JP5527243B2 - Calculation method of material anisotropy considering material movement by molding - Google Patents

Calculation method of material anisotropy considering material movement by molding Download PDF

Info

Publication number
JP5527243B2
JP5527243B2 JP2011026444A JP2011026444A JP5527243B2 JP 5527243 B2 JP5527243 B2 JP 5527243B2 JP 2011026444 A JP2011026444 A JP 2011026444A JP 2011026444 A JP2011026444 A JP 2011026444A JP 5527243 B2 JP5527243 B2 JP 5527243B2
Authority
JP
Japan
Prior art keywords
analysis
blank
anisotropy
molding
calculation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011026444A
Other languages
Japanese (ja)
Other versions
JP2012168581A (en
Inventor
孝信 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011026444A priority Critical patent/JP5527243B2/en
Publication of JP2012168581A publication Critical patent/JP2012168581A/en
Application granted granted Critical
Publication of JP5527243B2 publication Critical patent/JP5527243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、成形による材料移動を考慮する材料異方性の計算方法に関し、詳しくは、材料の機械的特性が面内異方性をもつ材料である異方性材料に対して、有限要素法(FEM)計算により主に剛性解析、衝突解析等の変形シミュレーションを行うCAE(Computer Aided Engineering)解析において面内異方性の影響を適正に反映しうる、成形による材料移動を考慮する材料異方性の計算方法に関する。ここで、剛性解析とは剛性試験のシミュレーション計算であり、衝突解析とは衝突試験のシミュレーション計算である。   The present invention relates to a method for calculating material anisotropy in consideration of material movement due to molding, and more specifically, a finite element method is applied to an anisotropic material whose mechanical properties are in-plane anisotropy. Material anisotropy that takes into account material movement due to molding, which can properly reflect the influence of in-plane anisotropy in CAE (Computer Aided Engineering) analysis, which mainly performs deformation simulation such as stiffness analysis and impact analysis by (FEM) calculation It relates to the calculation method of sex. Here, the rigidity analysis is a simulation calculation of a rigidity test, and the collision analysis is a simulation calculation of a collision test.

近年、特に自動車産業においては環境問題に起因した車体の軽量化が進められており、車体の設計にCAE解析は欠かせない技術となっている(例えば特許文献1)。また、そのCAE解析結果には、入力する材料(金属板例えば鋼板)の機械的特性値が大きく影響することが知られており、成形解析では主にYS(降伏強さ)、TS(引張強さ)、r値(ランクフォード値)が寄与し、剛性解析ではヤング率等の弾性値が解析で得られる変位に比例して寄与し、衝突解析ではYS、TS等の材料強度値が大きく寄与する。   In recent years, especially in the automobile industry, weight reduction of vehicle bodies due to environmental problems has been promoted, and CAE analysis has become an indispensable technique for vehicle body design (for example, Patent Document 1). In addition, it is known that the mechanical property value of the input material (metal plate, eg, steel plate) greatly affects the CAE analysis result. In the forming analysis, YS (yield strength), TS (tensile strength) are mainly used. R) (Rankford value) contributes, in stiffness analysis, elasticity values such as Young's modulus contribute in proportion to the displacement obtained in the analysis, and in impact analysis, material strength values such as YS and TS contribute greatly. To do.

