A JP 2008224251 A JP2008224251 A JP 2008224251A JP 5098901 B2 JP5098901 B2 JP 5098901B2
Authority
JP
Japan
Prior art keywords
stress
yld2000
yield
material property
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008224251A
Other languages
Japanese (ja)
Other versions
JP2010061249A (en
Inventor
亮伸 石渡
裕隆 狩野
治郎 平本
透 稲積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008224251A priority Critical patent/JP5098901B2/en
Publication of JP2010061249A publication Critical patent/JP2010061249A/en
Application granted granted Critical
Publication of JP5098901B2 publication Critical patent/JP5098901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、自動車等のプレス成形部品に供する材料(金属板)の成形性を評価するために行われるシミュレーションにおいて用いられる材料特性パラメータの算定方法に関するものである。   The present invention relates to a method for calculating material property parameters used in a simulation performed to evaluate the formability of a material (metal plate) used for a press-formed part such as an automobile.

自動車等のプレス成形部品に用いる材料(金属板)の成形性を評価するために、有限要素法によるシミュレーションが広く行われている。   In order to evaluate the formability of materials (metal plates) used for press-molded parts such as automobiles, simulations using the finite element method are widely performed.

従来、このシミュレーションにおいて、対象とする材料の降伏挙動は、材料の方向によらず一定である、すなわち、等方性であると仮定していることが一般的であった。   Conventionally, in this simulation, it has been generally assumed that the yield behavior of a target material is constant regardless of the direction of the material, that is, isotropic.

これに対して、近年、従来の割れ・しわといった成形性評価に加えて、プレス成形後の寸法精度(スプリングバック)の予測を行うために、材料の機械的特性をより厳密に評価する必要が生じ、材料の異方性を考慮したシミュレーションが行われるようになってきた。   On the other hand, in recent years, in addition to the conventional evaluation of formability such as cracks and wrinkles, it is necessary to evaluate the mechanical properties of materials more strictly in order to predict the dimensional accuracy (spring back) after press molding. As a result, simulations taking into account the anisotropy of materials have been conducted.

その際に、これまでは、異方性材料モデルとして、例えば非特許文献1、2に記載されているHillの提案による材料モデル(Hill2次降伏関数)が用いられてきたが、最近、さらに異方性の表現に自由度のある材料モデルとして、非特許文献3に記載されているYld2000−2dと呼ばれる材料モデル(Yld2000−2d降伏関数)が用いられるようになってきた。   At that time, as an anisotropic material model, for example, a material model (Hill quadratic yield function) proposed by Hill described in Non-Patent Documents 1 and 2 has been used. A material model called Yld2000-2d (Yld2000-2d yield function) described in Non-Patent Document 3 has come to be used as a material model having a degree of freedom in expressing the directionality.

ちなみに、Yld2000−2d降伏関数φは、下記の式(1)〜(3)で示されるものである。   Incidentally, the Yld2000-2d yield function φ is expressed by the following equations (1) to (3).

Figure 0005098901
Figure 0005098901

上記のように、このYld2000−2d降伏関数φには、材料の特性に基づくパラメータ(材料特性パラメータ)として、α〜αの8個のパラメータと、Mというパラメータが存在しており、Yld2000−2d降伏関数φを計算するためには、α〜αとMの値が必要となる。 As described above, the Yld2000-2d yield function φ has eight parameters α 1 to α 8 and a parameter M as parameters based on material characteristics (material characteristic parameters). Yld2000 In order to calculate the −2d yield function φ, values α 1 to α 8 and M are required.