一方、材料にはその機械的特性が大きな面内異方性を有するもの(これを異方性材料という)があり、特に圧延で製造されるものは、圧延方向(L方向)、その直角方向(C方向)、45°方向(D方向)に、(最大−最小)/最大×100で算出される特性変化幅でみて、2〜50%の特性変化があることが知られている。
CAE解析の際、解析対象がその機械的特性が面内方向によらず一定である材料(等方性材料)である場合には方向性の問題は生じないが、異方性材料である場合には、その材料の主変形方向とは異なる方向の機械的特性値が入力されると、異方性のない場合の変形形状とは相違する計算形状となる。そこで、異方性材料では、解析対象を複数の要素に分割してなる各要素に機械的特性の面内異方性に関する情報(これを異方性情報という)を設定する必要がある。この異方性情報は、主変形に応じてその方向に対応する機械的特性値を与えるための、機械的特性の面内異方性に関する基準方向(例えば前記L方向或いは前記C方向或いはこれらの間の方向)に対する方位角度と機械的特性との対応関係情報であり、予めテーブルあるいは関数式の形で記憶することが可能となっている。前記基準方向は、解析画面上では、各要素内の1本の矢印で表示される(例えば図4参照)。この矢印による矢示方向が前記基準方向であり、該基準方向は各要素に固定され、各要素が移動回転すれば同様に移動回転する。
On the other hand, there are materials whose mechanical properties have large in-plane anisotropy (this is called anisotropic material), especially those manufactured by rolling are in the rolling direction (L direction) and in the direction perpendicular thereto. It is known that there is a characteristic change of 2 to 50% in the (C direction) and 45 ° direction (D direction) in terms of the characteristic change width calculated by (maximum−minimum) / maximum × 100.
In the case of CAE analysis, if the object to be analyzed is a material (isotropic material) whose mechanical properties are constant regardless of the in-plane direction, the problem of directionality does not occur, but it is an anisotropic material When a mechanical property value in a direction different from the main deformation direction of the material is input, a calculated shape different from the deformed shape without anisotropy is obtained. Therefore, in the anisotropic material, it is necessary to set information on in-plane anisotropy of mechanical characteristics (this is called anisotropic information) for each element obtained by dividing the analysis target into a plurality of elements. This anisotropy information is a reference direction (for example, the L direction or the C direction or these directions) related to the in-plane anisotropy of the mechanical characteristic to give a mechanical characteristic value corresponding to the direction according to the main deformation. Information on the correspondence between the azimuth angle and the mechanical characteristics with respect to the direction between them, and can be stored in the form of a table or a functional expression in advance. The reference direction is displayed by one arrow in each element on the analysis screen (see, for example, FIG. 4). The direction indicated by the arrow is the reference direction, and the reference direction is fixed to each element. If each element moves and rotates, it moves and rotates in the same manner.

特開2004−171144号公報JP 2004-171144 A

しかし、解析対象品の各要素は、成形により多種多様な方向を向くようになるため、CAE解析による成形解析に伴う各要素の移動回転の情報を異方性に反映させることは困難を伴っていた。
すなわち、従来では、材料の角度変化を人の勘に頼った入力では、成形による移動回転を正確に計算できなく、直線形状で、元のLC方向に沿った形の形状しか入力できない。実際の成形品は曲面からなる複雑な形状を成しており、人間の勘では正確に移動回転を表現することはできない。また、現在の車体に使われる要素数は30万から50万程度あり、すべてを人手で入力することは極めて困難である。その成形品に設定した前記基準方向は人の勘に頼ったものであるため、実際とはかけ離れたものとなり、その後の剛性解析結果が、対応する実成形品の剛性試験や衝突試験の結果と合わない場合が少なくなかった。更に、現在の車体のCAE解析に使われる要素数は30万から50万程度あり、複数の要素をより少数のブロックにまとめてそのブロック単位での入力は可能であってもすべてを人手で入力することは極めて困難である。
However, since each element of the analysis target product faces various directions by molding, it is difficult to reflect the information on the movement and rotation of each element accompanying the molding analysis by CAE analysis in anisotropy. It was.
In other words, conventionally, with the input that relies on the human intuition for the change in the angle of the material, it is not possible to accurately calculate the rotational movement due to molding, and it is possible to input only the shape of the shape along the original LC direction in a linear shape. An actual molded product has a complicated shape consisting of a curved surface, and a human intuition cannot accurately represent movement and rotation. In addition, the number of elements used in the current vehicle body is about 300,000 to 500,000, and it is extremely difficult to manually input all the elements. Since the reference direction set for the molded product depends on human intuition, it is far from the actual, and the subsequent stiffness analysis results are the results of the corresponding actual molded product stiffness test and impact test. There were many cases that did not fit. Furthermore, the number of elements used for CAE analysis of the current car body is about 300,000 to 500,000. Even if multiple elements can be combined into a smaller number of blocks and input can be made in units of blocks, all are input manually. It is extremely difficult to do.

発明者は、上記課題を解決するため、人手入力によらず、正確にしかも計算時間が大幅に短縮できる前記基準方向の設定方法を鋭意検討し、その結果、立体形状を平面形状に展開する成形解析ソフトウエアを用いることで、自動的に前記基準方向を設定でき、更に、成形解析後の剛性解析や衝突解析の結果も実験結果とよく合うようになるという知見を得て本発明をなした。   In order to solve the above problems, the inventor has eagerly studied the setting method of the reference direction, which can accurately reduce the calculation time, without relying on manual input, and as a result, forming the three-dimensional shape into a planar shape. By using analysis software, the reference direction can be automatically set, and the present invention has been obtained with the knowledge that the results of rigidity analysis and collision analysis after molding analysis will match well with the experimental results. .

人間の勘による材料の回転移動では誤差が極めて大きい。このため、成形解析を用い材料の変形を計算できるようにし、この成形計算の結果を用いることにより課題を解決する。成形解析では各要素ごとに変形前と変形後のnodeの座標情報を有している。ブランク状態での座標情報とLC方向のなす角は移動回転しても一定に保たれる。また成形でエレメント(要素)が変形する場合でもその変形量を加味することでLC方向とのなす角は算出可能である。これらを用い、各要素ごとにブランクでのなす角を成形品に反映させることで、成形品全体にわたり、正確に角度を設定することが可能となる。   The error is extremely large in the rotational movement of the material by human intuition. For this reason, a deformation | transformation of material can be calculated using shaping | molding analysis, and a subject is solved by using the result of this shaping | molding calculation. In the forming analysis, each element has coordinate information of the node before and after the deformation. The angle formed by the coordinate information in the blank state and the LC direction is kept constant even when moving and rotating. Even when an element is deformed by molding, the angle formed with the LC direction can be calculated by taking the deformation amount into account. By using these and reflecting the angle formed by the blank for each element in the molded product, the angle can be accurately set over the entire molded product.

すなわち本発明は次のとおりである。
(1)
異方性材料に対してコンピュータを用いた有限要素法計算により変形シミュレーションを行うCAE解析における材料異方性の計算方法であって、コンピュータが自動的に、前記異方性材料からなる目標立体形状の成形品を解析対象として平面形状のブランクに展開する第1のステップと、次いでコンピュータが自動的に、前記ブランクを、該ブランクを採取した素板内の特定方向またはその直交方向に対しブランクを移動回転させ配置させる第2のステップと、次いでコンピュータが自動的に、第2のステップで得られたブランクの座標情報によりブランクの各要素と前記素板内に設定済の機械的特性の面内異方性に関する基準方向とのなす角度を算出し、前記素板内に設定済の機械的特性の面内異方性に関する基準方向を前記ブランク内の全要素に一括転写することにより各要素に前記基準方向を設定する第3のステップとを有することを特徴とする成形による材料移動を考慮する材料異方性の計算方法。
(2)
前記機械的特性の面内異方性に係る機械的特性が、ヤング率、降伏強さ、引張強さ、r値、及び、応力‐歪曲線のうちの1種又は2種以上であることを特徴とする(1)に記載の成形による材料移動を考慮する材料異方性の計算方法。
(3)
(2)において、前記第3のステップ後の成形品を解析対象として剛性解析又は衝突解析を行うことを特徴とする成形による材料移動を考慮する材料異方性の計算方法。
That is, the present invention is as follows.
(1)
A calculation method of the material anisotropy of definitive to CAE analysis performing deformation simulation by a finite element method calculation using the computer against anisotropic material, the computer automatically, the target solid comprising the anisotropic material A first step of developing a shaped molded article into a planar blank as an analysis object, and then the computer automatically blanks the blank with respect to a specific direction in the base plate from which the blank was collected or a direction perpendicular thereto. A second step of moving and rotating the plate, and then the computer automatically sets the blank element and the surface of the mechanical characteristics set in the blank according to the blank coordinate information obtained in the second step. The angle formed with the reference direction related to the internal anisotropy is calculated, and the reference direction related to the in-plane anisotropy of the mechanical characteristics already set in the base plate is set in the blank. A third calculation method considers material anisotropic material movement by molding, characterized by a step of setting the reference direction in each element by collectively transferred to all elements.
(2)
The mechanical property related to the in-plane anisotropy of the mechanical property is one or more of Young's modulus, yield strength, tensile strength, r value, and stress-strain curve. A method for calculating material anisotropy taking into account material movement by molding as described in (1).
(3)
In (2), the material anisotropy calculation method considering material movement by molding, wherein rigidity analysis or collision analysis is performed on the molded product after the third step as an analysis target.