従来、このパラメータα〜αの値については、3方向(L方向、C方向、D方向)の単軸引張試験での降伏応力(YP)とランクフォード値(r値)、および、等二軸応力引張試験での応力と延び比を用いて算定していた(例えば、非特許文献4参照)。ちなみに、上記の3方向については、材料(金属板)の面内において、圧延方向からの角度をθとしたときに、L方向は圧延方向(θ=0°)、C方向は圧延クロス方向(θ=90°)、D方向は斜め方向(θ=45°)である。 Conventionally, regarding the values of the parameters α 1 to α 8 , the yield stress (YP) and the Rankford value (r value) in a uniaxial tensile test in three directions (L direction, C direction, D direction), and the like It was calculated using the stress and elongation ratio in the biaxial stress tensile test (for example, see Non-Patent Document 4). Incidentally, with respect to the above three directions, in the plane of the material (metal plate), when the angle from the rolling direction is θ, the L direction is the rolling direction (θ = 0 °), and the C direction is the rolling cross direction ( θ = 90 °) and the D direction is an oblique direction (θ = 45 °).

一方、パラメータMについては、金属材料では6または8が適当であると言われている。
「塑性学」、コロナ社、1.3 「非線形有限要素法」、コロナ社、第7章 F.Barlat外、“Plane stress yield function for aluminum alloy sheets”、International Journal of Plasticity、19(2003)、p.1297−1319 「板成形」、コロナ社、第8章
On the other hand, for the parameter M, it is said that 6 or 8 is appropriate for metal materials.
"Plastics", Corona, 1.3 “Nonlinear Finite Element Method”, Corona, Chapter 7 F. Barlat et al., “Plane stress yield for aluminum alloy sheets”, International Journal of Plasticity, 19 (2003), p. 1297-1319 "Plate molding", Corona, Chapter 8

しかし、これまでは、Yld2000−2d降伏関数における8個の材料特性パラメータα〜αの値を算定するためには、二軸引張試験機という特別な試験装置が必要であり、材料特性パラメータα〜αの値を求めることが容易でなかった。そのため、Yld2000−2d降伏関数を用いての有限要素法によるプレス成形解析を日常的に実施することが困難であった。 However, until now, in order to calculate the values of the eight material property parameters α 1 to α 8 in the Yld2000-2d yield function, a special test device called a biaxial tensile tester is required. It was not easy to determine the values of α 1 to α 8 . Therefore, it has been difficult to routinely perform press forming analysis by the finite element method using the Yld2000-2d yield function.

本発明は、上記のような事情に鑑みてなされたものであり、Yld2000−2d降伏関数における8個の材料特性パラメータα〜αの値を容易に算定することができ、それによってYld2000−2d降伏関数を用いての有限要素法によるプレス成形解析を日常的に実施することを可能にする材料特性パラメータの算定方法を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and the values of the eight material characteristic parameters α 1 to α 8 in the Yld2000-2d yield function can be easily calculated, whereby Yld2000− An object of the present invention is to provide a method for calculating a material property parameter that enables daily press forming analysis by a finite element method using a 2d yield function.

上記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]下記の式(1)〜(3)で示されるYld2000−2d降伏関数φにおける8個の材料特性パラメータα〜αの値を算定するための材料特性パラメータの算定方法であって、
対象とする材料について4方向以上の単軸引張試験を行い、それによって得られた応力−歪関係およびランクフォード値を用いて、Yld2000−2d降伏関数における8個の材料特性パラメータα〜αの値を算定することを特徴とする材料特性パラメータの算定方法。
[1] A method for calculating material property parameters for calculating values of eight material property parameters α 1 to α 8 in the Yld2000-2d yield function φ represented by the following formulas (1) to (3): ,
Eight material characteristic parameters α 1 to α 8 in the Yld2000-2d yield function using the stress-strain relationship and the Rankford value obtained by conducting a uniaxial tensile test in four or more directions on the target material. A method for calculating material property parameters, characterized by calculating a value of.

Figure 0005098901
Figure 0005098901

[2]前記[1]において、応力−歪関係として、降伏応力を用いて、Yld2000−2d降伏関数における8個の材料特性パラメータα〜αの値を算定することを特徴とする材料特性パラメータの算定方法。 [2] In the above [1], the material characteristics are characterized in that the values of the eight material characteristic parameters α 1 to α 8 in the Yld2000-2d yield function are calculated using the yield stress as the stress-strain relationship. Parameter calculation method.

[3]前記[1]において、応力−歪関係として、相当塑性歪3%〜10%における応力を用いて、Yld2000−2d降伏関数における8個の材料特性パラメータα〜αの値を算定することを特徴とする材料特性パラメータの算定方法。 [3] In the above [1], the values of the eight material characteristic parameters α 1 to α 8 in the Yld2000-2d yield function are calculated using the stress at the equivalent plastic strain of 3% to 10% as the stress-strain relationship. A method for calculating a material property parameter.

本発明によって、二軸引張試験機といった一般に普及していない特別な試験装置を用いずとも、Yld2000−2d降伏関数における8個の材料特性パラメータα〜αを求めることが容易にできるようになった。その結果、Yld2000−2d降伏関数を用いた有限要素法によるプレス成形解析を日常的に実施することができるようになり、材料のプレス成形性の評価やプレス成形部品の寸法精度の予測精度を大きく向上させることが可能になった。 According to the present invention, it is possible to easily obtain the eight material characteristic parameters α 1 to α 8 in the Yld2000-2d yield function without using a special test device that is not widely used such as a biaxial tensile tester. became. As a result, the press forming analysis by the finite element method using the Yld2000-2d yield function can be carried out on a daily basis, and the press formability evaluation of the material and the dimensional accuracy prediction of the press formed part are greatly increased. It became possible to improve.

本発明の一実施形態を以下に述べる。   One embodiment of the present invention is described below.

まず、前述したように、Yld2000−2d降伏関数φは下記の式(1)〜(3)で示される。   First, as described above, the Yld2000-2d yield function φ is expressed by the following equations (1) to (3).

Figure 0005098901
Figure 0005098901

そして、x方向(例えば、圧延方向)からθ傾いた方向(θ方向)の単軸引張試験の応力σθと絶対座標系でのσ、σ、σとの間には、式(4)の関係があることから、式(2)、(3)は式(5)、(6)のようになる。式(6)を式(7)のようにおくと、Yld2000−2d降伏関数φは、式(8)のようにσθで表現することができる。さらには、σθは式(9)で表される。 And, between the stress σ θ in the uniaxial tensile test in the direction inclined by θ from the x direction (for example, the rolling direction) (θ direction) and σ x , σ y , σ z in the absolute coordinate system, Since there is a relationship of 4), the expressions (2) and (3) become as the expressions (5) and (6). When Expression (6) is set as shown in Expression (7), the Yld2000-2d breakdown function φ can be expressed as σ θ as shown in Expression (8). Furthermore, σ θ is expressed by equation (9).

Figure 0005098901
Figure 0005098901

Figure 0005098901
Figure 0005098901

Figure 0005098901
Figure 0005098901

Figure 0005098901
Figure 0005098901

Figure 0005098901
Figure 0005098901

また、θ方向のr値(rθ)については、式(10)で定義されるため、式(11)のようになる。また、関連流れ則より、式(12)の関係があり、式(11)は式(13)のように書ける。 Further, the r value (r θ ) in the θ direction is defined by the equation (10), and thus is expressed by the equation (11). Further, from the related flow law, there is a relationship of Expression (12), and Expression (11) can be written as Expression (13).

Figure 0005098901
Figure 0005098901

Figure 0005098901
Figure 0005098901

Figure 0005098901
Figure 0005098901

また、オイラーの定理の同次方程式の定理より、式(14)の関係が成り立ち、単軸引張試験を考えると、σ=σθw=0であるため、式(15)のようになる。式(13)〜(15)および式(1)〜(3)より、最終的に式(16)でθ方向のr値を表すことができる。 Further, from the theorem of the homogeneous equation of Euler's theorem, the relationship of Equation (14) is established, and considering the uniaxial tensile test, σ w = σ θw = 0, and therefore, Equation (15) is obtained. From Expressions (13) to (15) and Expressions (1) to (3), the r value in the θ direction can be finally expressed by Expression (16).