本発明によれば、解析対象内の各要素に設定される機械的特性の面内異方性に関する基準方向が事実を正しく反映したものとなり、且つその自動入力ができて、作成時間が大幅に短縮する。又、得られた計算形状の成形品に対して剛性解析や衝突解析を行うと、計算値が実験値とよく一致し、変形シミュレーションの高精度化が達成できた。   According to the present invention, the reference direction relating to the in-plane anisotropy of the mechanical characteristics set for each element in the analysis target correctly reflects the fact, and the automatic input can be performed, so that the creation time is greatly increased. Shorten. Moreover, when the rigidity analysis and the collision analysis were performed on the obtained molded product of the calculated shape, the calculated values were in good agreement with the experimental values, and high accuracy of the deformation simulation was achieved.

本発明の実施形態の1例を示す説明図である。It is explanatory drawing which shows one example of embodiment of this invention. 本発明による成形解析結果の1例を示す説明図である。It is explanatory drawing which shows an example of the shaping | molding analysis result by this invention. 本発明による成形解析結果の1例を示す説明図である。It is explanatory drawing which shows an example of the shaping | molding analysis result by this invention. 従来の成形解析結果の1例を示す説明図である。It is explanatory drawing which shows an example of the conventional shaping | molding analysis result. 本発明例と比較例の剛性解析結果を実験値と比較して示すグラフである。It is a graph which shows the rigidity analysis result of this invention example and a comparative example compared with an experimental value.

図1は本発明の実施形態の1例を示す説明図である。1は成形品であり、その形状は目標立体形状であり、その材料は異方性材料である。この材料の異方性情報は、前記基準方向に対する方位角度と機械的特性との対応関係情報であり、ここでは、テーブルの形で記憶されている。前記基準方向としては、C方向から反時計回りに角度θ(この角度θを基準方向の対C方向角度ともいう)だけ回転した方向を用いている。前記テーブルはθ=0°、45°、90°の3つの角度の各々に対応した機械的特性値を保有しており、該テーブル上でθを指定することで前記基準方向の設定或いは変更ができる。θ=0°を指定すればC方向が基準方向になり、θ=45°を指定すればC方向から反時計回りに45°回転した方向が基準方向になり、θ=90°を指定すればC方向から反時計回りに90°回転した方向(=L方向)が基準方向になる。前記テーブル内の機械的特性値は、ヤング率、降伏強さ、引張強さ、r値、及び、応力‐歪曲線の各データである。これらは、行う解析の種類(前述の剛性解析、衝突解析)に応じて、当該解析に必要なものが選択され、使用される。 FIG. 1 is an explanatory diagram showing an example of an embodiment of the present invention. 1 is a molded article, its shape is a target three-dimensional shape, the material is anisotropic materials. The anisotropy information of the material is correspondence information between the azimuth angle with respect to the reference direction and the mechanical characteristics, and is stored in the form of a table here. As the reference direction, a direction rotated counterclockwise from the C direction by an angle θ (this angle θ is also referred to as a C direction angle with respect to the reference direction) is used. The table has mechanical characteristic values corresponding to each of three angles of θ = 0 °, 45 °, and 90 °, and setting or changing the reference direction can be performed by designating θ on the table. it can. If θ = 0 ° is designated, the C direction becomes the reference direction, if θ = 45 ° is designated, the direction rotated 45 ° counterclockwise from the C direction becomes the reference direction, and if θ = 90 ° is designated. A direction rotated counterclockwise by 90 ° from the C direction (= L direction) is a reference direction. The mechanical property values in the table are data of Young's modulus, yield strength, tensile strength, r value, and stress-strain curve. Those necessary for the analysis are selected and used according to the type of analysis to be performed (the above-described stiffness analysis and collision analysis).

CAE解析では成形品1は図示のようにメッシュで複数の領域に区分される。該区分された複数の領域の1つ1つが要素である。
第1のステップ[1](下記(a)(b))では、成形品1を解析対象とし、これを平面形状のブランク2に展開する。尚、立体図形を平面図形に展開するに用いた成形解析ソフトウエアは「Onestep」(商品名)である。
In the CAE analysis, the molded product 1 is divided into a plurality of regions by mesh as shown in the figure. Each of the plurality of divided areas is an element.
In the first step [1] (the following (a) and (b)), the molded product 1 is set as an analysis target, and this is developed on a planar blank 2. The molding analysis software used to develop the solid figure into a plane figure is “Onestep” (trade name).