Figure 0005098901
Figure 0005098901

Figure 0005098901
Figure 0005098901

そして、パラメータM=6(または8)と定めれば、式(9)、(16)では、8個のパラメータα〜αが未知数となるので、式(9)、(16)に対して、4方向以上でのσθとrθの測定値を用いることにより、8個のパラメータα〜αを算定することができる。 If the parameter M = 6 (or 8) is determined, in the equations (9) and (16), the eight parameters α 1 to α 8 are unknown, so that the equations (9) and (16) Thus, eight parameters α 1 to α 8 can be calculated by using the measured values of σ θ and r θ in four directions or more.

具体的には、測定値をσθ、rθとし、式(9)、(16)による値をσθ 、rθ とした時に、式(17)の評価関数gを最小にするα〜αを求める。なお、wは重み係数である。 Specifically, when the measured values are σ θ and r θ and the values according to equations (9) and (16) are σ θ * and r θ * , α that minimizes the evaluation function g in equation (17) seek 1 ~α 8. Note that w is a weighting coefficient.

Figure 0005098901
Figure 0005098901

なお、上記において、測定値σθについては、対象とする材料の応力−歪関係(応力−歪曲線)に基づいて定めればよく、降伏応力YPを用いてもよいし、所定の相当塑性歪における応力を用いてもよい。なお、所定の相当塑性歪については、当該材料の応力−歪曲線にもよるが、相当塑性歪3%〜10%における応力を用いるのが好ましい。 In the above, the measured value σ θ may be determined based on the stress-strain relationship (stress-strain curve) of the target material, the yield stress YP may be used, or a predetermined equivalent plastic strain may be used. The stress at may be used. In addition, about predetermined | prescribed equivalent plastic strain, although it depends on the stress-strain curve of the said material, it is preferable to use the stress in 3-10% of equivalent plastic strain.

このようにして、この実施形態においては、二軸引張試験機といった一般に普及していない特別な試験装置を用いずとも、Yld2000−2d降伏関数における8個の材料特性パラメータα〜αを容易に求めることができる。その結果、Yld2000−2d降伏関数を用いた有限要素法によるプレス成形解析を日常的に実施することができるようになり、材料のプレス成形性の評価やプレス成形部品の寸法精度の予測精度を大きく向上させることが可能になる。 In this way, in this embodiment, the eight material characteristic parameters α 1 to α 8 in the Yld2000-2d yield function can be easily obtained without using a special test apparatus that is not widely used such as a biaxial tensile tester. Can be requested. As a result, the press forming analysis by the finite element method using the Yld2000-2d yield function can be carried out on a daily basis, and the press formability evaluation of the material and the dimensional accuracy prediction of the press formed part are greatly increased. It becomes possible to improve.

本発明の実施例1として、鉄鋼材料において比較的材料異方性の強いJSC590Rについて、Yld2000−2d降伏関数における8個の材料特性パラメータα〜αを算定した。なお、パラメータMは6とした。 As Example 1 of the present invention, eight material characteristic parameters α 1 to α 8 in the Yld2000-2d yield function were calculated for JSC590R having a relatively strong material anisotropy in a steel material. The parameter M was 6.

まず、対象のJSC590Rの板材について、圧延方向(L方向)を角度θ=0°として、表1に示す5方向の単軸引張試験を実施した。それによって得られた降伏応力YSとr値を表1に示す。なお、r値は、歪8%の時点で測定した値である。   First, the target JSC590R plate material was subjected to a uniaxial tensile test in five directions shown in Table 1 with the rolling direction (L direction) being an angle θ = 0 °. Table 1 shows the yield stress YS and the r value obtained thereby. The r value is a value measured at the time of 8% strain.

Figure 0005098901
Figure 0005098901

そして、表1の測定結果をもとに、前述の式(17)により、C方向(θ=90°)を相当歪・相当応力の基準方向として、材料特性パラメータα〜αを求めた。その結果を表2に示す。 Then, based on the measurement result of Table 1, the material characteristic parameters α 1 to α 8 were obtained by the above formula (17), with the C direction (θ = 90 °) as the reference direction of equivalent strain and equivalent stress. . The results are shown in Table 2.

Figure 0005098901
Figure 0005098901

そして、上記のようにして求めた材料特性パラメータα〜αを用いて式(9)、(16)から求めた降伏応力(初期降伏応力)とr値の計算値を、表1に示した降伏応力とr値の測定値と比較した。その結果を図1、図2に示す。なお、参考のために、Hill2次降伏関数によって求めたものを同時にプロットした。 Table 1 shows the yield stress (initial yield stress) and the calculated r value obtained from the equations (9) and (16) using the material characteristic parameters α 1 to α 8 obtained as described above. The yield stress and r value were compared. The results are shown in FIGS. In addition, what was calculated | required with Hill secondary yield function was plotted simultaneously for reference.

この実施例1において算定した材料特性パラメータα〜αを用いたYld2000−2d降伏関数は、Hill2次降伏関数よりも測定値とよく一致していることが分かる。 It can be seen that the Yld2000-2d yield function using the material characteristic parameters α 1 to α 8 calculated in Example 1 matches the measured value better than the Hill secondary yield function.

また、降伏曲面に等塑性仕事曲面が等しいと仮定し、実測したC方向の応力−歪関係、Yld2000−2d降伏関数およびおよび材料特性パラメータより、L方向、D方向(θ=45°)の応力−歪関係を求めた結果を図3に示す。   Further, assuming that the isoplastic work surface is equal to the yield surface, the stress in the L direction and D direction (θ = 45 °) is determined from the measured stress-strain relationship in the C direction, Yld2000-2d yield function, and material property parameters. The result of obtaining the strain relationship is shown in FIG.

塑性歪が小さい場合は、測定値と計算値がよく一致している。ただし、塑性歪が大きくなると、測定値と計算値の乖離がみられる。   When the plastic strain is small, the measured value and the calculated value are in good agreement. However, when the plastic strain increases, there is a discrepancy between the measured value and the calculated value.

本発明の実施例2として、上記の実施例1と同様に、JSC590Rについて、Yld2000−2d降伏関数における8個の材料特性パラメータα〜αを算定した。 As Example 2 of the present invention, as in Example 1 above, eight material characteristic parameters α 1 to α 8 in the Yld2000-2d yield function were calculated for JSC590R.

ただし、実施例1では、材料特性パラメータα〜αを算定する際に、降伏応力YPの測定値を用いたが、この実施例2では、それに代えて、相当塑性歪が0.055のときの応力を用いた。 However, in Example 1, the measured value of the yield stress YP was used when calculating the material characteristic parameters α 1 to α 8. In Example 2, however, the equivalent plastic strain is 0.055 instead. When stress was used.

すなわち、実施例1で示した、JSC590Rの板材についての圧延方向(L方向)をθ=0°とした5方向の単軸引張試験より、相当塑性歪が0.055のときの各方向の応力(C方向の塑性歪が0.055のときの等塑性仕事となる各方向の応力)を得た。その結果を表3に示す。   That is, the stress in each direction when the equivalent plastic strain is 0.055 from the uniaxial tensile test in five directions in which the rolling direction (L direction) of the JSC590R plate material shown in Example 1 is θ = 0 °. (Stress in each direction, which is an isoplastic work when the plastic strain in the C direction is 0.055) was obtained. The results are shown in Table 3.

Figure 0005098901
Figure 0005098901

そして、表3の測定結果をもとに、前述の式(17)により、C方向(θ=90°)を相当歪・相当応力の基準方向として、材料特性パラメータα〜αを求めた。その結果を表4に示す。 Then, based on the measurement results of Table 3, the material characteristic parameters α 1 to α 8 were obtained by the above-described equation (17) with the C direction (θ = 90 °) as the reference direction of the equivalent strain and equivalent stress. . The results are shown in Table 4.