第2のステップ[2](下記(c))では、ブランク2を移動回転させることにより、ブランク2は素板3から採取される前の状態に戻る。素板3と素板3内のブランク採取図形4は、予め入力されている。本例では素板3は圧延鋼帯であり、そのC方向は既知である。この既知のC方向に基づき、素板3には前記基準方向が設定済みである。
そこで、第3のステップ[3](下記(d)(e))では、前記ブランク2内の全要素に、素板3内の設定済みの前記基準方向を、一括転写する。かくして、ブランク2内の各要素に前記基準方向が自動的に且つごく短時間で設定される。各要素に設定された前記基準方向は、要素に固定され、成形に伴う要素の移動回転と同一の運動をする。
In 2nd step [2] (following (c)), the blank 2 returns to the state before extract | collecting from the base plate 3 by moving and rotating the blank 2. FIG. The base plate 3 and the blank collection figure 4 in the base plate 3 are input in advance. In this example, the base plate 3 is a rolled steel strip, and its C direction is known. Based on this known C direction, the reference direction is already set for the base plate 3.
Therefore, in the third step [3] (the following (d) and (e)), the set reference direction in the base plate 3 is collectively transferred to all the elements in the blank 2. Thus, the reference direction is automatically set for each element in the blank 2 in a very short time. The reference direction set for each element is fixed to the element and performs the same movement as the movement and rotation of the element accompanying molding.


(a) 元の成形品の情報を取得:
算出するエレメント(要素)のnode番号1、node番号2を取得。
(b) 元の成形品をブランクの形にもどす:
Onestep等の成形解析を用い、3次元形状を持つ製品を2次元の平らな板の状態にする。
(c) ブランクの配置:
LC方向に対し、ブランクを移動回転させ配置する。
(d) ブランクでの角度計測:
(a)で取得したnode番号1、node番号2のX座標、Y座標から、node1とnode2を結ぶ直線とL又はC方向との角度を外積により計算。
(e) 成形品での角度の設定:
元の成形品のエレメントの材料角度情報に(d)で算出された角度を入力する。
Record
(a) Obtaining information about the original molded product:
Get node number 1 and node number 2 of the element to be calculated.
(b) Return the original part to the blank:
Using molding analysis such as Onestep, turn a product with a 3D shape into a 2D flat plate.
(c) Blank placement:
The blank is moved and rotated with respect to the LC direction.
(d) Angle measurement with blank:
From the X and Y coordinates of node number 1 and node number 2 acquired in (a), the angle between the straight line connecting node1 and node2 and the L or C direction is calculated by the outer product.
(e) Setting the angle on the molded product:
The angle calculated in (d) is input to the material angle information of the element of the original molded product.

図2、図3は、本発明による成形解析で得られた最終計算形状の成形品5である。図2、図3において(a)(b)(c)は基準方向の対C方向角度θがそれぞれ0°、45°、90°の場合である。基準方向を示す矢印は素板から一括転写され、成形品5の全要素に実態に適合した形で設定されていることがわかる。
一方、図4は、同じ目標立体形状に対し、従来の成形解析で得られた最終計算形状の成形品5である。基準方向の対C方向角度θは0°であるが、立体形状の各要素に基準方向を示す矢印を人の勘に頼って入力しているので、直線状部(図4(a))では隣り合った要素間で逆向きとなっている個所があり、曲線状部(図4(b))では大きいブロックごとの入力のため、全く実態と合わない設定となっている。
2 and 3 show a molded product 5 having a final calculated shape obtained by molding analysis according to the present invention. 2 and 3, (a), (b), and (c) are cases where the reference direction C-direction angle θ is 0 °, 45 °, and 90 °, respectively. It can be seen that the arrow indicating the reference direction is collectively transferred from the base plate and set in a form suitable for all elements of the molded product 5.
On the other hand, FIG. 4 shows a molded product 5 having a final calculated shape obtained by conventional molding analysis for the same target three-dimensional shape. The C direction angle θ of the reference direction is 0 °. However, since the arrows indicating the reference direction are input to each element of the three-dimensional shape depending on human intuition, the linear portion (FIG. 4 (a)) There are places where elements are adjacent to each other in the opposite direction, and the curved portion (FIG. 4 (b)) is set so as not to match the actual situation because it is input for each large block.