Figure 0005098901
Figure 0005098901

そして、上記のようにして求めた材料特性パラメータα1〜α8を用いて式(9)、(16)から求めた相当塑性歪が0.055のときの応力とr値の計算値を、表3に示した相当塑性歪0.055のときの応力とr値の測定値と比較した。その結果を図4、図5に示す。なお、参考のために、Hill2次降伏関数によって求めたものを同時にプロットした。   Table 3 shows the calculated values of stress and r value when the equivalent plastic strain obtained from the equations (9) and (16) using the material characteristic parameters α1 to α8 obtained as described above is 0.055. The stress at the equivalent plastic strain of 0.055 and the measured value of the r value were compared. The results are shown in FIGS. In addition, what was calculated | required with Hill secondary yield function was plotted simultaneously for reference.

この実施例2において算定した材料特性パラメータα〜αを用いたYld2000−2d降伏関数は、Hill2次降伏関数よりも測定値とよく一致していることが分かる。 It can be seen that the Yld2000-2d yield function using the material characteristic parameters α 1 to α 8 calculated in Example 2 matches the measured value better than the Hill secondary yield function.

また、降伏曲面に等塑性仕事曲面が等しいと仮定し、実測したC方向の応力−歪関係、Yld2000−2d降伏関数およびおよび材料特性パラメータより、L方向、D方向(θ=45°)の応力−歪関係を求めた結果を図6に示す。   Further, assuming that the isoplastic work surface is equal to the yield surface, the stress in the L direction and D direction (θ = 45 °) is determined from the measured stress-strain relationship in the C direction, Yld2000-2d yield function, and material property parameters. -The result which calculated | required distortion relation is shown in FIG.

塑性歪が小さい部分では、測定値と計算値が多少相違しているものの、塑性歪が大きくなると、測定値と計算値がよく一致している。   In the portion where the plastic strain is small, the measured value and the calculated value are slightly different, but when the plastic strain is large, the measured value and the calculated value are in good agreement.

本発明の実施例3として、上記の実施例1、2に基づき、JSC590R材のプレス成形に関して、Yld2000−2d降伏関数を適用して、有限要素法による解析を実施した。なお、解析の対象は、図7に示す高さ45mmの曲りハット形状のプレス成形であり、プレス成形後の曲がり量(右側端部付近の曲がり量)を評価した。   As Example 3 of the present invention, based on Examples 1 and 2 above, the Yld2000-2d yield function was applied to the press forming of the JSC590R material, and analysis by the finite element method was performed. The object of analysis was press molding with a bent hat shape with a height of 45 mm shown in FIG. 7, and the amount of bending after bending (the amount of bending near the right end) was evaluated.

そして、ここでは、実施例1で算定した材料特性パラメータα〜αを用いた場合を本発明例1とし、実施例2で算定した材料特性パラメータα〜αを用いた場合を本発明例2とした。また、Hill2次降伏関数を適用した場合を参考例とした。そして、実際にプレス成形して測定した場合を実測例とした。 Here, the case where the material characteristic parameters α 1 to α 8 calculated in Example 1 are used is referred to as Invention Example 1, and the case where the material characteristic parameters α 1 to α 8 calculated in Example 2 are used is It was set as Example 2. A case where a Hill quadratic yield function was applied was used as a reference example. And the case where it actually measured by press-molding was made into the actual measurement example.

なお、実測例では、しわ押さえ圧50tonfでプレス成形を行った後に、フランジをRどまりより15mmとなるレーザカットを行ってから形状測定を行い、曲がり量を算出した。一方、本発明例1、本発明例2、参考例では、成形解析を行った後、トリム、スプリングバック解析を行い、曲がり量を算出した。   In the actual measurement example, after performing the press molding with the wrinkle pressing pressure of 50 tonf, the shape was measured after performing the laser cutting of 15 mm from the radius of the flange, and the bending amount was calculated. On the other hand, in Inventive Example 1, Inventive Example 2, and Reference Example, after performing molding analysis, trim and springback analysis were performed to calculate the bending amount.