又、図1〜図4の例とは異なる目標立体形状の成形品を作成した場合について、本発明と従来とで、基準方向の設定(矢印入力)に要する時間を比較した例を表1に示す。表1より、本発明によれば、基準方向設定所要時間は、要素数が1000と少ない場合でも従来の1/3、要素数が10000と多い場合は従来の1/27であり、従来に比し格段に短縮することがわかる。   Table 1 shows an example in which the time required for setting the reference direction (arrow input) is compared between the present invention and the conventional case when a molded article having a target solid shape different from the examples of FIGS. Show. From Table 1, according to the present invention, the reference direction setting time is 1/3 of the conventional even when the number of elements is as small as 1000, and 1/27 of the conventional when the number of elements is as large as 10,000. It can be seen that it is significantly shortened.

Figure 0005527243
Figure 0005527243

図1〜図3に例示したθ=0°、45°、90°の場合の本発明による最終計算形状の成形品5について、剛性解析を行って剛性値を算出した。一方、これらに対応する実成形品を作製し、剛性解析に対応する剛性試験(剛性確認実験)を実行し、剛性値を求めた。又、同じ目標立体形状に対し、従来の成形解析方法で得られた最終計算形状の成形品5(θ=0°の場合は図4に図示、θ=45°、90°の場合は図示省略)についても同様に剛性解析を行い剛性値を算出した。これらの結果を表2に示すとともに、図5にグラフで示す。   For the molded product 5 having the final calculated shape according to the present invention in the case of θ = 0 °, 45 °, and 90 ° illustrated in FIGS. On the other hand, actual molded products corresponding to these were produced, and a rigidity test (rigidity confirmation experiment) corresponding to rigidity analysis was performed to obtain a rigidity value. Also, for the same target solid shape, the final calculated shape molded product 5 obtained by the conventional molding analysis method (shown in FIG. 4 when θ = 0 °, not shown when θ = 45 ° and 90 °) ) Was similarly analyzed to calculate a stiffness value. These results are shown in Table 2 and graphically shown in FIG.

図5より、本発明例では、基準方向の対C方向角度θが変わっても計算値は実験値に極めて近い値である。一方、従来例ではθ=0°の場合、実験値に近い計算値であるが、θ=45°、90°の場合、実験値とは大きく違った計算値である。
すなわち、本発明によれば、剛性解析の変形シミュレーションによる剛性値予測精度が、従来に比し格段に向上することがわかる。
From FIG. 5, in the example of the present invention, the calculated value is very close to the experimental value even if the reference direction C-direction angle θ changes. On the other hand, in the conventional example, when θ = 0 °, the calculated value is close to the experimental value, but when θ = 45 ° and 90 °, the calculated value is significantly different from the experimental value.
That is, according to the present invention, it can be seen that the rigidity value prediction accuracy by the deformation simulation of the rigidity analysis is remarkably improved as compared with the conventional case.

尚、上記において剛性解析に代えて衝突解析を行う場合についても同様に実施し、同様の結果が得られている。   It should be noted that in the above case, the collision analysis is performed instead of the rigidity analysis, and the same result is obtained.

Figure 0005527243
Figure 0005527243

1 成形品(目標立体形状)
2 ブランク
3 素板(ブランクを採取した素板)
4 素板内のブランク採取図形
5 成形品(最終計算形状)
1 Molded product (target solid shape)
2 blank 3 base plate (base plate from which the blank was collected)
4 Blank sampling figure in base plate 5 Molded product (final calculation shape)

Claims (3)