図8に、それぞれの場合における曲がり量を示す。参考例では、曲がり量が実測例よりも約2mm程度異なっているのに対して、本発明例1、2では、実測例との差が1mm以下になっている。   FIG. 8 shows the amount of bending in each case. In the reference example, the amount of bending differs from the actual measurement example by about 2 mm, whereas in the inventive examples 1 and 2, the difference from the actual measurement example is 1 mm or less.

これによって、本発明を適用することにより、プレス成形部品の寸法精度(スプリングバック)を高精度でかつ容易に予測できることが確認された。   Accordingly, it was confirmed that the dimensional accuracy (spring back) of the press-formed part can be predicted with high accuracy and easily by applying the present invention.

実施例1における降伏応力の比較図である。It is a comparison figure of the yield stress in Example 1. 実施例1におけるr値の比較図である。6 is a comparison diagram of r values in Example 1. FIG. 実施例1における応力―歪曲線の比較図である。2 is a comparative diagram of stress-strain curves in Example 1. FIG. 実施例2における降伏応力の比較図である。It is a comparison figure of the yield stress in Example 2. 実施例2におけるr値の比較図である。6 is a comparison diagram of r values in Example 2. FIG. 実施例2における応力―歪曲線の比較図である。6 is a comparative diagram of stress-strain curves in Example 2. FIG. 実施例3におけるプレス成形形状を示す図である。It is a figure which shows the press molding shape in Example 3. FIG. 実施例3におけるプレス成形後の曲がり量の比較図である。It is a comparison figure of the amount of bending after press molding in Example 3.

Claims (3)

下記の式(1)〜(3)で示されるYld2000−2d降伏関数φにおける8個の材料特性パラメータα〜αの値を算定するための材料特性パラメータの算定方法であって、
対象とする材料について4方向以上の単軸引張試験を行い、それによって得られた応力−歪関係およびランクフォード値を用いて、Yld2000−2d降伏関数における8個の材料特性パラメータα〜αの値を算定することを特徴とする材料特性パラメータの算定方法。
Figure 0005098901
A material property parameter calculation method for calculating the values of eight material property parameters α 1 to α 8 in the Yld2000-2d yield function φ represented by the following equations (1) to (3):
Eight material characteristic parameters α 1 to α 8 in the Yld2000-2d yield function using the stress-strain relationship and the Rankford value obtained by conducting a uniaxial tensile test in four or more directions on the target material. A method for calculating material property parameters, characterized by calculating a value of.
Figure 0005098901
請求項1において、応力−歪関係として、降伏応力を用いて、Yld2000−2d降伏関数における8個の材料特性パラメータα〜αの値を算定することを特徴とする材料特性パラメータの算定方法。 The method for calculating a material property parameter according to claim 1, wherein the value of the eight material property parameters α 1 to α 8 in the Yld2000-2d yield function is calculated using the yield stress as the stress-strain relationship. . 請求項1において、応力−歪関係として、相当塑性歪3%〜10%における応力を用いて、Yld2000−2d降伏関数における8個の材料特性パラメータα〜αの値を算定することを特徴とする材料特性パラメータの算定方法。 In Claim 1, the value of eight material characteristic parameters (alpha) 1- alpha8 in Yld2000-2d yield function is calculated using the stress in equivalent plastic strain 3%-10% as a stress-strain relationship. Calculation method of material property parameters.
JP2008224251A 2008-09-02 2008-09-02 Calculation method of material property parameters Active JP5098901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224251A JP5098901B2 (en) 2008-09-02 2008-09-02 Calculation method of material property parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224251A JP5098901B2 (en) 2008-09-02 2008-09-02 Calculation method of material property parameters

Publications (2)

Publication Number Publication Date
JP2010061249A JP2010061249A (en) 2010-03-18
JP5098901B2 true JP5098901B2 (en) 2012-12-12

Family

ID=42187998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224251A Active JP5098901B2 (en) 2008-09-02 2008-09-02 Calculation method of material property parameters

Country Status (1)

Country Link
JP (1) JP5098901B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5527243B2 (en) * 2011-02-09 2014-06-18 Jfeスチール株式会社 Calculation method of material anisotropy considering material movement by molding
JP5866892B2 (en) * 2011-09-06 2016-02-24 Jfeスチール株式会社 Stress-strain relationship evaluation method and springback amount prediction method
JP5459362B2 (en) 2012-07-24 2014-04-02 Jfeスチール株式会社 Setting method of material anisotropy information and sheet thickness information to analysis model of molded product, rigidity analysis method and collision analysis method
JP5994464B2 (en) * 2012-08-06 2016-09-21 Jfeスチール株式会社 Metal pipe analysis method
JP6446740B2 (en) * 2014-07-03 2019-01-09 国立大学法人東京農工大学 Simulation apparatus, simulation method, and program
CN112100820A (en) * 2020-08-25 2020-12-18 华南理工大学 Excel-based anisotropic yield function parameter calibration method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9915486A (en) * 1998-11-18 2001-07-31 Alcan Int Ltd Method for modeling the formation of anisotropic plates
JP2008142774A (en) * 2006-11-14 2008-06-26 Jfe Steel Kk Method, system and program for stress-strain relation simulation, and recording medium recording the program
JP2008197852A (en) * 2007-02-10 2008-08-28 Phifit Kk Analysis device and analysis system for structure development of workpiece in plastic working, and recording medium

Also Published As

Publication number Publication date
JP2010061249A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5098901B2 (en) Calculation method of material property parameters
Firat et al. Sheet metal forming analyses with an emphasis on the springback deformation
Hou et al. Springback prediction of sheet metals using improved material models
CN110997172B (en) Method for evaluating deformation limit on sheared surface of metal plate, method for predicting crack, and method for designing press die
JP6547920B2 (en) Evaluation method of deformation limit on sheared surface of metal plate, crack prediction method and press mold design method
Liu et al. A novel approach to determine plastic hardening curves of AA7075 sheet utilizing hydraulic bulging test at elevated temperature
JP7243816B2 (en) Bending angle prediction method, bending angle prediction device, program and recording medium
TWI609179B (en) Fracture prediction method, program, recording medium, and processing device
KR20150043476A (en) Springback amount evaluation method
JP2011251318A (en) Forming analysis method for press component
JP5207075B2 (en) Material property identification method of elasto-plastic material by indentation test
Panthi et al. Semi analytical modeling of springback in arc bending and effect of forming load
JP6350498B2 (en) Press wrinkle generation judgment method
Bouchaâla et al. Modeling of anisotropy influence on thickness distribution of deep drawing sheet
WO2020204059A1 (en) Steel material fracture prediction method, fracture prediction device, program, and recording medium
Lin et al. Formability study on stamping an engine hood with aluminum alloy sheet
JP5949719B2 (en) Springback amount evaluation method
JP2014226689A (en) Method for evaluating cracking in thin plate
Eggertsen et al. Material modelling for accurate springback prediction
JP5757224B2 (en) Structural member design method
WO2020174841A1 (en) Method for evaluating bending crack, system for evaluating bending crack, and method for manufacturing press molded parts
Al-Wahab et al. Experimental investigation of drawbead effect on springback in profilee of double circular, rectangular and triangular bending sheet metal forming processes
Melander et al. Spring back evaluation for high and ultra high strength sheet steels with the bending under tension machine
JP2009265712A (en) Characteristic analyzing method by analysis using inverse method
Zhang et al. Inverse Identification for the Balanced Biaxial Yield Stress of AA5182-O Alloy Sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250