異方性材料に対してコンピュータを用いた有限要素法計算により変形シミュレーションを行うCAE解析における材料異方性の計算方法であって、コンピュータが自動的に、前記異方性材料からなる目標立体形状の成形品を解析対象として平面形状のブランクに展開する第1のステップと、次いでコンピュータが自動的に、前記ブランクを、該ブランクを採取した素板内の特定方向またはその直交方向に対しブランクを移動回転させ配置させる第2のステップと、次いでコンピュータが自動的に、第2のステップで得られたブランクの座標情報によりブランクの各要素と前記素板内に設定済の機械的特性の面内異方性に関する基準方向とのなす角度を算出し、前記素板内に設定済の機械的特性の面内異方性に関する基準方向を前記ブランク内の全要素に一括転写することにより各要素に前記基準方向を設定する第3のステップとを有することを特徴とする成形による材料移動を考慮する材料異方性の計算方法。 A calculation method of the material anisotropy of definitive to CAE analysis performing deformation simulation by a finite element method calculation using the computer against anisotropic material, the computer automatically, the target solid comprising the anisotropic material A first step of developing a shaped molded article into a planar blank as an analysis object, and then the computer automatically blanks the blank with respect to a specific direction in the base plate from which the blank was collected or a direction perpendicular thereto. A second step of moving and rotating the plate, and then the computer automatically sets the blank element and the surface of the mechanical characteristics set in the blank according to the blank coordinate information obtained in the second step. The angle formed with the reference direction related to the internal anisotropy is calculated, and the reference direction related to the in-plane anisotropy of the mechanical characteristics already set in the base plate is set in the blank. A third calculation method considers material anisotropic material movement by molding, characterized by a step of setting the reference direction in each element by collectively transferred to all elements. 前記機械的特性の面内異方性に係る機械的特性が、ヤング率、降伏強さ、引張強さ、r値、及び、応力‐歪曲線のうちの1種又は2種以上であることを特徴とする請求項1に記載の成形による材料移動を考慮する材料異方性の計算方法。   The mechanical property related to the in-plane anisotropy of the mechanical property is one or more of Young's modulus, yield strength, tensile strength, r value, and stress-strain curve. The material anisotropy calculation method considering material movement by molding according to claim 1. 請求項2において、前記第3のステップ後の成形品を解析対象として剛性解析又は衝突解析を行うことを特徴とする成形による材料移動を考慮する材料異方性の計算方法。   3. The material anisotropy calculation method according to claim 2, wherein the rigidity analysis or the collision analysis is performed on the molded product after the third step as an analysis target.
JP2011026444A 2011-02-09 2011-02-09 Calculation method of material anisotropy considering material movement by molding Active JP5527243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011026444A JP5527243B2 (en) 2011-02-09 2011-02-09 Calculation method of material anisotropy considering material movement by molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011026444A JP5527243B2 (en) 2011-02-09 2011-02-09 Calculation method of material anisotropy considering material movement by molding

Publications (2)

Publication Number Publication Date
JP2012168581A JP2012168581A (en) 2012-09-06
JP5527243B2 true JP5527243B2 (en) 2014-06-18

Family

ID=46972716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011026444A Active JP5527243B2 (en) 2011-02-09 2011-02-09 Calculation method of material anisotropy considering material movement by molding

Country Status (1)

Country Link
JP (1) JP5527243B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098800B2 (en) * 2008-05-16 2012-12-12 新日鐵住金株式会社 Method for analyzing collision characteristics or rigidity of thin plate structure, analysis processing apparatus, analysis processing program, and recording medium
JP5098901B2 (en) * 2008-09-02 2012-12-12 Jfeスチール株式会社 Calculation method of material property parameters

Also Published As

Publication number Publication date
JP2012168581A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
CN104602836B (en) Resilience main cause determines that method and resilience main cause determine device
WO2010073756A1 (en) Springback occurrence cause analyzing method, springback occurrence cause analyzing device, springback occurrence cause analyzing program, and recording medium
JP5459362B2 (en) Setting method of material anisotropy information and sheet thickness information to analysis model of molded product, rigidity analysis method and collision analysis method
WO2017115620A1 (en) Deformation work assist system and deformation work assist method
JP3978377B2 (en) Molding simulation analysis method
JP5459364B2 (en) Optimal part removal method from anisotropic metal plate
EP2845130B1 (en) System and method for bending and unbending complex sheet metal bend regions
JP5527243B2 (en) Calculation method of material anisotropy considering material movement by molding
JP2010211680A (en) Method of correcting model data
JP6694366B2 (en) Press processing condition determination method
JP5969886B2 (en) Corresponding point calculation system and program, mold shape generation system and program
JP5994464B2 (en) Metal pipe analysis method
JP2017013437A (en) Computer-aided resin behavior analysis device
CN112131663B (en) Accounting method and device for material R angle change unfolding data offset layer
JP4932693B2 (en) How to create a mold model
JP6752054B2 (en) Component point calculation device and program for component point calculation of the shape after springback
JP6265811B2 (en) Draw model generation method and draw model generation system
JP6144612B2 (en) Draw model generation method and draw model generation system
JP2010003191A (en) Shape analysis device, shape analysis method, and shape analysis program
JP6415835B2 (en) Draw model generation method and draw model generation system
JP2010211678A (en) Method of correcting model data
JP5318650B2 (en) Work model creation method
CN117726769A (en) Dirty composite curved surface grid generation method
TW201104476A (en) Forming analysis method for computer aided engineering (CAE) with point data joining modeling curve surface data
JP2003340528A (en) Device and method for evaluating dimensional accuracy of press-formed product

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5527243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250